EP2115855A1 - Machine électrique - Google Patents

Machine électrique

Info

Publication number
EP2115855A1
EP2115855A1 EP08701555A EP08701555A EP2115855A1 EP 2115855 A1 EP2115855 A1 EP 2115855A1 EP 08701555 A EP08701555 A EP 08701555A EP 08701555 A EP08701555 A EP 08701555A EP 2115855 A1 EP2115855 A1 EP 2115855A1
Authority
EP
European Patent Office
Prior art keywords
resilient
magnet
recess
magnets
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08701555A
Other languages
German (de)
English (en)
Inventor
Karl-Juergen Roth
Ngoc-Thach Nguyen
Tilo Koenig
Bruno Holzwarth
Christian Arens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2115855A1 publication Critical patent/EP2115855A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the invention relates to an electrical machine, in particular an electric motor with a rotor and a stator. Specifically, the invention relates to the field of electric motors for motor vehicles, in particular serving as electrical auxiliary drives electric motors for power-operated adjustment or the support of an adjustment of elements of a motor vehicle.
  • Stators controlled by means of a control circuit so that there is a rotating magnetic field inside the motor. This will then take the rotor with you.
  • four rotor magnets are provided, which are mounted in a rotor housing so that the inner peripheral surfaces of the
  • Rotor magnets lie exactly opposite an outer circumferential surface of the stator core.
  • Rotor housing can only be done with limited accuracy. This has an unfavorable effect on the operating behavior of the known electric motor.
  • the rotor is composed of one or more disk packs or individual laminations and other components.
  • the lamellae or disk packs can be pushed axially onto a shaft, so that they immediately adjoin one another.
  • the individual disks for example a disk set, can be produced by stamping, wherein the individual disks can be packaged after punching to form a disk package.
  • punching also recesses can be achieved, which add to the disk pack to pockets in which magnets are present in the mounted state of the rotor, that is buried.
  • electrical machines such as synchronous motors, it is conceivable that magnets are inserted into the pockets, wherein a fixing of the magnets is done by gluing.
  • both the pockets and the magnets usually have a manufacturing tolerance.
  • Magnets in tangential direction possible.
  • very soft parts could be placed on either side of the magnet, for example made of paper.
  • such a manual centering represents an extremely high cost in the production of electrical machine.
  • the electric machine according to the invention with the features of claim 1 has the advantage that a reliable and relatively inexpensive to betechnikstelligende positioning of the magnets in the rotor is made possible. Specifically, an accurate tangential positioning of the magnets can be done relative to the disk packs to reduce a cogging torque of the electric machine.
  • the electric machine has at least two magnets. Of the magnets of the electric machine at least one is arranged in a recess according to claim 1.
  • the resilient projection of the blade is biased for at least indirect attachment of the magnet in the recess in a tangential direction.
  • the lamella can be designed so that an elastic deformation of the resilient approach is required for introducing the magnet into the recess.
  • an attachment of the magnet is achieved in the recess, which is already sufficient, depending on the particular application, to the magnet to fix. Separate fasteners, the use of adhesives or the like, is then not required.
  • a defined position of the magnet in the radial direction can be specified by the bias in the tangential direction.
  • the resilient lug for biasing the magnet in the recess is biased in a radial direction.
  • an attachment of the magnet in the recess can be achieved, which does not require the additional use of fasteners or adhesives depending on the particular application.
  • the bias can be specified by the bias a defined position in the radial direction.
  • a plurality of resilient lugs may also be provided, of which one part is biased substantially in a tangential direction and another part is biased at least substantially in a radial direction.
  • a resilient approach is biased both in the radial direction and in the tangential direction.
  • Such resilient approaches can be provided on mutually different slats of a disk pack or on the same lamella.
  • resilient lugs are formed on a plurality of lamellae of the lamella packet, wherein at least a part of the resilient lugs of the lamellae is arranged one behind the other in an axial direction. This ensures that accumulate the holding forces of the resilient lugs, whereby a reliable attachment is achieved even at relatively high loads. Furthermore, it is advantageous that an intermediate space is provided between one, two or even a plurality of resilient projections arranged one behind the other. Through the gap a certain bending of the resilient projections when inserting the magnet is made possible in the recess. This facilitates the mounting of the magnet in the recess. In addition, thereby the resilient lugs can be configured so that they protrude relatively far into the space required by the magnet to be inserted, whereby already one of the resilient lugs exerts a relatively large holding force.
  • one or more fins are provided on the end faces of the disk pack, which have no resilient lugs. This prevents mounting due to resilient approaches on the
