EP2095684B1 - Verfahren zum erzeugen, verarbeiten und auswerten eines mit der temperatur korrelierten signals und entsprechende vorrichtung - Google Patents

Verfahren zum erzeugen, verarbeiten und auswerten eines mit der temperatur korrelierten signals und entsprechende vorrichtung Download PDF

Info

Publication number
EP2095684B1
EP2095684B1 EP07856308A EP07856308A EP2095684B1 EP 2095684 B1 EP2095684 B1 EP 2095684B1 EP 07856308 A EP07856308 A EP 07856308A EP 07856308 A EP07856308 A EP 07856308A EP 2095684 B1 EP2095684 B1 EP 2095684B1
Authority
EP
European Patent Office
Prior art keywords
temperature
cooking
time
seconds
cooking appliance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07856308A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2095684A1 (de
Inventor
Wolfgang Thimm
Wolfgang Wittenhagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Priority to PL07856308T priority Critical patent/PL2095684T3/pl
Publication of EP2095684A1 publication Critical patent/EP2095684A1/de
Application granted granted Critical
Publication of EP2095684B1 publication Critical patent/EP2095684B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the invention relates to a method for generating, processing and evaluating a temperature or a correlated with the temperature of a cooking appliance or a hob signal in the operating state of the device and a corresponding device.
  • the invention is based on the object to provide alternative methods of the type mentioned above and a corresponding device, with which in particular a value detected via a temperature sensor device value can be provided as output value that can be further processed or used as well as possible.
  • the temperature of the cooking appliance or the hob, a cooking utensil heated thereon or heated in operation and / or a cooking utensil contents contained therein such as a food with a temperature sensor device is detected over time.
  • the temperature signal detected by the temperature sensor device is differentiated once by time, then inverted and exponentiated with a number or an exponent between 0.5 and 1, advantageously between 0.6 and 0.8.
  • According to the invention is closed in a basic embodiment of the invention of the initial value on the amount of cookware content or determines this. Based on this, a prediction of the boiling point can take place when the heat energy supplied is known. This can be done in various ways, preferably by measuring means in a drive.
  • the temperature signal for a time prior to reaching the cooking point preferably far, but still safe shortly before reaching the boiling point
  • the temperature signal is detected and evaluated in a further basic embodiment of the invention, for example, at usual power in the range of about 1200 W to 4000 W. for a time up to a maximum of about 300 seconds after the start of the cooking process or starting the heating.
  • the amount of water can advantageously be determined, for example, as mentioned above, too high temperatures can be avoided or certain cooking programs or automatic processes can be better controlled.
  • this information is present during the cooking process before reaching the cooking point and it can be very helpful early in the cooking process for further evaluation. A subsequent one more Evaluation is possible, for example, for a precise boiling point determination.
  • T (t ') corresponds to the signal of the temperature sensor and t (t') corresponds to the time during the measurement.
  • the temperature signal is evaluated in a time window of 50 to 200 seconds after the start of the cooking process.
  • a time window of about 60 to 120 seconds, with a heating power of more than 1500 W at an induction heating. This results in a relatively fast evaluation, ie in a relatively short time or shortly after the start of the cooking process.
  • further method steps can access and use this evaluation relatively quickly.
  • the processing according to the invention of the temperature signal detected in the relatively short time course results in a very well evaluable course in the aforementioned manner, and above all clearly before reaching the boiling point.
  • This course has characteristic properties and is well suited for further evaluation.
  • the processing according to the invention is closed or determined by the initial value on the amount of cookware content, which from it can be predicted in known heating energy, which is supplied via the electric cooking appliance, the time of reaching the cooking point.
  • the time of reaching the cooking point can be approximately predetermined and, before reaching the boiling point, the heat energy supplied can be reduced to avoid boiling of the contents of the cookware, if desired. This can be part of a selected cooking program.
  • the exponent is about 2/3, particularly advantageous exactly 2/3.
  • this exponent results in a virtually linear course and thus a particularly easily processable and evaluable output value.
  • Formal results the value 2/3 is derived from a consideration of the dynamic course of temperature signals.
  • the time course of the required heating power during the entire operation is additionally or further monitored.
  • it can additionally be detected whether an increase or decrease in the temperature coincides with the time course of the heating power or whether there is possibly an error in the temperature detection. If, for example, an increase in the temperature is detected at a time at which no heating power is introduced, this can be regarded as an error in the temperature detection. This can be displayed to an operator. In addition, this hob of the hob can be switched off.
