EP2102717A2 - Oscillateur mecanique pour une piece d'horlogerie - Google Patents

Oscillateur mecanique pour une piece d'horlogerie

Info

Publication number
EP2102717A2
EP2102717A2 EP07857010A EP07857010A EP2102717A2 EP 2102717 A2 EP2102717 A2 EP 2102717A2 EP 07857010 A EP07857010 A EP 07857010A EP 07857010 A EP07857010 A EP 07857010A EP 2102717 A2 EP2102717 A2 EP 2102717A2
Authority
EP
European Patent Office
Prior art keywords
mechanical oscillator
balance
oscillator according
board
weights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07857010A
Other languages
German (de)
English (en)
Other versions
EP2102717B1 (fr
Inventor
Franck Orny
Stephen Forsey
Johnny Girardin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Complitime SA
Original Assignee
Complitime SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH02119/06A external-priority patent/CH701155B1/fr
Application filed by Complitime SA filed Critical Complitime SA
Priority to EP07857010.8A priority Critical patent/EP2102717B1/fr
Publication of EP2102717A2 publication Critical patent/EP2102717A2/fr
Application granted granted Critical
Publication of EP2102717B1 publication Critical patent/EP2102717B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/006Mechanisms for setting frequency by adjusting the devices fixed on the balance