  • the resilient projections are configured bow-shaped or nose-shaped. This embodiment is relatively easy to produce in the context of a stamping process and also allows an advantageous deflection.
  • the magnet when the magnet is connected by means of an adhesive with the resilient approach. As a result, the attachment is further enhanced, so that the magnet is reliably positioned even in relation to large loads occurring.
  • FIG. 1 shows a lamella of a disk set of a rotor of an electric machine according to a first embodiment of the invention
  • FIG. 2 the blade shown in Figure 1 according to a second embodiment.
  • Fig. 3 arranged one behind the other slats in an excerpted representation corresponding to the designated in Fig. 2 with III section.
  • FIG. 4 shows the blade shown in Figure 1 according to a third embodiment ..;
  • FIG. 5 shows the blade shown in Figure 1 according to a fourth embodiment ..;
  • FIG. 6 the blade shown in Figure 1 according to a fifth embodiment.
  • FIG. 7 shows the blade shown in Figure 1 according to a sixth embodiment ..;
  • FIG. 8 shows the blade shown in FIG. 1 in accordance with a seventh embodiment
  • FIG. 9 shows the blade shown in Figure 1 according to an eighth embodiment ..;
  • FIG. 10 corresponding to the slat shown in Fig. 1 a ninth embodiment
  • FIG. 11 shows a terminating or intermediate plate of a plate pack of a rotor of an electrical machine
  • FIG. 12 is a simplified representation of a packet of laminations packetized from a plurality of slats in an excerpted sectional view along the in Fig. 10 denoted by XII section line for further illustrating an embodiment of the invention and
  • Fig. 13 a plate pack of an electric machine with inserted magnets.
  • the electric machine can be designed in particular as an electric motor for a motor vehicle.
  • the electric machine is suitable for power-operated adjustment of elements of a motor vehicle, for example a sunroof, a window or a seat element.
  • the electric machine can serve as an electric motor for steering power assistance.
  • the electric machine according to the invention is also suitable for other applications.
  • the lamellae 1 of a lamella packet 2 can be designed differently. Various design options are based on the below described embodiments explained. In this case, there are particular advantages due to the different design of a plurality of lamellae 1 packetized to form a lamella packet 2. With regard to the particular application, then the appropriate design of the plate package 2 can be selected.
  • the blade 1 shown in FIG. 1 has a central, circular recess 5.
  • the recess 5 allows the application of the blade 1 to a shaft of the electric machine.
  • the slats 1 can be individually added to the shaft. It is also possible that the lamellae 1 are first packaged to form a lamella packet 2 which is placed on the shaft as a whole. Furthermore, the lamella 1 has a plurality of punched-out sections 6, which serve for weight reduction. Furthermore, the slat 1
  • the lamella 1 has two different types of recesses 10, namely recesses, which are designed according to the recess 10A, and recesses, which are designed according to the recess 10B.
  • recess 10A a resilient projection 11 is formed on the lamella 1, which is designed näschenförmig.
  • the resilient projection 11 protrudes slightly into the area that is required by the magnet 4.
  • This elastic deformation causes a bias of the resilient lug 11 in a radial direction, the magnet 4 against a side surface 12 of the lamella 1 with an in acting radially acting holding force.
  • the side surface 12 while the radial position of the magnet 4 is predetermined.
  • the centrifugal forces occurring on the magnet 4 when rotating the rotor 3 act in the same direction as the resilient projection 11, whereby no relative movement to the plate pack 2 occurs.
  • the recess IOB has instead of a resilient projection 11 on a void 13.
  • some slats 1 are arranged so that a recess 10B is located with a void 13 behind a recess 10A with a resilient projection 11.
  • the recesses 10A, 10B of a plurality of fins 1 may alternate in an axial direction.
  • the compression of the resilient lugs 11 is favored. It can be influenced by the depth of the void 13, the rigidity of the resilient lugs 11.
  • the resilient lugs 11 and the voids 13 are arranged in the center of the respective recess 10A, 10B, whereby the magnetic flux is disturbed only slightly. A further reduction in the disturbance of the magnetic flux through the resilient lugs 11 and the voids 13 can be achieved in that the resilient lugs 11 and the voids 13 are made so small that the
  • Fig. 2 shows another possible embodiment of a blade 1 according to a second embodiment of the invention.
  • the recesses 10 are all configured the same.
  • the recesses 10 all have an empty space 13, as corresponds to the recess 10B shown in FIG.
  • the recesses 10 each have a resilient projection 14, which allows positioning of a magnet 4 used in each case in the recess 10 in a tangential direction.
  • the resilient projection 14 is configured bow-shaped.
  • the lamella 1 is applied to the shaft 15 and suitably connected to it, for example by a cylindrical press assembly.
  • the illustrated embodiment in which exactly one resilient lug 14 for positioning in a tangential direction is provided in each recess, has the advantage that the space available on the lamella 1 can essentially serve to accommodate the magnets 4. Thus, a certain space savings is achieved. It is also advantageous that a bulbous bulge 17 is provided on one side of the recess 10, which is the resilient
