EP2080981A2 - Unbemannter Flugkörper - Google Patents

Unbemannter Flugkörper Download PDF

Info

Publication number
EP2080981A2
EP2080981A2 EP08019799A EP08019799A EP2080981A2 EP 2080981 A2 EP2080981 A2 EP 2080981A2 EP 08019799 A EP08019799 A EP 08019799A EP 08019799 A EP08019799 A EP 08019799A EP 2080981 A2 EP2080981 A2 EP 2080981A2
Authority
EP
European Patent Office
Prior art keywords
missile
mission
satellite communication
satellite
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08019799A
Other languages
English (en)
French (fr)
Other versions
EP2080981A3 (de
EP2080981B1 (de
Inventor
Michael Grabmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MBDA Deutschland GmbH
Original Assignee
LFK Lenkflugkoerpersysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LFK Lenkflugkoerpersysteme GmbH filed Critical LFK Lenkflugkoerpersysteme GmbH
Publication of EP2080981A2 publication Critical patent/EP2080981A2/de
Publication of EP2080981A3 publication Critical patent/EP2080981A3/de
Application granted granted Critical
Publication of EP2080981B1 publication Critical patent/EP2080981B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data

Definitions

  • the present invention relates to an unmanned missile according to the preamble of claim 1. It further relates to a method for data communication between an unmanned missile flying a given mission and a mission control station. In addition, the invention relates to a method for mission planning for an unmanned missile.
  • a problem with the use of unmanned missiles is that for controlling the unmanned missile a line of sight connection to the missile must exist. Routes that go beyond the horizon with respect to the mission control station for the unmanned missile are therefore difficult.
  • an unmanned missile with a predefined flight route and a predefined target as a mission plan, which is stored in a mission data memory of the unmanned missile and whose data are then available to an autonomous control system of the unmanned missile so that it can travel along the stored, in the mission plan set predetermined distance to the specified destination flies.
  • the invention is based on the object or the technical problem of designing an unmanned missile in such a way that it is also able to communicate with a mission control station when it is flying outside the line of sight to the mission control station.
  • Another object is to provide a method of data communication between an unmanned missile flying a given mission and a mission control station, which is also feasible out of sight line communication between the unmanned missile and the mission control station.
  • This unmanned missile which is, for example, a cruise missile, includes a payload-receiving fuselage, control surfaces movably attached to the fuselage by control drives, a missile propulsion device, and an on-board computer including a mission data memory and a control computer. which acts on the control surface drives with control signals.
  • This missile according to the invention is characterized by a satellite communication device, which is electrically connected to the on-board computer for data exchange, and by at least one satellite communication antenna as a transmitting and / or receiving antenna for the satellite communication device.
  • a communication link can be established during the entire flight of the missile to a corresponding communication satellite, which in turn is in communication with the mission control station.
  • a data exchange between the mission control station and the unmanned missile via the satellite or via several satellites of a satellite network can also take place when the unmanned missile for the mission control station has disappeared behind the horizon.
  • the missile is provided with buoyancy-producing wings on the fuselage. This increases the range of the missile.
  • the at least one satellite communication antenna is arranged in the forward direction of the missile in the direction of flight. It can alternatively or additionally also be arranged in the rear of the missile in the direction of flight.
  • the arrangement in the front region of the missile can be made in a particularly favorable manner in the climb of the missile, a communication link to a satellite.
  • the communication link to the satellite can be made particularly reliable in the descent of the missile.
  • a plurality of satellite communication antennas distributed over the circumference of the missile, preferably uniformly, are provided which form a group of satellite communication antennas.
  • the group of satellite communication antennas has four satellite communication antennas which are circumferentially spaced by 90 ° from each other.
  • the respective satellite communication antenna is arranged in the region of the outer skin of the missile and can be pivoted from a seated on the outer skin or recessed under the outer skin rest position in a working position in which the pivot axis in a plane perpendicular to the missile longitudinal axis, then the aerodynamic properties of the unmanned Missile impacted by the additionally provided satellite communication antenna only slightly.
  • the satellite communication antenna may remain in its rest position during the largest time of the cruise and is only swung into its working position for the period of satellite communication in which it gives the missile a greater aerodynamic drag.
  • the on-board computer of the missile preferably has an antenna control device for the satellite communication antennas, by means of which the individual satellite communication antennas can be controlled and by means of which the swivel angle of the satellite communication antennas can be controlled.
  • an antenna control device for the satellite communication antennas by means of which the individual satellite communication antennas can be controlled and by means of which the swivel angle of the satellite communication antennas can be controlled.
  • a satellite communication device electrically connected to an onboard computer of the missile builds a radio link with the satellite independently at a given time or upon reaching a predetermined flight path point or event-controlled Mission control station via a satellite.
  • bidirectional data transmission takes place between the satellite communication device of the missile and the mission control station via the communications satellites.
  • the missile prior to commencement of the establishment of the radio connection, the missile is brought by a control device of the missile in an attitude in which at least one of the satellite communication antennas of the missile can be aligned with the satellite, and then this satellite communication antenna is aligned with the satellite, wherein the missile during the duration the existence of the radio link preferably remains in this attitude.
  • This further development of the method makes it possible, for example, to put the missile in a vertical climb before the start of the construction of the radio link by means of a so-called pop-up maneuver in which one or more of the satellite communication antennas located in the front region of the missile are reliably aligned with the satellite and so a stable communication link to the satellite can be established.
  • the attitude in which the missile is brought for the duration of the radio link preferably a steep climb or a steep descent. This steep climb or steep descent is advantageously a vertical climb or a vertical dive.
  • the missile is not only placed in an appropriate attitude prior to the start of the construction of the radio link, but also from the previous flight path and selects a flight path, the alignment of a line of sight connection between at least one of the satellite communication antennas and a satellite allows.
  • the missile makes a terrain tracking low-level flight for camouflage purposes, it may be necessary and advisable to choose a flight path of greater altitude over ground for the duration of the satellite communications link to allow line-of-sight connection between the missile and a communications satellite.
  • only the antenna is used for the communication between the missile and the mission control station, which is in radio shadow of the missile with respect to potential interference signal sources. This is implemented in particular when the radio missile detects radio interference signals or when the risk of the impact of radio interference signals on the missile is to be expected.
  • the time at which the radio link is established is specified in a mission plan stored in a mission data memory of the missile's on-board computer.
  • the location where the radio connection is established may also be specified in the mission plan. In this way, it is possible to determine, even before the start of the missile, where or when the missile reports by setting up the communication link at the mission control station.
  • This point in time at which the radio connection is set up or the place where the radio connection is established preferably lies before the time or place at which an originally initiated mission can still be terminated or mission data, such as, for example, destinations to be found, can still be changed effectively.
  • the radio link between the missile and the mission control station during a mission can also be set up several times.
  • the method according to the invention is also advantageously suitable for the mission control station transmitting new or changed mission data to the missile during the existence of the radio link, for storing this new or changed mission data in the mission data memory of the missile and for continuing the mission from the on-board computer of the missile using this new or modified mission data.
  • the mission control station transmitting new or changed mission data to the missile during the existence of the radio link, for storing this new or changed mission data in the mission data memory of the missile and for continuing the mission from the on-board computer of the missile using this new or modified mission data.
  • TAN transaction number
