EP2111085B1 - Intelligente Flyback-Heizung - Google Patents

Intelligente Flyback-Heizung Download PDF

Info

Publication number
EP2111085B1
EP2111085B1 EP09159438A EP09159438A EP2111085B1 EP 2111085 B1 EP2111085 B1 EP 2111085B1 EP 09159438 A EP09159438 A EP 09159438A EP 09159438 A EP09159438 A EP 09159438A EP 2111085 B1 EP2111085 B1 EP 2111085B1
Authority
EP
European Patent Office
Prior art keywords
voltage
circuit
heating
coupling element
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09159438A
Other languages
English (en)
French (fr)
Other versions
EP2111085A1 (de
Inventor
Dietmar Klien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36329195&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2111085(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP2111085A1 publication Critical patent/EP2111085A1/de
Application granted granted Critical
Publication of EP2111085B1 publication Critical patent/EP2111085B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2985Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps

Definitions

  • the present invention relates to circuits for heating gas discharge lamps, in particular fluorescent lamps, as they can be found, for example, in electronic ballasts (ECGs) use.
  • ECGs electronic ballasts
  • ECGs Electronic ballasts for fluorescent lamps are known from the prior art, which use Wendel carvingscen which are connected by means of a coupling element with a primary side, which is supplied with voltage.
  • a coupling element with a primary side, which is supplied with voltage.
  • the heating energy can be coupled transformer, capacitive, etc. in the primary circuit, which in turn is connected to the coils.
  • a coil heater for fluorescent lamps according to the flyback principle is for example from the US 5,703,441 known.
  • the WO 00/72640 A1 shows a filament heating with a heating transformer having a primary winding connected to the output of the inverter of the electronic ballast and the one located in a heating circuit with a coil secondary winding for heating each of the two electrodes of a gas discharge lamp.
  • a series circuit is provided which contains the primary winding of the heating transformer and an electronic switch device.
  • WO 03/045117 shows a converter, which is also switched off in case of error.
  • WO 00/72642 shows a heater that is powered starting from the midpoint of an inverter.
  • a fluorescent lamp and with a coupling element for transmitting the heating energy from a primary side to a secondary side "intelligent" in the sense that in the presence of except Standard operating parameters are met.
  • a circuit for heating at least one filament of a gas discharge lamp has a coupling element which transmits heating energy from a primary side, which is supplied with voltage, to a secondary side, which in turn is connected to at least one coil to be heated.
  • the transmission of heating energy is usually carried out under galvanic isolation.
  • a monitoring circuit which detects the current flow at least in the primary side of the coupling element, so that corresponding countermeasures can be taken by changing at least one operating parameter of the heating circuit when an impermissible current flow is detected.
  • the heating circuit can be switched to an error mode in which the energy transfer of the coupling element is limited to a predetermined value greater than zero. In this error mode, therefore, heating energy continues to be transmitted, albeit to a controlled degree.
  • a base load can be provided, which consumes the energy transmitted through the coupling element in the event that no lamp is used and thus there is no heating coil.
  • This base load may be due to resistors of a voltage divider be formed, which is also used to detect the secondary side voltage.
  • the coupling element can be clocked on the primary side by means of a switch, the switching frequency and / or duty cycle in the error mode compared to the regular operation modified, in particular reduced.
  • the change in the switching frequency and / or the duty cycle of the switch on the primary side of the coupling element thus represents a possibility of changing operating parameters of the heating circuit.
  • the monitoring circuit can also detect the voltage on the secondary side of the coupling element.
  • the monitoring circuit is preferably implemented by hardware, so that upon detection of a fault, a quick response can occur.
  • This hardware implemented monitoring circuit can send a message to a software controlled controller in the presence of the error mode.
  • a software-controlled controller can in principle transmit operating parameters to the hardware-implemented monitoring circuit at least in the error mode and / or during normal operation of the heating circuit.
  • a circuit for heating at least one filament of a gas discharge lamp wherein in turn a coupling element serves to heat energy from one with Supply voltage supplied primary side to a secondary side, which is connected to the coil to be heated.
  • a monitoring circuit may be provided to detect the voltage of a secondary side of the coupling element, and to take countermeasures by changing an operating parameter of the heating circuit upon detection of an out-of-standard voltage, in particular too high a voltage.
  • the coupling element may be capacitive or transformable.
  • the coupling element may comprise a clocked flyback converter ("flyback power converter").
  • the invention also relates to a control gear with such a circuit.
  • an electronic ballast which has a heating circuit for at least one filament of a gas discharge lamp.
  • the transmission of the heating energy from a power supply to the coil to be heated is effected by means of a coupling element that is driven by a circuit implemented in hardware.
  • the implemented in hardware circuit may also monitor an operating parameter of the primary and / or secondary side of the coupling element.