Definitions

  • the present invention relates to a mechanical oscillator for a timepiece, and more particularly to a mechanical oscillator for a wristwatch which has a high degree of isochronism.
  • the materials used to produce the balance and the hairspring in the most frequently used mechanical oscillators are chosen so that the variation of the moment of inertia of the balance and the variation of the return torque of the respective hairspring compensate each other.
  • a cupro-beryllium alloy balance associated with a spiral made of specially designed alloys such as invar and élinvar, which is an alloy of iron-nickel having a coefficient very weak dilatation.
  • This type of balance spring is however always sensitive to magnetic fields.
  • the search for new alloys that can be used for producing the hairspring is still relevant, as evidenced, for example, by the development of silinvar TM 1 .
  • the self-compensating result of these alloys is mainly the result of two contrary influences, notably that of the temperature and that of the magnetostriction on the modulus of elasticity of the metal.
  • Minimizing the isochronism defect is crucial for optimizing the accuracy of mechanical watches. This consists in producing a spiral balance having a high degree of isochronism allowing it to generate oscillations equal and independent of their amplitude. Thus, a beam as light as possible is frequently used, with as much inertia as possible.
  • This sprung balance is provided with a balance composed of a non-magnetic ceramic for which the coefficient of expansion The spiral is positive and less than + l * 10 ⁇ 6 K "1.
  • the hairspring is made from a composite of continuous carbon fibers of twisted or parallel texture with respect to the axial directions of the fiber. a thermosetting polymer matrix, thermoplastic or ceramic. The coefficient of thermal expansion of this composite is negative and greater than -l * 10 ⁇ 6 K "1 . More particularly, the materials used for producing the balance and the hairspring are selected so that the values of their coefficients of thermal expansion are similar, very small and of opposite signs.
  • this sprung balance makes it possible to obtain a high precision and a more stable operation of the oscillator thanks to a self-compensating effect of the spiral.
  • the present invention aims to at least significantly reduce the self-compensating effect of the spiral.
  • the present invention proposes a spiral balance which is in wide temperature ranges insensitive to variations in temperature. temperature to avoid dilation and variation of the moment of inertia of the pendulum.
  • the object of the present invention is to propose a spiral balance having an improved stability of its frequency, both with regard to its sensitivity to variations in temperature and amplitude, as well as to magnetic fields.
  • this object is achieved by a mechanical oscillator according to the invention, characterized by the production of the balance and the spiral in the same material.
  • This embodiment of the balance and the hairspring from the same material avoids the compensating effect of the hairspring relative to the balance, which thus has an almost constant inertia. As a result, self-compensation between the balance and the balance spring becomes negligible.
  • Fig. 1 an enlarged view of the top of a mechanical oscillator according to the invention
  • Fig. 2 an enlarged view of the mechanical oscillator of FIG. 1 in section
  • Fig. 3 a diagram showing diurnal step variations of two different mechanical oscillators.
  • Figs. 1 and 2 illustrate, by way of example, a mechanical oscillator of the spiral-balance type comprising a balance 10 and a balance spring 12.
  • the balance 10 comprises a shaft 14, a board 16 mounted rigidly on the shaft 14 and flyweights 18, d a first type, and 19 of a second type, a ferrule 20 and a plate 22.
  • the spiral 12 is made of a material that may or may not be the same as that used to make the plate 16 of the balance 10.
  • the spiral 12 is made from the same material as the rocker 10. More specifically, the spiral 12 and the plate 16 of the balance 10 are made of the same material. This embodiment of the balance 10 and / or its plate 16, and the spring 12 from the same material avoids the compensating effect of the spiral 12 relative to the balance 10, which thus has an almost constant inertia. As a result, the self-compensation between the balance 10 and the balance spring 12 is almost negligible.
  • the material chosen to produce the rocker 10, and / or its board 16, and the spiral 12, is preferably non-magnetic and has the advantage of having a coefficient of thermal expansion of 20 to 2 * 10 ⁇ 10 ppm / ° C maximum.
  • the thermal expansion coefficient is preferably 5-10 "6 ppm / ° C, and still more preferably 2-10 6 ppm / ° C maximum.
  • the density of the material is preferably in a range of 2.0 to 5.0 g / cm 3 , preferably 2.5 to 4.5 g / cm 3 , and still more preferably 3 to 4.0 g / cm 3 .
  • this material is diamond or synthetic diamond and, more generally, a diamond-based material.
  • other materials may be used, as described in more detail below, such as, for example, quartz, silicon, carbon, titanium or ceramic.
  • the shaft 14 of the balance 10 has an axis of symmetry, designated as the axis AA, which is also its axis of pivoting.
  • the shaft 14 is conventionally made of hardened steel and comprises a plate 14a, cylindrical portions 14b, 14c and 14d disposed on either side of the plate 14a and intended to receive respectively the shell 20, the plate 16 and the plateau 22. Its ends form pivots 14e and 14f intended to be engaged in bearings constituted in the frame of the timepiece, not shown in the drawing.
  • the board 16 has a central hole 16a and eight radially oriented openings defining eight arms 16b.
  • the outer ends of the arms 16b are interconnected to form a serge 16c.
  • the latter is pierced, in the extension of the arms 16b, holes 16d oriented parallel to the axis AA and in which the weights 18 and 19 are fixed.
  • the base of the serge 16c may be made of a material other than the board 16. In this case, when the board 16 is for example made of diamond, a diamond coating may be applied to the serge 16c in order to obtain the same physical characteristics for serge 16c as for board 16.
  • the rocker 10 and / or the spiral 12 are coated with nanoparticles of a material which is preferably non-magnetic and has the advantage of having a coefficient of thermal expansion of 20 to 2 * 10 ⁇ 10 ppm / ° C maximum.
  • This coefficient of thermal expansion is preferably 5-10 "6 ppm / ° C, and still more preferably 2-10 " 6 ppm / ° C maximum.
  • the density of said material is preferably in a range of 2.0 to 5.0 g / cm 3 , preferably 2.5 to 4.5 g / cm 3 , and still more preferably 3 to 4.0 g / cm 3 .
  • the balance 10 and the balance spring 12 have a nano-diamond coating.
  • This coating is also advantageously applicable to a sprung balance known to those skilled in the art, such as, for example, a sprung balance comprising a balance made of cupro-beryllium alloy associated with a spiral made of alloys specially studied as per example the invar.
  • the board 16 is in abutment against the plate 14a and positioned by the cylindrical portion 14c. It is fixed to the shaft 14 by glue points 24 arranged in housings formed in the periphery of the hole 16a.
  • the shell 20 is driven onto the shaft 14 in its cylindrical portion 14d, bearing against the board 16. It carries, mounted by gluing, the spring 12.
  • the board 16 is formed of a plate of a low density material with a low coefficient of thermal expansion, such as for example diamond, corundum, quartz or silicon, and whose thickness is of the order of a few tenths of millimeters. More particularly, this thickness is preferably in a range of 0.05 mm to 0.3 mm, and is typically 0.2 mm.
  • the hairspring 12 is made of a material that may or may not be the same as that used to make the balance 10 and / or its board 16. Thus, the material used to make the hairspring 12 may also be used. be selected from the above exemplified materials, ie diamond, quartz, silicon or corundum. The elasticity and length of these materials vary very little with temperature.
  • the weights 18 are each formed of a cylindrical nail 18a having an axis of symmetry, designated in FIG. 1 as the BB axis, of heavy material whose density is greater than 15 g / cm 3 , for example gold or platinum, provided with a head 18b and a body 18c, and a ring 18d made of the same material.
  • the body 18c of each of the weights 18 is engaged in a hole 16d, the head 18b bearing against the board 16.
  • the ring 18d associated with it is fixed on the other side of the board 16, by driving, gluing or welding.
  • the weights 18 have a symmetrical structure with respect to the axis BB of each of the nails 18a. In this way, during changes in temperature, the nails expand or contract radially relative to the axis BB, without their center of gravity moves. Consequently, as a first approximation, this expansion does not modify the inertia of the pendulum.
  • the weights 19 have a center of gravity offset from the axis of the hole 16d in which they are engaged. In this way, by turning them, it is possible to modify the moment of inertia and thus correct the frequency of the oscillator. To allow this rotation, the weights 19 comprise a cylindrical portion 19a provided with axially oriented slots 19b, allowing a frictional attachment.
  • the material used to make the balance 10 and the spiral 12 of the mechanical oscillator according to the present invention is likely to be insensitive to temperature.
  • this material is likely to be consistent with the margins established by the Swiss chronological chronometric criteria listed in Table 1 illustrated below.
  • Nonlimiting examples of materials satisfying the criteria indicated in Table 1, which are thus usable in the context of the present invention, are diamond, titanium, ceramic and quartz, as already described in more detail above. These materials have the following physical properties:
  • Fig. 3 illustrates a diagram showing exemplary diurnal cycle variations of two different mechanical oscillators by way of example. These diurnal cycle variations are represented in seconds ([s]) on an axis 41, depending on the different temperatures at which the corresponding mechanical oscillators were tested. These temperatures are represented in degrees Celsius ([ 0 C]] on an axis 31.
  • a first curve 30 illustrates a diurnal step variation of a timepiece comprising a standard mechanical oscillator. As shown in FIG. 3, this day-time variation is between a 6-second advance, as indicated by point 32, and a delay of 4 seconds, as indicated by point 34, when the timepiece is tested in a range. of temperatures between +8 and +38 0 C.
  • a second curve 40 illustrates a diurnal step variation of this timepiece when it is made with a mechanical oscillator according to a preferred embodiment of the present invention.
  • the variation in daytime running is between a zero advance, as indicated in point 42, and a delay of approximately 1.3 seconds, as indicated in point 44, during the test of the workpiece. in the temperature range between +8 and +38 0 C.
  • this frequency stability relative to the temperature of the mechanical oscillator according to the invention is added to other advantages obtained by the choice of the material used.
  • the materials constituting the balance 10 and spiral 12 being non-magnetic, a magnetic field can not interact with them. Only in the configuration described above, which uses the shaft 14 made of hardened steel, a magnetic field can interact with the shaft 14, but the influence of this interaction is virtually zero.
  • the specific mass of the constituent material of the board 16 is small, while the material constituting the weights 18, 19 is high, the total mass of the balance 10 is low for a given moment of inertia. As a result, the isochronism defect can be further reduced.
  • Weights 18, 19 gold or platinum can realize the balance 10 with a moment of inertia / mass ratio particularly favorable. It is also possible to use less expensive materials, for example brass or invar. In the latter case, the expansion of the weights 18, 19 could be further reduced.
  • pendulums for timepieces must be balanced. This can be done by removing or adding material. This operation is particularly advantageous by working on the weights 18, which have a symmetrical structure with respect to their axis BB.
  • at least a portion of said flyweights 18 preferably has a cylindrical shape of axis BB in their portion engaged in the board 16.
  • the present invention also claims a method of balancing by removal or addition of material from / to the balance 10, characterized in that material is removed from at least one of said weights 18 so symmetrical with reference to the axis of the cylinder or in that the equilibration is achieved by adding the material to at least one of the weights 18 symmetrically with reference to the axis of its cylinder.
  • the material used to make the weights 18 preferably has a specific mass greater than 10. It may be in particular gold or platinum, while the balance 10 and the spiral 12 are made of diamond. In this way, the ratio between the moment of inertia and the specific mass is particularly favorable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Electric Clocks (AREA)

