EP2078137A1 - Rotor für eine strömungsmaschine - Google Patents

Rotor für eine strömungsmaschine

Info

Publication number
EP2078137A1
EP2078137A1 EP07803598A EP07803598A EP2078137A1 EP 2078137 A1 EP2078137 A1 EP 2078137A1 EP 07803598 A EP07803598 A EP 07803598A EP 07803598 A EP07803598 A EP 07803598A EP 2078137 A1 EP2078137 A1 EP 2078137A1
Authority
EP
European Patent Office
Prior art keywords
rotor
steam turbine
turbine according
designed
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07803598A
Other languages
English (en)
French (fr)
Other versions
EP2078137B1 (de
Inventor
Kai Wieghardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07803598A priority Critical patent/EP2078137B1/de
Publication of EP2078137A1 publication Critical patent/EP2078137A1/de
Application granted granted Critical
Publication of EP2078137B1 publication Critical patent/EP2078137B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/088Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in a closed cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the invention relates to a steam turbine comprising a housing and a rotor, wherein the housing has a passage for the passage of external Kuhlmedium, wherein the rotor is at least partially hollow.
  • a steam turbine is understood to mean any turbine or sub-turbine through which a working medium in the form of steam flows.
  • gas turbines are traversed with gas and / or air as a working medium, but that is subject to completely different temperature and pressure conditions than the steam in a steam turbine.
  • gas turbines for steam turbines has eg a turbine inflow end ⁇ working medium with the highest temperature at the same time the highest pressure.
  • An open cooling system, as in gas turbines, is therefore not feasible without external supply.
  • a steam turbine typically includes a vaned rotatably mounted rotor disposed within a casing shell.
  • a vane is usually held at a first location along an inside of the steam turbine house. It is usually part of a Blade which comprises a number of vanes arranged along an inner circumference on the inside of the steam turbine housing. Each vane has its blade radially inward. A vane ring at a location along the axial extent is also referred to as a vane row. Usually, a plurality of vane rows are arranged one behind the other.
  • the rotatably mounted in the steam turbine steam turbine rotors are subjected to thermal stress during operation.
  • the development and production of a steam turbine rotor is both expensive and time consuming.
  • the steam turbine rotors are considered the most stressed and expensive components of a steam turbine. This increasingly applies to high steam turbines.
  • a characteristic of the steam turbine rotor is that they do not have any significant heat sink. Therefore, the cooling of the blades arranged on the steam turbine rotor is difficult.
  • Piston area is to be understood as the area of a thrust balance piston.
  • the thrust balance piston acts in a steam turbine such that a force caused by the working medium force is formed on the rotor in one direction counter-force in the opposite direction.
  • Rotor through which a cooling medium can flow, carried out.
  • a disadvantage here is felt that between two ver ⁇ different expansion sections no controllable bypass can be formed from ⁇ .
  • problems in on-site operation are possible.
  • the object of the invention is therefore to provide a steam turbine, which can be operated at high steam temperatures.
  • a steam turbine comprising a housing and a rotor, wherein the housing has a fürfuh ⁇ tion for carrying out external Kuhlmedium, wherein the rotor is at least partially hollow, with a Supply line for passing the external Kuhlmediums is provided in the cavity of the rotor.
  • Cooling medium is guided to a suitable location of the rotor.
  • the cavity is used as a suitable location.
  • the cavity is expediently attached to the places which are exposed to a high thermal load.
  • the hitherto known method in which the external cooling medium is flowed into the steam turbine and immediately cools thermally stressed parts such as the thrust balance piston, is therefore improved by the cooling medium is guided by the housing in the cavity of the rotor after the passage.
  • the cooling steam must have a higher pressure than at the inflow, so that it can be guided into the cavity.
  • An advantage of this cooling principle according to the invention is that the temperature of the cooling medium can be adjusted.
  • Steam turbines are usually used at different loads. So a steam turbine at full load operation ⁇ or Operalastbet ⁇ eb example operated.
  • the cooling requirements for the various load operations are different, so the requirement for the cooling of the steam turbine in part load operation is lower than in full load operation.
  • the invention is advantageously developed further, if the rotor is designed such that the cooling medium via rotor Cooling lines rst from the cavity rst.