  • a software-controlled circuit can be provided to transmit setpoints for the operation of the coupling element to the circuit implemented in hardware.
  • the invention also provides an electronic ballast for fluorescent lamps with a heating circuit, in which a monitoring circuit monitors at least one operating parameter of the heating circuit and transmits error messages with respect to the heating circuit to a software-controlled circuit.
  • the software-controlled circuit can change upon receipt of an error message at least one operating parameter of the ballast and in particular an operating parameter of the heating circuit depending on the current operating state of the ballast.
  • the invention further relates to methods for heating the coil of at least one gas discharge lamp and to methods for operating an electronic ballast.
  • heating circuit is used to provide electrical energy for coils 5, 6 a Gas discharge lamp, such as a fluorescent lamp.
  • the energy is transmitted from a primary side of a coupling element, which is supplied with voltage, toward a secondary side of the coupling element, wherein the secondary side is connected to at least one coil 5, 6.
  • the coupling element is designed as a clocked flyback converter.
  • the primary side of the flyback converter has a voltage supply and a primary coil 2 connected in series with a switch 12.
  • the voltage supply is a DC voltage supply, so that, for example, the intermediate circuit voltage or bus voltage V bus that is usually regulated by a smoothing circuit (PFC, Power Factor Correction Circuit) can be used in an electronic ballast.
  • PFC Power Factor Correction Circuit
  • electrical energy is transmitted from the primary coil 2 to the secondary side, the secondary side in the illustrated example depending on a branch starting from a first secondary coil 3 to a first coil 5 and a second secondary coil 4 towards a second coil 6 has.
  • the secondary side can thus supply one or more coils 5, 6.
  • the heat energy transmitted in the clocked flyback converter essentially depends on the switching frequency and the switch-on time T on of the switch 12.
  • This switch 12 which may be embodied as an FET, for example, is controlled by a heating control circuit 7 implemented in hardware.
  • the helical heater as mentioned on a clocked flyback converter, which is operated with a defined on-time T on and frequency f.
  • the switch control thus enables independent operation of the heating circuit, which, for example, when coupling the heating circuit to an inverter center point is not the case.
  • the independent operation of the heating circuit is just advantageous for preheating. Furthermore, there are design freedoms, which is advantageous for a dimming operation or a multi-lamp operation.
  • the setpoint values for the switch-on time T on and the frequency f of the switching operations of the electronic switch 12 are set according to the invention by a software-controlled circuit (microcontroller) 9 which communicates bidirectionally with the heating control circuit 7 (see reference numeral 8).
  • the specifications for the switch-on time T on and / or the switching frequency f of the illustrated switched-mode flyback converter can be determined by the microcontroller 9 For example, depending on the current dimming state of the lamp and a possibly (for example. Via the helical current) detected lamp type calculated and then the heating control circuit 7 are given.
  • the microcontroller 9 can receive, for example via an interface 10 dimming commands, for example, according to the DALI standard.
  • the primary side with the coil 2 and the switch 12 of the flyback converter transformer is connected in the illustrated example to an intermediate circuit voltage or bus voltage V bus , as this always has a substantially constant potential, thereby ensuring that at constant on time T on and frequency f of the electronic switch 12 a constant heating energy is delivered to the secondary side of the flyback converter.
  • the illustrated invention is now particularly designed to detect fault conditions of the heating circuit and to take appropriate countermeasures in a timely manner.
  • the heating control circuit 7 detects a fault condition and automatically transitions to an error mode.
  • This error mode can be, for example, that continues to heat energy is transferred with a value greater than zero by means of the coupling element to the secondary side.
  • the frequency f and / or the turn-on time of the switch 12 of the flyback converter is preferably reduced to reduce the primary-side filament current in the event of such a short-circuit condition.
  • heating energy continues to be transmitted.
  • the coupling element designed here as a flyback converter, are completely switched off, so that no heat energy is transmitted in error mode.
  • Another fault condition may be that there is no load on the secondary side, ie, for example, the lamp with the coils 5, 6 is not used or at least one coil is broken. Since the coupling element of the heating circuit normally continues to transmit heating energy to the secondary side in this case as well, the voltage on the secondary side will increase to impermissibly high values on the secondary side, so that components on the secondary side can be damaged.
  • a voltage divider R3, R4 is provided in the illustrated embodiment, at the midpoint of which a signal 14 for the heating control circuit 7 is tapped. The detection of the secondary-side voltage of the coupling element can alternatively or in addition to the detection of the primary-side helical flow 13 done.
  • An impermissibly high secondary-side voltage represents another fault condition.
  • a suitable countermeasure may be that the frequency f and / or the switch-on time T on of the switch 12 is reduced, so that a significantly reduced heating energy compared to the normal operating state Secondary side is transmitted. Alternatively, the transmission of the heating energy can also be stopped here.