Abstract

Oscillateur mécanique pour une pièce d' horlogerie comportant un balancier (10) et un spiral (12). Le balancier (10) et le spiral (12) sont réalisés à partir d' un même matériau. Ce matériau est amagnétique et possède un très faible coefficient de dilatation thermique.

Description

OSCILLATEUR MECANIQUE POUR UNE PIECE D'HORLOGERIE
La présente invention concerne un oscillateur mécanique pour une pièce d'horlogerie, et plus particulièrement un oscillateur mécanique pour une montre bracelet qui présente un haut degré d' isochronisme .
Différents oscillateurs mécaniques ont déjà été proposés pour des montres bracelet. De manière générale, de tels oscillateurs sont conçus sous forme d'un balancier-spiral qui engendre des oscillations définissant la fréquence propre de l'oscillateur. Cette fréquence propre divise le temps en unités rigoureusement identiques afin d'ordonner à l'échappement d'une montre bracelet de régulariser la vitesse de son rouage. Ainsi la précision d'une montre bracelet dépend de la stabilité de fréquence de son balancier-spiral.
Plusieurs paramètres tels que les variations de température, les champs magnétiques et les variations d'amplitude des oscillations du balancier affectent la stabilité de fréquence d'un balancier-spiral. Les variations de température sont susceptibles de provoquer des dilatations thermiques du balancier et du spiral qui engendrent essentiellement une variation du moment d'inertie du balancier ainsi qu'une variation du couple de rappel du spiral. Les champs magnétiques agissent essentiellement sur le spiral et sont susceptibles de perturber voir annuler son action sur le balancier. Les variations d'amplitude des oscillations du balancier sont liées au poids et à l'inertie du balancier et sont susceptibles d'engendrer un défaut d' isochronisme du balancier-spiral. Ainsi, tous ces paramètres sont susceptibles de modifier la fréquence propre du balancier-spiral. Pour compenser les variations de température, les matériaux utilisés pour la réalisation du balancier et du spiral dans les oscillateurs mécaniques les plus fréquemment utilisés, sont choisis de manière à ce que la variation du moment d' inertie du balancier et la variation du couple de rappel du spiral respectives se compensent. Parmi les solutions proposées, on relèvera notamment l'usage d'un balancier en alliage de cupro-béryllium associé à un spiral réalisé en alliages spécialement étudiés comme par exemple l'invar et élinvar, qui est un alliage de fer-nickel ayant un coefficient de dilatation très faible. Ce type de balancier-spiral est cependant toujours sensible aux champs magnétiques. Ainsi, la recherche de nouveaux alliages utilisables pour la réalisation du spiral est toujours d'actualité, comme le montre par exemple le développement du silinvar'™1. Le résultat auto compensateur de ces alliages est surtout le résultat de deux influences contraires, notamment celle de la température et celle de la magnétostriction sur le module d'élasticité du métal .
Pour compenser les effets des champs magnétiques autrement que par l'emploi des nouveaux alliages spécialement conçus à ce propos, il a aussi été proposé de réaliser le spiral en un matériau amagnétique, comme le quartz par exemple, tout en réalisant le balancier en cupro-béryllium comme décrit ci- dessus. Ce type de balancier-spiral est cependant sensible aux variations de température.
Pour compenser les variations d'amplitude des oscillations du balancier afin de minimiser son défaut d' isochronisme, certains facteurs doivent être pris en considération incluant l'asymétrie de l'expansion et de la contraction du spiral, les changements de l'élasticité du spiral en réponse aux changements de températures, les champs magnétiques, les points d'attachement du spiral, les forces centrifuges et la gravité, l'équilibrage du balancier, les frottements et les géométries. La minimisation du défaut d' isochronisme est cruciale pour l'optimisation de la précision des montres mécaniques. Ceci consiste dans la réalisation d'un balancier- spiral ayant un haut degré d' isochronisme permettant à celui- ci de générer des oscillations égales et indépendantes de leur amplitude. Ainsi, on emploie fréquemment un balancier aussi léger que possible, avec une inertie aussi grande que possible .
Un exemple d'un balancier-spiral conçu pour remédier aux problèmes décrits ci-dessus est illustré dans le document WO 2004/008529 Al. Ce balancier-spiral est muni d'un balancier composé d'une céramique amagnétique pour laquelle le coefficient de dilatation thermique est positif et inférieur à +l*10~6 K"1. Le spiral est fabriqué à partir d'un composite de fibres de carbone continues de texture torsadée ou parallèle par rapport aux sens axial de la fibre. Ces fibres sont enrobées dans une matrice polymère thermodurcissable, thermoplastique ou céramique. Le coefficient de dilatation thermique de ce composite est négatif et supérieur à -l*10~6 K"1. Plus particulièrement, les matériaux utilisés pour la réalisation du balancier et du spiral sont sélectionnés de manière à ce que les valeurs de leurs coefficients de dilatation thermique soient similaires, très petites et de signes opposés. Ainsi, ce balancier-spiral permet d'obtenir une précision élevée et un fonctionnement plus stable de l'oscillateur grâce à un effet auto compensateur du spiral.
La présente invention a pour but d'au moins réduire considérablement l'effet auto compensateur du spiral. Ainsi, la présente invention propose un balancier-spiral qui est dans de larges plages de températures insensible aux variations de température pour éviter la dilatation et la variation du moment d'inertie du balancier. Plus généralement, la présente invention a pour but de proposer un balancier-spiral présentant une stabilité de sa fréquence améliorée, tant en ce qui concerne sa sensibilité aux variations de température que d'amplitude, ainsi qu'aux champs magnétiques.
Ce but est atteint par un oscillateur mécanique comportant un balancier et un spiral présentant les caractéristiques • des revendications indépendantes. Des variations d'exécution préférentielles font le sujet des revendications dépendantes.
Plus particulièrement, ce but est atteint par un oscillateur mécanique selon l'invention, caractérisé par la réalisation du balancier et du spiral dans le même matériau. Cette réalisation du balancier et du spiral à partir du même matériau permet d'éviter l'effet compensateur du spiral par rapport au balancier, qui a ainsi une inertie presque constante. De ce fait, l'auto compensation entre le balancier et le spiral devient négligeable.
Les détails de réalisation ainsi que les avantages du balancier-spiral selon l'invention ressortiront de la description détaillée suivante d'une forme d'exécution, donnée à titre d' exemple et illustrée par les dessins annexés qui montrent schématiquement :
Fig. 1 une vue agrandie du dessus d'un oscillateur mécanique selon l' invention,
