EP2098719A1 - Dieselmotorisch betriebene Brennkraftmaschine - Google Patents

Dieselmotorisch betriebene Brennkraftmaschine Download PDF

Info

Publication number
EP2098719A1
EP2098719A1 EP09154073A EP09154073A EP2098719A1 EP 2098719 A1 EP2098719 A1 EP 2098719A1 EP 09154073 A EP09154073 A EP 09154073A EP 09154073 A EP09154073 A EP 09154073A EP 2098719 A1 EP2098719 A1 EP 2098719A1
Authority
EP
European Patent Office
Prior art keywords
fuel
internal combustion
combustion engine
diesel engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09154073A
Other languages
English (en)
French (fr)
Other versions
EP2098719B1 (de
Inventor
Alois Dotzer
Georg Gruber
Thomas Kaiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2098719A1 publication Critical patent/EP2098719A1/de
Application granted granted Critical
Publication of EP2098719B1 publication Critical patent/EP2098719B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/06Injectors with heating, cooling, or thermally-insulating means with fuel-heating means, e.g. for vaporising

Definitions

  • the invention relates to a diesel engine-operated internal combustion engine according to the preamble of claim 1.
  • the invention has for its object to design a diesel engine operated internal combustion engine, which is operated with vegetable oil, so that the cold start problem can be greatly reduced or even eliminated.
  • a diesel engine-powered internal combustion engine having the features of claim 1.
  • the usual injectors can not be used because they are not able to do so are to interrupt the fuel flow under a pressure of more than 1,000 bar.
  • new injectors are used, which have a servo-control, in which the high pressure of the upcoming fuel is also used for closing the valve.
  • These new injectors have a nozzle needle with control piston, a chamber filled with fuel chamber volume into which the nozzle needle dips, a filled with tax fuel valve control chamber into which the control plunger dips, a fuel supply, which is connected to the chamber volume and an inlet throttle to the valve control chamber, and a fuel return, which communicates via an outlet throttle and a drain valve with the valve control chamber.
  • the nozzle needle Since in modern high-pressure injectors the nozzle needle is controlled exclusively hydraulically via the valve chamber, it must be ensured that the pilot fuel is in a state that corresponds to that of diesel fuel even at low temperatures. In contrast, if the pilot fuel is too viscous, the valve needle can not open and no injection can take place. If, however, it is possible to lift the valve needle and open the injection nozzle, the fuel is almost at the pressure of the high-pressure pump at the opening and can be easily injected into the combustion chamber even in the viscous state.
  • the high-pressure fuel supply usually splits within the injector into a strand to the chamber volume and into a string to the valve chamber.
  • the control fuel supplied to the valve space is practically completely discharged again via the fuel return and is not supplied to the combustion chamber via the chamber volume. Consequently, in order to solve the cold start problem, it is only necessary to heat up this pilot fuel which is to be discharged again, but not the fuel intended for the injection. Previous less successful attempts to solve this problem, however, have always focused on heating the fuel intended for injection.
  • the drain throttle is responsible. This constriction normally ensures that the pressure applied to the open injection nozzle does not flow via the outlet throttle into the leakage chamber and thus into the fuel return.
  • the outlet throttle prevents the pressure in the valve control chamber, which holds the control piston and the valve needle in the lower closed position, from being opened to open the injector. The opening of the valve and the injection of fuel is thus impossible.
  • heating this area can be targeted the vegetable oil, which serves only as a pilot fuel, are brought to a temperature in which the function of the outlet throttle is guaranteed.
  • the heating of this relatively small area can be done very quickly and with little energy. The heating could be done for example via a component within the injection nozzle. It would even be conceivable to use a component which actually fulfills a completely different function as a heating element.
  • the heater is particularly advantageous designed as an external heating. It must be made by this no particularly critical interventions on the injection nozzle itself. Also, the injector can be retrofitted in a very simple manner so that they can be operated not only with diesel fuel, but also with vegetable oil.
  • the inlet throttle is arranged in the same area in which the outlet throttle is located.
  • the inlet throttle can also lead to cold start problems, but this is by far not as critical as the outlet throttle.
  • a small heating device can eliminate any problems caused by both throttles.
  • the external heating therefore has a glow plug.
  • the glow plug is attached via a sleeve to the injection nozzle.
  • This sleeve can be made of a solid part, but also designed as a screw sleeve in the form of an open ring. In any case, ensure that the sleeve is in intimate and large-area contact with the outer wall of the injector.
  • the sleeve should be made of a material with high strength. At the same time, however, it should be noted that the material has a good thermal conductivity to the heat energy from the glow plug as efficiently as possible to bring into the injector.
  • an electrical heating ring is provided. These heating rings are also available as standard components. They are heated electrically directly. Using the heating ring, the heat energy can be more effectively introduced exactly into the region of the injection nozzle in which the outlet throttle is located.
  • the injection nozzle is heated in the region of the outlet throttle by an induced eddy current.
  • an induced eddy current This has the advantage that no heat has to be transferred to the injection nozzle, but can be generated directly in the injection nozzle.
  • a coil placed annularly around the injection nozzle is provided for this purpose. An alternating current is applied to the coil. The penetration depth of the induced eddy current depends on the frequency of the applied alternating current.
  • the heater is operable before the start of the internal combustion engine. This means that, for example, via a control device that controls the starting process, the heating is activated, even before the actual starting process is initiated with the activation of the starter. In this way, during the start-up process, low-viscosity vegetable oil is already available at the outlet throttle, so that problem-free injection of the fuel into the combustion chamber can take place.
  • the invention is applicable to the so-called electro-magnetic injection nozzles, in which the fuel return is controlled by an electro-magnetic valve.
  • electro-magnetic valve In their function very similar to the new piezo-electrically operated injectors are constructed. These much faster switchable injectors also have a control piston, a valve control chamber and an outlet throttle. Again, there is the same cold start problem as in the electro-magnetic injection nozzles.