  • the heating control circuit 7 is implemented by means of hardware, it can quickly detect such error conditions and accordingly also respond quickly by a suitable change of an operating parameter for the coupling element (change in the turn-on and / or the frequency of the switch in the present example).
  • the setpoint values for the heating mode can be specified by the hardware-implemented heating control circuit 7 for the normal operation and / or the error mode by the software-controlled microcontroller 9 via the bidirectional communication channel 8.
  • the hardware-implemented heating control circuit 7 automatically reacts very quickly to any detected fault conditions, but also simultaneously reports such an error condition to the microcontroller 9.
  • the microcontroller 9 Independently of the secondary-side voltage detection of the heating control circuit 7 by means of the voltage divider R3, R4, the microcontroller 9 detects the filament current through the resistor R1, so as to detect the type of inserted lamp via the filament resistor, and depending on this lamp type detection the corresponding setpoint specifications for the heating control circuit 7 to make.
  • the communication via the bidirectional channel 8 between the heating control circuit 7 and the controller 9 is preferably digital.
  • the microcontroller 9 can query the heating control circuit 7 for information regarding the presence of an error and possibly also the type of an error (short circuit or idle state without load, etc.).
  • the reduced heating energy transmitted in the fault mode is reduced by the resistors R3, R4 as a base load whose series resistance is thus dimensioned such that the voltage applied during the transmission of the reduced heating energy in the fault mode on the secondary side is limited to a permissible value.
  • sets the divider ratio of R3, R4, the cut-off voltage, ie the voltage from which an impermissibly high secondary voltage is closed and countermeasures are taken.
  • the voltage divider R3, R4 thus has a double function.
  • the series resistance can, for example, be dimensioned so that when transmitting a heating energy of 50 mW in fault mode, the voltage applied to 15 V is limited. At 15 V, damage to the secondary-side components provided can be ruled out.
  • a heating energy of 50 MW is large enough to generate a measurement current sufficient for measurement through the resistor R1.
  • the implemented in hardware heating control circuit 7 thus ensures that the heating circuit protects itself quickly. If this protection mechanism were implemented by a software controlled circuit, the protection reaction might be too slow to avoid damaging the transistor 12.
  • the microcontroller 9 queries a fault condition of the heating control circuit 7 or the heating control circuit transmits from itself the microcontroller 9 a fault condition and possibly also the nature of the error, the microcontroller 9 via outgoing commands 11, the operating device (electronic ballast EVG) in total switch to a fault mode.
  • the operating device electronic ballast EVG
  • the reaction of the microcontroller 9 to the message or the query of a fault condition of the heating circuit depends on the current operating state of the device. Possible through the Microcontroller 9 initiated actions in the operating device are, for example, switching off the inverter or waiting for a lamp replacement.
  • Fig. 2 schematically shows a state diagram as implemented by software in the microcontroller 9.
  • the software is first started in the STARTUP SOFTWARE state.
  • the known preheating begins in the PREHEAT state and, after completion of the preheating, the ignition of the lamp begins. If the lamp is successfully ignited, the system switches to RUN mode. Only when the lamp is in the RUN state, an error of the heating circuit is evaluated by the microcontroller 9. If there is an error starting from the state RUN, then ERROR is switched to the error mode.
  • the microcontroller 9 waits for the replacement of the lamp, since it can detect the presence of a lamp with coils via the resistor R1. After the lamp has been replaced, the state RELAMP is assumed, from which a restart of the lamp is possible.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Dc-Dc Converters (AREA)
  • Synchronizing For Television (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf Schaltungen zur Heizung von Gasentladungslampen, insbesondere Leuchtstofflampen, wie sie beispielsweise in elektronischen Vorschaltgeräten (EVGs) Verwendung finden können.
  • Aus dem Stand der Technik sind elektronische Vorschaltgeräte (EVGs) für Leuchtstofflampen bekannt, die Wendelheizschaltungen verwenden, die mittels eines Koppelelements mit einer Primärseite verbunden sind, die mit Spannung versorgt ist. Beispielsweise kann ausgehend von einem Ausgangskreis (Lampenbetriebsspannungsversorgung, Halbrückenspannung, Busspannung etc.) die Heizenergie transformatorisch, kapazitiv, etc. in den Primärkreis gekoppelt werden, der wiederum mit den Wendeln verbunden ist.
  • Einige der transformatorisch arbeitenden Wendelheizsysteme verwenden einen mit einem Schalter getakteten Sperrwandler (englisch: Flyback power converter), im folgenden auch "Flyback-Konverter" genannt.
  • Eine Wendelheizung für Leuchtstofflampen gemäß dem Flyback-Prinzip ist beispielsweise aus der US 5,703,441 bekannt.
  • Die WO 00/72640 A1 zeigt eine Wendelheizung mit einem Heiztransformator, der eine mit dem Ausgang des Wechselrichters des elektronischen Vorschaltgerätes verbundene Primärwicklung und die eine in einem Heizkreis mit einer Wendel befindliche Sekundärwicklung zum Beheizen jeder der beiden Elektroden einer Gasentladungslampe aufweist. Parallel zum Lastkreis ist eine Serienschaltung vorgesehen, welche die Primärwicklung des Heiztransformators und eine elektronische Schaltervorrichtung enthält.