  • a plate pack 2 and slats 1 may be provided, which are configured according to the blade shown in FIG. 2, with the proviso that they have instead of the voids 13 resilient lugs 11, as in the in the Fig. 1 illustrated recesses 10A is the case.
  • a blade with the blade 1 shown in Fig. 2 thus can be both a positioning in a radial direction by means of a resilient projection 11 and in a tangential direction by means of a resilient projection 14 with respect to a in the recesses 10th achieve brought magnets 4.
  • the recess 10 has a certain width 18, which is defined by the resilient projection 14 in the initial state, that is, without a magnet 4.
  • the joint which is predetermined by a width 23 (FIG. 13) of the magnet 4 to the width 18 of the recess 10, can be dimensioned as a transitional or interference fit. If the interpretation is done as Press fit, then the width 18 of the recess 10 is preferably selected so that a minimum coverage of a few micrometers is achieved. As a result, a centering effect is achieved with all resilient lugs 14.
  • each resilient lug 14 contributes to the plurality of louvers 1 for attachment of the magnets 4. In sum, therefore, results in a relatively large holding force on the magnets 4. If the interpretation as transition fit, then there is an easy mountability of the magnets 4 in the recesses 10, so that this embodiment is advantageous if even lower holding forces for attachment of Magnets 4 suffice.
  • the designed as a bracket resilient projection 14 has a height 19 and a width 20.
  • the height 19 and the width 20 of the resilient projection 14 the choice of the height 19 and the width 20 of the resilient projection 14, the
  • the stiffness of the resilient lug 14 is set so that the holding force in the tangential direction on the magnet 4 is just sufficient, the magnet 4 is brought to the bracket opposite side of the recess 10 on a bulbous protrusions 17 for concern.
  • Fig. 3 shows successively arranged lamellae 1 in an excerpted representation corresponding to the designated in Fig. 2 with III section. It may be advantageous that a plate pack 2 is designed so that the end plates have no resilient lugs 11, 14.
  • Fig. 3 shows an end plate 1 'in front of a blade, which is designed according to FIG.
  • the end plate 1 ' has, on the one hand, a bulbous bulge 17' and, on the other hand, instead of a resilient extension 14, a further bulbous bulge 17 ''.
  • the end plate 1 'in tangential Direction on both sides a fixed stop for a magnet 4, which is inserted in one of the recesses 10. As a result, a pre-centering of the magnet 4 is made possible.
  • the distance between the two bulbous bulges 17 ', 17''from each other is chosen so large that there is a clearance fit, taking into account all tolerances.
  • the end plate 1 ' also prevents a resilient projection 14 is so strong bent during insertion of the magnet 4 in the recess that this protrudes beyond an end face 21 (Fig. 13) of the plate pack 2.
  • the play 22 between the magnet 4 and the bulbous bulge 17 '' when abutting on the corresponding bulbous bulge 17 ' is preferably chosen so that a certain pre-centering when inserting the magnet
  • the magnets 4 ensures, but still a simple installation is possible.
  • the position of the magnet 4 in the tangential direction would not be determined exactly.
  • the magnets 4 are always secured on one side, as defined by the bulbous bulge 17 ', of the recess 10 within a lamella packet 2 in the tangential direction already during the joining process be pressed in such a way that all magnets 4 depending on
  • the resilient lugs 14 can be used in addition to the tangential centering for fixing the magnets 4.
  • the resilient projections 14 are made somewhat stiffer, for example, by a relatively large width 20, and a certain positive overlap between the resilient projection 14 in the untensioned state and the magnet 4th
  • the recesses 10A, 10B of the lamella 1 are designed in two different ways, with the embodiments alternating in the tangential direction, that is to say over the circumference.
  • the recesses 10A have resilient lugs 11 which allow positioning in a radial direction.
  • the recesses 10B have a void space 13 instead of the resilient lug 11 as provided at the recess 10A.
  • the resilient projection 11 can achieve a positioning of the magnet 4 in addition to a positioning in the radial direction. For fixing the magnet 4 in the recesses 10A, 10B can thereby the resilient projections 11 and the resilient Approaches 14 interact.
  • Lamellae packs 2 with those shown in Fig. 4 slats 1 is preferably carried out so that the individual slats 1 of the plate pack 2 are twisted packetized to each other, so that, for example, behind a recess 10 A is a recess 10 B of the next slat.
  • the resilient lugs 14 cause a positioning in the tangential direction
  • the resilient lugs 11 cause both a positioning of the magnets in the radial direction and an attachment of the magnets 4 in the recesses 10A, 10B.
  • Fig. 5 shows a blade 1 of a plate pack 2 according to a fourth embodiment of the invention.
  • the lamella 1 has recesses 10, in which resilient lugs 14, 14 'are provided, which are designed in each case bow-shaped.
  • resilient lugs 14, 14 'of the recess 10 By the resilient lugs 14, 14 'of the recess 10, a centering of the magnets 4 is achieved in a tangential position.
  • the bow-shaped, resilient lugs 14, 14 ' hold the magnets 4 in the pockets.
  • the rigidity of the two resilient lugs 14, 14 ' is at least substantially the same.
  • a possibly required for this high accuracy in manufacturing can be done by suitable manufacturing processes, for example by punching or laser cutting.
  • Fig. 6 shows a blade 1 of a plate pack 2 according to a fifth embodiment of the invention.