Fig. 2 une vue agrandie de l'oscillateur mécanique de Fig. 1 en coupe, et Fig. 3 un schéma représentant des variations de marche diurnes de deux différents oscillateurs mécaniques.
Dans la description détaillée suivante des dessins annexés, les éléments identiques sont désignés par des références d'identification identiques. De manière générale, ces éléments et leurs fonctionnalités sont décrits une seule fois pour raisons de brièveté afin d'éviter des répétitions.
Les Fig. 1 et 2 illustrent à titre d'exemple un oscillateur mécanique de type balancier-spiral comportant un balancier 10 et un spiral 12. Le balancier 10 comprend un arbre 14, une planche 16 montée rigidement sur l'arbre 14 et des masselottes 18, d'un premier type, et 19 d'un deuxième type, une virole 20 et un plateau 22. Le spiral 12 est réalisé en un matériau qui peut, ou non, être le même que celui utilisé pour réaliser la planche 16 du balancier 10.
Selon un mode d'exécution préféré de la présente invention, le spiral 12 est réalisé à partir du même matériau que le balancier 10. Plus spécifiquement, le spiral 12 et la planche 16 du balancier 10 sont réalisés dans le même matériau. Cette réalisation du balancier 10, et/ou de sa planche 16, et du spiral 12 à partir du même matériau permet d'éviter l'effet compensateur du spiral 12 par rapport au balancier 10, qui a ainsi une inertie presque constante. De ce fait, l'auto compensation entre le balancier 10 et le spiral 12 est quasiment négligeable.
Le matériau choisi pour réaliser le balancier 10, et/ou sa planche 16, ainsi que le spiral 12, est de préférence amagnétique et présente l'avantage d'avoir un coefficient de dilatation thermique de 20 à 2*10~10 ppm/°C au maximum. Ce coefficient de dilation thermique est préférablement de 5-10"6 ppm/°C, et encore plus préférablement de 2-106 ppm/°C au maximum. La masse volumique du matériau est de préférence comprise dans une plage de 2.0 à 5.0 g/cm3, préférablement de 2.5 à 4.5 g/cm3, et encore plus préférablement de 3 à 4.0 g/cm3.
Selon un mode d'exécution préféré de la présente invention, ce matériau est du diamant ou du diamant de synthèse et, plus généralement un matériau à base de diamant. Néanmoins, d'autres matériaux peuvent être utilisés, comme décrit plus en détail ci-dessous, tels que, par exemple, le quartz, le silicium, le carbone, le titane ou la céramique.
Comme le montre la Fig . 1, l'arbre 14 du balancier 10 présente un axe de symétrie, désigné comme l'axe AA, qui est également son axe de pivotement. L'arbre 14 est classiquement réalisé en acier trempé et comporte une assiette 14a, des portions cylindriques 14b, 14c et 14d disposées de part et d'autre de l'assiette 14a et destinées à recevoir respectivement la virole 20, la planche 16 et le plateau 22. Ses extrémités forment des pivots 14e et 14f destinés à être engagés dans des paliers constitués dans le bâti de la pièce d'horlogerie, non représentés sur le dessin.
La planche 16 comporte un trou central 16a et huit ouvertures orientées radialement et définissant huit bras 16b. Les extrémités extérieures des bras 16b sont reliées entre elles pour former une serge 16c. Cette dernière est percée, dans le prolongement des bras 16b, de trous 16d orientés parallèlement à l'axe AA et dans lesquels les masselottes 18 et 19 sont fixées. La base de la serge 16c peut être réalisée dans un autre matériau que la planche 16. Dans ce cas, lorsque la planche 16 est par exemple réalisée en diamant, un revêtement diamant peut être appliqué à la serge 16c afin d'obtenir les mêmes caractéristiques physiques pour la serge 16c que pour la planche 16.
Plus particulièrement, selon un mode d'exécution préféré de la présente invention, le balancier 10 et/ou le spiral 12 sont revêtus de nano-particules d'un matériau qui est de préférence amagnétique et présente l'avantage d'avoir un coefficient de dilatation thermique de 20 à 2*10~10 ppm/°C au maximum. Ce coefficient de dilation thermique est préférablement de 5-10"6 ppm/°C, et encore plus préférablement de 2-10"6 ppm/°C au maximum. La masse volumique du dit matériau est de préférence comprise dans une plage de 2.0 à 5.0 g/cm3, préférablement de 2.5 à 4.5 g/cm3, et encore plus préférablement de 3 à 4.0 g/cm3. Préférablement , le balancier 10 et le spiral 12 ont un revêtement en nano-diamant . Ce revêtement est aussi avantageusement applicable à un balancier-spiral connu de l'homme du métier, tel que, par exemple, un balancier-spiral comportant un balancier réalisé en alliage de cupro-béryllium associé à un spiral réalisé en alliages spécialement étudiés comme par exemple l'invar.
Comme on peut le voir plus particulièrement sur la Fig. 2, la planche 16 est en appui contre l'assiette 14a et positionnée par la portion cylindrique 14c. Elle est fixée à l'arbre 14 par des points de colle 24 disposés dans des logements pratiqués dans la périphérie du trou 16a. La virole 20 est chassée sur l'arbre 14 dans sa portion cylindrique 14d, en appui contre la planche 16. Elle porte, monté par collage, le spiral 12.
La planche 16 est formée d'une plaque d'un matériau à faible densité et à faible coefficient de dilation thermique, comme par exemple du diamant, du corindon, du quartz ou du silicium, et dont l'épaisseur est de l'ordre de quelques dixièmes de millimètres. Plus particulièrement, cette épaisseur est de préférence comprise dans une plage de 0,05 mm à 0,3 mm, et elle a typiquement une valeur de 0,2 mm. Comme mentionné ci- dessus, le spiral 12 est réalisé dans un matériau qui peut, ou non, être le même que celui utilisé pour réaliser le balancier 10 et/ou sa planche 16. Ainsi, le matériau utilisé pour réaliser le spiral 12 peut également être sélectionné parmi les matériaux énumérés à titre d'exemple ci-dessus, c'est-à- dire le diamant, le quartz, le silicium ou le corindon. L'élasticité et la longueur de ces matériaux varient très peu en fonction de la température.
Les masselottes 18 sont formées chacune d'un clou 18a de forme cylindrique ayant un axe de symétrie, désigné dans la Fig. 1 comme l'axe BB, en matériau lourd dont la densité est supérieure à 15 g/cm3, par exemple de l'or ou du platine, muni d'une tête 18b et d'un corps 18c, et d'une bague 18d réalisée dans le même matériau. Le corps 18c de chacune des masselottes 18 est engagé dans un trou 16d, la tête 18b étant en appui contre la planche 16. La bague 18d qui lui est associée est fixée de l'autre côté de la planche 16, par chassage, collage ou soudage.
Les masselottes 18 présentent une structure symétrique par rapport à l'axe BB de chacun des clous 18a. De la sorte, lors de changements de température, les clous se dilatent ou se contractent radialement par rapport à l'axe BB, sans que leur centre de gravité ne bouge. En conséquence, en première approximation, cette dilatation ne modifie pas l'inertie du balancier .