  • US 2004/066152 und WO200434740 zeigen eine sekundärseitige Überwachung eines Konverters, wobei im Fehlerfall eine Abschaltung erfolgt.
  • WO 03/045117 zeigt einen Konverter, der im Fehlerfall ebenfalls abgeschaltet wird.
  • WO 00/72642 zeigt eine Heizung, die ausgehend von dem Mittenpunkt eines Wechselrichters versorgt wird.
  • Es ist Aufgabe der vorliegenden Erfindung, eine derartige Heizschaltung für wenigstens eine Wendel einer Gasentladungslampe, bspw. einer Leuchtstofflampe, und mit einem Koppelelement zur Übertragung der Heizenergie von einer Primärseite zu einer Sekundärseite "intelligenter" in dem Sinne auszugestalten, dass bei Vorliegen von außer der Norm liegenden Betriebsparametern angepasste Maßnahmen getroffen werden.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale der unabhängigen Ansprüche gelöst. Die abhängigen Ansprüche bilden den zentralen Gedanken der Erfindung in besonders vorteilhafter Weise weiter.
  • Gemäß einem ersten Aspekt der vorliegenden Erfindung ist eine Schaltung zur Heizung wenigstens einer Wendel einer Gasentladungslampe vorgesehen. Die Schaltung weist dabei ein Koppelelement auf, das Heizenergie von einer mit Spannung versorgten Primärseite zu einer Sekundärseite überträgt, die wiederum mit wenigstens einer zu heizenden Wendel verbunden ist. Die Übertragung der Heizenergie erfolgt also üblicherweise unter galvanischer Trennung.
  • Erfindungsgemäß ist eine Überwachungsschaltung vorgesehen, die den Stromfluss wenigstens in der Primärseite des Koppelelements erfasst, so dass bei Erfassung eines unzulässigen Stromflusses entsprechende Gegenmaßnahmen durch Veränderung wenigstens eines Betriebsparameters der Heizschaltung getroffen werden können.
  • Für den Fall, dass der primärseitige Strom einen vorgegebenen Schwellenwert überschreitet, kann die Heizschaltung in eine Fehler-Betriebsart geschaltet werden, in der die Energieübertragung des Koppelelements auf einen vorgegebenen Wert größer als Null begrenzt ist. In dieser Fehler-Betriebsart wird also weiterhin Heizenergie übertragen, wenn auch in kontrollierten Masse.
  • Auf der Sekundärseite kann eine Grundlast vorgesehen sein, die für den Fall, dass keine Lampe eingesetzt ist und somit auch keine Heizwendel vorliegt, die durch das Koppelelement übertragene Energie verbraucht. Diese Grundlast kann durch Widerstände eines Spannungsteilers gebildet sein, der auch zur Erfassung der sekundärseitigen Spannung verwendet wird.
  • Das Koppelelement kann primärseitig mittels eines Schalters getaktet sein, dessen Schaltfrequenz und/oder Tastverhältnis in der Fehler-Betriebsart gegenüber dem regulären Betrieb modifiziert, insbesondere verringert ist. Die Änderung der Schaltfrequenz und/oder des Tastverhältnisses des Schalters an der Primärseite des Koppelelements stellt somit eine Möglichkeit der Änderung von Betriebsparametern der Heizschaltung dar.
  • Die Überwachungsschaltung kann weiterhin auch die Spannung an der Sekundärseite des Koppelelements erfassen.
  • Die Überwachungsschaltung ist vorzugsweise durch Hardware implementiert, so dass bei Erkennung eines Fehlers eine schnelle Reaktion erfolgen kann.
  • Diese in Hardware implementierte Überwachungsschaltung kann bei Vorliegen der Fehler-Betriebsart eine Meldung an einen Software-gesteuerten Controller senden.
  • Ein Software-gesteuerter Controller kann grundsätzlich der Hardware-implementierten Überwachungsschaltung wenigstens in der Fehler-Betriebsart und/oder im Normalbetrieb der Heizschaltung Betriebsparameter übermitteln.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist eine Schaltung zur Heizung wenigstens einer Wendel einer Gasentladungslampe vorgesehen, wobei wiederum ein Koppelelement dazu dient, Heizenergie von einer mit Spannung versorgten Primärseite zu einer Sekundärseite zu übertragen, die mit der zu heizenden Wendel verbunden ist. Eine Überwachungsschaltung kann vorgesehen sein, die Spannung einer Sekundärseite des Koppelelements zu erfassen, und bei Erfassung einer außer der Norm liegenden Spannung, insbesondere einer zu großen Spannung, Gegenmaßnahmen durch Änderung eines Betriebsparameters der Heizschaltung zu ergreifen.
  • Das Koppelelement kann kapazitiv oder transformatorisch ausgebildet sein. Beispielsweise kann das Koppelelement einen getakteten Sperrwandler ("Flyback Power Converter") umfassen.
  • Die Erfindung bezieht sich auch auf ein Betriebsgerät mit einer derartigen Schaltung.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist ein elektronisches Vorschaltgerät vorgesehen, das eine Heizschaltung für wenigstens eine Wendel einer Gasentladungslampe aufweist. Die Übertragung der Heizenergie von einer Spannungsversorgung hin zu der zu heizenden Wendel erfolgt dabei mittels eines Koppelelements, dass durch eine in Hardware implementierte Schaltung angesteuert wird. Die in Hardware implementierte Schaltung kann darüber hinaus einen Betriebsparameter der Primär- und/oder Sekundärseite des Koppelelements überwachen. Eine Software-gesteuerte Schaltung kann dazu vorgesehen sein, der in Hardware implementierten Schaltung Sollwerte für den Betrieb des Koppelelements zu übermitteln.
  • Schließlich sieht die Erfindung auch ein elektronisches Vorschaltgerät für Leuchtstofflampen mit einer Heizschaltung vor, bei der eine Überwachungsschaltung wenigstens einen Betriebsparameter der Heizschaltung überwacht und einer Software-gesteuerten Schaltung Fehlermeldungen bezüglich der Heizschaltung übermittelt. Die Software-gesteuerte Schaltung kann bei Eingang einer Fehlermeldung wenigstens einen Betriebsparameter des Vorschaltgerätes und insbesondere ein Betriebsparameter der Heizschaltung abhängig vom momentanen Betriebszustand des Vorschaltgerätes, ändern.
  • Die Erfindung bezieht sich weiterhin auch auf Verfahren zur Heizung der Wendel wenigstens einer Gasentladungslampe sowie auf Verfahren zum Betrieb eines elektronischen Vorschaltgerätes.