  • the invention is therefore also very advantageous to the new piezoelectric injectors applicable, in which the fuel return is controlled by a piezoelectric valve.
  • the illustrated injection nozzle is designed as an electro-magnetic injector 1.
  • the injector 1 a number of cavities are provided, which are all in communication with each other.
  • the leakage chamber 4 is connected directly to the return line 7 in the fuel tank.
  • Below the leakage chamber 4 is the valve control chamber 5 (see Fig. 2 ). This is connected via the outlet throttle 2 with the leakage chamber 4.
  • the valve control chamber 5 is connected to the high-pressure inlet 8. Also communicates with the high-pressure inlet 8, the chamber volume 6 in conjunction.
  • the injector 1 When the injector 1 is open, the contents of the chamber volume 6 are injected via the injection holes 9 into the combustion chamber (not shown here).
  • an electro-magnetic valve for closing the outlet throttle 2.
  • This electro-magnetic valve has a solenoid 13, a valve spring 12, an armature spring 11 and the armature 15.
  • the valve ball 16 On the lower plate of the armature 15, the valve ball 16 is mounted for closing the outlet throttle 2.
  • the outlet throttle 2 forms a drain valve together with the magnetic valve.
  • the magnet coil 13 is connected to the connection socket 14. Via the connection socket 14, an electrical control unit is connected, with which the electrical pulses necessary for the proper operation of the injector 1 are generated.
  • the nozzle needle 19 In the lower part of the injector 1 is the nozzle needle 19, with which the chamber volume 6 is closed against the injection holes 9. At the top, the nozzle needle 19 continues via the pressure shoulder 18 into the control piston 17. The upper end face of the control piston 17 forms the lower boundary wall of the valve control chamber fifth
  • a heating ring 20 which heats the area in which the outlet throttle 2 and the inlet throttle 3 are located.
  • a heating wire 21 bent in upright loops extends. The electrical connection for this heating wire 21 is not visible in the illustration.
  • the injector 1 is in the closed state.
  • the solenoid 13 is not energized and the valve spring 12 pushes the armature 15 in its lowest position.
  • the valve ball 16 closes the outlet throttle 2.
  • About the high-pressure inlet 8 and the inlet throttle 3 prevails in the valve control chamber 5 of the pressure applied to the high-pressure inlet 8.
  • This pressure also acts on the upper face of the control piston 17.
  • the same pressure prevails in the chamber volume 6.
  • the pressure of the vegetable oil acts on the pressure shoulder 18.
  • the pressure at an angle of approximately 45 degrees to the direction of movement of the nozzle needle 19 acts is the force acting on the nozzle needle 19 is less than the force exerted by the pressure in the valve control chamber 5 on the nozzle needle 19.
  • the force of the nozzle spring 10 is still added.
  • the magnetic coil 13 is de-energized again.
  • the valve spring 12 now pushes the armature 15 back into its lower position, in which the valve ball 16 closes the outlet throttle 2.
  • the pressure applied to the high-pressure inlet 8 builds up very quickly in the valve control chamber 5 again.
  • the control piston 17 and the associated nozzle needle 19 are pressed down again and close the spray holes 9. Thus no vegetable oil from the chamber volume 6 more escape into the combustion chamber.
  • the power supply of the heating ring 20 can be switched off.
  • the injector 1 is at a temperature level at which also inflowing vegetable oil immediately upon entering the high-pressure inlet 8 assumes the temperature that is necessary for trouble-free operation.
  • a glow plug 25 is used for heating the injector 1 before starting. These glow plugs are commonly used for Starting from diesel engines used are highly heat resistant and achieve a long service life.
  • a threaded bushing 23 is provided, into which the glow plug 25 is screwed.
  • the inner surface of the threaded bushing 23 corresponds as closely as possible to the outer surface of the glow plug 25, so that the largest possible intensive contact between the two components is established. The heat from the glow plug 25 is transferred very efficiently to the threaded bushing 23 in this way.
  • the heating sleeve 22 is connected.
  • the connection of the two components is advantageously carried out via a weld or a braze.
  • the heating sleeve 22 can either also be connected via a soldering process with the injector 1 or it is designed as an open sleeve and is clamped by means of screws on the injector. Again, it is important to achieve an intimate contact between the heating sleeve 22 and the lateral surface of the injector 1, so that a good heat transfer can take place.
  • the upper part of the injector 1 is usually located between the valve levers and the distance between the valve levers is relatively small, it must be ensured, in particular with a screwed heating sleeve, that the heating sleeve 22 does not rotate due to the vibrations acting on it.
  • the threaded bush 23 could come with the glow plug 25 in the region of the moving valve lever. This twisting would therefore result in high damage.
  • the locking pin 24 is mounted in a fixed opening, for. B in a screw in the head of the internal combustion engine, immersed. A rotation of the heating sleeve 22 is no longer possible.
  • piezoelectric injectors have also recently been on the market.
  • a piezo control module is used here, which is composed of a plurality of stacked piezoelectric plates.
  • a valve control chamber is also present here. The pressure in this valve control chamber, which in turn is responsible for the movement of the nozzle needle, is also controlled here via an outlet throttle and an inlet throttle. Since the same cold start problem occurs with these piezoelectric injectors, remedying the critical area can also be remedied here.
  • the inventive diesel engine internal combustion engine can therefore be operated with piezoelectric injectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Die Erfindung geht aus von einer dieselmotorisch betriebenen Brennkraftmaschine mit wenigstens einer Einspritzdüse (1) zum Einspritzen von aus Pflanzenöl gewonnenem Kraftstoff mit einer Düsennadel (19) mit Steuerkolben (17), einem mit Kraftstoff gefüllten Kammervolumen (6), in das die Düsennadel (19) eintaucht, einem mit Steuerkraftstoff gefüllten Ventilsteuerraum (5), in den der Steuerkolben (17) eintaucht, einer Kraftstoffzuführung (8), die mit dem Kammervolumen (6) und über eine Zulaufdrossel (3) mit dem Ventilsteuerraum (5) verbunden ist und einem Kraftstoffrücklauf (7), der über eine Ablaufdrossel (2) und ein Ablaufventil (2, 16) mit dem Ventilsteuerraum (5) in Verbindung steht. Erfindungsgemäß ist wenigstens für den mit dem Kraftstoffrücklauf (7) in Verbindung stehenden Steuerkraftstoff in dem Ventilsteuerraum (5) eine Heizung (20, 21; 22-25) vorgesehen, wobei der zur Einspritzung anstehende Kraftstoff in dem Kammervolumen (6) nicht beheizt wird.