  • the satellite communication device of the missile transmits state information of the missile to the mission control station during the existence of the radio link. This gives the flight line in the mission control station the ability to determine if the missile is functioning properly and if the missile is on the predetermined route.
  • the satellite communication device of the missile transmits image data of a camera provided in the missile, preferably as live video, to the mission control station during the existence of the radio link, preferably in the event of an overburden or approach to a destination.
  • image data of a camera provided in the missile preferably as live video
  • the mission control station can also influence the trajectory of the missile by activating control devices of the unmanned missile if the transmitted images make such a change in route appear necessary.
  • target coordinates and flight path data are set and stored in a mission data store the missile stored, with additional distance ranges are set, in which data communication between the missile and a mission control station is carried out.
  • flight positions of the missile are defined, which the missile occupies on the route sections of the planned data communication, so that there is a line of sight connection between the missile and at least one communications satellite.
  • a change in the distance required for the period of data communication during mission planning can also be entered into the mission data memory of the missile.
  • time slots can also be defined during mission planning, at which time the data communication between the missile and the mission control station takes place.
  • Fig. 1 shows an unmanned missile 1 in a schematic representation.
  • the missile 1 comprises a payload-receiving fuselage 10, wings 12 mounted on the fuselage 10, two drive devices provided laterally on the fuselage 10, of which only the left-hand drive device 14 is shown, and control surfaces 16 which can be moved in a known manner by means of control-surface drives (not shown) attached to the hull 10.
  • the missile 1 is further provided with an avionics 2, which is also shown only schematically and is located inside the hull 10.
  • the avionics 2 contains an on-board computer 20 which, in addition to effective connections to conventional navigation devices, also has a mission data memory 22 and a control computer 24.
  • the control computer 24 is supplied by the mission data memory 22 with data of a predetermined flight path and further receives navigation data from conventionally provided navigation devices, such as a satellite navigation system and / or an inertial navigation system. Based on these data, the control computer 24 generates control signals, which are sent to the control surface drives, whereupon they adjust the control surfaces 16 for controlling the missile 1.
  • a satellite communication device 26 is provided in the avionics 2, which is electrically connected to the on-board computer 20 for data exchange.
  • a first group 30 of satellite communication antennas 32, 34, 36, 38 is provided on the outer circumference of the fuselage 1 of the missile 1.
  • the satellite communication antennas 32, 34, 36 and the invisible satellite communication antenna 38 provided on the right side of the missile 1 are circumferentially spaced from each other by 90 ° with respect to the fuselage 10, so that a first satellite communication antenna 32 is provided on top of the fuselage 10, a second satellite communication antenna 34 on the underside of the fuselage and a respective satellite communication antenna 36, 38 on the left and right side of the fuselage.
  • the individual satellite communication antennas 32, 34, 36, 38 are each pivotable away from the fuselage 10 into a working position about a pivot axis 31, 33, 35, 37 located toward the front of the missile 1.
  • Fig. 1 By way of example, the upper front satellite communication antenna 32 pivoted to a working position is shown.
  • the upper front satellite communication antenna 32 is at a swivel angle pivoted so far away from the fuselage 10 of the missile 1 that it establishes a line-of-sight connection to an in-orbit communications satellite 4 for the purpose of data transmission, where the line-of-sight 3 is at right angles to the antenna surface or coincides with its focal axis at a concave antenna surface.
  • rear satellite communication antennas 42, 44, 46, 48 are provided in the rear area 1 "of the fuselage 10, forming a second, rear group 40 of satellite communication antennas, the pivot axes 41, 43, 45, 47 of these rear satellite communication antennas 42, 44, 46, 48 are located on the side facing the tail of the missile 1 side of the respective satellite communication antenna, so that the individual antennas by means of a respective actuator, of which only the actuator 49 of the lower antenna 44 is shown here, from the fuselage by a pivot angle are pivotable away.
  • the satellite communication antennas 32, 34, 36, 38; 42, 44, 46, 48 are in Fig. 1 shown so that they rest in their non-pivoted rest position on the outer skin of the fuselage 10 of the missile 1.
  • this is only a schematic representation.
  • the satellite communication antennas will be in their rest position either in a respective associated recess of the fuselage 10 or under the outer skin of the Hull 10 may be arranged and swing together with a corresponding, associated hull flap to the outside in the working position.
  • pivot axes 31, 33, 35, 37; 41, 43, 45, 47 are aligned so that the respective axis lies in a plane perpendicular to the missile longitudinal axis X.
  • the on-board computer 20 is provided with an antenna control device 28, are passed from the corresponding control commands to the respective satellite communication antenna associated actuator 39, 49.
  • Fig. 2 schematically shows the flight path 100 of an unmanned missile on the way from a (not shown) starting place to one of several targets 102, 104, 106, 108.
  • a mission planning method is performed, in which the coordinates of the targets 102 , 104, 106, 108 as well as the route data of the flight path 100.
  • These specified data are stored in the mission data memory of the missile prior to the launch of the missile.
  • geographic terrain data of a corridor 110 is stored on both sides of the flight path 100 as well as the environment 112 of the targets 102, 104, 106, 108. With this given data and the on-board navigation means, the missile is able to navigate autonomously on its flight path between the starting point and the destination.
  • route areas are also defined in which data communication takes place between the flying missile and the mission control station. Upon reaching these path ranges, the missile will assume an attitude already established in mission planning that will enable it to establish a line of sight connection to a communications satellite, thus providing data communication between the missile and the mission control station can take place over the communications satellites.
  • the beginning of such a route range is already defined as checkpoint 114 during mission planning and stored in the mission data memory. This checkpoint 114 should be in front of a target decision point 116 at which the cruise path 101 from the start location to the destination flight paths or target trajectories 103, 105, 107, 109 separates to the respective targets 102, 104, 106, 108.
  • a target approach point 113, 115, 117, 119 can still be defined on the respective target trajectory 103, 105, 107, 109, to which the missile once again establishes data communication with the mission control station and transmits images of the target approach to the mission control station, be taken by a camera 18 in the bow of the missile 1.
  • the missile Shortly before reaching the control point 114 or one of the target approaching points 113, 115, 117, 119, the missile is brought by its control device in an attitude in which at least one of the satellite communication antennas 32, 34, 36, 38; 42, 44, 46, 48 can be aligned on the communication satellites 4.
  • it may be necessary, for example, to control the missile from a terrain low-altitude flight into a higher trajectory over ground, in which there is a line-of-sight connection to the communications satellite 4.
  • the missile 1 may also be placed in a steep climb or in a steep descent to obtain a line of sight connection from at least one of the satellite communication antennas to the communications satellite.
  • Satellite communication antennas 32, 34, 36, 38 used in the front of the fuselage 10
  • at least one of the satellite communication antennas 42, 44, 46, 48 of the rear portion of the fuselage 10 is used.
  • the communication link is established via the communications satellites 4 to the mission control station;
  • the satellite communication device 26 of the missile 1 is thus the calling part in setting up the communication link.
  • the data exchange takes place between the on-board computer 20 of the missile 1 and the mission control station, which is preferably carried out bidirectionally. If necessary, the image data transmission from the missile 1 to the mission control station takes place in the approach to the destination until it reaches the destination.
  • the missile 1 If the data transmission begun after reaching the control point 114 has ended during cruise flight, then the missile 1 returns to the originally planned flight path, for example, an off-road low-altitude flight, and continues its cruising flight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Radio Relay Systems (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Ein unbemannter Flugkörper, insbesondere Marschflugkörper, mit einem eine Nutzlast aufnehmenden Rumpf (10); Steuerflächen (16), die mittels Steuerflächenantrieben bewegbar am Rumpf (10) angebracht sind; einer Antriebseinrichtung (14) für den Flugkörper (1) und einem Bordcomputer (20), der einen Missionsdatenspeicher (22) und einen Steuerungsrechner (24) aufweist, welcher die Steuerflächenantriebe mit Steuersignalen beaufschlagt; zeichnet sich aus durch eine Satellitenkommunikationseinrichtung (26), die mit dem Bordcomputer (20) zum Datenaustausch elektrisch verbunden ist, und zumindest einer Satellitenkommunikationsantenne (32, 34, 36, 38; 42, 44, 46, 48) als Sende- und/oder Empfangsantenne für die Satellitenkommunikationseinrichtung (26).