  • Weitere Merkmale, Vorteile und Eigenschaften der vorliegenden Erfindung sollen nunmehr bezugnehmend auf die begleitenden Figuren sowie anhand von Ausführungsbeispielen näher erläutert werden.
    • Fig. 1 zeigt ein schematische Blockschaltbild einer erfindungsgemäßen Heizschaltung, und
    • Fig. 2 zeigt ein Zustandsdiagramm für Abläufe, wie sie durch den Software-gesteuerten Mikrocontroller gemäß der vorliegenden Erfindung ausgeführt werden können.
  • Die in Fig. 1 dargestellte Heizschaltung dient zur Bereitstellung elektrischer Energie für Wendeln 5, 6 einer Gasentladungslampe, wie beispielsweise einer Leuchtstofflampe. Die Energie wird dabei ausgehend von einer Primärseite eines Koppelelements, die mit Spannung versorgt ist, hin zu einer Sekundärseite des Koppelelements übertragen, wobei die Sekundärseite mit wenigstens einer Wendel 5, 6 verbunden ist.
  • Im dargestellten Beispiel ist das Koppelelement als getakteter Sperrwandler ausgebildet. Andere transformatorische oder kapazitive Ausgestaltungen sind möglich. Die Primärseite des Sperrwandlers weist eine Spannungsversorgung sowie eine mit einem Schalter 12 in Serie geschaltete Primärspule 2 auf. Die Spannungsversorgung ist im dargestellten Beispiel eine Gleichspannungsversorgung, so dass beispielsweise die üblicherweise durch eine Glättungsschaltung (PFC, Power Factor Correction Circuit) geregelte Zwischenkreisspannung oder Busspannung Vbus in einem elektronischen Vorschaltgerät verwendet werden kann.
  • Andere primärseitige DC- oder AC-Versorgungsspannungen (bspw. Netzspannung, allerdings ist zum Anschluss einer AC-Spannung ein Gleichrichter zwischenzuschalten) sind ebenfalls möglich.
  • Gemäß dem Transformatorprinzip wird im dargestellten Ausführungsbeispiel elektrische Energie von der Primärspule 2 auf die Sekundärseite übertragen, wobei die Sekundärseite im dargestellten Beispiel je einen Zweig ausgehend von einer ersten Sekundärspule 3 hin zu einer ersten Wendel 5 sowie einer zweiten Sekundärspule 4 hin zu einer zweiten Wendel 6 aufweist. Die Sekundärseite kann also eine oder aber auch mehrere Wendeln 5, 6 versorgen.
  • Bei im wesentlichen konstanter Versorgungsspannung Vbus hängt die im getakteten Sperrwandler übertragende Heizenergie im Wesentlichen von der Schaltfrequenz sowie der Einschaltzeitdauer Ton des Schalters 12 ab. Dieser Schalter 12, der beispielsweise als FET ausgebildet sein kann, wird von einer in Hardware implementierten Heizsteuerschaltung 7 angesteuert. Im dargestellten Beispiel weist die Wendelheizung wie gesagt einen getakteten Sperrwandler auf, der mit einer definierten Einschaltzeit Ton und Frequenz f betrieben wird.
  • Die Schalteransteuerung ermöglicht also einen unabhängigen Betrieb der Heizschaltung, was bspw. bei Ankopplung der Heizschaltung an einen Wechselrichter-Mittenpunkt nicht der Fall ist. Der unabhängige Betrieb der Heizschaltung ist gerade für das Vorheizen vorteilhaft. Weiterhin ergeben sich Designfreiheiten, was für einen Dimmbetrieb oder einen Multilampenbetrieb vorteilhaft ist.
  • Die Sollwerte für die Einschaltzeit Ton sowie die Frequenz f der Schaltvorgänge des elektronischen Schalters 12 wird dabei erfindungsgemäß durch eine mittels Software-gesteuerte Schaltung (Mikrocontroller) 9 vorgegeben, die bidirektional mit der Heizsteuerschaltung 7 kommuniziert (s. Bezugszeichen 8).
  • Die Vorgaben für die Einschaltzeitdauer Ton und/oder die Schaltfrequenz f des dargestellten getakteten Sperrwandlers kann von dem Mikrocontroller 9 beispielsweise abhängig vom aktuellen Dimmzustand der Lampe und eines ggf. (bspw. über den Wendelstrom) erfassten Lampentyps berechnet und dann der Heizsteuerschaltung 7 vorgegeben werden. Der Mikrocontroller 9 kann beispielsweise über eine Schnittstelle 10 Dimmbefehle beispielsweise gemäß dem DALI-Standard erhalten.
  • Die Primärseite mit der Spule 2 und dem Schalter 12 des Sperrwandler-Transformators ist in dem dargestellten Beispiel an eine Zwischenkreisspannung oder Busspannung Vbus angeschlossen, da diese stets eine im Wesentlichen konstantes Potential aufweist, wodurch sichergestellt ist, dass bei konstanter Einschaltzeit Ton und Frequenz f des elektronischen Schalters 12 eine konstante Heizenergie auf die Sekundärseite des Sperrwandlers abgegeben wird.
  • Die dargestellte Erfindung ist nunmehr insbesondere dazu ausgebildet, Fehlerzustände der Heizschaltung zu erfassen und rechtzeitig entsprechende Gegenmaßnahmen zu ergreifen.
  • Zum Einen ist dabei vorgesehen, dass über einen Messwiderstand R2, der in Serie zu dem Schalter 12 und der primärseitigen Spule 2 geschaltet ist, der Strom durch den Schalter 12 (wenn dieser geschlossen ist) durch die Heizsteuerschaltung 7 erfasst wird. Dadurch kann beispielsweise sicher ein Kurzschluss erfasst werden, der zu einem sehr großen Primärstrom des Sperrwandlers führt. Wenn dieser erfasste Primärstrom des Sperrwandlers einen definierten maximal zulässigen Wert überschreitet, erkennt die Heizsteuerschaltung 7 einen Fehlerzustand und geht selbständig in einen Fehlermodus über.
  • Dieser Fehlermodus kann beispielsweise darin bestehen, dass weiterhin Heizenergie mit einem Wert größer als Null mittels dem Koppelelement auf die Sekundärseite übertragen wird. Allerdings wird die Frequenz f und/oder die Einschaltzeit des Schalters 12 des Sperrwandlers vorzugsweise verringert, um den primärseitigen Wendelstrom im Falle eines derartigen Kurzschlusszustands zu reduzieren.
  • Bei einem erkannten primärseitigen Fehler wird also weiterhin Heizenergie übertragen.
  • Alternativ kann natürlich auch das Koppelelement, hier als Sperrwandler ausgebildet, komplett abgeschaltet werden, so dass im Fehlermodus keine Heizenergie mehr übertragen wird.