Description

  • Die Erfindung betrifft eine dieselmotorisch betriebene Brennkraftmaschine nach dem Oberbegriff von Anspruch 1.
  • Im Zuge der Verknappung der Rohölreserven und des damit verbundenen Anstiegs der Kraftstoffpreise wird zunehmend versucht, alternative Kraftstoffe einzusetzen. Hierzu gehören Ethanol, das so genannte Biodiesel, aber auch reines Pflanzenöl. Insbesondere bei dem Betrieb mit reinem Pflanzenöl oder mit Biodiesel müssen an einer dieselmotorisch betriebenen Brennkraftmaschine, die für den Betrieb mit normalem Dieselkraftstoff konstruiert ist, Änderungen vorgenommen werden. Diese Änderungen werden nötig, da sich aus Pflanzenöl erzeugter Kraftstoff anders als Dieselkraftstoff verhält. Weist Dieselkraftstoff beispielsweise über einen relativ weiten Temperaturbereich eine fast gleich bleibende Viskosität auf, so ändert sich bei Pflanzenöl die Viskosität mit der Temperatur verhältnismäßig stark. Im Extremfall kann Pflanzenöl - abhängig von der Sorte - sogar bei Temperaturen um den Gefrierpunkt bereits in einen festen Zustand übergehen.
  • Um einen üblicherweise mit Dieselkraftstoff zu betreibenden Motor so anzupassen, dass er für den Betrieb mit Pflanzenöl geeignet ist, werden insbesondere Änderungen vorgenommen, die gewährleisten sollen, dass sich das Pflanzenöl immer in einem dünnflüssigen Zustand befindet und so über das Kraftstoffzuführsystem gut den Einspritzdüsen zugeleitet werden kann. So werden beispielsweise Wärmetauscher eingesetzt, die den Kraftstoff in den Leitungen erwärmen sollen. Auch wurden neue Kraftstoffzuführsysteme konstruiert, die während der Startphase Leckagekraftstoff aus der Hochdruckpumpe und dem Einspritzsystem in kleinem Kreislauf sofort wieder der Kraftstoffförderpumpe zuführen. Auf diese Weise wird kaum kalter Kraftstoff aus dem Kraftstofftank benötigt, sondern es kann jeweils bereits vorgewärmter Kraftstoff verwendet werden. Diese Maßnahmen verhindern jedoch nicht, dass sich während des Startvorgangs kaltes Pflanzenöl in den Einspritzdüsen befindet. Sie greifen erst kurz nach der Startphase.
  • Die größten Probleme ergeben sich durch den Betrieb mit Pflanzenöl bei den neuen, mit Hochdruck einspritzenden Motoren. Insbesondere bei Motoren, die nach dem Common-Rail-Prinzip arbeiten, können bereits bei Außentemperaturen um 10°C derartige Schwierigkeiten entstehen, dass ein Starten des Motors mit Pflanzenöl praktisch unmöglich wird. Um diese Probleme zu vermeiden, sind so genannte Zwei-Tank-Systeme im Einsatz, bei denen der Motor mit normalem Dieselkraftstoff gestartet wird und erst dann, wenn der Motor seine Betriebstemperatur erreicht hat, auf Pflanzenöl umgeschaltet wird. Nachteil dieser Zwei-Tank-Systeme ist jedoch, dass die Kraftstoffleitungen vor dem Abstellen des Motors wiederum mit Dieselkraftstoff gespült werden müssen. Wird dieser Spülvorgang vergessen und es befindet sich noch Pflanzenöl in der Kraftstoffzuführung und in den Einspritzdüsen, so ist ein Neustart des Motors nach dessen Abkühlung nicht mehr gewährleistet.
  • Der Erfindung liegt die Aufgabe zugrunde, eine dieselmotorisch betriebene Brennkraftmaschine, die mit Pflanzenöl betrieben wird, so auszugestalten, dass die Kaltstartproblematik stark verringert oder sogar eliminiert werden kann.
  • Gelöst wird die Aufgabe gemäß der Erfindung durch eine dieselmotorisch betriebene Brennkraftmaschine mit den Merkmalen von Anspruch 1. Bei solchen Brennkraftmaschinen mit einer Hochdruckeinspritzeinlage, beispielsweise nach Common-Rail-Technik, können nicht mehr die bisher üblichen Einspritzdüsen verwendet werden, da diese nicht dazu im Stande sind, den unter einem Druck von mehr als 1.000 bar stehenden Kraftstoffstrom zu unterbrechen.
  • Es werden hier deshalb neue Injektoren eingesetzt, die eine Servo-Steuerung aufweisen, bei der der hohe Druck des anstehenden Kraftstoffs auch für das Verschließen des Ventils genutzt wird. Diese neuen Injektoren weisen eine Düsennadel mit Steuerkolben, ein mit Kraftstoff gefülltes Kammervolumen, in das die Düsennadel eintaucht, einen mit Steuerkraftstoff gefüllten Ventilsteuerraum, in den der Steuerkolben eintaucht, eine Kraftstoffzuführung, die mit dem Kammervolumen und über eine Zulaufdrossel mit dem Ventilsteuerraum verbunden ist, und einen Kraftstoffrücklauf auf, der über eine Ablaufdrossel und ein Ablaufventil mit dem Ventilsteuerraum in Verbindung steht.
  • Es hat sich nun überraschenderweise herausgestellt, dass für die Kaltstartproblematik nicht etwa der zur Einspritzung anstehende Kraftstoff in dem Kammervolumen, sondern hauptsächlich der Steuerkraftstoff in dem Ventilraum verantwortlich ist. Wenn die Kaltstartproblematik gelöst werden soll, spielt es folglich keine Rolle, ob der zur Einspritzung anstehende Kraftstoff im Kammervolumen erwärmt wird.
  • Da bei modernen Hochdruck-Einspritzdüsen die Düsennadel ausschließlich hydraulisch über den Ventilraum gesteuert wird, muss sichergestellt sein, dass sich der Steuerkraftstoff auch bei niedrigen Temperaturen in einem Zustand befindet, der dem von Dieselkraftstoff entspricht. Ist der Steuerkraftstoff dagegen zu zähflüssig, kann die Ventilnadel nicht öffnen und es kann keine Einspritzung stattfinden. Gelingt es jedoch die Ventilnadel zu heben und die Einspritzdüse zu öffnen, liegt an der Öffnung der Kraftstoff nahezu mit dem Druck der Hochdruckpumpe an und kann auch in zähflüssigem Zustand mühelos in der Brennraum eingespritzt werden.
