EP2092280A2 - Dispositif et procédé de mesure sans contact de la vibration d'aubes mobiles - Google Patents

Dispositif et procédé de mesure sans contact de la vibration d'aubes mobiles

Info

Publication number
EP2092280A2
EP2092280A2 EP07856094A EP07856094A EP2092280A2 EP 2092280 A2 EP2092280 A2 EP 2092280A2 EP 07856094 A EP07856094 A EP 07856094A EP 07856094 A EP07856094 A EP 07856094A EP 2092280 A2 EP2092280 A2 EP 2092280A2
Authority
EP
European Patent Office
Prior art keywords
rotor
sensors
vibration measurement
blade vibration
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07856094A
Other languages
German (de)
English (en)
Inventor
Michael Zielinski
Gerhard Ziller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP2092280A2 publication Critical patent/EP2092280A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • G01H1/006Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines of the rotor of turbo machines

Definitions

  • the invention relates to a device for contactless blade vibration measurement with sensors arranged around the circumference of a rotor formed with rotor blades, a signal detection unit and an evaluation unit, and a method for contactless blade vibration measurement.
  • BSSM contactless blade vibration measurement
  • These measurements are required because during operation on the blades, high static and alternating aerodynamic forces act, which excite the blades to vibrate.
  • it may be responsible for the pressure distribution in the gas flow due to the inlet geometry, changes in the gap between blade tips and housing caused by ovalization of the housing, or the stator grid.
  • These vibration sources are bound to the engine housing and therefore generate vibrations at multiples of the rotational speed of the rotor shaft, so-called resonant vibrations. Vibrations of a different kind are triggered by aerodynamic instabilities, including flapping vibrations and vibrations during compressor pumping.
  • blade vibration measurements are made in the development of such engines. Corresponding measurements in series engines are possible in principle as well.
  • the blade vibrations are measured by means of strain gauges and telemetry transmission, i. non-contact, monitored. However, this is associated with increased equipment costs and corresponding costs, which is why the non-contact measuring methods are preferable.
  • Non-contact blade vibration measurement systems are therefore used to monitor blade vibrations in compressors on the blade tips and to reliably predict the life of the blades, which methods can also measure, in part, the radial gap between the blade tips and the housing.
  • BSSM Non-contact blade vibration measurement systems
  • a known measuring system for contactless blade vibration measurement uses capacitive sensors in the engine housing for both vibration and radial gap measurement on the blades of axial compressors.
  • the sensors used can be used in the temperature range up to about 700 ° C, which allows use at all compressor stages.
  • the basic principle of the vibration measurement is a transit time measurement of the blade tips passing under the sensors. In this case, depending on the momentary deflection state, oscillating blades pass by the sensors sooner or later.
  • the gap information in this measurement method lies in the variation of the signal amplitude when a blade approaches a sensor and passes under it.
  • vibration frequencies, vibration amplitudes and radial gaps of all rotor blades of a rotor stage can be determined and analyzed.
  • the exact positions of the sensors on the circumference of the housing must be known, which can be done at rest by simply measuring the respective sensor position.
  • the effect of the described disturbances is especially critical in the case of resonant oscillations, because here the blades pass the sensors at a certain rotational speed with each revolution in the same deflection state, since here the oscillatory motion is bound in phase to the engine housing.
  • the measurement data obtained in this way of a complete resonance run are evaluated jointly by Resonanzkurvenfit.
  • Fit parameters are amplitude and frequency at the resonance point as well as other parameters.
  • the invention is therefore based on the object to avoid the above-mentioned technical problems of the prior art and to provide an improved apparatus and an improved method for non-contact blade vibration measurement.
  • it is an object of the present invention to eliminate the effect of rotor radial movements and housing deformations, the so-called ovalization, on the measured data in order to ensure a high amplitude resolution in the vibration analysis under all conditions.