  • Ein weiterer Fehlerzustand kann sein, dass sekundärseitig keine Last vorliegt, d.h. beispielsweise die Lampe mit den Wendeln 5, 6 nicht eingesetzt ist oder wenigstens eine Wendel gebrochen ist. Da auch in diesem Fall der fehlenden Last das Koppelelement der Heizschaltung normalerweise weiter Heizenergie auf die Sekundärseite überträgt, wird sekundärseitig die Spannung auf ggf. unzulässig hohe Werte ansteigen, so dass Bauteile auf der Sekundärseite beschädigt werden können. Zur Erfassung der sekundärseitigen Spannung ist im dargestellten Ausführungsbeispiel ein Spannungsteiler R3, R4 vorgesehen, an dessen Mittenpunkt ein Signal 14 für die Heizsteuerschaltung 7 abgegriffen wird. Die Erfassung der sekundärseitigen Spannung des Koppelelements kann alternativ oder zusätzlich zu der Erfassung des primärseitigen Wendelstroms 13 erfolgen.
  • Eine unzulässig hohe sekundärseitige Spannung stellt einen weiteren Fehlerzustand dar. Auch hier kann eine geeignete Gegenmaßnahme darin bestehen, dass die Frequenz f und/oder die Einschaltzeitdauer Ton des Schalters 12 verringert wird, so dass eine im Vergleich zum normalen Betriebszustand deutlich verringerte Heizenergie auf die Sekundärseite übertragen wird. Alternativ kann auch hier die Übertragung der Heizenergie beendet werden.
  • Dadurch dass die Heizsteuerschaltung 7 mittels Hardware implementiert ist, kann sie derartige Fehlerzustände schnell erfassen und entsprechend auch schnell durch eine geeignete Veränderung eines Betriebsparameters für das Koppelelement (im vorliegenden Beispiel Veränderung der Einschaltzeitdauer und/oder der Frequenz des Schalters) reagieren.
  • Die Sollwerte für den Heizbetrieb können der Hardware-implementierten Heizsteuerschaltung 7 für den Normalbetrieb und/oder dem Fehlermodus von dem Software-gesteuerten Mikrocontroller 9 über den bidirektionalen Kommunikationskanal 8 vorgegeben werden.
  • Andererseits reagiert die mittels Hardware-implementierte Heizsteuerschaltung 7 selbsttätig sehr schnell auf etwaige erfasste Fehlerzustände, meldet aber auch gleichzeitig einen derartigen Fehlerzustand an den Mikrocontroller 9. Unabhängig von der sekundärseitigen Spannungserfassung der Heizsteuerschaltung 7 mittels des Spannungsteiler R3, R4, erfasst der Mikrocontroller 9 den Wendelstrom über den Widerstand R1, um somit über den Wendelwiderstand den Typ einer eingesetzten Lampe zu erkennen, und abhängig von dieser Lampentyperkennung die entsprechenden Sollwertvorgaben für die Heizsteuerschaltung 7 zu tätigen.
  • Die Kommunikation über den bidirektionalen Kanal 8 zwischen der Heizsteuerschaltung 7 und dem Controller 9 erfolgt vorzugsweise digital.
  • Der Mikrocontroller 9 kann von der Heizsteuerschaltung 7 Informationen bezüglich des Vorhandenseins eines Fehler und ggf. auch der Art eines Fehlers (Kurzschluss, bzw. Leerlaufzustand ohne Last, etc.) abfragen.
  • Gemäß einer Alternative ist es bei der vorliegenden Erfindung vorgesehen, dass auch im Fehlerzustand weiterhin Heizenergie auf die Sekundärseite und somit hin zu den Wendeln übertragen wird. Diese begrenzte Heizenergieübertragung ist vorteilhaft, damit weiterhin beispielsweise Strom durch den Widerstand R1 fließt, mittels dem erfasst werden kann, ob eine Lampe und ggf. welcher Lampentyp eingesetzt ist oder nicht.
  • Für den Fall, dass sekundärseitig keine Lampe eingesetzt ist, wird die im Fehlermodus übertragene reduzierte Heizenergie durch die Widerstände R3, R4 als Grundlast abgebaut, deren Serienwiderstand also so bemessen ist, dass die bei der Übertragung der verringerten Heizenergie im Fehlermodus anliegende Spannung auf der Sekundärseite auf einen zulässigen Wert begrenzt ist. Andererseits legt das Teilerverhältnis von R3, R4 die Abschaltspannung fest, d.h. diejenige Spannung, ab der eine unzulässig hohe Sekundärspannung geschlossen wird und Gegenmaßnahmen ergriffen werden. Der Spannungsteiler R3, R4 hat also eine Doppelfunktion. Der Serienwiderstand kann beispielsweise so bemessen sein, dass bei der Übertragung einer Heizenergie von 50 mW im Fehlermodus die anliegende Spannung auf 15 V begrenzt ist. Bei 15 V kann eine Beschädigung der sekundärseitigen vorgesehenen Bauteile ausgeschlossen werden. Andererseits ist eine Heizenergie von 50 MW groß genug, um einen für Messzwecke ausreichenden Messstrom durch den Widerstand R1 zu erzeugen.
  • Die in Hardware implementierte Heizsteuerschaltung 7 sorgt also dafür, dass sich die Heizschaltung schnell selbst schützt. Wenn dieser Schutzmechanismus mittels einer Software-gesteuerten Schaltung ausgeführt wäre, wäre die Schutzreaktion womöglich zu langsam, um eine Beschädigung des Transistors 12 zu vermeiden.
  • Wenn der Mikrocontroller 9 einen Fehlerzustand von der Heizsteuerschaltung 7 abfragt bzw. die Heizsteuerschaltung von sich aus den Mikrocontroller 9 einen Fehlerzustand sowie ggf. auch die Art des Fehlers übermittelt, kann der Mikrocontroller 9 über ausgehende Befehle 11 das Betriebsgerät (elektronisches Vorschaltgerät EVG) insgesamt in einem Fehlermodus schalten. Die Reaktion des Mikrocontroller 9 auf die Meldung bzw. die Abfrage eines Fehlerzustands der Heizschaltung hängt dabei vom aktuellen Betriebszustand des Gerätes ab. Mögliche durch den Mikrocontroller 9 veranlasste Aktionen in dem Betriebsgerät sind beispielsweise das Abschalten des Wechselrichters oder das Warten auf einen Lampenwechsel.
  • Fig. 2 zeigt schematisch ein Zustandsdiagramm, wie es durch Software in dem Mikrocontroller 9 implementiert ist. Ausgehend von dem ausgeschalteten Zustand OFF wird zuerst die Software in dem Zustands STARTUP SOFTWARE gestartet. Nach der Initialisierung der Software beginnt das bekannte Vorheizen in dem Zustand PREHEAT und nach Abschluss der Vorheizung das Zünden der Lampe Bei erfolgreicher Zündung der Lampe wird in den Betriebszustand RUN umgeschaltet. Nur wenn sich die Lampe in dem Zustand RUN befindet, wird ein Fehler der Heizschaltung durch den Mikrocontroller 9 ausgewertet. Bei Vorliegen eines Fehlers ausgehend von dem Zustand RUN wird also in den Fehlermodus ERROR umgeschaltet. In dem Zustand ERROR wartet der Mikrocontroller 9 auf den Austausch der Lampe, da er das Vorhandensein einer Lampe mit Wendeln über den Widerstand R1 erfasst werden kann. Nach erfolgtem Lampenwechsel wird der Zustand RELAMP eingenommen, aus dem Heraus ein Neustart der Lampe möglich ist.