  • the recesses 10A, 10B are configured in two different ways, wherein the recesses 10A have a resilient projection 14, which is configured bow-shaped, and wherein the recesses IOB in a region in which the recesses 10 A, the resilient lugs 14 are provided, a free space 25 is provided.
  • bulged bulges 17 are provided which lie opposite the resilient extension 14 or the free space 25.
  • the recesses 10A alternate with the recesses 10B in the tangential direction, that is, in the circumferential direction.
  • the disk set can be composed of the slats 1, that behind a recess 10 A of a slat 1, the recess 10 B of another slat is arranged.
  • the resilient lugs 14 may partially bend axially parallel and thus exert relatively large holding forces on the inserted magnets 4.
  • Fig. 7 shows a blade 1 of a plate pack 2 according to a sixth embodiment of the invention.
  • each recess 10 on opposite resilient lugs 14, 14 ' which serve to center the magnets 4 in the tangential direction.
  • each recess 10 on a resilient projection 11 which is formed like a nosed. The resilient lugs 11 are used both for radial positioning of the magnets 4 and for clamping the magnets 4 in the respective recess 10th
  • Fig. 8 shows a blade 1 of a plate pack 2 according to a seventh embodiment of the invention.
  • sinus poles 27 are provided in the region of the recesses 10 on a circumference 26 of the lamella 1.
  • the sine poles 27 have a favorable effect on the course of the field lines in the lamella 1. It is desirable that the magnetic flux within the Rotor 3 passes from a magnet 4 over the stator and not directly to an adjacent magnet. In addition, a magnetic short circuit should be avoided.
  • the stray magnetic flux and also the magnetic short circuit reduce the efficiency of the electrical machine, so that the losses due to the stray magnetic flux and the magnetic short circuit should be kept small. This is achieved by the sine poles 27.
  • Fig. 9 shows a blade 1 of a plate pack 2 according to an eighth embodiment of the invention.
  • the lamella 1 bores 28, 28 ' wherein between two holes 28, 28' each have a recess 10 A of the lamella 1 is provided.
  • the holes 28, 28 'are thus distributed over the circumference 26 of the lamella 1.
  • a resilient projection 14 with a certain width 20.
  • the resilient lugs 14, 14 ' results.
  • the holes 28, 28 'in terms of the magnetic scattering behavior and a magnetic short circuit effect in the desired manner advantageously.
  • the recesses 10 B have resilient lugs 11, while the recesses 10 A no resilient lugs 11 and also no voids 13, as shown for example in FIG. 4, have.
  • mutually twisted arrangement of the slats 1 within the plate pack 2 thus results in a relatively large Clamping force of the resilient lugs 11.
  • Fig. 10 shows a blade 1 of a disk pack 2 according to a ninth embodiment of the invention.
  • notches 29 are provided on the periphery 26 of the lamella 1, which have the advantage that they reduce the leakage magnetic flux and the magnetic short circuit.
  • Fig. 11 shows a final or intermediate blade 1 '' of a disk pack 2, which depends on the respective
  • the lamella 1 '' has free spaces 25, 25 'which are provided on each of the recesses 10. Furthermore, the recesses 10 have voids 13.
  • the lamella 1 "may, for example, be provided one or more times on the end face 21 of the lamella packet 2 in order to facilitate the introduction of the magnets 4 into the lamella packet 2. Furthermore, it can thereby prevent the protrusion of a bent in an axial direction resilient projection 11, 14, 14 'on the end face 21.
  • the lamella 1 '' is also suitable as an intermediate plate 1 '', which is provided within the plate pack 2, to allow elastic, axial deformation of a resilient projection 11, 14, 14 '.
  • FIG. 12 shows a section through a disk pack 2, as shown in FIG. 13, along the section line indicated by XII in FIG. 7 in a simplified, partial representation.
  • the disk set 2 has on the end face 21 two according to the end plate 1 '' shown in Fig. 11 configured lamella IA, IB.
  • two louvers IC, ID designed in accordance with the end lamella 1 "shown in FIG. 11 are also provided on one of the end faces 21 opposite the end face 21 ' intended.
  • lamellae IE, IF are provided which have both a resilient attachment HE, HF and also a bow-shaped resilient attachment 14E, 14F.
  • intermediate plates IG, IH are provided, which are configured according to the plate 1 'shown in Fig. 11.
  • the intermediate plate IG is provided so that a deflection of the resilient projection 11 in the axial direction 30 and a deflection of the resilient projection 14E in the axial direction 30 is possible.
  • the structure of the disk pack 2 described with reference to the lamellae IE, IG, IF, IH continues up to the end face 21, wherein immediately adjacent to the end face 21 two lamellae IA, IB are provided in succession, corresponding to that shown in FIG Slat 1 '' are configured.
  • FIGS. 1 to 12 wherein a disk pack 2 may be constructed in a suitable manner from a plurality of different disks 1, 1 ', 1' '.
  • a disk pack 2 may be constructed in a suitable manner from a plurality of different disks 1, 1 ', 1' '.
  • Such a variant embodiment is shown briefly with reference to FIG. 12.
  • the design of the slats 1, 1 ', 1' ' can also be done by combining a plurality of individual elements.
  • the resilient lugs 11, 14, 14 'in other ways on the individual recesses 10 are distributed.
  • FIG. 13 shows a rotor 3 with a disk pack 2 into which magnets 4 are inserted.
  • the magnets 4 inserted into the rotor 3 have a width 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