  • the Kuhlmedrum first flows through external lines through the housing in the cavity of the rotor and then flows at appropriate points from the rotor back into the main flow.
  • the cooling medium flows and cools the rotor from the inside.
  • the outflow of Kuhlmediums from the rotor takes place at one or more downstream locations.
  • the cooling medium fulfills two tasks, so to speak, on the one hand, the cooling medium cools the rotor at appropriate locations and on the other, the Kuhlmedium contributes to the efficiency in which it is fed back into the main flow and performed on the guide and moving blades work.
  • the supply line is arranged in the region of a steam flow range. As a result, a suitable point for the supply line is found, since it is precisely the area of the steam inflow area which is exposed to very high thermal loads and therefore requires a preferred cooling.
  • the supply line is arranged next to a thrust balance piston.
  • the cooling medium before it is guided into the cavity of the rotor, to cool the thrust balance piston.
  • the thrust balance piston is subject to high thermal loads, especially at full load.
  • the rotor has rotor blades which are designed such that the cooling medium can flow through the rotor blades.
  • This provides the advantage that in addition to the rotor and the blades can be cooled.
  • it is preferred to use the film cooling of the rotor blades known from gas turbine technology. In this way, the blade foot or can be cooled effectively at ⁇ particular thermally stressed regions of the rotor.
  • the rotor is made of disk rotors and braced with a tie rod.
  • the disk rotor is formed with a toothing for transmitting a torque.
  • the rotor made of different materials can be formed from ⁇ . It is conceivable, for example, that a disk runner, which is exposed to lower thermal loads than a disk runner, which is exposed to high thermal stress, is performed with a material which is kos ⁇ ten redesigner and yet withstand the thermal loads.
  • the toothing is designed such that the cooling medium can flow between two adjacent disk rotors.
  • the toothing is formed such that the toothing fürt ⁇ tts- openings.
  • channels can be provided in the so-called Hirth toothing. Through these channels, the cooling medium is strombar.
  • FIG. 2 shows a cross section of a rotor of a steam turbine and a part of a housing
  • 3 shows a cross section through a rotor
  • FIG. 5 shows a cross section of a toothing in an alternative embodiment.
  • FIG. 1 shows a section through a high-pressure partial turbine 1 according to the prior art.
  • the high-pressure partial turbine 1 as an embodiment of a steam turbine comprises an outer housing 2 and an inner housing 3 arranged therein.
  • a rotor 5 is rotatably mounted about a rotation axis 6.
  • the rotor 5 comprises blades 7 arranged in grooves on a surface of the rotor 5.
  • the inner housing 3 has guide vanes 8 arranged in grooves on its inner surface.
  • the guide 8 and blades 7 are arranged such that in a flow direction 13, a flow channel 9 is formed.
  • the high-pressure partial turbine 1 has a flow-in region 10, through which live steam flows into the high-pressure partial turbine 1 during operation.
  • the live steam may have steam parameters above 300 bar and above 620 ° C.
  • the live steam relaxing in the flow direction 13 alternately flows past the guide vanes 8 and rotor blades 7, relaxes and cools down.
  • the steam loses in this case to internal energy, which is converted into rotational ⁇ energy of the rotor 5.
  • the rotation of the rotor 5 finally drives a generator, not shown, for power supply.
  • the high pressure part turbine 1 may drive other plant components other than a generator, such as a compressor, a propeller, or the like.
  • the steam flows through the flow channel 9 and flows out of the high-pressure part of the turbine 1 from the outlet 33.
  • the steam in this case exerts a force action ⁇ 11 in the direction of flow.
  • FIG 2 a section of a steam turbine 1 is shown.
  • the steam turbine has a housing 39.
  • the housing 39 could be a réellegehause 3 or 2.05.gehause.
  • the steam turbine according to FIG. 2 is designed in such a way that the housing 39 has a passage 20 for the passage of external cooling medium 21.
  • the rotor 5 is in this case at least partially hollow.
  • the rotor 5 therefore has a cavity 22.
  • the rotor 5 has a supply line 23 for passing through the external cooling medium 21.
  • the cooling medium 21 is guided via the passage 20 and the supply line 23 into the cavity 22.
  • a first cooling effect of the cooling medium 21 is already achieved in the housing 39 in the region of the passage 20.
  • the passage 20 is arranged in the vicinity of the inflow region 10.