Les masselottes 19 présentent un centre de gravité décalé par rapport à l'axe du trou 16d dans lequel elles sont engagées. De la sorte, en les tournant, il est possible de modifier le moment d' inertie et ainsi corriger la fréquence de l'oscillateur. Afin de permettre cette rotation, les masselottes 19 comportent une portion cylindrique 19a munie de fentes à orientation axiale 19b, permettant une fixation à friction.
Comme mentionné ci-dessus, le matériau utilisé pour réaliser le balancier 10 et le spiral 12 de l'oscillateur mécanique selon la présente invention est susceptible d' être peu sensible à la température. De plus, ce matériau est susceptible d' être conforme aux marges établies par les critères chronométriques de l'horlogerie Suisse énumérés dans la Table 1 illustrée ci-dessous.
Des exemples non limitatifs de matériaux satisfaisants les critères indiqués dans la Table 1, qui sont ainsi utilisables dans le contexte de la présente invention, sont le diamant, le titane, la céramique et le quartz, comme déjà décrit plus en détail ci-dessus. Ces matériaux ont des propriétés physiques suivantes :
Masse volumique:
- Diamant: 3.515 g/cm3
- Titane Grade 5: 4.42 g/cm3
- Céramique AI2O3: 3.9 g/cm3
- Quartz: 2.6 g/cm3
Coefficient de dilatation thermique:
- Diamant: 1-10"6 ppm/C°
- Titane Grade 5: 9-10"6 ppm/C°
- Céramique AI2O3: 8 10"6 ppm/C°
- Quartz: 0.5- 10"6 ppm/C°
Grâce à cette sélection particulière du matériau amagnétique utilisé pour la réalisation du balancier 10, et/ou de sa planche 16, ainsi que du spiral 12, un faible coefficient de dilatation thermique et un rapport masse - rayon optimisé sont obtenus. Plus particulièrement, comme l'oscillateur mécanique des Fig. 1 et 2 comportant le balancier 10 et le spiral 12 est réalisé à partir d'un matériau très stable par rapport à la température, sa fréquence est très stable et varie très peu en fonction de la température. Cette stabilité de fréquence est renforcée grâce au fait que les masselottes 18 ont un centre de gravité fixe par rapport à l'axe du balancier 10. Ceci permet d'atteindre un haut degré d' isochronisme de l'oscillateur mécanique selon un mode préféré d'exécution de la présente invention, comme illustré dans la Fig. 3.
La Fig. 3 illustre un schéma représentant des variations de marche diurnes exemplaires de deux différents oscillateurs mécaniques à titre d'exemple. Ces variations de marche diurnes sont représentées en secondes ( [s] ) sur un axe 41, dépendamment des différentes températures auxquelles les oscillateurs mécaniques correspondants ont été testés. Ces températures sont représentées en degrés Celsius ([0C]] sur un axe 31.
Une première courbe 30 illustre une variation de marche diurne d'une pièce d'horlogerie comportant un oscillateur mécanique standard. Comme le montre la Fig. 3, cette variation de marche diurne est comprise entre un avancement de 6 secondes, comme l'indique le point 32, et un retardement de 4 secondes, comme l'indique le point 34, lorsque la pièce d'horlogerie est testée dans une plage de températures situées entre +8 et +38 0C.
Une seconde courbe 40 illustre une variation de marche diurne de cette pièce d'horlogerie lorsqu'elle est réalisée avec un oscillateur mécanique selon un mode d' exécution préféré de la présente invention. Comme le montre la Fig. 3, dans ce cas la variation de marche diurne est comprise entre un avancement nul, comme l'indique le point 42, et un retardement d' approximativement 1,3 secondes, comme l'indique le point 44, lors du test de la pièce d'horlogerie dans la plage de températures comprises entre +8 et +38 0C.
On relèvera néanmoins que cette stabilité de fréquence relative à la température de l'oscillateur mécanique selon l'invention s'ajoute à d'autres avantages obtenus par le choix du matériau utilisé. Par exemple, les matériaux constitutifs du balancier 10 et du spiral 12 étant amagnétiques, un champ magnétique ne pourra pas interagir avec ceux-ci . Seulement dans la configuration décrite ci-dessus, qui emploie l'arbre 14 réalisé en acier trempé, un champ magnétique pourra interagir avec cet arbre 14, mais l'influence de cette interaction est pratiquement nulle. Enfin, dès lors que la masse spécifique du matériau constitutif de la planche 16 est faible, alors que celle du matériau constitutif des masselottes 18, 19 est élevée, la masse totale du balancier 10 est faible pour un moment d'inertie donné. Il en résulte que le défaut d' isochronisme peut être réduit davantage.
Des masselottes 18, 19 en or ou en platine permettent de réaliser le balancier 10 avec un rapport moment d'inertie/masse particulièrement favorable. Il est aussi possible d'utiliser des matériaux moins coûteux, par exemple du laiton ou de l'invar. Dans ce dernier cas, la dilatation des masselottes 18, 19 pourrait encore être réduite.
De manière générale, les balanciers pour pièces d'horlogerie doivent être équilibrés. Cela peut se faire en enlevant ou en ajoutant de la matière. Cette opération s'effectue de manière particulièrement avantageuse en travaillant sur les masselottes 18, qui présentent une structure symétrique par rapport à leur axe BB. En. plus, au moins une partie desdites masselottes 18 a de préférence une forme cylindrique d'axe BB dans leur portion engagée dans la planche 16. Afin d'éviter que la symétrie de celles-ci ne soit affectée, il est possible d'enlever de la matière soit mécaniquement, soit par un tir au laser, en veillant à ce que cela se fasse de manière régulière sur toute la surface ou symétriquement par rapport à l'axe BB. Il est également possible d'ajouter de la matière par projection sur l'une ou l'autre des masselottes 18, toujours en veillant à garder la symétrie en référence à l'axe BB. Ainsi, la présente invention revendique également un procédé d'équilibrage par enlèvement ou adjonction de matière du/au balancier 10, caractérisé par le fait que de la matière est enlevée d'au moins une desdites masselottes 18 de manière symétrique en référence à l'axe du cylindre ou par le fait que l'équilibrage est réalisé par adjonction de la matière à au moins l'une des masselottes 18 de manière symétrique en référence à l'axe de son cylindre.
Enfin, le matériau utilisé pour réaliser les masselottes 18 présente préférablement une masse spécifique supérieure à 10. Il peut s'agir notamment de l'or ou du platine, tandis que le balancier 10 et le spiral 12 sont réalisés en diamant. De la sorte, le rapport entre le moment d'inertie et la masse spécifique est particulièrement favorable.
On relèvera aussi que, selon le matériau constitutif de la planche 16, il est également possible d'y ajouter ou d'en supprimer de la matière et plus particulièrement sur la serge 16c.
Bien qu'un mode particulier d'exécution soit décrit ci-dessus, des variations multiples peuvent être apportées à l'oscillateur mécanique selon l'invention sans altérer sa fonctionnalité. En conséquence, toutes ces variations sont également envisagées et généralement contemplées.