  • the invention avoids the technical problems of the prior art and provides an improved apparatus and method for non-contact blade vibration measurement.
  • the solution according to the invention eliminates the effect of rotor radial movements and housing deformations, ie of ovalization, on the measured data, thereby ensuring a high amplitude resolution in the vibration analysis under all conditions.
  • the device according to the invention for contactless blade vibration measurement with preferably circumferential sensors arranged around the circumference of a rotor provided with blades, a signal detection unit and an evaluation unit is characterized in that the device has means for determining the rotor position and / or the housing deformation, ie the ovalization.
  • the devices for determining the rotor position and / or the housing deformation can advantageously be designed both as hardware or as software components. It is particularly advantageous if the property of the contactless blade vibration measurement sensors for gap measurement is utilized and the corresponding measurement results are used to determine the rotor position and / or the housing deformation. This represents a simple and inexpensive solution. Alternatively, additional position sensors for determining the shaft position or the sensor position on the housing could be used.
  • At least three sensors must be arranged for gap measurement distributed over the circumference of the housing.
  • rotor position and housing deformation i. for so-called ovalisation
  • at least five or more probes should be available. If it is possible to specify a major direction of ovalization, e.g. Due to the nature of the engine mount, it is also possible to work with only four probes and still calculate the size of the ovality. Alternatively, with only four probes, ovalization can be calculated assuming an overall minimum deformation of the housing.
  • the method according to the invention for contactless blade vibration measurement with sensors arranged around the circumference of a rotor provided with moving blades and with a signal detection unit and an evaluation unit has the following steps: a) Detecting the sensor signals, in particular by means of the signal detection unit
  • evaluation unit b) analyzing the sweep time and the amplitude swing; c) analysis of the radial gap; d) calculation of the rotor position and possibly the housing ovalization based on the radial gap at the respective sensor position; e) calculating the sensor positions effective for the rotor; f) Analysis of the vibrations based on the effective sensor positions.
  • the sensor signals are read, for example via a signal acquisition card, which converts the analog measurement signals into digital signals, directly into an evaluation unit and analyzed there by means of appropriate hardware and / or software with respect to the cycle time and the amplitude. Subsequently, the analysis is made with respect to the radial gaps and vibrations of the blades.
  • the position of the rotor axis and the deformation of the housing can be continuously calculated from the radial gaps that are present at each sensor position by means of the evaluation software. From these data, the sensor positions effective for the rotor can be calculated. From this, in turn, correction values for the nominal positions of the sensors can be determined. These corrections or "follow-up" of the sensors take place in the same time frame as the vibration analysis, so that the sensor positions can be tracked point by point over time or over the rotational speed, thereby enabling the disturbances caused by the movement of the rotor axis relative to the housing axis and eliminated by the housing deformation.
  • the amplitude resolution can be considerably improved in the analysis of resonant oscillations.
  • oscillation amplitudes should be indicated immediately and also at constant rotational speed, which is why a resonance curve fit known from the prior art is not possible.
  • Further measures improving the invention will be described in more detail below together with the description of a preferred exemplary embodiment of the invention with reference to FIGS. Show it:
  • Fig. 1 is a schematic representation of the Nachchtung the effective
  • Fig. 2 is a schematic diagram of the non-contact
  • FIG. 1 shows the tracking of the effective probe position in a contactless blade vibration measurement (BSSM) by means of an integrated radial gap analysis according to the present invention.
  • BSSM contactless blade vibration measurement
  • housing axis 4 located in the center of the compressor housing 2 and the rotor axis 5 are shown in FIG. Both axes 4, 5 are not aligned in the present exemplary embodiment and are therefore offset from one another.