Description

    TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft einen unbemannten Flugkörper nach dem Oberbegriff des Patentanspruchs 1. Sie betrifft ferner ein Verfahren zur Datenkommunikation zwischen einem eine vorgegebene Mission fliegenden unbemannten Flugkörper und einer Missionskontrollstation. Außerdem betrifft die Erfindung ein Verfahren zur Missionsplanung für einen unbemannten Flugkörper.
  • STAND DER TECHNIK
  • Eine Problematik beim Einsatz von unbemannten Flugkörpern besteht darin, dass zur Steuerung des unbemannten Flugkörpers eine Sichtlinienverbindung zum Flugkörper bestehen muss. Flugstrecken, die bezüglich der Missionskontrollstation für den unbemannten Flugkörper über den Horizont hinaus gehen, sind daher schwierig.
  • Es wurde bereits versucht, die Sichtlinienverbindung von der Missionskontrollstation zum Flugkörper durch Einsatz von fliegenden Relaisstationen zu verlängern. So ist es beispielsweise aus der US 5,186,414 A bekannt, eine Funk-Relaisstation an einem Heißluftballon oder, auf See, an einer Boje anzuordnen und hiermit die Sichtlinienverbindung von der Missionskontrollstation zum fliegenden Flugkörper über den Horizont hinaus zu verlängern. Derartige Relaisstationen sind jedoch nur dann einsetzbar, wenn sie außerhalb des Einflussbereichs feindlicher Streitkräfte sind, da sie ansonsten leicht außer Kraft gesetzt werden können. Auch sind Bojen oder Heißluftballons sehr wetterabhängig, so dass sie nur bei günstigen Witterungsbedingungen eingesetzt werden können.
  • Es ist daher üblich, einem unbemannten Flugkörper bereits vor dessen Start eine vorgegebene Flugroute und ein vorgegebenes Ziel als Missionsplan mitzugeben, der in einem Missionsdatenspeicher des unbemannten Flugkörpers gespeichert wird und dessen Daten dann einem autonomen Steuerungssystem des unbemannten Flugkörpers zu Verfügung stehen, damit dieser entlang der gespeicherten, im Missionsplan festgelegten vorgegebenen Wegstrecke zum vorgegebenen Ziel fliegt.
  • Häufig ist es jedoch wünschenswert, den Flugweg und auch das geplante Ziel des unbemannten Flugkörpers nach dessen Start auch dann noch beeinflussen und gegebenenfalls ändern zu können, wenn dieser außerhalb der Sichtverbindung zur Missionskontrollstation fliegt. Auch kann es erwünscht sein, Daten über den Flugzustand des unbemannten Flugkörpers oder auch Bilddaten von einer im unbemannten Flugkörper vorgesehenen Kamera zu empfangen.
  • DARSTELLUNG DER ERFINDUNG
  • Der Erfindung liegt die Aufgabe beziehungsweise das technische Problem zugrunde, einen unbemannten Flugkörper so auszugestalten, dass er auch dann in der Lage ist, mit einer Missionskontrollstation zu kommunizieren, wenn er außerhalb der Sichtverbindung zur Missionskontrollstation fliegt.
  • Eine weitere Aufgabe ist es, ein Verfahren zur Datenkommunikation zwischen einem eine vorgegebene Mission fliegenden unbemannten Flugkörper und einer Missionskontrollstation zu schaffen, welches auch außerhalb einer Sichtlinienverbindung zwischen dem unbemannten Flugkörper und der Missionskontrollstation durchführbar ist.
  • Schließlich ist es eine dritte Aufgabe der vorliegenden Erfindung, ein Verfahren zur Missionsplanung für einen unbemannten Flugkörper anzugeben, welches eine Datenkommunikation zwischen der Missionskontrollstation und dem unbemannten Flugkörper auch dann gestattet, wenn sich dieser außerhalb der Sichtverbindung zur Missionskontrollstation befindet.
  • Die den Flugkörper betreffende erste Aufgabe wird gelöst durch einen unbemannten Flugkörper mit den Merkmalen des Patentanspruchs 1.
  • Dieser unbemannte Flugkörper, bei dem es sich beispielsweise um einen Marschflugkörper handelt, weist einen eine Nutzlast aufnehmenden Rumpf, Steuerflächen, die mittels Steuerflächenantrieben bewegbar am Rumpf angebracht sind, eine Antriebseinrichtung für den Flugkörper und einen Bordcomputer auf, der einen Missionsdatenspeicher und einen Steuerungsrechner beinhaltet, welcher die Steuerflächenantriebe mit Steuersignalen beaufschlagt. Dieser erfindungsgemäße Flugkörper zeichnet sich aus durch eine Satellitenkommunikationseinrichtung, die mit dem Bordcomputer zum Datenaustausch elektrisch verbunden ist, und durch zumindest eine Satellitenkommunikationsantenne als Sende- und/oder Empfangsantenne für die Satellitenkommunikationseinrichtung. Mittels der Satellitenkommunikationsantenne und der Satellitenkommunikationseinrichtung kann während des gesamten Flugs des Flugkörpers eine Kommunikationsverbindung zu einem entsprechenden Kommunikationssatelliten hergestellt werden, der wiederum in Kommunikationsverbindung zur Missionskontrollstation steht. So kann ein Datenaustausch zwischen der Missionskontrollstation und dem unbemannten Flugkörper über den Satelliten oder über mehrere Satelliten eines Satellitennetzwerks auch dann erfolgen, wenn der unbemannte Flugkörper für die Missionskontrollstation hinter dem Horizont verschwunden ist.
  • Vorzugsweise ist der Flugkörper mit Auftrieb erzeugenden Tragflächen am Rumpf versehen. Hierdurch wird die Reichweite des Flugkörpers erhöht.
  • Vorzugsweise ist die zumindest eine Satellitenkommunikationsantenne im in Flugrichtung vorderen Bereich des Flugkörpers angeordnet. Sie kann alternativ oder zusätzlich auch im in Flugrichtung hinteren Bereich des Flugkörpers angeordnet sein. Durch die Anordnung im vorderen Bereich des Flugkörpers kann auf besonders günstige Weise im Steigflug des Flugkörpers eine Kommunikationsverbindung zu einem Satelliten hergestellt werden. Bei der Anordnung im hinteren Bereich des Flugkörpers lässt sich die Kommunikationsverbindung zum Satelliten besonders zuverlässig im Sinkflug des Flugkörpers herstellen. In einer anderen bevorzugten Ausführungsform sind alternativ oder zusätzlich mehrere über den Umfang des Flugkörpers, vorzugsweise gleichmäßig, verteilte Satellitenkommunikationsantennen vorgesehen, die eine Gruppe von Satellitenkommunikationsantennen bilden. Diese Anordnung der Satellitenkommunikationsantennen entlang des Umfangs des Flugkörpers gewährleistet, unabhängig von der Fluglage des Flugkörpers um seine Rollachse, dass ständig eine Satellitenkommunikationsantenne in den Weltraum, hin zu einem Satelliten, weist. Dabei ist es von Vorteil, wenn eine erste Gruppe von Satellitenkommunikationsantennen im vorderen Bereich des Flugkörpers und eine zweite Gruppe von Satellitenkommunikationsantennen in einem hinteren Bereich des Flugkörpers vorgesehen ist. Diese Anordnung gestattet es, dass unabhängig von der Fluglage des Flugkörpers um seine Rollachse, Nickachse und Gierachse, stets eine optimale Kommunikationsverbindung zu einem Satelliten aufgebaut werden kann.
  • Es ist von Vorteil, wenn die Gruppe von Satellitenkommunikationsantennen vier Satellitenkommunikationsantennen aufweist, die in Umfangsrichtung jeweils um 90° voneinander beabstandet sind.