  • the inflow region 10 is particularly thermally stressed, since there flows in the live steam.
  • the cooling medium is guided by the passage 20 to the supply line 23 and flows into the cavity 22.
  • the cooling medium 21 must in this case have a corresponding pressure.
  • the supply line 23 can be made by radial bores. Other embodiments such as inclined leads are conceivable. For the sake of clarity, neither guide 8 nor moving blades 7 are shown in FIG.
  • the rotor 5 is designed such that the cooling medium 21 can be flowed out of the cavity 22 via rotor cooling lines 24.
  • the supply line 23 can be arranged next to a compensating piston 4. Since the balance piston is particularly thermally stressed, this would be an advantageous embodiment.
  • the cooling medium 21 flowing out of the rotor cooling duct 24 mixes with the working medium coming from the inflow region 10, which as a rule is a vapor.
  • the cooling medium 21 cools, inter alia, from the supply line 23, the rotor 5 on an inner surface 25 of the cavity 22nd
  • the steam turbine 1 can be designed in such a way that the rotor 5 has blades 7, which are designed in such a way that the cooling medium 21 can flow through the blade 7. As a result, the rotor blade 7 are cooled.
  • the rotor blades 7 in this case have individual fürerieso réelleen.
  • the blades 7 are cooled by the so-called film cooling.
  • the film cooling is known from gas turbine technology.
  • the rotor 5 is formed such that the blade root, the balance piston 4 or other kriti ⁇ cal areas that are thermally loaded, are cool.
  • the m rotor 2 shown m FIG 2 is welded to a weld 26 of two sub-rotors 27, 28.
  • a rotor is shown, which is constructed from three disk rotors 29, 30, 31.
  • the rotor may in alternative forms Ausfuh approximately ⁇ are remote from only two Scheibenlau-. 5
  • the three disk runners 29, 30, 31 are clamped firmly together by means of a tie rod 32.
  • the tie rod at its ends a thread 34.
  • a movement of the tie rod 32 takes place in the rotation axis direction, which leads to the fact that the three disc rotors 29, 30, 31 are printed together.
  • the disk runners 29, 30, 31 at their points of contact 35, 36 have a toothing for transmitting a torque.
  • the toothing can be designed as a Hirth, rectangular or trapezoidal toothing.
  • the toothing 37, 38 is designed as a triangular toothing 37.
  • the toothing 37 is designed such that a supply line 23 is formed. Through the supply line 23, the cooling medium 21 is strombar.
  • FIG. 5 shows an alternative embodiment of a toothing 37, 38 is shown.
  • the toothing 38 shown in FIG. 5 is designed as a trapezoid toothing 38.
  • the trapezoidal toothing 38 is designed in such a way that supply lines 23 are formed, through which the cooling medium 21 can flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Description

Beschreibung
Rotor für eine Stromungsmaschine
Die Erfindung betrifft eine Dampfturbine umfassend ein Gehäuse und einen Rotor, wobei das Gehäuse eine Durchfuhrung zum Durchfuhren von externem Kuhlmedium aufweist, wobei der Rotor zumindest teilweise hohl ausgeführt ist.
Zur Steigerung des Wirkungsgrades einer Dampfturbine tragt die Verwendung von Dampf mit höheren Drucken und Temperaturen bei. Die Verwendung von Dampf mit einem solchen Dampfzustand stellt erhöhte Anforderungen an die entsprechende Dampfturbine .