  • the circumference of the rotor 3 equipped with blades is indicated by the circle shown in dashed lines within the housing 2.
  • the first sensor 6 serves to measure the gap d1 between the housing inner wall of the housing 2 and the blade tips of the blades of the rotor 3.
  • the second sensor 7 is used to measure the gap d2
  • the third sensor 8 is used to measure the gap d3
  • the fourth Sensor 9 is used to measure the gap d4 between the housing inner wall of the housing 2 and the blade tips of the Blades of the rotor 3. It is obvious that the gap widths d1, d2, d3, d4 are not all the same. Thus, an eccentricity can already be determined on the basis of the gap measurement alone, which in the present case is due to the staggered position of the rotor axis.
  • a circular arc segment ⁇ l2 is present on the housing periphery.
  • the first sensor 6 determines the blade tip gap d1 and the second sensor 7 determines the blade tip distance d1. From these gap measurements, the circular arc segment ⁇ l2 'of the corresponding blade tips is determined, which is shown in FIG. 1 as a dashed line.
  • the displacement of the rotor axis 5 can be calculated as the center of the circle formed by the circular arc segments ⁇ l2 ', ⁇ 23', ⁇ 34 'and ⁇ 41'.
  • the leading to the rotor axis 5 radii of the circle thus formed are shown in dashed lines in Figure 1.
  • the sensor position of the first sensor 6, of the second sensor 7, of the third sensor 8 and of the fourth sensor 9 can hereby be provided with a correction value and quasi "tracked.” If corresponding algorithms are used, even with only four sensors 6, 7, 8 , 9 the housing deformation or the ovalization are calculated.
  • FIG. 2 shows a schematic basic illustration of the contactless blade vibration measurement according to the present invention, wherein only a quarter of the rotor disk 11 equipped with rotor blades 10 is shown in FIG.
  • a rotation sensor 12 On the rotor disk 11, a rotation sensor 12 is provided, which can be used to adjust the calculated values.
  • the capacitive sensors 6, 7 are, as in 2 indicated, connected to the evaluation unit 13 via data cable and a signal detection unit.
  • the measuring signals of the sensors 6, 7 and 12 are fed via a signal detection unit (for example an analog / digital converter) 14 into the evaluation unit 13 and pass through corresponding calculation steps there.
  • the evaluation unit 13 can be embodied as special hardware or as a standard computer equipped with special software. The ability of the evaluation unit for real-time processing of the measurement data is advantageous.
  • FIG. 2 the individual method steps that take place in the evaluation unit according to the present invention are illustrated schematically as a type of flowchart.
  • processing of the sensor signals digitized by the analogue / digital converter in the evaluation unit and, in processing step b), the analysis of the cycle time and the amplitude deviation are carried out first during processing step a).
  • processing step e the calculation of the probe position effective for the rotor, i. the probe position is mathematically "tracked.” On the basis of these positions, the analysis of the blade vibrations then takes place in processing step f).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Dispositif de mesure sans contact de la vibration d'aubes mobiles, comprenant des capteurs (6, 7, 8, 9) disposés autour de la circonférence d'un rotor (3) pourvu d'aubes mobiles (10), une unité (14) de détection de signaux et une unité d'interprétation (13). Selon l'invention, des moyens sont prévus pour déterminer la position du rotor et/ou la déformation du carter. L'invention concerne en outre un procédé de mesure sans contact de la vibration d'aubes mobiles. On évite ainsi les problèmes techniques de l'art antérieur et on fournit un dispositif amélioré et un procédé amélioré de mesure sans contact de la vibration d'aubes mobiles. La solution selon l'invention élimine notamment l'influence, sur les données de mesures, des mouvements radiaux du rotor et des déformations du carter, c'est-à-dire de l'ovalisation. Elle garantit ainsi dans toutes les conditions une résolution d'amplitude élevée lors de l'analyse des vibrations.
EP07856094A 2006-12-21 2007-12-12 Dispositif et procédé de mesure sans contact de la vibration d'aubes mobiles Withdrawn EP2092280A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006060650A DE102006060650A1 (de) 2006-12-21 2006-12-21 Vorrichtung und Verfahren zur berührungslosen Schaufelschwingungsmessung
PCT/DE2007/002244 WO2008074300A2 (fr) 2006-12-21 2007-12-12 Dispositif et procédé de mesure sans contact de la vibration d'aubes mobiles