  • Wenn die jeweilige Satellitenkommunikationsantenne im Bereich der Außenhaut des Flugkörpers angeordnet ist und aus einer an der Außenhaut anliegenden oder unter der Außenhaut versenkten Ruheposition in eine Arbeitsposition verschwenkbar ist, bei welcher die Schwenkachse in einer Ebene rechtwinklig zur Flugkörperlängsachse liegt, dann werden die aerodynamischen Eigenschaften des unbemannten Flugkörpers durch die zusätzlich vorgesehene Satellitenkommunikationsantenne nur geringfügig beeinträchtigt. Bei dieser Ausführungsform kann die Satellitenkommunikationsantenne während der größten Zeit des Marschflugs in ihrer Ruheposition verbleiben und wird nur für den Zeitraum der Satellitenkommunikation in ihre Arbeitsposition ausgeschwenkt, in welcher sie dem Flugkörper einen größeren aerodynamischen Widerstand verleiht.
  • Vorzugsweise weist der Bordcomputer des Flugkörpers eine Antennensteuerungseinrichtung für die Satellitenkommunikationsantennen auf, mittels der die einzelnen Satellitenkommunikationsantennen ansteuerbar sind und mittels der der Schwenkwinkel der Satellitenkommunikationsantennen steuerbar ist. Auf diese Weise können eine oder mehrere der Satellitenkommunikationsantennen des unbemannten Flugkörpers computergesteuert und bedarfsgesteuert in eine optimale Position ausgeschwenkt werden, in welcher unter Berücksichtigung der Flugposition und Fluglage des Flugkörpers eine bestmögliche Kommunikationsverbindung zum Satelliten errichtet werden kann.
  • Die das Verfahren zur Datenkommunikation betreffende Aufgabe wird gemäß den Merkmalen des Patentanspruchs 7 gelöst. Bei diesem erfindungsgemäßen Verfahren zur Datenkommunikation zwischen einem eine vorgegebene Mission fliegenden unbemannten Flugkörper und einer Missionskontrollstation baut eine mit einem Bordcomputer des Flugkörpers zum Signal- und Datenaustausch elektrisch verbundene Satellitenkommunikationseinrichtung zu einem vorgegebenen Zeitpunkt oder bei Erreichen eines vorgegebenen Flugwegpunktes oder ereignisgesteuert, selbständig eine Funkverbindung mit der Missionskontrollstation über einen Satelliten auf. Nach dem Aufbau der Funkverbindung erfolgt eine bidirektionale Datenübertragung zwischen der Satellitenkommunikationseinrichtung des Flugkörpers und der Missionskontrollstation über den Kommunikationssatelliten. Die Tatsache, dass der Aufbau der Funkverbindung vom Bordcomputer des Flugkörpers aus erfolgt, verringert deutlich das Risiko, dass Unbefugte eine Funkverbindung zum Flugkörper von außen herstellen können und damit möglicherweise die Herrschaft über den Flugkörper erringen können.
  • Vorteilhafterweise wird der Flugkörper vor Beginn des Aufbaus der Funkverbindung von einer Steuerungseinrichtung des Flugkörpers in eine Fluglage gebracht, in der zumindest eine der Satellitenkommunikationsantennen des Flugkörpers auf den Satelliten ausrichtbar ist, und anschließend wird diese Satellitenkommunikationsantenne auf den Satelliten ausgerichtet, wobei der Flugkörper während der Dauer des Bestehens der Funkverbindung bevorzugt in dieser Fluglage verbleibt. Diese Weiterbildung des Verfahrens ermöglicht es beispielsweise, den Flugkörper vor Beginn des Aufbaus der Funkverbindung durch ein so genanntes Pop-up-Manöver in einen vertikalen Steigflug zu versetzen, bei welchem eine oder mehrere der im vorderen Bereich des Flugkörpers gelegenen Satellitenkommunikationsantennen zuverlässig zum Satelliten ausgerichtet werden und so eine stabile Kommunikationsverbindung zum Satelliten aufgebaut werden kann. Dabei ist die Fluglage, in die der Flugkörper für die Dauer der Funkverbindung gebracht wird, vorzugsweise ein steiler Steigflug oder ein steiler Sinkflug. Dieser steile Steigflug oder steile Sinkflug ist vorteilhafterweise ein senkrechter Steigflug oder ein senkrechter Sturzflug.
  • Außerdem kann es von Vorteil sein, dass der Flugkörper vor Beginn des Aufbaus der Funkverbindung nicht nur in eine geeignete Fluglage gebracht wird, sondern auch aus dem bisherigen Flugweg ausschert und einen Flugweg wählt, der die Ausrichtung einer Sichtlinienverbindung zwischen zumindest einer der Satellitenkommunikationsantennen und einem Satelliten ermöglicht. Wenn beispielsweise der Flugkörper zu Tarnungszwecken einen Geländerverfolgungs-Tiefflug durchführt, kann es erforderlich und geboten sein, für die Dauer der Satellitenkommunikationsverbindung einen Flugweg mit größerer Höhe über Grund zu wählen, um eine Sichtlinienverbindung zwischen dem Flugkörper und einem Kommunikationssatelliten zu ermöglichen.
  • In einer besonders bevorzugten Ausführungsform wird für die Kommunikation zwischen dem Flugkörper und der Missionskontrollstation nur jene Antenne benutzt, die bezüglich potentieller Störsignalquellen im Funkschatten des Flugkörpers liegt. Dies wird insbesondere dann umgesetzt, wenn vom Flugkörper Funk-Störsignale erfasst werden oder wenn mit dem Risiko des Auftreffens von Funk-Störsignalen auf den Flugkörper zu rechnen ist.
  • Vorzugsweise ist der Zeitpunkt zu dem die Funkverbindung aufgebaut wird, in einem Missionsplan vorgegeben, der in einem Missionsdatenspeicher des Bordcomputers des Flugkörpers gespeichert ist. Alternativ kann auch der Ort, an dem die Funkverbindung aufgebaut wird, im Missionsplan vorgegeben sein. Auf diese Weise kann bereits vor dem Start des Flugkörpers festgelegt werden, wo beziehungsweise wann sich der Flugkörper durch den Aufbau der Kommunikationsverbindung bei der Missionskontrollstation meldet. Dieser Zeitpunkt, zu dem die Funkverbindung aufgebaut wird beziehungsweise der Ort, an dem die Funkverbindung aufgebaut wird, liegt vorzugsweise vor dem Zeitpunkt beziehungsweise vor dem Ort, zu beziehungsweise an welchem eine ursprünglich eingeleitete Mission noch abgebrochen werden kann oder Missionsdaten, wie beispielsweise anzufliegende Ziele, noch wirksam geändert werden können.
  • Dazu kann die Funkverbindung zwischen dem Flugkörper und der Missionskontrollstation während einer Mission auch mehrmals aufgebaut werden.
  • Das erfindungsgemäße Verfahren eignet sich in vorteilhafter Weise auch dazu, dass die Missionskontrollstation während des Bestehens der Funkverbindung neue oder geänderte Missionsdaten an den Flugkörper überträgt, dass diese neuen oder geänderten Missionsdaten im Missionsdatenspeicher des Flugkörpers gespeichert werden und dass die Weiterführung der Mission vom Bordcomputer des Flugkörpers unter Verwendung dieser neuen oder geänderten Missionsdaten erfolgt. So können beispielsweise während der Flugdauer des unbemannten Flugkörpers gewonnene Aufklärungserkenntnisse noch in die bereits laufende Mission einfließen. Um zu verhindern, dass unbefugte Dritte während der Dauer der Funkverbindung unbefugt geänderte Missionsdaten an den Flugkörper übertragen, werden diese Daten nicht nur verschlüsselt übertragen, sondern es bedarf zusätzlich noch der Übertragung eines besonderen Zugriffscodes, beispielsweise einer Transaktionsnummer (TAN), die von der Missionskontrollstation an den Flugkörper gesandt wird und mit einer vor Beginn der Mission im Bordrechner des Flugkörpers gespeicherten Transaktionsnummer verglichen wird, wobei eine Transaktionsnummer nur einmal verwendet werden kann.
  • Vorteilhaft ist auch, wenn die Satellitenkommunikationseinrichtung des Flugkörpers während des Bestehens der Funkverbindung Zustandsinformationen des Flugkörpers an die Missionskontrollstation überträgt. Dadurch wird der Flugleitung in der Missionskontrollstation die Möglichkeit eingeräumt, festzustellen, ob der Flugkörper einwandfrei funktioniert und ob sich der Flugkörper auf der vorgegebenen Route befindet.