  • Bei diesen Einspritzdüsen teilt sich die unter Hochdruck stehende Kraftstoffzuführung üblicherweise innerhalb der Einspritzdüse in einen Strang zu dem Kammervolumen und in einen Strang zu dem Ventilraum auf. Der dem Ventilraum zugeführte Steuerkraftstoff wird praktisch vollständig über den Kraftstoffrücklauf wieder abgeleitet und nicht über das Kammervolumen dem Brennraum zugeführt. Um die Kaltstartproblematik zu lösen muss folglich nur dieser wieder abzuführende Steuerkraftstoff, nicht aber der für die Einspritzung vorgesehene Kraftstoff erwärmt werden. Bisherige weniger erfolgreiche Versuche zur Lösung dieses Problems hatten sich dagegen immer darauf konzentriert, den für die Einspritzung vorgesehenen Kraftstoff zu erwärmen.
  • Es wurde herausgefunden, dass für die Anspring-Probleme bei niedrigen Temperaturen hauptsächlich die Ablaufdrossel verantwortlich ist. Diese Engstelle gewährleistet normalerweise, dass der an der offenen Einspritzdüse anliegende Druck nicht über die Ablaufdrossel in den Leckageraum und damit in die Kraftstoffrückführung abfließt. Befindet sich in den Hohlräumen des Injektors jedoch kaltes, zähes Pflanzenöl, wird durch die Ablaufdrossel verhindert, dass zum Öffnen des Injektors der Druck in dem Ventilsteuerraum abgebaut werden kann, der den Steuerkolben und die Ventilnadel in der unteren Schließstellung hält. Das Öffnen des Ventils und das Einspritzen von Kraftstoff wird damit unmöglich. Durch das Beheizen dieses Bereichs kann gezielt das Pflanzenöl, das hier nur als Steuerkraftstoff dient, auf eine Temperatur gebracht werden, in der die Funktion der Ablaufdrossel gewährleistet ist. Die Beheizung dieses relativ kleinen Bereichs kann sehr schnell und mit geringem Energieaufwand erfolgen. Die Beheizung könnte beispielsweise über ein Bauteil innerhalb der Einspritzdüse erfolgen. Es wäre sogar denkbar, ein Bauteil, welches eigentlich eine ganz andere Funktion erfüllt, als Heizelement zweckzuentfremden.
  • Die Heizung ist aber besonders vorteilhaft als Außenheizung ausgebildet. Es müssen hierdurch keine besonders kritischen Eingriffe an der Einspritzdüse selbst vorgenommen werden. Auch lässt sich die Einspritzdüse so in sehr einfacher Weise derart nachrüsten, dass sie nicht nur mit Dieselkraftstoff, sondern auch mit Pflanzenöl betrieben werden kann.
  • Vorteilhaft werden Einspritzdüsen eingesetzt, deren Zulaufdrossel in dem gleichen Bereich angeordnet ist, in dem sich auch die Ablaufdrossel befindet. Auch die Zulaufdrossel kann zu Kaltstartproblemen führen, diese ist bei weitem jedoch nicht so kritisch anzusehen wie die Ablaufdrossel. Liegt die Zulaufdrossel jedoch in dem beheizten Bereich, in dem sich auch die Ablaufdrossel befindet, können mit einer kleinen Heizeinrichtung die eventuell durch beide Drosseln hervorgerufenen Probleme beseitigt werden.
  • Es ist angestrebt, die Außenheizung aus preiswerten Standardbauteilen aufzubauen. In einem ersten Ausführungsbeispiel weist die Außenheizung daher einen Glühstift auf.
  • In vorteilhafter Weise ist der Glühstift über eine Muffe an der Einspritzdüse befestigt. Diese Muffe kann aus einem massiven Teil gefertigt, aber auch als Schraubmuffe in Form eines offenen Rings ausgebildet sein. In jedem Fall ist zu gewährleisten, dass die Muffe in innigem und großflächigem Kontakt mit der Außenwand der Einspritzdüse steht.
  • Durch die starken Belastungen, die beispielsweise durch Vibrationen auf die Muffe wirken, sollte die Muffe aus einem Material mit hoher Festigkeit gefertigt sein. Gleichzeitig ist jedoch zu beachten, dass das Material eine gute Wärmeleitfähigkeit aufweist, um die Wärmeenergie aus dem Glühstift möglichst effizient in die Einspritzdüse einbringen zu können.
  • In einem weiteren Ausführungsbeispiel ist ein elektrischer Heizring vorgesehen. Auch diese Heizringe sind als Standardbauteile erhältlich. Sie werden direkt elektrisch beheizt. Über den Heizring kann die Wärmeenergie noch effektiver exakt in den Bereich der Einspritzdüse eingebracht werden, in dem sich die Ablaufdrossel befindet.
  • In einem anderen Ausführungsbeispiel wird die Einspritzdüse in dem Bereich der Ablaufdrossel durch einen induzierten Wirbelstrom beheizt. Hierdurch ergibt sich der Vorteil, dass keine Wärme auf die Einspritzdüse übertragen werden muss, sondern direkt in der Einspritzdüse erzeugt werden kann. Erfindungsgemäß ist zu diesem Zweck eine ringförmig um die Einspritzdüse gelegte Spule vorgesehen. An die Spule wird ein Wechselstrom angelegt. Die Eindringtiefe des induzierten Wirbelstroms ist von der Frequenz des angelegten Wechselstroms abhängig.
  • Vorteilhaft ist die Heizung vor dem Start der Brennkraftmaschine betreibbar. Das bedeutet, dass beispielsweise über eine Steuervorrichtung, die den Startvorgang kontrolliert, die Heizung aktiviert wird, noch bevor der eigentliche Startvorgang mit dem Aktivieren des Anlassers eingeleitet wird. Auf diese Weise steht während des Startvorgangs bereits dünnflüssiges Pflanzenöl an der Ablaufdrossel bereit, so dass eine problemlose Einspritzung des Kraftstoffs in den Brennraum erfolgen kann.