L'invention concerne une machine électrique pouvant être conçue en tant que moteur électrique, présentant un rotor (3). Le rotor (3) comporte plusieurs lamelles (1) constituant un paquet de lamelles (2). Le paquet de lamelles (2) comporte des évidements (10) dans lesquels des aimants (4) sont logés. Les lamelles (1) comportent par ailleurs des saillies élastiques (11, 14). Une partie des saillies élastiques (11) provoque un positionnement et une fixation radiaux des aimants (4), tandis que l'autre partie des saillies élastiques (14) provoque un positionnement et une fixation tangentiels des aimants (4).
EP08701555A 2007-02-01 2008-01-17 Machine électrique Withdrawn EP2115855A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007005032 2007-02-01
DE102007029719A DE102007029719A1 (de) 2007-02-01 2007-06-27 Elektrische Maschine
PCT/EP2008/050496 WO2008092748A1 (fr) 2007-02-01 2008-01-17 Machine électrique

Publications (1)

Publication Number Publication Date
EP2115855A1 true EP2115855A1 (fr) 2009-11-11

Family

ID=39587438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08701555A Withdrawn EP2115855A1 (fr) 2007-02-01 2008-01-17 Machine électrique

Country Status (3)

Country Link
EP (1) EP2115855A1 (fr)
DE (1) DE102007029719A1 (fr)
WO (1) WO2008092748A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016177970A1 (fr) * 2015-05-07 2016-11-10 Valeo Equipements Electriques Moteur Rotor ameliore de machine electrique tournante comportant au moins un element de plaquage d'aimant
FR3115167A1 (fr) 2020-10-14 2022-04-15 Nidec Psa Emotors Rotor de machine électrique tournante