  • Besonders von Vorteil ist es auch, wenn die Satellitenkommunikationseinrichtung des Flugkörpers während des Bestehens der Funkverbindung, vorzugsweise bei einem Geländeüberflug oder im Anflug auf ein Ziel, Bilddaten einer im Flugkörper vorgesehenen Kamera, vorzugsweise als Live-Video, an die Missionskontrollstation überträgt. Auf diese Weise kann von der Missionskontrollstation nicht nur das Flugverhalten des unbemannten Flugkörpers überprüft werden, sondern es können auch Erkenntnisse über das überflogene Gebiet beziehungsweise das angeflogene Ziel im Bild gewonnen werden. Günstigenfalls kann von der Missionskontrollstation aus auch durch Aktivierung von Steuerungseinrichtungen des unbemannten Flugkörpers Einfluss auf die Flugbahn des Flugkörpers genommen werden, wenn die übertragenen Bilder eine derartige Routenänderung geboten erscheinen lassen.
  • Die das Verfahren zur Missionsplanung betreffende Aufgabe wird durch die Merkmale des Patentanspruchs 15 gelöst. Bei diesem Verfahren werden Zielkoordinaten und Flugwegdaten festgelegt und in einem Missionsdatenspeicher des Flugkörpers abgespeichert, wobei zusätzlich Wegstreckenbereiche festgelegt werden, in denen Datenkommunikation zwischen dem Flugkörper und einer Missionskontrollstation erfolgt. Weiterhin werden Fluglagen des Flugkörpers definiert, die der Flugkörper auf den Wegstreckenbereichen der geplanten Datenkommunikation einnimmt, so dass zwischen dem Flugkörper und zumindest einem Kommunikationssatelliten eine Sichtlinienverbindung besteht. Zusätzlich zur Definition von Fluglagen des Flugkörpers zum Aufbau der geplanten Datenkommunikation kann auch eine für den Zeitraum der Datenkommunikation erforderliche Änderung der Wegstrecke während der Missionsplanung in den Missionsdatenspeicher des Flugkörpers eingegeben werden. Alternativ zur Festlegung von Wegstreckenbereichen können bei der Missionsplanung auch Zeitfenster definiert werden, zu denen die Datenkommunikation zwischen dem Flugkörper und der Missionskontrollstation erfolgt.
  • Bevorzugte Ausführungsbeispiele der Erfindung mit zusätzlichen Ausgestaltungsdetails und weiteren Vorteilen sind nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben und erläutert.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Es zeigt:
  • Fig. 1
    einen unbemannten Flugkörper gemäß der vorliegenden Erfindung; und
    Fig. 2
    ein schematisches Beispiel eines Flugwegs, wie er mit dem erfindungsgemäßen Verfahren zur Missionsplanung geplant werden kann, um das erfindungsgemäße Verfahren zur Datenkommunikation durchzuführen.
    DARSTELLUNG VON BEVORZUGTEN AUSFÜHRUNGSBEISPIELEN
  • Fig. 1 zeigt einen unbemannten Flugkörper 1 in schematischer Darstellung. Der Flugkörper 1 umfasst einen eine Nutzlast aufnehmenden Rumpf 10, auf dem Rumpf 10 angebrachte Tragflächen 12, zwei seitlich am Rumpf 10 vorgesehene Antriebseinrichtungen, von denen nur die linke Antriebseinrichtung 14 gezeigt ist, sowie Steuerflächen 16, die mittels nicht gezeigter Steuerflächenantriebe in bekannter Weise bewegbar am Rumpf 10 angebracht sind.
  • Der Flugkörper 1 ist weiterhin mit einer Avionik 2 versehen, die ebenfalls nur schematisch dargestellt ist und sich im Inneren des Rumpfs 10 befindet. Die Avionik 2 enthält einen Bordcomputer 20, der neben wirksamen Verbindungen zu herkömmlichen Navigationseinrichtungen auch einen Missionsdatenspeicher 22 sowie einen Steuerungsrechner 24 aufweist. Der Steuerungsrechner 24 wird vom Missionsdatenspeicher 22 mit Daten eines vorgegebenen Flugwegs versorgt und erhält weiterhin Navigationsdaten aus in herkömmlicher Weise vorgesehenen Navigationseinrichtungen, wie einem Satellitennavigationssystem und/oder einem Trägheitsnavigationssystem. Aufgrund dieser Daten erzeugt der Steuerungsrechner 24 Steuersignale, die an die Steuerflächenantriebe geleitet werden, woraufhin diese die Steuerflächen 16 zur Steuerung des Flugkörpers 1 verstellen.
  • Weiterhin ist in der Avionik 2 eine Satellitenkommunikationseinrichtung 26 vorgesehen, die mit dem Bordcomputer 20 zum Datenaustausch elektrisch verbunden ist. In dem in Flugrichtung F vorderen Bereich 1' des Flugkörpers 1 ist eine erste Gruppe 30 von Satellitenkommunikationsantennen 32, 34, 36, 38 am Außenumfang des Rumpfs 10 des Flugkörpers 1 vorgesehen. Die Satellitenkommunikationsantennen 32, 34, 36 und die auf der rechten Seite des Flugkörpers 1 vorgesehene, nicht sichtbare Satellitenkommunikationsantenne 38 sind in Umfangsrichtung bezüglich des Rumpfs 10 jeweils um 90° voneinander beabstandet, sodass eine erste Satellitenkommunikationsantenne 32 auf der Oberseite des Rumpfs 10 vorgesehen ist, eine zweite Satellitenkommunikationsantenne 34 auf der Unterseite des Rumpfs und jeweils eine Satellitenkommunikationsantenne 36, 38 auf der linken beziehungsweise rechten Seite des Rumpfs. Die einzelnen Satellitenkommunikationsantennen 32, 34, 36, 38 sind jeweils um eine zur Vorderseite des Flugkörpers 1 hin gelegene Schwenkachse 31, 33, 35, 37 vom Rumpf 10 weg in eine Arbeitsposition verschwenkbar. In Fig. 1 ist beispielhaft die in eine Arbeitsposition geschwenkte obere vordere Satellitenkommunikationsantenne 32 gezeigt. Die Verschwenkung der einzelnen Satellitenkommunikationsantennen 32, 34, 36, 38 erfolgt mittels eines jeweiligen Stellantriebs, von denen in Fig. 1 nur der Stellantrieb 39 der oberen Satellitenkommunikationsantenne 32 dargestellt ist.
  • Die obere vordere Satellitenkommunikationsantenne 32 ist um einen Schwenkwinkel
    Figure imgb0001
    so weit vom Rumpf 10 des Flugkörpers 1 weg geschwenkt, dass sie eine Sichtlinienverbindung zu einem im Orbit befindlichen Kommunikationssatelliten 4 zum Zweck der Datenübertragung herstellt, bei der die Sichtlinie 3 im rechten Winkel zur Antennenoberfläche steht oder bei einer konkaven Antennenoberfläche mit deren Brennpunktachse zusammenfällt.
  • Auch im hinteren Bereich 1" des Rumpfs 10 sind in gleicher Weise 4 hintere Satellitenkommunikationsantennen 42, 44, 46, 48 vorgesehen, die eine zweite, hintere Gruppe 40 von Satellitenkommunikationsantennen bilden. Die Schwenkachsen 41, 43, 45, 47 dieser hinteren Satellitenkommunikationsantennen 42, 44, 46, 48 sind an der zum Heck des Flugkörpers 1 weisenden Seite der jeweiligen Satellitenkommunikationsantenne gelegen, so dass die einzelnen Antennen mittels eines jeweiligen Stellantriebs, von denen hier nur der Stellantrieb 49 der unteren Antenne 44 gezeigt ist, vom Rumpf um einen Schwenkwinkel
    Figure imgb0002
    weg schwenkbar sind.
  • Die Satellitenkommunikationsantennen 32, 34, 36, 38; 42, 44, 46, 48 sind in Fig. 1 so dargestellt, dass sie in ihrer nicht ausgeschwenkten Ruhestellung an der Außenhaut des Rumpfs 10 des Flugkörpers 1 anliegen. Dies ist jedoch nur eine schematische Darstellung. In der Praxis werden die Satellitenkommunikationsantennen in ihrer Ruheposition entweder in einer jeweils zugehörigen Ausnehmung des Rumpfs 10 liegen oder unter der Außenhaut des Rumpfs 10 angeordnet sein und gemeinsam mit einer entsprechenden, zugeordneten Rumpfklappe nach außen in die Arbeitsposition ausschwenken.
  • Die Schwenkachsen 31, 33, 35, 37; 41, 43, 45, 47 sind so ausgerichtet, dass die jeweilige Achse in einer Ebene rechtwinklig zur Flugkörper-Längsachse X liegt.