  • Die Erfindung ist anwendbar auf die so genannten elektro-magnetischen Einspritzdüsen, bei denen der Kraftstoffrücklauf über ein elektro-magnetisches Ventil gesteuert ist. In ihrer Funktion sehr ähnlich sind die neuen piezo-elektrisch betriebenen Einspritzdüsen aufgebaut. Diese wesentlich schneller schaltbaren Einspritzdüsen besitzen ebenso einen Steuerkolben, einen Ventilsteuerraum und eine Ablaufdrossel. Auch hier ergibt sich das gleiche Kaltstartproblem wie bei den elektro-magnetischen Einspritzdüsen. Die Erfindung ist daher auch sehr vorteilhaft auf die neuen piezo-elektrischen Einspritzdüsen anwendbar, bei denen der Kraftstoffrücklauf über ein piezo-elektrisches Ventil gesteuert ist.
  • Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus den Unteransprüchen im Zusammenhang mit der Beschreibung von Ausführungsbeispielen, die anhand der Zeichnungen eingehend erläutert werden.
  • Es zeigt:
  • Fig. 1
    eine schematische Darstellung einer Hochdruck-Einspritzdüse der erfindungs- gemäßen dieselmotorischen Brennkraftmaschine und
    Fig. 2
    ein weiteres Ausführungsbeispiel einer beheizten Hochdruck-Einspritzdüse.
  • Die dargestellte Einspritzdüse ist als elektro-magnetischer Injektor 1 ausgebildet. In dem Injektor 1 ist eine Anzahl von Hohlräumen vorgesehen, die alle miteinander in Verbindung stehen. Der Leckageraum 4 ist direkt an den Rücklauf 7 in den Kraftstofftank angeschlossen. Unterhalb des Leckageraums 4 befindet sich der Ventilsteuerraum 5 (siehe Fig. 2). Dieser ist über die Ablaufdrossel 2 mit dem Leckageraum 4 verbunden. Über die Zulaufdrossel 3 ist der Ventilsteuerraum 5 an den Hochdruckzulauf 8 angeschlossen. Ebenfalls steht mit dem Hochdruckzulauf 8 das Kammervolumen 6 in Verbindung.
  • Bei geöffnetem Injektor 1 wird der Inhalt des Kammervolumens 6 über die Spritzlöcher 9 in den hier nicht dargestellten Brennraum eingespritzt. Der Hohlraum um die Düsenfeder 10, der sich mit Leckagekraftstoff aus dem Kammervolumen 6 und dem Ventilsteuerraum 5 füllt, ist über eine Bohrung ebenfalls an den Leckageraum 4 angeschlossen.
  • In dem Leckageraum 4 befindet sich ein elektro-magnetisches Ventil zum Verschließen der Ablaufdrossel 2. Dieses elektro-magnetische Ventil weist eine Magnetspule 13, eine Ventilfeder 12, eine Ankerfeder 11 und den Anker 15 auf. An der unteren Platte des Ankers 15 ist die Ventilkugel 16 zum Verschließen der Ablaufdrossel 2 angebracht. Die Ablaufdrossel 2 bildet zusammen mit dem magnetischen Ventil ein Ablaufventil. Die Magnetspule 13 ist mit der Anschlussbuchse 14 verbunden. Über die Anschlussbuchse 14 wird ein elektrisches Steuergerät angeschlossen, mit dem die zum ordnungsgemäßen Betrieb des Injektors 1 notwendigen elektrischen Impulse erzeugt werden.
  • Im unteren Bereich des Injektors 1 befindet sich die Düsennadel 19, mit der das Kammervolumen 6 gegen die Spritzlöcher 9 verschlossen wird. Nach oben setzt sich die Düsennadel 19 über die Druckschulter 18 in den Steuerkolben 17 fort. Die obere Stirnfläche des Steuerkolbens 17 bildet die untere Begrenzungswand des Ventilsteuerraumes 5.
  • In dem Ausführungsbeispiel nach Fig. 1 ist ein Heizring 20 vorgesehen, der den Bereich beheizt, in dem sich die Ablaufdrossel 2 und die Zulaufdrossel 3 befinden. In dem Heizring 20 verläuft ein in aufrechte Schlaufen gebogener Heizdraht 21. Der elektrische Anschluss für diesen Heizdraht 21 ist in der Darstellung nicht sichtbar.
  • Nach einer längeren Betriebspause bei geringer Umgebungstemperatur kühlt auch das Pflanzenöl in den miteinander in Verbindung stehenden Hohlräumen des Injektors 1 ab. Abhängig von der verwendeten Sorte wird das Pflanzenöl dabei relativ zähflüssig. Diese zähe Flüssigkeit würde die beiden Drosseln 2 und 3 blockieren, die den Ventilsteuerraum 5 mit dem Rücklauf 7 bzw. mit dem Hochdruckzulauf 8 verbinden. Probleme würden sich hier insbesondere beim Durchtritt des kalten Pflanzenöls durch die Ablaufdrossel 2 ergeben. Diese Drossel hat einen geringeren Durchmesser als die Zulaufdrossel 3. Auch liegt an der Zulaufdrossel 3 immer der volle Druck des Hochdruckzulaufs 8 an, während die Ablaufdrossel 2 auch bei geringerem anliegenden Druck durchgängig sein muss. Es wird daher noch vor dem Startvorgang der Heizdraht 21 in dem Heizring 20 mit einer Spannung beaufschlagt. Hierdurch stellt sich in sehr kurzer Zeit in dem von dem Heizring 20 umschlossenen Bereich des Injektors 1 eine Temperatur ein, bei der das Pflanzenöl dünnflüssig wird und die beiden Drosseln 2 und 3 nicht mehr blockiert sind. Ist dieser Zustand erreicht, kann der Startvorgang in Gang gesetzt werden.
  • In der gezeigten Darstellung befindet sich der Injektor 1 in geschlossenem Zustand. Dabei ist die Magnetspule 13 nicht bestromt und die Ventilfeder 12 drückt den Anker 15 in seine unterste Stellung. Die Ventilkugel 16 verschließt dabei die Ablaufdrossel 2. Über den Hochdruckzulauf 8 und die Zulaufdrossel 3 herrscht in dem Ventilsteuerraum 5 der auch am Hochdruckzulauf 8 anliegende Druck. Dieser Druck wirkt folglich auch auf die obere Stirnfläche des Steuerkolbens 17. Der gleiche Druck herrscht in dem Kammervolumen 6. Hier wirkt der Druck des Pflanzenöls auf die Druckschulter 18. Da hier jedoch der Druck in einem Winkel von etwa 45 Grad zu der Bewegungsrichtung der Düsennadel 19 wirkt, ist die auf die Düsennadel 19 wirkende Kraft geringer als die Kraft, die durch den Druck in dem Ventilsteuerraum 5 auf die Düsennadel 19 ausgeübt wird. Hierzu addiert sich noch die Kraft der Düsenfeder 10. Diese beiden Kräfte halten die Düsennadel 19 - entgegen der aus dem Druck in dem Kammervolumen 6 resultierenden Kraft - in ihrer geschlossenen Stellung.