Unter einer Dampfturbine im Sinne der vorliegenden Anmeldung wird jede Turbine oder Teilturbine verstanden, die von einem Arbeitsmedium in Form von Dampf durchströmt wird. Im Unterschied dazu werden Gasturbinen mit Gas und/oder Luft als Arbeitsmedium durchströmt, dass jedoch völlig anderen Temperatur- und Druckbedingungen unterliegt als der Dampf bei einer Dampfturbine. Im Gegensatz zu Gasturbinen weist bei Dampfturbinen z.B. das einer Teilturbine zustromende Arbeits¬ medium mit der höchsten Temperatur gleichzeitig den höchsten Druck auf. Ein offenes Kuhlsystem, wie bei Gasturbinen, ist also nicht ohne externe Zufuhrung realisierbar. Eine Dampfturbine umfasst üblicherweise einen mit Schaufeln besetzten drehbar gelagerten Rotor, der innerhalb eines Gehausemantels angeordnet ist. Bei Durchstromung des vom Gehausemantel ge- bildeten Stromungsraumes mit erhitztem und unter Druck stehendem Dampf wird der Rotor über die Schaufeln durch den Dampf in Rotation versetzt. Die am Rotor angebrachten Schaufeln werden auch als Laufschaufeln bezeichnet. Am Gehausemantel sind darüber hinaus üblicherweise stationäre Leitschau- fein angebracht, welche in die Zwischenräume der Laufschau¬ feln greifen. Eine Leitschaufel ist üblicherweise an einer ersten Stelle entlang einer Innenseite des Dampfturbinenge- hauses gehalten. Dabei ist sie üblicherweise Teil eines Leit- schaufelkranzes, welcher eine Anzahl von Leitschaufeln um- fasst, die entlang eines Innenumfangs an der Innenseite des Dampfturbinengehauses angeordnet sind. Dabei weist jede Leitschaufel mit ihrem Schaufelblatt radial nach innen. Ein Leit- schaufelkranz an einer Stelle entlang der axialen Ausdehnung wird auch als Leitschaufelreihe bezeichnet. Üblicherweise sind mehrere Leitschaufelreihen hintereinander angeordnet.
Eine wesentliche Rolle bei der Steigerung des Wirkungsgrades spielt die Kühlung. Bei den bisher bekannten Kuhlmittelmetho¬ den zur Kühlung eines Dampfturbmengehauses ist, zwischen einer aktiven Kühlung und einer passiven Kühlung zu unterscheiden. Bei einer aktiven Kühlung wird eine Kühlung durch ein der Dampfturbine separat, d.h. zusätzlich zum Arbeitsme- dium zugefuhrtes Kuhlmedium bewirkt. Dagegen erfolgt eine passive Kühlung lediglich durch eine geeignete Fuhrung oder Verwendung des Arbeitsmediums. Eine bekannte Kühlung eines Dampfturbmengehauses beschrankt sich auf eine passive Küh¬ lung. So ist beispielsweise bekannt, ein Innengehause einer Dampfturbine mit kühlem, bereits expandiertem Dampf zu umströmen. Dies hat jedoch den Nachteil, dass eine Temperaturdifferenz über die Innengehausewandung beschrankt bleiben muss, da sich sonst bei einer zu großen Temperaturdifferenz das Innengehause thermisch zu stark verformen wurde. Bei einer Umstromung des Innengehauses findet zwar eine Warmeab- fuhr statt, jedoch erfolgt die Warmeabfuhr relativ weit entfernt von der Stelle der Wärmezufuhr. Eine Warmeabfuhr in un¬ mittelbarer Nahe der Wärmezufuhr ist bisher nicht in ausreichendem Maße verwirklicht worden. Eine weitere passive Kuh- lung kann mittels einer geeigneten Gestaltung der Expansion des Arbeitsmediums in einer so genannten Diagonalstufe er¬ reicht werden. Hierüber lasst sich allerdings nur eine sehr begrenzte Kuhlwirkung auf das Gehäuse erzielen.
Die in den Dampfturbinen drehbar gelagerten Dampfturbinenrotoren werden im Betrieb thermisch sehr beansprucht. Die Entwicklung und Herstellung eines Dampfturbinenrotors ist zugleich teuer und zeitaufwandig. Die Dampfturbinenrotoren gelten als die am höchsten beanspruchten und teuersten Komponenten einer Dampfturbine. Dies gilt zunehmend für hohe Dampfturbinen .
Eine Eigenschaft des Dampfturbinenrotors ist, dass diese über keine wesentliche Warmesenke verfugen. Daher gestaltet sich die Kühlung der an dem Dampfturbinenrotor angeordneten Laufschaufeln als schwierig.
Besonders thermisch belastet werden bei den Dampfturbinen¬ rotoren die Kolben- und Einstrombereiche. Mit Kolbenbereich ist der Bereich eines Schubausgleichskolbens zu verstehen. Der Schubausgleichskolben wirkt in einer Dampfturbine derart, dass eine durch das Arbeitsmedium hervorgerufene Kraft auf den Rotor in einer Richtung eine Gegenkraft in Gegenrichtung ausgebildet wird.