  • Zur Steuerung der Satellitenkommunikationsantennen 32, 34, 36, 38; 42, 44, 46, 48 ist der Bordcomputer 20 mit einer Antennen-Steuerungseinrichtung 28 versehen, von der entsprechende Steuerbefehle an den einer jeweiligen Satellitenkommunikationsantenne zugeordneten Stellantrieb 39, 49 geleitet werden.
  • Fig. 2 zeigt schematisch den Flugweg 100 eines unbemannten Flugkörpers auf dem Weg von einem (nicht gezeigten) Startort zu einem von mehreren Zielen 102, 104, 106, 108. Vor dem Start des Flugkörpers wird ein Verfahren zur Missionsplanung durchgeführt, bei welchem die Koordinaten der Ziele 102, 104, 106, 108 sowie die Streckendaten des Flugwegs 100 festgelegt werden. Diese festgelegten Daten werden vor dem Start des Flugkörpers im Missionsdatenspeicher des Flugkörpers abgespeichert. Des weiteren werden geographische Geländedaten eines Korridors 110 beiderseits des Flugwegs 100 sowie der Umgebung 112 der Ziele 102, 104, 106, 108 gespeichert. Mit diesen vorgegebenen Daten und der bordeigenen Navigationsmittel ist der Flugkörper in der Lage, auf seinem Flugweg zwischen Startort und Zielort autonom zu navigieren.
  • Während der Missionsplanung werden außerdem Wegstreckenbereiche festgelegt, in denen eine Datenkommunikation zwischen dem fliegenden Flugkörper und der Missionskontrollstation erfolgt. Beim Erreichen dieser Wegstreckenbereiche wird der Flugkörper eine Fluglage einnehmen, die bereits bei der Missionsplanung festgelegt wird und die ihn in die Lage versetzt, eine Sichtlinienverbindung zu einem Kommunikationssatelliten aufzubauen, damit eine Datenkommunikation zwischen dem Flugkörper und der Missionskontrollstation über den Kommunikationssatelliten stattfinden kann. Der Beginn eines derartigen Wegstreckenbereichs wird als Kontrollpunkt 114 bereits während der Missionsplanung festgelegt und im Missionsdatenspeicher gespeichert. Dieser Kontrollpunkt 114 sollte vor einem Zielentscheidungspunkt 116 liegen, an welchem sich der vom Startort bis dahin verlaufende Reiseflugweg 101 in die Zielflugwege oder Zieltrajektorien 103, 105, 107, 109 zu den jeweiligen Zielen 102, 104, 106, 108 trennt.
  • Auf diese Weise wird erreicht, dass bei der am Kontrollpunkt 114 beginnenden Datenkommunikation noch eine Änderung der geplanten Flugroute zu einem bereits im Missionsplan vorgesehenen Ausweichziel 104, 106 oder 108 anstatt zu einem ursprünglich im Bordcomputer des Flugkörpers gespeicherten Ziel 102 vorgenommen werden kann.
  • Des weiteren kann während der Missionsplanung noch auf der jeweiligen Zieltrajektorie 103, 105, 107, 109 ein Zielannäherungspunkt 113, 115, 117, 119 definiert werden, zu welchem der Flugkörper nochmals eine Datenkommunikation zur Missionskontrollstation aufbaut und Bilder des Zielanflugs an die Missionskontrollstation überträgt, die von einer Kamera 18 im Bug des Flugkörpers 1 aufgenommen werden.
  • Kurz vor Erreichen des Kontrollpunkts 114 oder eines der Zielannäherungspunkte 113, 115, 117, 119 wird der Flugkörper von seiner Steuerungseinrichtung in eine Fluglage gebracht, in der zumindest eine der Satellitenkommunikationsantennen 32, 34, 36, 38; 42, 44, 46, 48 auf den Kommunikationssatelliten 4 ausrichtbar ist. Dazu kann es beispielsweise erforderlich sein, den Flugkörper aus einem Geländetiefflug in eine höhere Flugbahn über Grund zu steuern, in welcher eine Sichtlinienverbindung zum Kommunikationssatelliten 4 besteht. Der Flugkörper 1 kann auch in einen steilen Steigflug oder in einen steilen Sinkflug gebracht werden, um eine Sichtlinienverbindung von zumindest einer der Satellitenkommunikationsantennen zum Kommunikationssatelliten zu erhalten. Dabei wird während des steilen Steigflugs zumindest eine der Satellitenkommunikationsantennen 32, 34, 36, 38 im vorderen Bereich des Rumpfes 10 verwendet, während im steilen Sinkflug, insbesondere beim Sturzflug auf das Ziel, zumindest eine der Satellitenkommunikationsantennen 42, 44, 46, 48 des hinteren Bereichs des Rumpfes 10 Verwendung findet.
  • Ist zumindest eine der Satellitenkommunikationsantennen auf den Satelliten ausgerichtet, so wird ausgehend vom Flugkörper 1 die Kommunikationsverbindung über den Kommunikationssatelliten 4 zur Missionskontrollstation aufgebaut; die Satellitenkommunikationseinrichtung 26 des Flugkörpers 1 ist somit der rufende Teil beim Aufbau der Kommunikationsverbindung. Während des Bestehens der Kommunikationsverbindung erfolgt der Datenaustausch zwischen dem Bordcomputer 20 des Flugkörpers 1 und der Missionskontrollstation, der vorzugsweise bidirektional durchgeführt wird. Im Zielanflug erfolgt gegebenenfalls die Bilddatenübertragung vom Flugkörper 1 zur Missionskontrollstation bis zum Erreichen des Ziels.
  • Ist die nach dem Erreichen des Kontrollpunkts 114 begonnene Datenübertragung während des Reiseflugs beendet, so kehrt der Flugkörper 1 wieder auf den ursprüglich geplanten Flugweg, also beispielsweise einen Geländefolge-Tiefflug, zurück und setzt seinen Reiseflug fort.
  • Sowohl durch dieses Verfahren zur Datenkommunikation als auch durch das geschilderte Verfahren zur Missionsplanung ist es möglich, mit einem sich auf dem Reiseflug oder bereits im Zielanflug befindlichen unbemannten Flugkörper zu kommunizieren, auch wenn dieser außerhalb der direkten Sichtlinienverbindung zur Missionskontrollstation unterwegs ist, so dass auch während des Reiseflugs und sogar noch kurz vor Erreichen des Ziels ein Informationsaustausch zwischen dem Flugkörper und der Missionskontrollstation erfolgen kann.
  • Bezugszeichen in den Ansprüchen, der Beschreibung und den Zeichnungen dienen lediglich dem besseren Verständnis der Erfindung und sollen den Schutzumfang nicht einschränken.
  • Bezugszeichenliste Es bezeichnen:
  • 1
    Unbemannter Flugkörper
    1'
    vorderer Bereich des Flugkörpers
    1"
    hinterer Bereich des Flugkörpers
    2
    Avionik
    3
    Sichtlinienverbindung
    4
    Kommunikationssatellit
    10
    Rumpf
    12
    Tragfläche
    14
    Antriebseinrichtung
    16
    Steuerfläche
    18
    Kamera
    20
    Bordcomputer
    22
    Missionsdatenspeicher
    24
    Steuerungsrechner
    26
    Satellitenkommunikationseinrichtung
    28
    Antennen-Steuerungseinrichtung
    30
    erste Gruppe
    31
    Schwenkachse
    32
    Satellitenkommunikationsantenne
    33
    Schwenkachse
    34
    Satellitenkommunikationsantenne
    35
    Schwenkachse
    36
    Satellitenkommunikationsantenne
    37
    Schwenkachse
    38
    Satellitenkommunikationsantenne
    39
    Stellantrieb
    40
    zweite Gruppe
    42
    Satellitenkommunikationsantenne
    44
    Satellitenkommunikationsantenne
    46
    Satellitenkommunikationsantenne
    48
    Satellitenkommunikationsantenne
    49
    Stellantrieb
    100
    Flugweg
    101
    Reiseflugweg
    102
    Ziel
    103
    Zieltrajektorie
    104
    Ziel
    105
    Zieltrajektorie
    106
    Ziel
    107
    Zieltrajektorie
    108
    Ziel
    109
    Zieltrajektorie
    110
    Geländedatenkorridor
    112
    Zielumgebung
    113
    Zielannäherungspunkt
    114
    Kontrollpunkt
    115
    Zielannäherungspunkt
    116
    Zielentscheidungspunkt
    117
    Zielannäherungspunkt
    119
    Zielannäherungspunkt
    F
    Flugrichtung
    X
    Flugkörper-Längsachse