  • the cooling of the temperature sensor, during which a lower power is supplied can be evaluated.
  • a better evaluation is achievable.
  • Such a signal can be achieved, for example, by a deliberate power reduction in the operation of an induction heater, in particular when downshifting a "flash mode" with powers greater than 2500 W, by cyclic operation of a radiant heater or by reducing the amount of gas in a gas heater.
  • the absolute value of the temperature sensor can also be included in the evaluation. This is especially true when comparing with default values.
  • the method described in this application is independent of the type of heating and can be transferred from the mentioned induction or radiant heaters to any types of heating, such as thin or thick-film heating elements or tubular heating elements.
  • the method can be used for gas burners, in which the supplied energy can be determined by the amount of gas supplied.
  • the method is also applicable to electrical appliances such as an oven or steamer.
  • Fig. 1 is a hob 11 shown as electric cooking appliance. It has a hob plate 12, below which a conventional induction heater is arranged as an induction heater 14. On the hob plate 12, a cookware 13 and a saucepan is placed above the induction heater 14 to bring its contents to a boil or to heat. On the underside of the hob plate 12, a temperature sensor S is disposed in the region above the induction heater 14. This can be a standard thick film based Pt1000. In an alternative embodiment, it may be a tungsten sensor or an optically measuring sensor, in particular a so-called thermopile with a sensitivity in a suitable wavelength range. The temperature sensor S supplies the temperature T or a corresponding temperature signal to a controller 16.
  • a temperature sensor S supplies the temperature T or a corresponding temperature signal to a controller 16.
  • the temperature sensor S is electronically interrogated, via the controller 16. This means that the temperature signal T is present in the controller 16 and can be further processed. This further processing takes place in a prescribed manner in that the temperature signal T is differentiated according to the time. This result is inverted and the result of the inversion is raised to 2/3. This results in an initial value A, or the like for further evaluation activities and / or performing a cooking program. is used. He is also advantageous because he has a reasonably linear History has. Changes can be recognized very well.
  • the controller 16 can evaluate the result.
  • the controller 16 also monitors the power supply to the induction heater 14.
  • a plausibility check with regard to the generated temperature profile or the detected temperature level at the temperature sensor S can take place by detecting the time profile of the supplied electrical energy. If, for example, no or only a very small heating power is generated by the induction heater 14 at a certain point in time, but the temperature at the temperature sensor S increases, then a fault condition must be present. This is especially true when the temperature at the temperature sensor S is so high that it can be generated only by operation of the induction heater 14 and not by, for example, setting up a very hot cookware on the cooktop plate 12 above the temperature sensor S. Here then can a warning signal can be issued or possibly the induction heater 14 or the entire Hob 11 are turned off. In this case, either there is a fault in the induction heater 14, the controller 16 or at the temperature sensor S. Each of these sources of error is relatively serious, which is why a shutdown should take place.
  • Fig. 2 shows the time course of the initial value or the heat capacity, the with an arrangement after Fig. 1 was detected at a first pot.
  • the amount of water in the pot is here varied with 0.251, 0.51, 11, 2l and 2.51.
  • the temperature for these values is detected via the temperature sensor S under the glass-ceramic plate 12.
  • the supplied power was more than 1500 W.
  • Fig. 3 shows the same process, but with another second pot 13.
  • the quantity determinations can work very well.
  • the curves then run very differently again. For even longer periods they would be similar to Fig. 2 again diverge and again be well distinguishable, but with the same aforementioned limitations or disadvantages, especially because of the late date.
  • the controller 16 knows the curves or a kind of reference curve.
  • Another possible method can be the storage of reference curves on concrete, used cooking pots by an operator.
  • the power P and the temperature T are determined at a time t1 relatively shortly after switching on.
  • ⁇ t1 is the time from the switch-on time to t1.
  • ⁇ T refers to the temperature difference from the start temperature.
  • a generalization with a power P 'changed at time t1 can be easily made.
EP07856308A 2006-12-01 2007-11-30 Verfahren zum erzeugen, verarbeiten und auswerten eines mit der temperatur korrelierten signals und entsprechende vorrichtung Not-in-force EP2095684B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07856308T PL2095684T3 (pl) 2006-12-01 2007-11-30 Sposób generacji, przetwarzania i analizy sygnału skorelowanego z temperaturą i odpowiednie urządzenie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006057885A DE102006057885A1 (de) 2006-12-01 2006-12-01 Verfahren zum Erzeugen, Verarbeiten und Auswerten eines mit der Temperatur korrelierten Signals und entsprechende Vorrichtung
PCT/EP2007/010405 WO2008064898A1 (de) 2006-12-01 2007-11-30 Verfahren zum erzeugen, verarbeiten und auswerten eines mit der temperatur korrelierten signals und entsprechende vorrichtung