Publications (1)

Publication Number Publication Date
EP2092280A2 true EP2092280A2 (fr) 2009-08-26

Family

ID=39387339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07856094A Withdrawn EP2092280A2 (fr) 2006-12-21 2007-12-12 Dispositif et procédé de mesure sans contact de la vibration d'aubes mobiles

Country Status (8)

Country Link
US (1) US8225671B2 (fr)
EP (1) EP2092280A2 (fr)
JP (1) JP5190464B2 (fr)
CN (1) CN101563588B (fr)
CA (1) CA2673425A1 (fr)
DE (1) DE102006060650A1 (fr)
RU (1) RU2465562C2 (fr)
WO (1) WO2008074300A2 (fr)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344741B2 (en) * 2008-10-16 2013-01-01 General Electric Company Systems, methods, and apparatus for monitoring clearance in a rotary machine
DE102008057556A1 (de) * 2008-11-15 2010-05-20 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Risserkennung an Verdichterlaufschaufeln
US8606541B2 (en) * 2009-06-12 2013-12-10 Mechanical Solutions, Inc. Combined amplitude and frequency measurements for non-contacting turbomachinery blade vibration
JP5593052B2 (ja) * 2009-10-09 2014-09-17 ゼネラル・エレクトリック・カンパニイ センサクリアランスの電子的自己校正
FR2954738B1 (fr) 2009-12-24 2012-04-06 Faurecia Bloc Avant Ensemble pare-chocs pour vehicule automobile, partie d'extremite de vehicule automobile comprenant un tel ensemble et vehicule automobile
US8515711B2 (en) * 2010-10-21 2013-08-20 Siemens Energy, Inc. Diagnostic system and method for monitoring operating conditions of components of a turbine machine
FR2970291B1 (fr) * 2011-01-07 2013-02-08 Turbomeca Dispositif et procede de surveillance de rotor
CN102175135A (zh) * 2011-01-26 2011-09-07 沈阳黎明航空发动机(集团)有限责任公司 发动机转子叶尖径向间隙非接触式测量方法
EP2492452A1 (fr) * 2011-02-22 2012-08-29 Siemens Aktiengesellschaft Procédé de construction d'une turbomachine
CH705536B1 (de) * 2011-09-13 2017-09-29 Toshiba Kk Schaufelschwingungsmessvorrichtung.
CN102507205B (zh) * 2011-10-27 2014-04-16 西北工业大学 一种检测航空发动机风扇叶片颤振故障的方法
US8505364B2 (en) * 2011-11-04 2013-08-13 General Electric Company Systems and methods for use in monitoring operation of a rotating component
CN102506942A (zh) * 2011-11-24 2012-06-20 天津大学 高速旋转叶片自动同步定位方法及装置
EP2634898A1 (fr) * 2012-03-01 2013-09-04 Siemens Aktiengesellschaft Procédé destiné au fonctionnement d'une machine électrique
US20140081593A1 (en) * 2012-09-14 2014-03-20 Dustin Delany Hess Monitoring system, monitor, and method for monitoring a rotating device
RU2536774C1 (ru) * 2013-07-19 2014-12-27 Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" Система диагностирования технического состояния вала или валопровода роторной машины с использованием контактных датчиков абсолютной вибрации