Claims (15)

  1. Unbemannter Flugkörper, insbesondere Marschflugkörper, mit
    - einem eine Nutzlast aufnehmenden Rumpf (10);
    - Steuerflächen (16), die mittels Steuerflächenantrieben bewegbar am Rumpf (10) angebracht sind;
    - einer Antriebseinrichtung (14) für den Flugkörper (1) und
    - einem Bordcomputer (20), der einen Missionsdatenspeicher (22) und einen Steuerungsrechner (24) aufweist, welcher die Steuerflächenantriebe mit Steuersignalen beaufschlagt;
    gekennzeichnet durch,
    - eine Satellitenkommunikationseinrichtung (26), die mit dem Bordcomputer (20) zum Datenaustausch elektrisch verbunden ist, und
    - zumindest einer Satellitenkommunikationsantenne (32, 34, 36, 38; 42, 44, 46, 48) als Sende- und/oder Empfangsantenne für die Satellitenkommunikationseinrichtung (26).
  2. Unbemannter Flugkörper nach Anspruch 1,
    dadurch gekennzeichnet,
    dass Auftrieb erzeugende Tragflächen (12) am Rumpf (10) vorgesehen sind.
  3. Unbemannter Flugkörper nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    - dass die zumindest eine Satellitenkommunikationsantenne (32, 34, 36, 38) im in Flugrichtung (F) vorderen Bereich (1') des Flugkörpers (1) angeordnet ist und/oder
    - dass die zumindest eine Satellitenkommunikationsantenne (42, 44, 46, 48) im in Flugrichtung (F) hinteren Bereich (1") des Flugkörpers (1) angeordnet ist und/oder
    - dass mehrere über den Umfang des Flugkörpers (1), vorzugsweise gleichmäßig, verteilte Satellitenkommunikationsantennen (32, 34, 36, 38; 42, 44, 46, 48) vorgesehen sind, die eine Gruppe (30; 40) von Satellitenkommunikationsantennen bilden, wobei vorzugsweise eine erste Gruppe (30) von Satellitenkommunikationsantennen (32, 34, 36, 38) in einem vorderen Bereich (1') des Flugkörpers (1) und eine zweite Gruppe (40) von Satellitenkommunikationsantennen (42, 44, 46, 48) in einem hinteren Bereich (1") des Flugkörpers (1) vorgesehen ist.
  4. Unbemannter Flugkörper nach Anspruch 3,
    dadurch gekennzeichnet, dass die Gruppe (30; 40) von Satellitenkommunikationsantennen vier Satellitenkommunikationsantennen (32, 34, 36, 38; 42, 44, 46, 48) aufweist, die in Umfangsrichtung jeweils um 90° voneinander beabstandet sind.
  5. Unbemannter Flugkörper nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die jeweilige Satellitenkommunikationsantenne (32, 34, 36, 38; 42, 44, 46, 48) im Bereich der Außenhaut des Flugkörpers (1) angeordnet ist und aus einer an der Außenhaut anliegenden oder unter der Außenhaut versenkten Ruheposition in eine Arbeitsposition verschwenkbar ist, wobei die Schwenkachse (31, 33, 35, 37; 41, 43, 45, 47) in einer Ebene rechtwinklig zur Flugkörper-Längsachse (X) gelegen ist.
  6. Unbemannter Flugkörper nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass der Bordcomputer (20) eine Antennensteuerungseinrichtung (28) für die Satellitenkommunikationsantennen (32, 34, 36, 38; 42, 44, 46, 48) aufweist, mittels der die einzelnen Satellitenkommunikationsantennen (32, 34, 36, 38; 42, 44, 46, 48) ansteuerbar sind und mittels der der Schwenkwinkel
    Figure imgb0003
    (;
    Figure imgb0004
    ) einer jeweiligen der Satellitenkommunikationsantennen (32, 34, 36, 38; 42, 44, 46, 48) steuerbar ist.
  7. Verfahren zur Datenkommunikation zwischen einem eine vorgegebene Mission fliegenden unbemannten Flugkörper, insbesondere Marschflugkörper, und einer Missionskontrollstation,
    - wobei eine mit einem Bordcomputer des Flugkörpers zum Signal- und Datenaustausch elektrisch verbundene Satellitenkommunikationseinrichtung selbständig eine Funkverbindung mit der Missionskontrollstation über einen Satelliten aufbaut; und
    - wobei nach dem Aufbau der Funkverbindung eine bidirektionale Datenübertragung zwischen der Satellitenkommunikationseinrichtung des Flugkörpers und der Missionskontrollstation erfolgt.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet,
    - dass der Flugkörper vor Beginn des Aufbaus der Funkverbindung von einer Steuerungseinrichtung des Flugkörpers in eine Fluglage gebracht wird, in der zumindest eine der Satellitenkommunikationsantennen des Flugkörpers auf den Satelliten ausrichtbar ist; und
    - dass die Satellitenkommunikationsantenne auf den Satelliten ausgerichtet wird, wobei der Flugkörper während der Dauer der Funkverbindung in dieser Fluglage verbleibt,
    - wobei vorzugsweise die Fluglage, in die der Flugkörper für die Dauer der Funkverbindung gebracht wird, ein steiler, vorzugsweise senkrechter, Steigflug oder ein steiler Sinkflug, vorzugsweise ein senkrechter Sinkflug, ist.
  9. Verfahren nach einem der Ansprüche 7 oder 8,
    dadurch gekennzeichnet,
    dass insbesondere beim Auftreffen von Funk-Störsignalen auf den Flugkörper nur jene Antenne für die Kommunikation mit der Missionskontrollstation über den Satelliten benutzt wird, die bezüglich einer potentiellen Störsignalquelle im Funkschatten des Flugkörpers liegt.
  10. Verfahren nach einem der Ansprüche 7 bis 9,
    dadurch gekennzeichnet,
    dass der Zeitpunkt, zu dem die Funkverbindung aufgebaut wird, oder der Ort, an dem die Funkverbindung aufgebaut wird, in einem Missionsplan vorgegeben ist, der in einem Missionsdatenspeicher des Bordcomputers des Flugkörpers gespeichert ist.
  11. Verfahren nach einem der Ansprüche 7 bis 10,
    dadurch gekennzeichnet,
    dass die Funkverbindung zwischen dem Flugkörper und der Missionskontrollstation während einer Mission mehrmals aufgebaut wird.
  12. Verfahren nach einem der Ansprüche 7 bis 11,
    dadurch gekennzeichnet,
    - dass die Missionskontrollstation während des Bestehens der Funkverbindung neue oder geänderte Missionsdaten an den Flugkörper überträgt,
    - dass diese neuen oder geänderten Missionsdaten im Missionsdatenspeicher des Flugkörpers gespeichert werden und
    - dass die Weiterführung der Mission vom Bordcomputer des Flugkörpers unter Verwendung dieser neuen oder geänderten Missionsdaten erfolgt.
  13. Verfahren nach einem der Ansprüche 7 bis 12,
    dadurch gekennzeichnet,
    dass die Satellitenkommunikationseinrichtung des Flugkörpers während des Bestehens der Funkverbindung Zustandsinformation des Flugkörpers an die Missionskontrollstation überträgt.
  14. Verfahren nach einem der Ansprüche 7 bis 13,
    dadurch gekennzeichnet,
    dass die Satellitenkommunikationseinrichtung des Flugkörpers während des Bestehens der Funkverbindung, vorzugsweise bei einem Geländeüberflug oder im Anflug auf ein Ziel, Bilddaten einer im Flugkörper vorgesehenen Kamera, vorzugsweise als Live-Video, an die Missionskontrollstation überträgt.
  15. Verfahren zur Missionsplanung für einen unbemannten Flugkörper, insbesondere gemäß einem der Ansprüche 1 bis 6, bei welchem Zielkoordinaten und Flugwegdaten festgelegt und in einem Missionsdatenspeicher des Flugkörpers abgespeichert werden,
    gekennzeichnet durch die weiteren Schritte,
    - Festlegen von Wegstreckenbereichen, in denen Datenkommunikation zwischen dem Flugkörper und einer Missionskontrollstation erfolgt;
    - Definieren von Fluglagen des Flugkörpers für die Wegstreckenbereiche der geplanten Datenkommunikation so dass zwischen dem Flugkörper und zumindest einem Kommunikationssatelliten eine Sichtlinienverbindung besteht.
EP08019799.9A 2007-11-24 2008-11-13 Unbemannter Flugkörper Active EP2080981B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710056661 DE102007056661B4 (de) 2007-11-24 2007-11-24 Verfahren zur Datenkommunikation und unbemannter Flugkörper