Publications (2)

Publication Number Publication Date
EP2095684A1 EP2095684A1 (de) 2009-09-02
EP2095684B1 true EP2095684B1 (de) 2011-03-02

Family

ID=39295914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856308A Not-in-force EP2095684B1 (de) 2006-12-01 2007-11-30 Verfahren zum erzeugen, verarbeiten und auswerten eines mit der temperatur korrelierten signals und entsprechende vorrichtung

Country Status (9)

Country Link
US (1) US8217321B2 (ja)
EP (1) EP2095684B1 (ja)
JP (1) JP2010511274A (ja)
CN (1) CN101637062B (ja)
AT (1) ATE500709T1 (ja)
DE (2) DE102006057885A1 (ja)
ES (1) ES2361373T3 (ja)
PL (1) PL2095684T3 (ja)
WO (1) WO2008064898A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008014268A1 (de) 2008-03-04 2009-09-17 E.G.O. Elektro-Gerätebau GmbH Verfahren und Vorrichtung zur Steuerung eines Kochfeldes
ES2368643B1 (es) 2009-06-01 2012-10-10 Bsh Electrodomésticos España, S.A. Campo de cocción con un sensor de temperatura.
DE102010016110B4 (de) 2010-03-24 2014-06-12 Miele & Cie. Kg Verfahren zur Regelung der Leistungszufuhr für eine Induktions-Kochstelle und Vorrichtung zur Durchführung des Verfahrens
US8274020B2 (en) 2010-05-04 2012-09-25 Whirlpool Corporation Apparatus and method of controlling a triple heating element of a cooking appliance
WO2015095885A1 (en) * 2013-12-20 2015-06-25 Peterson Theresa Vertical tortilla cooking device
DE102017220814A1 (de) * 2017-11-22 2019-05-23 E.G.O. Elektro-Gerätebau GmbH Verfahren zur Steuerung eines Kochgeräts mit einem externen Steuergerät, Kochgerät und System
DE102017220815B4 (de) * 2017-11-22 2019-06-19 E.G.O. Elektro-Gerätebau GmbH Verfahren zur Steuerung eines Kochgeräts mit einem externen Steuergerät, Kochgerät und System
DE102018212094A1 (de) 2018-07-19 2020-01-23 E.G.O. Elektro-Gerätebau GmbH Heizeinrichtung für ein Kochfeld und Kochfeld
DE102019109409A1 (de) * 2019-04-10 2020-10-15 Miele & Cie. Kg Sicherheitsvorrichtung für ein Kochfeld und Verfahren für deren Betrieb