Claims

REVENDICATIONS
1. Oscillateur mécanique pour une pièce d'horlogerie comportant un balancier (10) et un spiral (12), dans lequel le balancier (10) et le spiral (12) sont réalisés à partir d'un même premier matériau.
2. Oscillateur mécanique selon la revendication 1, dans lequel ledit balancier (10) comporte une planche (16), un arbre (14) portant ladite planche (16) et des masselottes (18, 19) montées sur ladite planche (16) , et dans lequel ledit arbre
(14) et lesdites masselottes (18, 19) sont réalisés à partir d'au moins un autre second matériau.
3. Oscillateur mécanique selon la revendication 2, dans lequel ledit arbre (14) est réalisé en acier trempé et au moins une partie des masselottes (18) est réalisée dans un matériau lourd dont la densité est supérieure à 15 g/cm3.
4. Oscillateur mécanique selon l'une des revendications précédentes, dans lequel le premier matériau a un coefficient de dilatation thermique faible de 2*10~6 ppm/C° au maximum.
5. Oscillateur mécanique selon l'une des revendications précédentes, dans lequel le premier matériau est amagnétique.
6. Oscillateur mécanique selon l'une des revendications précédentes, dans lequel la masse volumique du premier matériau est comprise dans une plage de 2.0 à 5.0 g/cm3.
7. Oscillateur mécanique selon l'une des revendications précédentes, dans lequel le premier matériau est de type diamant, quartz ou céramique.
8. Oscillateur mécanique selon la revendication 7, dans lequel le premier matériau est à base de diamant .
9. Oscillateur mécanique selon l'une des revendications précédentes, dans lequel la pièce d'horlogerie est une montre bracelet .
10. Oscillateur mécanique selon l'une des revendications précédentes, dans lequel le balancier (10) comporte une planche (16) ayant une épaisseur comprise dans une plage de 0, 05 mm à 0,3 mm.
11. Oscillateur mécanique pour une pièce d'horlogerie comprenant un balancier (10) et un spiral (12), dans lequel le balancier (10) comporte:
- une planche (16) réalisée en un premier matériau,
- un arbre (14) portant ladite planche (16) et destiné à assurer le pivotement du balancier autour d'un axe de pivotement,
- des masselottes (18, 19) montées sur ladite planche
(16), réparties symétriquement par rapport au dit axe de pivotement, ledit spiral (12) étant réalisé dans un deuxième matériau et lesdits premier et deuxième matériaux étant choisis parmi le diamant et le quartz.
12. Oscillateur mécanique selon la revendication 11, dans lequel lesdits premier et deuxième matériaux sont identiques.
13. Oscillateur mécanique selon la revendication 11 ou 12, dans lequel au moins une partie desdites masselottes (18) a une forme cylindrique par rapport à un axe de symétrie dans leur portion engagée dans ladite planche (16), lesdites masselottes (18) présentant une structure symétrique en référence à l'axe de symétrie.
14. Oscillateur mécanique selon l'une des revendications 11 à 13, dans lequel lesdites masselottes (18) sont réalisées dans un troisième matériau présentant une masse spécifique supérieure à 10.
15. Oscillateur mécanique selon la revendication 14, dans lequel le troisième matériau est un matériau lourd dont la densité est supérieure à 15 g/cm3.
16. Oscillateur mécanique selon l'une des revendications 11 à
15, dans lequel le premier matériau est du diamant.
17. Oscillateur mécanique selon l'une des revendications 11 à
16, dans lequel la planche (16) a une épaisseur comprise dans une plage de 0,05 mm à 0,3 mm.
18. Procédé d'équilibrage par enlèvement de matière d'un balancier (10) pour un oscillateur mécanique selon la revendication 13, dans lequel de la matière est enlevée d'au moins une desdites masselottes symétriques (18) de manière symétrique en référence à son axe de symétrie.
19. Procédé d'équilibrage par adjonction de matière, d'un balancier (10) pour un oscillateur mécanique selon la revendication 13, dans lequel de la matière est ajoutée à au moins l'une desdites masselottes symétriques (18) de manière symétrique en référence à son axe de symétrie.
EP07857010.8A 2006-12-21 2007-12-20 Oscillateur mecanique pour une piece d'horlogerie Active EP2102717B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07857010.8A EP2102717B1 (fr) 2006-12-21 2007-12-20 Oscillateur mecanique pour une piece d'horlogerie