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007036315A1 (de) * 2007-07-31 2009-02-05 Robert Bosch Gmbh Lamellenpaket für einen Rotor oder Stator einer elektrischen Maschine und entsprechende elektrische Maschine
DE102008041660A1 (de) * 2008-08-28 2010-03-04 Robert Bosch Gmbh Stator oder Läufer einer elektrischen Dreh- oder Wanderfeldmaschine
DE102008043138A1 (de) * 2008-10-23 2010-04-29 Robert Bosch Gmbh Lamellenpaket eines Rotors einer elektrischen Maschine
DE102009021457A1 (de) 2009-05-15 2010-11-25 Daimler Ag Aktivteil einer elektrischen Maschine mit spezieller Magnetfixierung
DE202009007544U1 (de) * 2009-05-27 2010-10-14 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Blechpaket, insbesondere für den Rotor eines Elektromotors
DE102011101730A1 (de) 2010-06-04 2011-12-08 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektromotor
DE102010022702A1 (de) * 2010-06-04 2011-12-08 Wilo Se Rotor mit Permanentmagneten
EP2580847B1 (fr) 2010-06-14 2021-11-17 Black & Decker Inc. Bloc rotor destiné à un moteur sans balai pour un outil électrique
DE102010030326A1 (de) * 2010-06-22 2011-12-22 Robert Bosch Gmbh Befestigung von Einzelmagneten eines Maschinenteils einer elektrischen Maschine
DE102011122023A1 (de) 2011-12-23 2013-06-27 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Roboterblechpaket eines Elektromotors
DE102012016927A1 (de) 2012-08-27 2014-02-27 Volkswagen Aktiengesellschaft Rotor einer elektrischen Maschine mit darin angeordneten Permanentmagneten sowie Montageverfahren zur Fixierung von Permanentmagneten in dem Rotor einer elektrischen Maschine
DE102013102822A1 (de) 2013-03-19 2014-09-25 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektromotor mit Innenrotor und Außenstator
FR3009140B1 (fr) 2013-07-29 2017-02-24 Valeo Equip Electr Moteur Rotor a aimants permanents
DE102013215812A1 (de) 2013-08-09 2015-03-05 Bühler Motor GmbH Elektrische Maschine
DE102013020662A1 (de) * 2013-12-06 2015-06-11 Kienle + Spiess Gmbh Verfahren zur Herstellung von Lamellen für ein Lamellenpaket, insbesondere für elektrische Maschinen und Generatoren,Vorrichtung mit wenigstens einer Stanzpresse sowie nach dem Verfahren hergestellte Lamelle und Lamellenpaket.
EP2903139B1 (fr) 2014-02-04 2017-10-04 Baumüller Nürnberg GmbH Paquet de tôles de rotor, notamment pour un moteur électrique
GB201403555D0 (en) * 2014-02-28 2014-04-16 Of America Asrepresented By The Sec Dep Of Health And Human Interior permanent magnet motor and rotor structure therefore
US9985485B2 (en) 2014-04-01 2018-05-29 GM Global Technology Operations LLC Magnet insert design for rotor lamination
DE102014005894A1 (de) * 2014-04-25 2015-10-29 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Polschuhring für einen Rotor eines Elektromotors
DE102014225260A1 (de) 2014-12-09 2016-06-09 Em-Motive Gmbh Kühlungsoptimiertes Blechpaket für einen permanentmagnetischen Rotor einer elektrischen Maschine
US11047528B2 (en) 2016-02-12 2021-06-29 Black & Decker Inc. Electronic braking for a power tool having a brushless motor
DE102016204972A1 (de) * 2016-03-24 2017-09-28 Schaeffler Technologies AG & Co. KG Rotor einer elektrischen Maschine
CN107465284B (zh) * 2016-06-06 2020-11-06 德昌电机(深圳)有限公司 转子及具有该转子的电机、电动工具
DE102016211711A1 (de) * 2016-06-29 2018-01-04 Daimler Ag Rotor einer elektrischen Maschine