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465228A (en) * 1981-09-09 1984-08-14 Matsushita Electric Industrial Co., Ltd. Cooker with heating control system
DE3405731C1 (de) * 1984-02-17 1985-05-30 Kurt Wolf & Co Kg, 7547 Wildbad Anordnung zum UEberwachen des Kochvorganges in einem Kochgefaess
DE3530403A1 (de) * 1985-04-06 1986-10-16 Philips Patentverwaltung Verfahren zum automatischen regeln des ankochheizvorganges einer kochvorrichtung
AU1064195A (en) * 1993-12-06 1995-06-27 Aktiebolaget Electrolux An apparatus for controlling the operating temperature of a cooking zone
DE19540408A1 (de) 1995-10-30 1997-05-07 Herchenbach Wolfgang Kochsystem
DE19544652A1 (de) * 1995-11-30 1997-06-05 Ako Werke Gmbh & Co Leistungs-Regeleinrichtung für eine Strahlungsbeheizung
JPH09245956A (ja) * 1996-03-07 1997-09-19 Matsushita Electric Ind Co Ltd 誘導加熱調理器
US6301521B1 (en) * 1998-12-14 2001-10-09 General Electric Company Method and apparatus for boil phase determination
DE19906115C1 (de) * 1999-02-13 2000-08-31 Schott Glas Verfahren zum Erkennen des Leerkochens von Geschirr bei Kochfeldern mit einer Glaskeramik-Kochfläche und zugehörige Vorrichtung
US6118104A (en) * 1999-03-19 2000-09-12 General Electric Company Method and apparatus for boil state detection based on acoustic signal features
US6118105A (en) * 1999-07-19 2000-09-12 General Electric Company Monitoring and control system for monitoring the boil state of contents of a cooking utensil
US6462316B1 (en) * 2000-10-10 2002-10-08 General Electric Company Cooktop control and monitoring system including detecting properties of a utensil and its contents
DE10231122A1 (de) * 2002-07-05 2004-01-22 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Messen der Temperatur eines metallischen Kochgefäßes
JP3932426B2 (ja) * 2002-08-20 2007-06-20 三菱電機株式会社 加熱装置および沸騰検知方法
DE10329840A1 (de) * 2003-06-27 2005-01-20 E.G.O. Elektro-Gerätebau GmbH Verfahren und Vorrichtung zur Erkennung von Erwärmungsvorgängen
DE10356432A1 (de) * 2003-11-28 2005-06-23 E.G.O. Elektro-Gerätebau GmbH Temperatursensor auf Basis von Widerstandsmessung und Strahlungsheizkörper mit einem solchen Temperatursensor
JP4381875B2 (ja) * 2004-04-21 2009-12-09 パナソニック株式会社 誘導加熱調理器
US7573005B2 (en) * 2004-04-22 2009-08-11 Thermal Solutions, Inc. Boil detection method and computer program
JP2006134626A (ja) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd 誘導加熱調理器
JP2006310115A (ja) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 誘導加熱調理器
DE102005045875A1 (de) * 2005-09-22 2007-03-29 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Erzeugen, Verarbeiten und Auswerten eines mit der Temperatur korrelierten Signals und entsprechende Vorrichtung

Also Published As

Publication number Publication date
JP2010511274A (ja) 2010-04-08
DE502007006628D1 (de) 2011-04-14
ES2361373T3 (es) 2011-06-16
US8217321B2 (en) 2012-07-10
EP2095684A1 (de) 2009-09-02
WO2008064898A1 (de) 2008-06-05
PL2095684T3 (pl) 2011-07-29
WO2008064898A8 (de) 2008-12-11
CN101637062B (zh) 2012-06-06
US20090294433A1 (en) 2009-12-03
CN101637062A (zh) 2010-01-27
ATE500709T1 (de) 2011-03-15
DE102006057885A1 (de) 2008-06-05