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP06026620 2006-12-21
CH02119/06A CH701155B1 (fr) 2006-12-27 2006-12-27 Oscillateur pour pièce d'horlogerie.
EP07857010.8A EP2102717B1 (fr) 2006-12-21 2007-12-20 Oscillateur mecanique pour une piece d'horlogerie
PCT/EP2007/011287 WO2008080570A2 (fr) 2006-12-21 2007-12-20 Oscillateur mecanique pour une piece d'horlogerie

Publications (2)

Publication Number Publication Date
EP2102717A2 true EP2102717A2 (fr) 2009-09-23
EP2102717B1 EP2102717B1 (fr) 2013-06-26

Family

ID=39589024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07857010.8A Active EP2102717B1 (fr) 2006-12-21 2007-12-20 Oscillateur mecanique pour une piece d'horlogerie

Country Status (4)

Country Link
US (1) US8240910B2 (fr)
EP (1) EP2102717B1 (fr)
JP (1) JP2010513886A (fr)
WO (1) WO2008080570A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11982977B2 (en) 2016-06-13 2024-05-14 Rolex Sa Method of manufacturing a timepiece shaft

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2104005A1 (fr) * 2008-03-20 2009-09-23 Nivarox-FAR S.A. Balancier composite et son procédé de fabrication
EP2104008A1 (fr) * 2008-03-20 2009-09-23 Nivarox-FAR S.A. Organe régulateur monobloc et son procédé de fabrication
US10324419B2 (en) * 2009-02-06 2019-06-18 Domasko GmbH Mechanical oscillating system for a clock and functional element for a clock
EP2677369B1 (fr) * 2010-06-11 2015-01-14 Montres Breguet SA Balancier haute fréquence pour pièce d'horlogerie
EP2410386B1 (fr) 2010-07-19 2018-10-03 Nivarox-FAR S.A. Balancier à réglage d'inertie avec insert
US9164485B2 (en) 2010-08-06 2015-10-20 Damasko Gmbh Oscillating body, mechanical oscillating system for wristwatches with such an oscillating body and watch with such an oscillating system
DE202011110747U1 (de) * 2010-08-06 2016-01-14 Damasko Gmbh Schwingkörper, mechanisches Schwingsystem für Armbanduhren mit einem solchen Schwingkörper sowie Uhr mit einem derartigen Schwingsystem
EP2466396A1 (fr) * 2010-12-15 2012-06-20 The Swatch Group Research and Development Ltd. Blindage magnétique pour spiral de pièce d'horlogerie
CH704924B1 (de) * 2011-05-13 2015-05-29 Bucherer Ag Unruh für eine Uhr sowie Uhr.
US9310774B2 (en) * 2011-12-22 2016-04-12 The Swatch Group Research And Development Ltd Method of improving the pivoting of a wheel set
JP2013195297A (ja) * 2012-03-21 2013-09-30 Seiko Instruments Inc てんぷ構造体及び機械式時計
EP2680090A1 (fr) * 2012-06-28 2014-01-01 Nivarox-FAR S.A. Ressort-moteur pour une pièce d'horlogerie
EP2703909A1 (fr) * 2012-09-04 2014-03-05 The Swatch Group Research and Development Ltd. Résonateur balancier - spiral appairé
EP2717103B1 (fr) 2012-10-04 2017-01-11 The Swatch Group Research and Development Ltd. Spiral lumineux
CH707811A2 (fr) * 2013-03-19 2014-09-30 Nivarox Sa Composant monobloc indémontable d'horlogerie.
EP2781967B1 (fr) * 2013-03-19 2018-07-04 Nivarox-FAR S.A. Spiral d'horlogerie
EP2784602B1 (fr) * 2013-03-26 2018-12-05 Montres Breguet SA Arbre de mobile à géométrie optimisée en environnement magnétique
USD759527S1 (en) * 2013-10-16 2016-06-21 Swatch Ltd Oscillating weight
CN107615182B (zh) * 2015-06-15 2020-02-07 西铁城时计株式会社 时钟的调速装置
EP3502786A1 (fr) * 2017-12-22 2019-06-26 The Swatch Group Research and Development Ltd Balancier pour pièce d'horlogerie et procédé de fabrication d'un tel balancier
EP3647883A1 (fr) * 2018-11-05 2020-05-06 CSEM Centre Suisse D'electronique Et De Microtechnique SA Balancier d'une piece d'horlogerie
EP3719588B1 (fr) * 2019-04-03 2021-11-03 The Swatch Group Research and Development Ltd Oscillateur horloger auto-réglable
CH716384A1 (fr) * 2019-07-02 2021-01-15 Soprod Sa Oscillateur pour mouvement horloger et pièce d'horlogerie comportant un tel oscillateur.
EP3839644A1 (fr) * 2019-12-20 2021-06-23 Nivarox-FAR S.A. Composant horloger flexible, notamment pour mecanisme oscillateur, et mouvement d'horlogerie comportant un tel composant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB845773A (en) * 1956-08-10 1960-08-24 Junghans Geb Ag Improvements in or relating to balance wheels
CH783467A4 (fr) * 1967-06-02 1970-07-31
US3942317A (en) * 1974-12-03 1976-03-09 Ebauches Bettlach S.A. Component parts for watch movements
CH604226B5 (fr) * 1975-12-12 1978-08-31 Ebauchesfabrik Eta Ag
FR2731715B1 (fr) * 1995-03-17 1997-05-16 Suisse Electronique Microtech Piece de micro-mecanique et procede de realisation
EP0957414B1 (fr) * 1998-05-07 2003-02-12 Janvier S.A. Masse de remontage oscillante pour pièce d'horlogerie à mouvement automatique et pièce d'horlogerie équipée d'une telle masse de remontage
US6855593B2 (en) 2002-07-11 2005-02-15 International Rectifier Corporation Trench Schottky barrier diode
WO2004029733A2 (fr) 2002-09-25 2004-04-08 Fore Eagle Co Ltd Pieces mecaniques
EP1445670A1 (fr) * 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiral de résonateur balancier-spiral et son procédé de fabrication
DE602004024076D1 (en) * 2003-08-13 2009-12-24 Fore Eagle Co Ltd Unruh mit thermokompensation
DE60314142T2 (de) * 2003-10-01 2008-01-24 Asulab S.A. Uhr mit einem mechanischen Uhrwerk, das mit einem elektronischen Regulator gekoppelt ist
GB0324439D0 (en) * 2003-10-20 2003-11-19 Levingston Gideon R Minimal thermal variation and temperature compensating non-magnetic balance wheels and methods of production of these and their associated balance springs
GB2416408B (en) * 2003-10-20 2006-06-07 Gideon Levingston Balance wheel, balance spring and other components and assemblies for a mechanical oscillator system and method of manufacture
ATE421720T1 (de) * 2004-04-06 2009-02-15 Nivarox Sa Spiralrolle ohne deformation des fixierungsradius der spiralfeder und herstellungsverfahren derartige spiralrolle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008080570A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11982977B2 (en) 2016-06-13 2024-05-14 Rolex Sa Method of manufacturing a timepiece shaft