Eine Kühlung eines Dampfturbinenrotors ist in der EP 0 991 850 Bl beschrieben. Dabei wird eine Kompakt- bzw. Hochdruck- und Mitteldruck-Teilturbme durch eine Verbindung in dem
Rotor, durch die ein Kuhlmedium strömen kann, ausgeführt. Als nachteilig wird hierbei empfunden, dass zwischen zwei ver¬ schiedenen Expansionsabschnitten kein regelbarer Bypass aus¬ gebildet werden kann. Darüber hinaus sind Probleme im insta- tionaren Betrieb möglich.
Wünschenswert wäre es, eine Dampfturbine auszubilden, die für hohe Temperaturen geeignet ist.
Aufgabe der Erfindung ist es daher, eine Dampfturbine anzugeben, die bei hohen Dampftemperaturen betrieben werden kann .
Gelost wird diese Aufgabe durch eine Dampfturbine, umfassend ein Gehäuse und einen Rotor, wobei das Gehäuse eine Durchfuh¬ rung zum Durchfuhren von externem Kuhlmedium aufweist, wobei der Rotor zumindest teilweise hohl ausgeführt ist, wobei eine Zuleitung zum Durchfuhren des externen Kuhlmediums in den Hohlraum des Rotors vorgesehen ist.
Mit der Erfindung wird daher vorgeschlagen, externes Kuhlme- dium in den Rotor der Dampfturbine zuzuführen, wobei das
Kuhlmedium an eine geeignete Stelle des Rotors gefuhrt wird. Hierbei wird als geeignete Stelle der Hohlraum verwendet. Der Hohlraum ist zweckmaßigerweise an den Stellen angebracht, die einer hohen thermischen Belastung ausgesetzt sind.
Das bisher bekannte Verfahren, bei dem das externe Kuhlmedium in die Dampfturbine eingeströmt wird und thermisch belastete Teile wie den Schubausgleichskolben unmittelbar kühlt, wird demnach verbessert, indem das Kuhlmedium nach der Durchfuh- rung durch das Gehäuse in den Hohlraum des Rotors gefuhrt wird. Dazu muss der Kuhldampf einen höheren Druck als an der Einströmung aufweisen, damit dieser in den Hohlraum gefuhrt werden kann.
Ein Vorteil dieses erfmdungsgemaßen Kuhlprinzips ist es, dass die Temperatur des Kuhlmediums einstellbar ist. Dampfturbinen werden in der Regel bei unterschiedlichen Lasten verwendet. So wird beispielsweise eine Dampfturbine im Voll¬ lastbetrieb oder im Teillastbetπeb betrieben. Die Kuhlanfor- derungen für die verschiedenen Lastbetriebe sind unterschiedlich, so ist die Anforderung an die Kühlung der Dampfturbine im Teillastbetπeb geringer als beim Volllastbetrieb.
Im Volllastbetrieb wird daher mehr Kuhlmedium bzw. eine nied- rigere Temperatur des Kuhlmediums gefordert, was erfindungs- gemaß ohne weiteres möglich ist, da die Temperatur des Kuhl¬ mediums leicht geregelt werden kann.
Vorteilhafte Weiterbildungen sind in den Unteranspruchen dar- gestellt.
So wird die Erfindung vorteilhaft weitergebildet, wenn der Rotor derart ausgebildet ist, dass das Kuhlmedium über Rotor- kuhlleitungen aus dem Hohlraum strombar rst. Das Kuhlmedrum strömt zunächst über externe Leitungen durch das Gehäuse in den Hohlraum des Rotors und strömt anschließend an geeigneten Stellen aus dem Rotor wieder in die Hauptstromung . Dabei be- strömt und kühlt das Kuhlmedium den Rotor von innen. Das Ausstromen des Kuhlmediums aus dem Rotor erfolgt an einer oder mehreren stromab gelegenen Stellen.
Durch diese Maßnahme erfüllt das Kuhlmedium sozusagen zwei Aufgaben, zum einen kühlt das Kuhlmedium den Rotor an geeigneten Stellen und zum anderen tragt das Kuhlmedium zum Wirkungsgrad bei, in dem es der Hauptstromung wieder zugeführt wird und an den Leit- und Laufschaufeln Arbeit verrichtet.