  • Soll nun Pflanzenöl in den hier nicht dargestellten Brennraum über die Spritzlöcher 9 eingespritzt werden, wird die Magnetspule 13 entsprechend bestromt. Dabei wird die obere Platte des Ankers 15 angezogen, wobei sich dieser gegen die Kraft der Ventilfeder 12 hebt. Die Ventilkugel 16 hebt von der Ablaufdrossel 2 ab und gibt die Verbindung zwischen dem Ventilsteuerraum 5 und dem Leckageraum 4 frei. Es kann nun Pflanzenöl aus dem Ventilsteuerraum 5 austreten, wodurch der hohe Druck in diesem Raum nachlässt. Dadurch verändert sich das Verhältnis der auf den Steuerkolben 17 wirkenden Kräfte. Da der Druck auf die Druckschulter 18 unverändert bleibt, sich aber der Druck auf die obere Stirnfläche des Steuerkolbens 17 verringert, bewegt sich die Düsennadel 19 nach oben und gibt die Spritzlöcher 9 frei.
  • Zum Schließen des Injektors 1 wird die Magnetspule 13 wieder stromlos geschaltet. Die Ventilfeder 12 drückt nun den Anker 15 wieder in seine untere Stellung, in der die Ventilkugel 16 die Ablaufdrossel 2 verschließt. Über die Zulaufdrossel 3 baut sich im Ventilsteuerraum 5 sehr schnell wieder der an dem Hochdruckzulauf 8 anliegende Druck auf. Der Steuerkolben 17 und die damit verbundene Düsennadel 19 werden wieder nach unten gedrückt und verschließen die Spritzlöcher 9. Damit kann kein Pflanzenöl aus dem Kammervolumen 6 mehr in den Brennraum austreten.
  • Sobald der Injektor 1 insbesondere durch die Abwärme des Motors seine normale Betriebstemperatur erreicht hat, kann die Stromversorgung des Heizrings 20 abgeschaltet werden. In diesem Zustand befindet sich der Injektor 1 auf einem Temperaturniveau, bei dem auch nachströmendes Pflanzenöl sofort beim Eintritt in den Hochdruckzulauf 8 die Temperatur annimmt, die für einen problemlosen Betrieb notwendig ist.
  • Bei dem in Fig. 2 dargestellten Ausführungsbeispiel wird für die Beheizung des Injektors 1 vor dem Start ein Glühstift 25 verwendet. Diese Glühstifte werden üblicherweise zum Starten von Dieselmotoren verwendet, sind hoch wärmefest und erreichen eine hohe Lebensdauer. Um die Hitze des Glühstifts 25 auf den Injektor 1 zu übertragen, ist eine Gewindebuchse 23 vorgesehen, in die der Glühstift 25 eingeschraubt ist. Die Innenfläche der Gewindebuchse 23 entspricht möglichst genau der Außenfläche des Glühstifts 25, so dass zwischen beiden Bauteilen ein möglichst großflächiger intensiver Kontakt zustande kommt. Die Wärme aus dem Glühstift 25 wird auf diese Weise sehr effizient auf die Gewindebuchse 23 übertragen.
  • Direkt mit der Gewindebuchse 23 ist die Heizmuffe 22 verbunden. Die Verbindung der beiden Bauteile erfolgt vorteilhaft über eine Schweißung oder eine Hartlötung. So ist auch ein guter Wärmeübergang zwischen der Gewindebuchse 23 und der Heizmuffe 22 gewährleistet. Die Heizmuffe 22 kann entweder ebenfalls über einen Lötvorgang mit dem Injektor 1 verbunden werden oder sie ist als offene Muffe ausgebildet und wird mit Hilfe von Schrauben auf den Injektor aufgeklemmt. Auch hier ist es wiederum wichtig, einen innigen Kontakt zwischen Heizmuffe 22 und der Mantelfläche des Injektors 1 zu erreichen, damit ein guter Wärmeübergang stattfinden kann.
  • Da sich das Oberteil des Injektors 1 üblicherweise zwischen den Ventilhebeln befindet und der Abstand zwischen den Ventilhebeln relativ gering ist, muss insbesondere bei einer geschraubten Heizmuffe sichergestellt werden, dass sich die Heizmuffe 22 durch die auf sie wirkenden Vibrationen nicht dreht. Dadurch könnte die Gewindebuchse 23 mit dem Glühstift 25 in den Bereich der sich bewegenden Ventilhebel kommen. Durch dieses Verdrehen würde folglich ein hoher Schaden entstehen. An der Unterseite der Gewindebuchse 23 ist deshalb der Sicherungsstift 24 angebracht, der in eine ortsfeste Öffnung, z. B in einer Schraube im Kopf der Brennkraftmaschine, eintaucht. Ein Verdrehen der Heizmuffe 22 ist dadurch nicht mehr möglich.
  • In den Figuren wurde die Erfindung anhand eines elektro-magnetischen Injektors beschrieben. Um kürzere Schaltzeiten und eine längere Lebensdauer der Injektoren erreichen zu können, sind seit kurzem auch piezo-elektrische Injektoren auf dem Markt. Anstatt der Magnetspule 13 und des Ankers 15 wird hier ein Piezo-Stellmodul verwendet, welches aus einer Vielzahl von übereinander gestapelten Piezo-Plättchen aufgebaut ist. Auch wenn die Hohlräume in diesem Injektor etwas anders aufgebaut sind, ist auch hier eine Ventilsteuerkammer vorhanden. Der Druck in dieser Ventilsteuerkammer, der wiederum für die Bewegung der Düsennadel verantwortlich ist, wird auch hier über eine Ablaufdrossel und eine Zulaufdrossel gesteuert. Da bei diesen piezo-elektrischen Injektoren die selbe Kaltstartproblematik auftritt, kann auch hier mit der Beheizung des kritischen Bereichs Abhilfe geschaffen werden. Die erfinderische dieselmotorische Brennkraftmaschine kann daher auch mit piezo-elektrischen Injektoren betrieben werden.
  • Bezugszeichenliste:
  • 1
    Injektor
    2
    Ablaufdrossel
    3
    Zulaufdrossel
    4
    Leckageraum
    5
    Ventilsteuerraum
    6
    Kammervolumen
    7
    Rücklauf
    8
    Hochdruckzulauf
    9
    Spritzloch
    10
    Düsenfeder
    11
    Ankerfeder
    12
    Ventilfeder
    13
    Magnetspule
    14
    Anschlussbuchse
    15
    Anker
    16
    Ventilkugel
    17
    Steuerkolben
    18
    Druckschulter
    19
    Düsennadel
    20
    Heizring
    21
    Heizdraht
    22
    Heizmuffe
    23
    Gewindebuchse
    24
    Sicherungsstift
    25
    Glühstift