DE102016216773A1 (de) 2016-09-05 2018-03-08 Continental Automotive Gmbh Rotorblechpaket und Statorblechpaket für eine elektrische Maschine
CN107872108A (zh) * 2016-09-23 2018-04-03 博世汽车部件(长沙)有限公司 电机及其转子
DE102017103619A1 (de) 2017-02-22 2018-08-23 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektromotor, Innenrotor und Rotorblech
CN108667174A (zh) * 2017-03-31 2018-10-16 南京理工大学 表面式永磁电机转子及电机
CN108667175A (zh) * 2017-03-31 2018-10-16 南京理工大学 内嵌式永磁电机转子及电机
WO2018189822A1 (fr) * 2017-04-12 2018-10-18 三菱電機株式会社 Rotor ipm
DE102017210879A1 (de) 2017-06-28 2019-01-03 Robert Bosch Gmbh Rotor einer elektrischen Maschine
FR3069115B1 (fr) * 2017-07-12 2020-01-24 Valeo Equipements Electriques Moteur Rotor de machine electrique tournante muni de languettes de maintien d'aimants permanents
DE102017214508A1 (de) 2017-08-21 2019-02-21 Robert Bosch Gmbh Rotor für eine elektrische Maschine, insbesondere für einen Elektromotor
DE102017217282B3 (de) * 2017-09-28 2019-03-28 Bühler Motor GmbH Permanentmagnetrotor, Verfahren zu seiner Herstellung und Magnetisierungsvorrichtung
DE102017218408A1 (de) 2017-10-13 2019-04-18 Volkswagen Aktiengesellschaft Elektrische Maschine mit einem Lamellenpaket zur Fixierung eines Magneten sowie ein Lamellenpaket zur Verwendung bei einer solchen Maschine
DE102017221149A1 (de) 2017-11-27 2019-05-29 Em-Motive Gmbh Rotor oder Stator einer elektrischen Maschine
EP3512074A1 (fr) * 2018-01-10 2019-07-17 Bühler Motor GmbH Rotor à aimant permanent
DE102018218251A1 (de) 2018-01-10 2019-07-11 Bühler Motor GmbH Permanentmagnetrotor
DE102019124227A1 (de) * 2019-09-10 2021-03-11 Schaeffler Technologies AG & Co. KG Rotor, Elektromotor und Antriebsstrangvorrichtung
DE102020004955A1 (de) 2019-11-28 2021-06-02 Hans Hermann Rottmerhusen Läufer einer elektrischen Maschine
DE102020120233A1 (de) 2020-07-31 2022-02-03 Minebea Mitsumi Inc. Motorbauteil für einen Elektromotor
DE102020214511A1 (de) 2020-11-18 2022-05-19 Robert Bosch Gesellschaft mit beschränkter Haftung Rotor für eine elektrische Maschine
EP4060873A1 (fr) * 2021-03-19 2022-09-21 Siemens Aktiengesellschaft Moteur synchrone à aimant permanent
DE102021204845A1 (de) 2021-05-12 2022-11-17 Zf Friedrichshafen Ag Lamellenpaket für eine elektrische Maschine sowie Verfahren zur Fertigung des Lamellenpakets
DE102021204934A1 (de) 2021-05-17 2022-11-17 Robert Bosch Gesellschaft mit beschränkter Haftung Rotor für einen Elektromotor
DE102021205740A1 (de) 2021-06-08 2022-12-08 Robert Bosch Gesellschaft mit beschränkter Haftung Rotor für eine elektrische Maschine, eine elektrische Maschine, sowie Verfahren zum Herstellen eines solchen Rotors
DE102021207999A1 (de) 2021-07-26 2023-01-26 Robert Bosch Gesellschaft mit beschränkter Haftung Rotor für eine elektrische Maschine, eine elektrische Maschine, sowie Verfahren zum Herstellen eines solchen Rotors
FR3129792A1 (fr) * 2021-11-26 2023-06-02 Nidec Psa Emotors Rotor de machine électrique tournante
WO2024047040A1 (fr) * 2022-08-30 2024-03-07 SVANEHØJ Danmark A/S Moteur électrique à aimants permanents et pompe à carburant immergée dotée d'un tel moteur
DE102022131792A1 (de) 2022-11-30 2024-06-06 Valeo Eautomotive Germany Gmbh Rotor für eine elektrische Maschine mit einer verbesserten Befestigung von Rotormagneten