Similar Documents

Publication Publication Date Title
EP2095684B1 (de) Verfahren zum erzeugen, verarbeiten und auswerten eines mit der temperatur korrelierten signals und entsprechende vorrichtung
EP1712844B1 (de) Verfahren zur temperatursteuerung und temperatursteuereinheit eines garofens
EP1688721B1 (de) Verfahren und Vorrichtung zum Bestimmen eines Wendezeitpunktes eines Gargutes
EP2705339B1 (de) Verfahren zur bestimmung des einstechwinkels eines kerntemperaturfühlers
EP3560279B1 (de) Gargerätevorrichtung
EP2183525B1 (de) Verfahren zur anzeige einer restgarzeit
DE102008012190A1 (de) Verfahren zum Führen eines Garprozesses und Gargerät hierfür
EP3482661B1 (de) Verfahren zur anpassung einer heizleistung wenigstens eines heizelementes eines hausgeräts
DE102010055983A1 (de) Verfahren zum Steuern eines Garverfahrens in einem Gargerät sowie Gargerät
EP1975517A2 (de) Verfahren und Dampfgargerät zur Regelung von Garvorgängen in einem Garraum
DE10327861A1 (de) Verfahren zur berührungslosen Steuerung eines Garvorgangs bei einem Gargerät und Gargerät
EP1666798B1 (de) Gargerät zum komplett automatischen Garen und/oder Reinigen
EP3177107B1 (de) Verfahren zum betrieb eines induktionskochfelds
EP1768461B1 (de) Verfahren zum Erzeugen, Verarbeiten und Auswerten eines mit der Temperatur korrelierten Signals und entsprechende Vorrichtung
DE102008014268A1 (de) Verfahren und Vorrichtung zur Steuerung eines Kochfeldes
DE102004023846A1 (de) Temperatursensor für ein Gargerät, Gargerät mit elektronischer Temperaturregelung und Verfahren zur Temperaturerfassung
EP1492385B1 (de) Verfahren und Vorrichtung zur Erkennung von Erwärmungsvorgängen
DE102005045872A1 (de) Verfahren zum Erzeugen, Verarbeiten und Auswerten eines mit der Temperatur korrelierten Signals und entsprechende Vorrichtung
EP0806887B1 (de) Verfahren und Vorrichtung zum Erkennen des Kochpunktes von Kochgut
EP2741061A1 (de) Verfahren und Vorrichtung zum Bestimmen einer effektiven Kerntemperatur eines Garguts
DE102004015993B4 (de) Mikrowellengerät sowie Verfahren zum Betrieb eines Mikrowellengeräts
DE102005042698B4 (de) Verfahren und Vorrichtung zur Feuchtemessung bei der Zubereitung eines Garguts in einem Gargerät
EP4147615A1 (de) Verfahren zum zubereiten einer speise nebst küchenmaschine
DE102017214753A1 (de) Haushalts-Gargerät
WO2019185320A1 (de) Bestimmen einer dicke einer kalkschicht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007006628

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007006628

Country of ref document: DE

Effective date: 20110414

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ZIMMERLI, WAGNER & PARTNER AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2361373

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110603

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110602

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110702

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007006628

Country of ref document: DE

Effective date: 20111205

BERE Be: lapsed

Owner name: E.G.O. ELEKTRO-GERATEBAU G.M.B.H.

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131121

Year of fee payment: 7

Ref country code: CH

Payment date: 20131122

Year of fee payment: 7

Ref country code: FR

Payment date: 20131119

Year of fee payment: 7

Ref country code: GB

Payment date: 20131122

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20131029

Year of fee payment: 7

Ref country code: NL

Payment date: 20131120

Year of fee payment: 7

Ref country code: TR

Payment date: 20131120

Year of fee payment: 7

Ref country code: IT

Payment date: 20131122

Year of fee payment: 7

Ref country code: ES

Payment date: 20131120

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WAGNER PATENT AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 500709

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161128

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007006628

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602