In einer vorteilhaften Weiterbildung ist die Zuleitung im Bereich eines Dampfemstrombereiches angeordnet. Dadurch ist eine geeignete Stelle für die Zuleitung gefunden, da gerade der Bereich des Dampfeinstrombereiches sehr hohen thermischen Belastungen ausgesetzt ist und daher einer bevorzugten Kuh- lung bedarf.
In einer weiteren vorteilhaften Weiterbildung ist die Zuleitung neben einem Schubausgleichskolben angeordnet. Dadurch ist es möglich, dass das Kuhlmedium, bevor es in den Hohlraum des Rotors gefuhrt wird, den Schubausgleichskolben kühlt. Der Schubausgleichskolben wird vor allem bei Volllast thermisch stark belastet.
In einer vorteilhaften Weiterbildung weist der Rotor Lauf- schaufeln auf, die derart ausgebildet sind, dass das Kuhlmedium durch die Laufschaufeln strombar ist. Dadurch wird der Vorteil erzielt, dass neben dem Rotor auch die Laufschaufeln gekühlt werden können. Dabei wird bevorzugt die aus der Gas- turbmentechnologie bekannte Filmkuhlung der Laufschaufeln verwendet. Auf diese Weise können auch Schaufelfuße oder an¬ dere thermisch belastete Bereiche des Rotors wirksam gekühlt werden. In einer vorteilhaften Weiterbildung ist der Rotor aus Schei- benlaufern ausgeführt und mit einem Zuganker verspannt.
Ebenso vorteilhaft ist es, wenn der Scheibenlaufer mit einer Verzahnung zum Übertragen eines Drehmomentes ausgebildet ist. Dadurch kann der Rotor aus unterschiedlichen Materialien aus¬ gebildet werden. Denkbar ist beispielsweise, dass ein Schei- benlaufer, der geringeren thermischen Belastungen ausgesetzt ist als ein Scheibenlaufer, der hohen thermischen Belastung ausgesetzt ist, mit einem Material ausgeführt wird, das kos¬ tengünstiger ist und dennoch den thermischen Belastungen standhalt .
In einer weiteren vorteilhaften Weiterbildung ist die Verzah- nung derart ausgebildet, dass das Kuhlmedium zwischen zwei benachbarten Scheibenlaufern strombar ist. Dazu wird die Verzahnung derart ausgebildet, dass die Verzahnung Durchtπtts- offnungen aufweist. Beispielsweise können Kanäle in der so genannten Hirthverzahnung vorgesehen sein. Durch diese Kanäle ist das Kuhlmedium strombar. Diese Ausfuhrungsform bietet den Vorteil, dass für die Durchfuhrung des Kuhlmediums über Radi- alkanale keine zusätzlichen Bohrungen ausgeführt werden müs¬ sen, zusätzliche Bohrungen im Rotor verursachen eine hohe Spannungskonzentration durch zusätzliche Kerben. Solche Span- nungskonzentrationen entfallen, wenn das Kuhlmedium durch die Verzahnung gefuhrt wird.
Ausfuhrungsbeispiele der Erfindung werden anhand der nachfolgenden Zeichnungen naher erläutert. Dabei haben Komponenten mit den gleichen Bezugszeichen die gleiche Funktionsweise.
Es zeigen:
FIG 1 ein Querschnitt einer Dampfturbine gemäß dem Stand der Technik,
FIG 2 ein Querschnitt eines Rotors einer Dampfturbine und eines Teils eines Gehäuses, FIG 3 Querschnitt durch einen Rotor,
FIG 4 Querschnitt durch eine Verzahnung,
FIG 5 Querschnitt einer Verzahnung in alternativer Ausfuhrungsform.