Claims (10)

  1. Schaltung zur Erkennung des Typs einer Gasentladungslampe mit wenigstens einer Heizwendel (5, 6), aufweisend
    - ein mittels eines Schalters (12) getaktetes Koppelelement, das Heizenergie von einer mit Spannung versorgten Primärseite (2) zu einer Sekundärseite überträgt, die mit der zu heizenden Wendel (5, 6) verbunden ist,
    wobei der Schalter (12) durch eine in Hardware implementierte Heizsteuerschaltung (7) angesteuert ist,
    - eine auf der Sekundärseite vorgesehene Grundlast, gebildet durch Widerstände eines Spannungsteilers (R3, R4), der für den Fall, dass keine Lampe eingesetzt ist, die durch das Koppelelement übertragene Energie verbraucht,
    - ein Signal am Mittenpunkt des sekundärseitigen Spannungsteilers (R3, R4) für die Heizsteuerschaltung (7), zur Erfassung der sekundärseitigen Spannung, einen sekundärseitigen Widerstand (R1) zur Erfassung des Stroms durch die Wendel (6), der in Serie mit der Wendel (6) und dem Spannungsteiler (R3, R4) angeschlossen ist, und
    - einen Controller (9), der ausgehend von der Wendelstromerfassung, insbesondere ausgehend von dem Wendelwiderstand den Typ der eingesetzten Lampe erkennt, wobei die Heizsteuerschaltung (7) einen Stromfluss auf der Primärseite des Koppelelements erfasst (R2) und in dem Fall, dass der primärseitige Strom einen vorgegebenen Schwellenwert überschreitet, die Energieübertragung des Koppelelements auf einen vorgegebenen Wert größer Null derart begrenzt wird, dass einen für Messzwecke ausreichenden Messstrom durch den Widerstand (R1) zur Erfassung des Stroms durch die Wendel (6) erzeugt wird.
  2. Schaltung nach Anspruch 1,
    wobei die Primärseite (2) ausgehend von einer DC-Spannung oder einer gleichgerichteten Netzspannung mit Spannung versorgt ist.
  3. Schaltung nach Anspruch 2,
    wobei die Primärseite (2) ausgehend von einer DC-Zwischenkreisspannung eines elektronischen Vorschaltgeräts mit Spannung versorgt ist.
  4. Schaltung nach Anspruch 1,
    bei der der Controller (9) abhängig von der Lampentyperkennung Sollwertvorgaben für eine Heizsteuerschaltung (7) tätigt.
  5. Schaltung nach einem der vorhergehenden Ansprüche,
    wobei die Schaltung mit Gleichspannung versorgt ist, die vorzugsweise durch eine Glättungsschaltung, bspw. eine PFC-Schaltung erzeugt ist.
  6. Schaltung nach Anspruch 1,
    wobei das Koppelement ein Sperrwandler ist, der primärseitig mittels eines Schalters getaktet ist.
  7. Betriebsgerät für Leuchtmittel, insbesondere Multilampengerät,
    aufweisend eine Schaltung nach einem der vorhergehenden Ansprüche.
  8. Verfahren zur Erkennung des in einem Betriebsgerät eingesetzten Lampentyps,
    wobei ein Koppelelement mit Gleichspannung versorgt und mittels eines Schalters (12) getaktet wird, um Heizenergie von einer Primärseite (2) auf eine mit einer Heizwendel der Lampe verbundene Sekundärseite übertragen wird,
    wobei eine in Hardware implementierte Heizsteuerschaltung (7) den Schalter (12) ansteuert, und
    wobei auf der Sekundärseite der Wendelstrom gemessen wird, und daraus bzw. aus dem daraus ermittelten Wendelwiderstand auf den Lampentyp geschlossen wird, wobei die Heizsteuerschaltung (7) einen Fehlerzustand erkennt und selbstständig in einen Fehlermodus übergeht, um weiter Heizenergie mittels dem Koppelelement auf die Sekundärseite zu übertragen, um einen für Messzwecke ausreichenden Messtrom durch den Widerstand (R1) zu erzeugen,
    wobei eine auf der Sekundärseite vorgesehene Grundlast die durch das Koppelelement übertragene Energie verbraucht, für den Fall, dass keine Lampe eingesetzt ist,
    die Grundlast ist durch Widerstände eines Spannungsteiler gebildet, und
    die Heizsteuerschaltung (7) erfasst eine sekundärseitige Spannung mittels des Spannungsteilers,
    wobei die Heizsteuerschaltung (7) einen Stromfluss auf der Primärseite des Koppelelements erfasst und in dem Fall, dass der primärseitige Strom einen vorgegebenen Schwellenwert überschreitet, die Energieübertragung des Koppelelements auf einen vorgegebenen Wert begrenzt wird.
  9. Verfahren nach Anspruch 8,
    wobei die Primärseite (2) ausgehend von einer DC-Spannung oder einer gleichgerichteten Netzspannung mit Spannung versorgt wird.
  10. Verfahren nach Anspruch 9,
    wobei die Primärseite (2) ausgehend von einer DC-Zwischenkreisspannung eines elektronischen Vorschaltgeräts mit Spannung versorgt wird.
EP09159438A 2005-04-22 2006-04-03 Intelligente Flyback-Heizung Not-in-force EP2111085B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005018761A DE102005018761A1 (de) 2005-04-22 2005-04-22 Intelligente Flyback-Heizung
EP06723975.6A EP1872630B2 (de) 2005-04-22 2006-04-03 Intelligente flyback-heizung