Also Published As

Publication number Publication date
US20100054090A1 (en) 2010-03-04
EP2102717B1 (fr) 2013-06-26
WO2008080570A3 (fr) 2009-02-26
JP2010513886A (ja) 2010-04-30
US8240910B2 (en) 2012-08-14
WO2008080570A2 (fr) 2008-07-10

Similar Documents

Publication Publication Date Title
EP2102717B1 (fr) Oscillateur mecanique pour une piece d'horlogerie
EP2410386B1 (fr) Balancier à réglage d'inertie avec insert
EP2407831B1 (fr) Spiral pour oscillateur balancier de pièce d'horlogerie et son procédé de fabrication
WO2015189278A2 (fr) Oscillateur pour un ensemble de balancier-spiral d'une pièce d'horlogerie
EP1605182B1 (fr) Oscillateur balancier-spiral compensé en température
WO2009068091A1 (fr) Oscillateur mécanique présentant un coefficient thermoélastique optimisé
EP3172626B1 (fr) Pivot à lame
CH714952B1 (fr) Composant horloger, son procédé de fabrication et application de ce procédé.
CH709052A2 (fr) Balancier-spiral, mouvement et pièce d'horlogerie.
EP2917787B1 (fr) Mouvement d'horlogerie a balancier-spiral
CH700260B1 (fr) Balancier spiral sans élément de réglage.
EP2781965B1 (fr) Cassette de mécanisme d'horlogerie
EP2753985B1 (fr) Mouvement d'horlogerie à balancier-spiral
EP3273309B1 (fr) Oscillateur hybride d'horlogerie
CH713409A2 (fr) Balancier-spiral du type thermocompensé, mouvement et pièce d'horlogerie.
EP1654597B1 (fr) Balancier thermocompense
EP2631721A1 (fr) Composants horlogers en titane revêtus de diamant
CH701155B1 (fr) Oscillateur pour pièce d'horlogerie.
CH710866A2 (fr) Balancier-spiral auto-compensé pour mouvement horloger.
WO2022009102A1 (fr) Oscillateur horloger a pivot flexible
EP3913441A1 (fr) Oscillateur pour pièce d'horlogerie
EP3761122B1 (fr) Mobile d'échappement horloger, mécanisme d'échappement et pièce d'horlogerie associés
EP3534222A1 (fr) Procédé de réalisation d'un oscillateur thermo-compensé
WO2020144587A1 (fr) Organe régulateur pour mouvement horloger
CH712017B1 (fr) Spiral en silicium pour organe réglant ou mouvement d'horlogerie mécanique.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090717

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPLITIME S.A.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ORNY, FRANCK

Inventor name: FORSEY, STEPHEN

Inventor name: GIRARDIN, JOHNNY

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1137519

Country of ref document: HK

17Q First examination report despatched

Effective date: 20120110

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 618948

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007031320

Country of ref document: DE

Effective date: 20130822

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GLN S.A., CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130927

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 618948

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130626

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130926

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131028

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131026

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131230

Year of fee payment: 7

Ref country code: GB

Payment date: 20131227

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131217

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

26N No opposition filed

Effective date: 20140327

BERE Be: lapsed

Owner name: COMPLITIME S.A.

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007031320

Country of ref document: DE

Effective date: 20140327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131220

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131220

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007031320

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130626

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141220

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1137519

Country of ref document: HK

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E-PATENT S.A., CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 17