US10048116B2 (en) * 2013-08-23 2018-08-14 Siemens Energy, Inc. Detection system for identifying blockages in guide vanes of a turbine engine
DE102013110632B4 (de) * 2013-09-26 2016-09-08 Schenck Rotec Gmbh Verfahren zur Messung der Aufweitung eines drehenden Rotors
CN103471703B (zh) * 2013-09-30 2014-09-24 中国人民解放军国防科学技术大学 一种高速叶片欠采样叶端振动信号的无混叠重构方法
US9140718B2 (en) * 2013-10-04 2015-09-22 Hamilton Sundstrand Corporation Speed sensor identification
FR3015671B1 (fr) * 2013-12-23 2020-03-20 Safran Helicopter Engines Ensemble pour turbomachine pour mesurer des vibrations subies par une pale en rotation
US9574965B2 (en) * 2014-06-24 2017-02-21 General Electric Company System and method of determining bearing health in a rotating machine
DE102014215162A1 (de) * 2014-08-01 2016-02-04 Siemens Aktiengesellschaft Laufschaufelüberwachungsanordnung
FR3037394B1 (fr) * 2015-06-09 2018-11-02 Safran Aircraft Engines Procede et dispositif de determination de la vibration d'aubes de rotor
CN105092017B (zh) * 2015-07-24 2019-01-08 厦门乃尔电子有限公司 测量叶片振幅的方法和系统
CN105300512B (zh) * 2015-11-12 2019-03-29 中国船舶重工集团公司第七一六研究所 一种振动源偏离质心的振动方向角的获取方法
US10030534B2 (en) * 2016-02-24 2018-07-24 General Electric Company Detectable datum markers for gas turbine engine components for measuring distortion
JP6590746B2 (ja) * 2016-03-22 2019-10-16 三菱日立パワーシステムズ株式会社 回転機械振動計測装置、回転機械振動計測方法及びプログラム
JP6594240B2 (ja) * 2016-03-23 2019-10-23 三菱日立パワーシステムズ株式会社 回転機械の振動計測装置、回転機械の振動計測方法及びプログラム
US10013752B2 (en) * 2016-11-18 2018-07-03 General Electric Company Virtual blade inspection
CN106643637B (zh) * 2017-01-12 2019-01-25 中国工程物理研究院总体工程研究所 用于振动测量的巡检式主应变测量方法
CN106885551B (zh) * 2017-02-20 2019-01-18 广西交通科学研究院有限公司 基于桥梁动应变识别单车轴距的方法
CN107063675A (zh) * 2017-06-09 2017-08-18 中国航发湖南动力机械研究所 旋转叶片振动测试精度计算方法及系统
JP6978911B2 (ja) * 2017-11-29 2021-12-08 三菱パワー株式会社 動翼監視システム、動翼監視装置、動翼監視方法、プログラム
RU2670771C9 (ru) * 2017-12-15 2018-11-13 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины
CN108871543A (zh) * 2018-08-30 2018-11-23 天津大学 恒速下叶片异步振动频率非调和傅里叶分析方法
CN109141213B (zh) * 2018-09-08 2020-04-10 天津大学 一种基于微波扫频的叶尖间隙测量方法
CN110186549A (zh) * 2019-05-31 2019-08-30 天津大学 基于叶尖定时传感器的叶片振动识别方法
CN110319922B (zh) * 2019-07-06 2023-10-17 天津大学 基于叶尖定时原理的叶片扭转振动位移测量方法
CN110645947B (zh) * 2019-10-09 2021-06-01 江苏赛德帕蒂测量技术有限公司 基于Polyworks的转子数模测量方法
CN112935935B (zh) * 2019-11-26 2022-08-16 北京福田康明斯发动机有限公司 磨损刀片定位方法
CN112816200B (zh) * 2021-01-15 2022-10-18 东方电气集团科学技术研究院有限公司 一种基于深度学习的旋转机械轴心轨迹识别方法
CN112796957B (zh) * 2021-03-26 2022-08-26 厦门理工学院 一种风机叶片的检测方法和装置以及设备