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146103A (ja) * 1991-11-21 1993-06-11 Seiko Epson Corp 永久磁石回転子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69333946T2 (de) 1992-08-12 2006-08-31 Seiko Epson Corp. Dauermagnetrotor für bürstenloser Elektromotor und Verfahren zur Herstellung
JPH06133479A (ja) 1992-09-02 1994-05-13 Toshiba Corp 永久磁石ロータ及びその製造装置
JP3200281B2 (ja) 1994-03-29 2001-08-20 株式会社ゼクセルヴァレオクライメートコントロール ブラシレスモータ
JP3351237B2 (ja) * 1996-05-16 2002-11-25 三菱電機株式会社 永久磁石形モータ
DE10131474A1 (de) * 2001-06-29 2003-05-28 Bosch Gmbh Robert Elektrische Maschine
DE10216098A1 (de) 2002-04-12 2003-10-23 Bosch Gmbh Robert Rotor für eine elektrische Maschine
JP2004289904A (ja) 2003-03-20 2004-10-14 Isuzu Motors Ltd ロータの永久磁石保持構造

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146103A (ja) * 1991-11-21 1993-06-11 Seiko Epson Corp 永久磁石回転子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008092748A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016177970A1 (fr) * 2015-05-07 2016-11-10 Valeo Equipements Electriques Moteur Rotor ameliore de machine electrique tournante comportant au moins un element de plaquage d'aimant
FR3115167A1 (fr) 2020-10-14 2022-04-15 Nidec Psa Emotors Rotor de machine électrique tournante
WO2022079364A1 (fr) 2020-10-14 2022-04-21 Nidec Psa Emotors Rotor de machine électrique tournante

Also Published As

Publication number Publication date
DE102007029719A1 (de) 2008-08-07
WO2008092748A1 (fr) 2008-08-07

Similar Documents

Publication Publication Date Title
EP2115855A1 (fr) Machine électrique
DE102010004887A1 (de) Spulenkörper zur Montage an einem Magnetkern, Magnetkern für Reluktanzresolver und Verfahren zur Herstellung
EP1145407A1 (fr) Generateur a poles a griffes
EP2084806A1 (fr) Moteur électrique et procédé de fabrication d'un moteur électrique pour un servomoteur automobile
DE19842948A1 (de) Elektromotor
EP2436100A2 (fr) Paquet de tôles, en particulier pour le rotor d'un moteur électrique
DE102009003228B4 (de) Elektrische Maschine
DE102012102177A1 (de) Rotierende elektrische Maschine
WO2011067129A2 (fr) Moteur électrique
WO2009016077A1 (fr) Paquet de lamelles pour un rotor ou un stator d'une machine électrique et machine électrique correspondante
WO2012065778A2 (fr) Moteur électrique assurant l'entraînement de la direction d'un véhicule automobile
WO2010046177A2 (fr) Ensemble de lamelles d'un rotor d'une machine électrique
WO2019121001A1 (fr) Ensemble formant rotor ou stator à aimants permanents
DE102021205740A1 (de) Rotor für eine elektrische Maschine, eine elektrische Maschine, sowie Verfahren zum Herstellen eines solchen Rotors
EP2605372A2 (fr) Elément de support pour aimant permanent sur un rotor d'une machine électrique
DE102007013738A1 (de) Klauenpolmaschine
DE102016222614B4 (de) Stator einer elektrischen Maschine, eine elektrische Maschine, sowie Verfahren zum Herstellen einer solchen
DE10258606A1 (de) Elektrische Maschine
DE102012210365A1 (de) Statoranordnung für eine elektrische Maschine und Verfahren zu deren Herstellung
DE102018221061A1 (de) Rotor einer elektrischen Maschine, sowie elektrische Maschine aufweisend einen solchen Rotor
DE102018101597A1 (de) Antriebsstrang für ein Transportmittel
WO2023274631A1 (fr) Rotor pourvu d'une tôle d'extrémité présentant un bombement
EP4186150A1 (fr) Actionneur pour ensemble véhicule
WO2024088507A1 (fr) Machine électrique
DE102020122397A1 (de) Läufer für eine elektrische Reluktanzmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140604