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP06723975.6A Division EP1872630B2 (de) 2005-04-22 2006-04-03 Intelligente flyback-heizung
EP06723975.6A Division-Into EP1872630B2 (de) 2005-04-22 2006-04-03 Intelligente flyback-heizung
EP06723975.6 Division 2006-04-03

Publications (2)

Publication Number Publication Date
EP2111085A1 EP2111085A1 (de) 2009-10-21
EP2111085B1 true EP2111085B1 (de) 2012-05-23

Family

ID=36329195

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09159438A Not-in-force EP2111085B1 (de) 2005-04-22 2006-04-03 Intelligente Flyback-Heizung
EP06723975.6A Not-in-force EP1872630B2 (de) 2005-04-22 2006-04-03 Intelligente flyback-heizung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06723975.6A Not-in-force EP1872630B2 (de) 2005-04-22 2006-04-03 Intelligente flyback-heizung

Country Status (5)

Country Link
EP (2) EP2111085B1 (de)
CN (1) CN101164386A (de)
AT (1) ATE434372T1 (de)
DE (2) DE102005018761A1 (de)
WO (1) WO2006111263A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016322A1 (de) 2007-04-04 2008-10-09 Tridonicatco Gmbh & Co. Kg Schaltung zur Wendelheizung
DE102008012454A1 (de) * 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Verfahren zum Bestimmen von Betriebsparametern einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe sowie ein entsprechendes Vorschaltgerät
DE102007047142A1 (de) * 2007-10-02 2009-04-09 Tridonicatco Gmbh & Co. Kg Verfahren zum Erkennen des Typs einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe sowie elektronisches Vorschaltgerät
DE102008012453A1 (de) * 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Verfahren zum Prüfen, ob mindestens zwei mit einem elektronischen Vorschaltgerät zu betreibende Gasentladungslampen vom gleichen Typ sind
DE102008012452A1 (de) * 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Schaltung zum Beheizen und Überwachen der Heizwendeln mindestens einer mit einem elektronischen Vorschaltgerät betriebenen Gasentladungslampe auf Wendelbruch
DE102008022198A1 (de) * 2008-03-04 2009-09-10 Tridonicatco Gmbh & Co. Kg Typerkennung einer mit einem elektronischen Vorschaltgerät zu betreibenden Gasentladungslampe
WO2009126472A1 (en) * 2008-04-11 2009-10-15 Osram Sylvania, Inc. Stand alone lamp filament preheat circuit for ballast
DE102009021048A1 (de) 2008-06-09 2009-12-10 Tridonicatco Gmbh & Co. Kg Schaltung zum Beheizen wenigstens einer Heizwendel einer Gasentladungslampe, und Beleuchtungssystem
JP5349905B2 (ja) 2008-10-27 2013-11-20 パナソニック株式会社 放電灯点灯装置、及びこれを用いた車両用前照灯点灯装置
AT12060U1 (de) * 2010-01-28 2011-09-15 Tridonic Gmbh & Co Kg Betriebsgerät für gasentladungslampen
DE102011103409A1 (de) * 2011-06-06 2012-12-06 Tridonic Gmbh & Co. Kg Verfahren zum Heizen einer Wendel eines Leuchtmittels und entsprechende Heizschaltung
DE102011085659A1 (de) 2011-11-03 2013-05-08 Tridonic Gmbh & Co. Kg Getaktete Heizschaltung für Betriebsgeräte für Leuchtmittel
US8981656B2 (en) 2012-04-03 2015-03-17 General Electric Company Relamping circuit for fluorescent ballasts
DE102012007449B4 (de) * 2012-04-13 2024-02-22 Tridonic Gmbh & Co Kg Verfahren zum Betreiben eines LLC-Resonanzwandlers für ein Leuchtmittel, Wandler und LED-Konverter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040066152A1 (en) * 2002-10-04 2004-04-08 Nemirow Arthur T. Electronic ballast with filament detection
US20040113566A1 (en) * 2002-12-13 2004-06-17 Bruce Industries, Inc. Sensing voltage for fluorescent lamp protection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870327A (en) 1987-07-27 1989-09-26 Avtech Corporation High frequency, electronic fluorescent lamp ballast
DE19501695B4 (de) 1994-10-13 2008-10-02 Tridonicatco Gmbh & Co. Kg Vorschaltgerät für mindestens eine Gasentladungslampe mit vorheizbaren Lampenwendeln
US5656891A (en) 1994-10-13 1997-08-12 Tridonic Bauelemente Gmbh Gas discharge lamp ballast with heating control circuit and method of operating same
US5703441A (en) 1995-11-02 1997-12-30 General Electric Company Multi-function filament-heater power supply for an electronic ballast for long-life dimmerable lamps
US5952832A (en) 1996-12-06 1999-09-14 General Electric Company Diagnostic circuit and method for predicting fluorescent lamp failure by monitoring filament currents
EP0889675A1 (de) * 1997-07-02 1999-01-07 MAGNETEK S.p.A. Elektronisches Vorhaltgerät mit Lampentyperkennung
DE19850441A1 (de) * 1998-10-27 2000-05-11 Trilux Lenze Gmbh & Co Kg Verfahren und Vorschaltgerät zum Betrieb einer mit einer Leuchtstofflampe versehenen Leuchte
WO2000072642A1 (de) * 1999-05-25 2000-11-30 Tridonic Bauelemente Gmbh Elektronisches vorschaltgerät für mindestens eine niederdruck-entladungslampe
DE19923945A1 (de) 1999-05-25 2000-12-28 Tridonic Bauelemente Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
US20050067973A1 (en) * 2001-11-23 2005-03-31 Marcel Beij Device for heating electrodes of a discharge lamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040066152A1 (en) * 2002-10-04 2004-04-08 Nemirow Arthur T. Electronic ballast with filament detection
US20040113566A1 (en) * 2002-12-13 2004-06-17 Bruce Industries, Inc. Sensing voltage for fluorescent lamp protection

Also Published As

Publication number Publication date
EP2111085A1 (de) 2009-10-21
WO2006111263A1 (de) 2006-10-26
EP1872630B1 (de) 2009-06-17
ATE434372T1 (de) 2009-07-15
CN101164386A (zh) 2008-04-16
DE502006004002D1 (de) 2009-07-30
EP1872630B2 (de) 2018-04-11
EP1872630A1 (de) 2008-01-02
DE102005018761A1 (de) 2006-10-26

Similar Documents

Publication Publication Date Title
EP2111085B1 (de) Intelligente Flyback-Heizung
EP2888800B1 (de) Notlichtgerät
EP1103165B1 (de) Elektronisches vorschaltgerät für mindestens eine niederdruck-entladungslampe
DE102008027029A1 (de) Lampentyperkennung durch Leistungsfaktorkorrekturschaltung
EP1425943B1 (de) Verfahren und vorrichtung zum energiesparenden betreiben einer leuchtstoffröhre
DE19708791A1 (de) Steuerschaltung und elektronisches Vorschaltgerät mit einer derartigen Steuerschaltung
EP2208403B1 (de) Betriebsgerät zum steuern des einbrennvorganges einer lampe
EP1031258B1 (de) Schnittstelle für ein lampenbetriebsgerät
EP2132965B1 (de) Schaltung zur wendelheizung
DE102005006716A1 (de) Digitales EVG zum dimmbaren Betrieb von Leuchtstofflampen
EP2719065B1 (de) Verfahren zum schalten einer getakteten sperrwandlerschaltung, sperrwandlerschaltung
EP1945008B1 (de) Lampensensor für ein Vorschaltgerät zum Betrieb einer Gasentladungslampe
EP2796011B1 (de) Betrieb von leuchtmitteln
DE102012105684A1 (de) Vorrichtung zur Aufrechterhaltung der Amalgamtemperatur für dimmbare Leuchtstofflampen
DE102010064032A1 (de) Geregelte Wendelheizung für Gasentladungslampen
EP1860925B1 (de) Elektronisches Lampenvorschaltgerät mit Heizschaltung
EP2719064B1 (de) Verfahren zum schalten einer getakteten sperrwandlerschaltung
WO2010124314A1 (de) Notlichtbetriebsgerät mit potentialgetrennten pfc-einheit
DE10127135B4 (de) Dimmbares elektronisches Vorschaltgerät
WO2013063633A2 (de) Getaktete schaltung für betriebsgeräte für leuchtmittel
WO2011066596A2 (de) Ansteuerschaltung für ein betriebsgerät für leuchtmittel
WO2010139552A1 (de) Adapter für eine leuchtstofflampe und verfahren zum betreiben einer leuchtstofflampe
DE102010009991A1 (de) Beleuchtungseinrichtung mit Leuchtdioden
WO2011091462A2 (de) Betriebsgerät für gasentladungslampen
CH667958A5 (de) Vorschaltgeraet fuer eine leuchtstofflampe mit vorzuheizenden elektroden.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090505

AC Divisional application: reference to earlier application

Ref document number: 1872630

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091208

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRIDONIC GMBH & CO KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1872630

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 559606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006011491

Country of ref document: DE

Effective date: 20120726

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120523

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120903

26N No opposition filed

Effective date: 20130226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006011491

Country of ref document: DE

Effective date: 20130226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120823

BERE Be: lapsed

Owner name: TRIDONIC GMBH & CO KG

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150428

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160427

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160630

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 559606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006011491

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180427

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190403