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049644A (en) * 1976-06-23 1977-09-20 Wennerstrom Arthur J Device for measuring tip deflection of rotating blades
US4413519A (en) * 1981-07-29 1983-11-08 Westinghouse Electric Corp. Turbine blade vibration detection apparatus
US4410806A (en) * 1981-09-03 1983-10-18 Brulle Robert V Control system for a vertical axis windmill
US4518917A (en) * 1982-08-31 1985-05-21 Westinghouse Electric Corp. Plural sensor apparatus for monitoring turbine blading with undesired component elimination
JPS60240803A (ja) * 1984-05-14 1985-11-29 Toshiba Corp タ−ビン羽根損傷監視装置
US4573358A (en) * 1984-10-22 1986-03-04 Westinghouse Electric Corp. Turbine blade vibration detection apparatus
US4790189A (en) * 1987-03-02 1988-12-13 Westinghouse Electric Corp. Method for eliminating sensor drift in a vibration monitoring system
US4955269A (en) * 1988-02-04 1990-09-11 Westinghouse Electric Corp. Turbine blade fatigue monitor
JP2573995B2 (ja) * 1988-05-11 1997-01-22 神鋼電機株式会社 磁気軸受用の非接触型変位検出装置
US4896537A (en) * 1988-06-02 1990-01-30 Westinghouse Electric Corp. Shrouded turbine blade vibration monitor
US4887468A (en) * 1988-06-03 1989-12-19 Westinghouse Electic Corp. Nonsynchronous turbine blade vibration monitoring system
US5152172A (en) * 1989-03-23 1992-10-06 Electric Power Research Institute Operating turbine resonant blade monitor
US5111704A (en) * 1990-08-30 1992-05-12 Westinghouse Electric Corp. Apparatus and method for simulating blade pass sensor signals
US5097711A (en) * 1990-10-29 1992-03-24 Westinghouse Electric Corp. Shrouded turbine blade vibration monitor and target therefor
US5148711A (en) * 1990-11-01 1992-09-22 Westinghouse Electric Corp. Apparatus and method for removing common mode vibration data from digital turbine blade vibration data
US5206816A (en) * 1991-01-30 1993-04-27 Westinghouse Electric Corp. System and method for monitoring synchronous blade vibration
RU2112934C1 (ru) * 1992-05-08 1998-06-10 Александр Васильевич Кузьменко Способ и устройство для определения амплитуды колебаний лопаток турбин и компрессоров
JPH06241880A (ja) * 1993-02-18 1994-09-02 Mitsubishi Kasei Corp 回転機械の軸受監視装置及び軸受監視方法
PL173952B1 (pl) * 1993-07-20 1998-05-29 Siemens Ag Urządzenie kontrolne do przedstawiania drgań wielu łopatek na obracającym się kole wirnikowym
JP3663609B2 (ja) * 1996-05-22 2005-06-22 石川島播磨重工業株式会社 ガスタービンの動翼故障診断方法および装置
RU2143103C1 (ru) * 1996-12-15 1999-12-20 Акционерное общество открытого типа "Ленинградский Металлический завод" Устройство для замера амплитуд колебаний бандажированных лопаток турбины дискретно-фазовым методом
US6785635B2 (en) * 1999-08-02 2004-08-31 Hood Technology Corporation Apparatus and method for predicting failures of spinning disks in turbo-machinery
US6594619B1 (en) * 1999-08-02 2003-07-15 Hood Technology Corporation Apparatus and method for predicting failures of spinning disks in turbo-machinery
JP2001165089A (ja) * 1999-12-06 2001-06-19 Mitsubishi Heavy Ind Ltd 非接触翼振動計測装置
US6679121B2 (en) * 2000-07-07 2004-01-20 Test Devices, Inc. Blade vibration test apparatus and method
US7023205B1 (en) * 2000-08-01 2006-04-04 General Dynamics Advanced Information Systems, Inc. Eddy current sensor capable of sensing through a conductive barrier
JP3530474B2 (ja) * 2000-09-22 2004-05-24 三菱重工業株式会社 翼振動計測方法及びこれを用いた翼振動監視システム
GB2374670B (en) * 2001-04-17 2004-11-10 Rolls Royce Plc Analysing vibration of rotating blades
RU2241216C2 (ru) * 2002-07-29 2004-11-27 НПО Промавтоматика Способ и мониторинговая система контроля состояния и аварийной защиты лопаточных аппаратов роторных двигателей
US7104120B2 (en) * 2004-03-02 2006-09-12 Caterpillar Inc. Method and system of determining life of turbocharger
JP4357359B2 (ja) * 2004-05-12 2009-11-04 株式会社東芝 回転機診断システム及びその方法
US7333913B2 (en) * 2005-06-27 2008-02-19 General Electric Company Clearance measurement system and method of operation
US7162384B1 (en) * 2005-09-21 2007-01-09 General Dynamics Advanced Information System and method for temperature compensation of eddy current sensor waveform parameters
US7323868B2 (en) * 2005-09-21 2008-01-29 General Dynamics Advanced Information Systems, Inc. System and method for temperature independent measurement of standoff distance using an eddy current sensor
US7631498B2 (en) * 2005-10-11 2009-12-15 Honeywell International Inc. Bearing health monitor
US7987725B2 (en) * 2007-09-21 2011-08-02 Siemens Energy, Inc. Method of matching sensors in a multi-probe turbine blade vibration monitor
US7775114B2 (en) * 2007-09-26 2010-08-17 Siemens Energy, Inc. Method of on-line turbine blade slope and sensor position verification
US7836772B2 (en) * 2007-09-26 2010-11-23 Siemens Energy, Inc. Method and apparatus for tracking a rotating blade tip for blade vibration monitor measurements
JP5293406B2 (ja) * 2009-05-28 2013-09-18 株式会社Ihi 回転翼の非接触翼振動計測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008074300A2 *