Claims (12)

  1. Dieselmotorisch betriebene Brennkraftmaschine mit wenigstens einer Einspritzdüse (1) zum Einspritzen von aus Pflanzenöl gewonnenem Kraftstoff mit einer Düsennadel (19) mit Steuerkolben (17), einem mit Kraftstoff gefüllten Kammervolumen (6), in das die Düsennadel (19) eintaucht, einem mit Steuerkraftstoff gefüllten Ventilsteuerraum (5), in den der Steuerkolben (17) eintaucht, einer Kraftstoffzuführung (8), die mit dem Kammervolumen (6) und über eine Zulaufdrossel (3) mit dem Ventilsteuerraum (5) verbunden ist und einem Kraftstoffrücklauf (7), der über eine Ablaufdrossel (2) und ein Ablaufventil (2, 16) mit dem Ventilsteuerraum (5) in Verbindung steht, dadurch gekennzeichnet, dass wenigstens für den mit dem Kraftstoffrücklauf (7) in Verbindung stehenden Steuerkraftstoff in dem Ventilsteuerraum (5) eine Heizung (20, 21; 22-25) vorgesehen ist, wobei der zur Einspritzung anstehende Kraftstoff in dem Kammervolumen (6) nicht beheizt wird.
  2. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass ausschließlich für den Bereich, in dem die Ablaufdrossel (2) angeordnet ist, eine Heizung (20, 21; 22-25) vorgesehen ist.
  3. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 2, dadurch gekennzeichnet, dass die Heizung (20, 21; 22-25) als Außenheizung ausgebildet ist.
  4. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 2, dadurch gekennzeichnet, dass in dem beheizten Bereich die Zulaufdrossel (3) angeordnet ist.
  5. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 3, dadurch gekennzeichnet, dass die Außenheizung (22-25) einen Glühstift (25) aufweist.
  6. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 5, dadurch gekennzeichnet, dass der Glühstift (25) über eine Muffe (22) an der Einspritzdüse (1) befestigt ist.
  7. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 6, dadurch gekennzeichnet, dass die Muffe (22) aus einem Material hoher Festigkeit und mit guter Wärmeleitfähigkeit gefertigt ist.
  8. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 3, dadurch gekennzeichnet, dass die Außenheizung (20, 21) einen elektrischen Heizring (20) aufweist.
  9. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 2, dadurch gekennzeichnet, dass durch eine ringförmige Spule in der Einspritzdüse (1) Wirbelströme erzeugt werden.
  10. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Heizung (20, 21; 22-25) vor dem Start der Brennkraftmaschine betreibbar ist.
  11. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass der Kraftstoffrücklauf über ein elektro-magnetisches Ventil (2, 13, 15, 16) gesteuert ist.
  12. Dieselmotorisch betriebene Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass der Kraftstoffrücklauf über ein piezo-elektrisches Ventil gesteuert ist.
EP09154073A 2008-03-07 2009-03-02 Dieselmotorisch betriebene Brennkraftmaschine Active EP2098719B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008013129A DE102008013129A1 (de) 2008-03-07 2008-03-07 Dieselmotorisch betriebene Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP2098719A1 true EP2098719A1 (de) 2009-09-09
EP2098719B1 EP2098719B1 (de) 2010-03-24