Publications (3)

Publication Number Publication Date
EP2080981A2 true EP2080981A2 (de) 2009-07-22
EP2080981A3 EP2080981A3 (de) 2011-03-02
EP2080981B1 EP2080981B1 (de) 2016-10-12

Family

ID=40585726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08019799.9A Active EP2080981B1 (de) 2007-11-24 2008-11-13 Unbemannter Flugkörper

Country Status (3)

Country Link
EP (1) EP2080981B1 (de)
DE (1) DE102007056661B4 (de)
ES (1) ES2610510T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2133648A1 (de) * 2008-04-10 2009-12-16 LFK-Lenkflugkörpersysteme GmbH Unbemannter Flugkörper und Verfahren zur Flugführung
DE102010008807A1 (de) 2010-02-22 2011-08-25 Engelskirchen, Jürgen, Dipl.-Ing., 22395 Verfahren zur selbsttätigen Bahnsteuerung eines steuerbaren Objektes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186414A (en) 1992-04-20 1993-02-16 The United States Of America As Represented By The Secretary Of The Navy Hybrid data link

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19543321B4 (de) * 1995-11-21 2006-11-16 Diehl Stiftung & Co.Kg Verfahren und Einrichtung zum drahtlosen Austausch von Informationen zwischen Stationen
US6056237A (en) * 1997-06-25 2000-05-02 Woodland; Richard L. K. Sonotube compatible unmanned aerial vehicle and system
US5855339A (en) * 1997-07-07 1999-01-05 Raytheon Company System and method for simultaneously guiding multiple missiles
US6118066A (en) * 1997-09-25 2000-09-12 The United States Of America As Represented By The Secretary Of The Navy Autonomous undersea platform
DE19906970C2 (de) * 1999-02-19 2003-03-27 Rheinmetall W & M Gmbh Aufklärungssonde
EP1442498B1 (de) * 2001-11-09 2006-08-09 EMS Technologies, Inc. Strahlformer für eine mehrkeulenempfangsantenne
DE102006007142B4 (de) * 2006-02-16 2014-12-18 Mbda Deutschland Gmbh Verfahren zur Positionsbestimmung eines von einem Luftfahrzeug abkoppelbaren unbemannten Flugkörpers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186414A (en) 1992-04-20 1993-02-16 The United States Of America As Represented By The Secretary Of The Navy Hybrid data link

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2133648A1 (de) * 2008-04-10 2009-12-16 LFK-Lenkflugkörpersysteme GmbH Unbemannter Flugkörper und Verfahren zur Flugführung
DE102010008807A1 (de) 2010-02-22 2011-08-25 Engelskirchen, Jürgen, Dipl.-Ing., 22395 Verfahren zur selbsttätigen Bahnsteuerung eines steuerbaren Objektes

Also Published As

Publication number Publication date
EP2080981A3 (de) 2011-03-02
ES2610510T3 (es) 2017-04-27
DE102007056661A1 (de) 2009-06-04
DE102007056661B4 (de) 2015-04-02
EP2080981B1 (de) 2016-10-12

Similar Documents

Publication Publication Date Title
DE69508783T2 (de) Autopilot mit Lern- und Wiedergabemoden
DE69501209T2 (de) System zur regelung von ferngesteuerten fahrzeugen mit variablen bezugsrahmen
DE69630071T9 (de) System für Schätzung der durch eine Bombe verursachten Schäden unter allen Aspekten
DE3879694T2 (de) Verfahren zur Orientierung eines synchronisierten Satelliten.
DE2944337A1 (de) Anordnung zur automatischen landung eines luftfahrzeuges
DE102009040152A1 (de) Verfahren zum Steuern eines Torpedos, Torpedo hierfür sowie Antennensektion eines derartigen Torpedos
EP1752376A2 (de) Luftfahrzeug, insbesondere ein unbemanntes Luftfahrzeug, mit zumindest einem Waffenschacht
EP1821060B1 (de) Unbemannter Flugkörper und Verfahren zur Positionsbestimmung eines von einem Luftfahrzeug abkoppelbaren unbemannten Flugkörpers
WO2000000779A1 (de) Verfahren zum ferngesteuerten bekämpfen bodennaher und/oder bodengebundener ziele
DE602005000222T2 (de) Flugkörper zur Geländeaufklärung
EP2767795A2 (de) Verfahren zum Betrieb eines ruhenden Flugkörpers
EP2080981B1 (de) Unbemannter Flugkörper
EP1499848B1 (de) Verfahren zum datenaustausch zwischen militärischen flugzeugen und vorrichtung zur durchführung dieses verfahrens
EP2133648B1 (de) Unbemannter Flugkörper und Verfahren zur Flugführung
EP2405233B1 (de) Verfahren zum Steuern eines Gefechtsflugkörpers
DE102004029487B4 (de) Fluggerät mit Waffenschacht-Anordnung und Verfahren zum Absetzen einer in einem Waffenschacht befindlichen Waffe von dem Fluggerät
DE102021000574A1 (de) Mehrkörperflugsystem
EP2395409B1 (de) Verfahren und Vorrichtung zum Steuern eines Lenkflugkörpers
DE10020179A1 (de) Steuereinheit für ein Gleitschirm-System für den bemannten Gleitschirm-Flug sowie zugehörige Missionsplanungsstation
EP0635698A1 (de) Verfahren und Vorrichtung zur Verlängerung der Kommunikationsdauer von Raumflugkörpern
DE3411439C1 (de) Absetzverfahren für Lenkflugkörper
DE3640427C2 (de)
DE102010005198B4 (de) Flugkörper und Verfahren zum Erfassen eines Ziels
DE102007021112B3 (de) Verfahren zur Vergrößerung des Aufklärungsradius eines Kampfhubschraubers, sowie Aufklärungsflugkörper und Kampfhubschrauber zur Durchführung des Verfahrens
DE3008700C2 (de) System zur optischen Informationsübertragung zwischen einer Bodenstation und einem Luftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20110406

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MBDA DEUTSCHLAND GMBH

17Q First examination report despatched

Effective date: 20131213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160609

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 836920

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014700

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2610510

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170212

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008014700

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 836920

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161113

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20201125

Year of fee payment: 13

Ref country code: GB

Payment date: 20201120

Year of fee payment: 13

Ref country code: FR

Payment date: 20201120

Year of fee payment: 13

Ref country code: IT

Payment date: 20201124

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210122

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211113

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211114

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231130

Year of fee payment: 16