Also Published As

Publication number Publication date
JP5190464B2 (ja) 2013-04-24
US20100089166A1 (en) 2010-04-15
RU2009127647A (ru) 2011-01-27
CN101563588B (zh) 2011-06-08
DE102006060650A1 (de) 2008-06-26
JP2010513877A (ja) 2010-04-30
US8225671B2 (en) 2012-07-24
WO2008074300A3 (fr) 2008-08-14
RU2465562C2 (ru) 2012-10-27
CN101563588A (zh) 2009-10-21
WO2008074300A2 (fr) 2008-06-26
CA2673425A1 (fr) 2008-06-26

Similar Documents

Publication Publication Date Title
EP2092280A2 (fr) Dispositif et procédé de mesure sans contact de la vibration d'aubes mobiles
EP2294287B1 (fr) Procédé et dispositif de détection de fissures sur des aubes mobiles d'un compresseur
EP0599863B1 (fr) Procede et dispositif pour la detection et la localisation de changements sur un element de turbine
DE68907739T2 (de) Turbinenschaufel-Ermüdungsüberwachungsvorrichtung.
US9032803B2 (en) Method for detecting damage in at least one engine roller bearing
EP2259033B1 (fr) Surveillance de vibration angulaire et de torsion de systèmes dynamiques à rotor
EP1920224B1 (fr) Méthode et appareil pour surveiller le comportement dynamic d'un arbre tournant, en particulier d'une turbine de gas ou de vapeur
DE10065314A1 (de) Verfahren und Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
CN110319922B (zh) 基于叶尖定时原理的叶片扭转振动位移测量方法
DE102005016524A1 (de) Verfahren und Vorrichtung zur Erkennung von Rotorblatteis
EP3511584B1 (fr) Procédé de surveillance d'un dispositif de palier magnétique
EP2217895A2 (fr) Dispositif permettant de détecter des oscillations ou des flexions de pales de rotor d'une éolienne
EP3055661B1 (fr) Procédé de détermination de l'excentricité courante d'un rotor en rotation et procédé de diagnostic de l'excentricité d'un rotor en rotation
WO2005078403A2 (fr) Dispositif pour determiner la puissance de moyens de production
CN110646138A (zh) 一种旋转机械无键相无试重动平衡方法和分析装置
Senapaty et al. Vibration based condition monitoring of rotating machinery
EP3589843B1 (fr) Procédé et dispositif pour détecter un indicateur pour la prédiction d'une instabilité dans un compresseur, et usage correspondant
DE102009016105B4 (de) Verfahren und Vorrichtung zum Messen der Beanspruchung rotierender Wellen
EP1524433B1 (fr) Régulation de vitesse de rotation pour éolienne avec deux capteurs de proximité pour mesure de vitesse de rotation
Wang et al. Quantitative misalignment detection method for diesel engine based on the average of shaft vibration and shaft shape characteristics
DE102009016106A1 (de) Verfahren zum Messen der Beanspruchung rotierender Wellen von Turbomaschinen und Flugtriebwerken und Vorrichtung zur Durchführung des Verfahrens
DE102009009714A1 (de) Vorrichtung und Verfahren zur Drehmomentmessung an einer Turbinenwelle
DE19859664A1 (de) Verfahren und Vorrichtung zum Auswuchten eines Rotors
Jin et al. Fault diagnosis for civil aviation engine test based on the vibration signal
Tomassini et al. Blade tip clearance and blade vibration measurements using a magnetoresistive sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090603

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

17Q First examination report despatched

Effective date: 20161122

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170603