Family

ID=40848453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09154073A Active EP2098719B1 (de) 2008-03-07 2009-03-02 Dieselmotorisch betriebene Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP2098719B1 (de)
AT (1) ATE462078T1 (de)
DE (2) DE102008013129A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140317A3 (en) * 2011-04-12 2012-12-06 Wärtsilä Finland Oy Fuel injection system, cylinder head assembly, and arrangement for and method of regulating fuel temperature in at least one fuel injector
DE102013005508A1 (de) * 2013-04-02 2014-10-02 regineering GmbH Verfahren zum Starten einer dieselmotorisch betriebenen Brennkraftmaschine
GB2491147B (en) * 2011-05-24 2017-07-05 Gm Global Tech Operations Llc Fuel injection system comprising fuel injectors linked in series
GB2587015A (en) * 2019-09-13 2021-03-17 Delphi Tech Ip Ltd Fuel injector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528981B (en) * 2014-08-08 2021-03-31 Rklab Ag Injecting apparatus and method of using an injecting apparatus
DE102017010382A1 (de) 2017-11-09 2019-05-09 Daimler Ag Verfahren zum Betreiben einer Kraftstoffversorgungseinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870943A (en) * 1986-07-01 1989-10-03 Bradley Curtis E Thermal liquid pump
WO1999005411A1 (en) * 1997-07-23 1999-02-04 Siemens Automotive Corporation Fuel injector with internal heater
WO2005024225A1 (de) * 2003-09-01 2005-03-17 Audi Ag Kraftstoff-hochdruckeinspritzsystem als common-rail einspritzsystem
WO2007112462A1 (de) * 2006-04-03 2007-10-11 Robert Bosch Gmbh Verfahren zur vorwärmung von einspritzinjektoren von brennkraftmaschinen
US20080127940A1 (en) * 2006-12-05 2008-06-05 Craig Stephan System and method for reducing power consumption when heating a fuel injector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH552750A (de) * 1971-12-21 1974-08-15 Lacrex Brevetti Sa Vorrichtung zur kraftstoffvorwaermung, insbesondere zum starten des motors, in einem einspritzmotor.
DE2646069A1 (de) * 1976-10-13 1978-04-27 Daimler Benz Ag Kraftstoffeinspritzventil
DE20014907U1 (de) * 2000-08-30 2000-12-28 Andrae Matthias Vorrichtung zum Erwärmen von Pflanzenöl als Kraftstoff für den Betrieb von Dieselmotoren
DE10045753A1 (de) * 2000-09-15 2002-03-28 Daimler Chrysler Ag Verfahren zum Betreiben einer selbstzündenden Brennkraftmaschine
DE20102592U1 (de) * 2001-02-14 2001-06-21 Hartinger Werner Einspritzdüsenvorheizung für Pflanzenölbetrieb
DE102004055575A1 (de) * 2004-11-18 2006-05-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Leckageprüfung eines Kraftstoffeinspritzventils einer Brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870943A (en) * 1986-07-01 1989-10-03 Bradley Curtis E Thermal liquid pump
WO1999005411A1 (en) * 1997-07-23 1999-02-04 Siemens Automotive Corporation Fuel injector with internal heater
WO2005024225A1 (de) * 2003-09-01 2005-03-17 Audi Ag Kraftstoff-hochdruckeinspritzsystem als common-rail einspritzsystem
WO2007112462A1 (de) * 2006-04-03 2007-10-11 Robert Bosch Gmbh Verfahren zur vorwärmung von einspritzinjektoren von brennkraftmaschinen
US20080127940A1 (en) * 2006-12-05 2008-06-05 Craig Stephan System and method for reducing power consumption when heating a fuel injector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140317A3 (en) * 2011-04-12 2012-12-06 Wärtsilä Finland Oy Fuel injection system, cylinder head assembly, and arrangement for and method of regulating fuel temperature in at least one fuel injector
GB2491147B (en) * 2011-05-24 2017-07-05 Gm Global Tech Operations Llc Fuel injection system comprising fuel injectors linked in series
DE102013005508A1 (de) * 2013-04-02 2014-10-02 regineering GmbH Verfahren zum Starten einer dieselmotorisch betriebenen Brennkraftmaschine
GB2587015A (en) * 2019-09-13 2021-03-17 Delphi Tech Ip Ltd Fuel injector
GB2587015B (en) * 2019-09-13 2021-12-08 Delphi Tech Ip Ltd Fuel injector

Also Published As

Publication number Publication date
ATE462078T1 (de) 2010-04-15
EP2098719B1 (de) 2010-03-24
DE502009000006D1 (de) 2010-05-06
DE102008013129A1 (de) 2009-09-24

Similar Documents

Publication Publication Date Title
EP2098719B1 (de) Dieselmotorisch betriebene Brennkraftmaschine
EP1360406B1 (de) Kraftstoffsystem, verfahren zum betreiben des kraftstoff-systems, computerprogramm sowie steuer- und/oder regelgerät zur steuerung des kraftstoffsystems
DE19742180C2 (de) Einspritzsystem für eine Brennkraftmaschine und Verfahren zum Regeln eines Einspritzsystems
WO1996019659A1 (de) Verfahren zur reduzierung des kraftstoffdruckes in einer kraftstoffeinspritzeinrichtung
DE102005025925A1 (de) Mechanisch betätigtes elektronisch gesteuertes Brennstoffeinspritzsystem
DE19545162B4 (de) Brennstoffeinspritzvorrichtung mit federvorgespanntem Steuerventil
DE3800585A1 (de) Vorrichtung zum alternativen betreiben einer dieselbrennkraftmaschine mit dieseloel und rapsoel
WO2005010351A1 (de) Kraftstoffeinspritzsystem für verbrennungskraftmaschinen
EP2895720A1 (de) Kraftstoffsystem für eine brennkraftmaschine, welche mit mindestens zwei kraftstoffarten betrieben werden kann
DE10031576C2 (de) Druckgesteuerter Injektor zum Einspritzen von Kraftstoff
EP1185785B1 (de) Einspritzsystem
EP2273098B1 (de) Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem
AT512422B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE69920825T2 (de) Brennstoffeinspritzpumpe mit Speicher zur Dampfverhinderung
EP1262659B1 (de) Kraftstoffsystem für eine Brennkraftmaschine
DE102011004031B4 (de) Einspritzsystem und Verfahren zum Begrenzen eines Druckes in dem Einspritzsystem für eine Brennkraftmaschine
EP2733345A1 (de) Druckregelventil für einen Hochdruckspeicher eines Verbrennungsmotors
DE102005061362B3 (de) Drucksteuerventil und Einspritzanlage für eine Brennkraftmaschine mit einem Drucksteuerventil
DE2829810A1 (de) Kraftstoffeinspritzanlage mit druckausbruchssperre beim start
EP1727978A1 (de) Kraftstoffeinspritzanlage mit verringerten druckschwingungen im r cklaufrail
DE10358266B4 (de) Kraftstoff-Einspritzsystem für Brennkraftmaschinen
DE10315318A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
AT516756B1 (de) Direkteinspritzende selbstzündende Brennkraftmaschine
DE102014018592B4 (de) Einspritzanlage für eine direkt einspritzende Brennkraftmaschine und Verfahren zum Starten der Brennkraftmaschine
WO2005080786A1 (de) Kontaktierung der ventilnadel eines injektors für verbrennungsmotoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20090826

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502009000006

Country of ref document: DE

Date of ref document: 20100506

Kind code of ref document: P

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100625

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100705

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100724

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

26N No opposition filed

Effective date: 20101228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

BERE Be: lapsed

Owner name: GRUBER, GEORG

Effective date: 20110331

Owner name: KAISER, THOMAS

Effective date: 20110331

Owner name: DOTZER, ALOIS

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110302

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170322

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170221

Year of fee payment: 9

Ref country code: GB

Payment date: 20170322

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 462078

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180302

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 16