In der FIG 1 ist ein Schnitt durch eine Hochdruck-Teilturbme 1 gemäß dem Stand der Technik dargestellt. Die Hochdruck- Teilturbme 1 als Ausfuhrungsform einer Dampfturbine umfasst ein Außengehause 2 und ein darin angeordnetes Innengehause 3. Innerhalb des Innengehauses 3 ist ein Rotor 5 um eine Rotati- onsachse 6 drehbar gelagert. Der Rotor 5 umfasst in Nuten auf einer Oberflache des Rotors 5 angeordnete Laufschaufeln 7. Das Innengehause 3 weist an seiner Innenflache in Nuten angeordnete Leitschaufeln 8 auf. Die Leit- 8 und Laufschaufeln 7 sind derart angeordnet, dass in einer Stromungsrichtung 13 ein Stromungskanal 9 ausgebildet ist. Die Hochdruck-Teilturbme 1 weist einen Einstrombereich 10 auf, durch den im Betrieb Frischdampf in die Hochdruck-Teilturbme 1 einströmt. Der Frischdampf kann Dampfparameter von über 300 bar und über 620°C aufweisen. Der in die Stromungsrichtung 13 sich ent- spannende Frischdampf strömt abwechselnd an den Leit- 8 und Laufschaufeln 7 vorbei, entspannt und kühlt sich ab. Der Dampf verliert hierbei an innerer Energie, der in Rotations¬ energie des Rotors 5 umgewandelt wird. Die Rotation des Rotors 5 treibt schließlich einen nicht dargestellten Genera- tor zur Energieversorgung an. Die Hochdruck-Teilturbme 1 kann selbstverständlich andere Anlagenkomponenten außer einem Generator antreiben, beispielsweise einen Verdichter, eine Schiffschraube oder ähnliches. Der Dampf durchströmt den Stromungskanal 9 und strömt aus der Hochdruck-Teilturbme 1 aus dem Auslass 33 aus. Der Dampf übt hierbei eine Aktions¬ kraft 11 in Stromungsrichtung 13 aus. Die Folge ist, dass der Rotor 5 eine Bewegung in Stromungsrichtung 13 vollziehen wurde. Eine tatsächliche Bewegung des Rotors 5 wird durch einen Ausgleichskolben 4 verhindert. Dies geschieht, indem in einem Ausgleichskolbenvorraum 12 Dampf mit entsprechendem Druck eingeströmt wird, der dazu fuhrt, dass in Folge des sich aufbauenden Druckes im Ausgleichskolbenvorraum 12 eine Kraft entgegen der Stromungsrichtung 13 entsteht, die idealer Weise genau so groß sein sollte wie die Aktionskraft 11. Der in dem Ausgleichskolbenvorraum 12 eingeströmte Dampf ist in der Regel abgezweigter Frischdampf, der sehr hohe Temperaturparameter aufweist. Demzufolge werden der Einstrombereich 10 und der Ausgleichskolben 4 des Rotors 5 thermisch stark beansprucht .
In der FIG 2 ist ein Ausschnitt einer Dampfturbine 1 dargestellt. Die Dampfturbine weist ein Gehäuse 39 auf. Der Uber- sichtigkeit wegen ist lediglich ein Teil des Gehäuses 39 in der FIG 2 dargestellt. Das Gehäuse 39 konnte ein Innengehause 3 oder ein Außengehause 2 sein.
Die Dampfturbine gemäß FIG 2 wird erfmdungsgemaß derart aus- gefuhrt, dass das Gehäuse 39 eine Durchfuhrung 20 zum Durchfuhren von externem Kuhlmedium 21 aufweist. Der Rotor 5 wird hierbei zumindest teilweise hohl ausgeführt. Der Rotor 5 weist daher einen Hohlraum 22 auf. Der Rotor 5 weist eine Zu¬ leitung 23 zum Durchfuhren des externen Kuhlmediums 21 auf. Das Kuhlmedium 21 wird über die Durchfuhrung 20 und der Zuleitung 23 in den Hohlraum 22 gefuhrt. Eine erste Kuhlwirkung des Kuhlmediums 21 wird bereits im Gehäuse 39 im Bereich der Durchfuhrung 20 erreicht. Zweckmaßigerweise ist die Durchfuhrung 20 in der Nahe des Einstrombereiches 10 angeordnet. Der Einstrombereich 10 ist besonders thermisch belastet, da dort der Frischdampf einströmt. Das Kuhlmedium wird von der Durchfuhrung 20 zur Zuleitung 23 gefuhrt und in den Hohlraum 22 geströmt. Das Kuhlmedium 21 muss hierbei einen entsprechenden Druck aufweisen.
Die Zuleitung 23 kann durch radiale Bohrungen erfolgen. Andere Ausfuhrungsformen wie z.B. schräg verlaufende Zuleitungen sind denkbar. Der Übersichtlichkeit wegen sind in der FIG 2 weder Leit- 8 noch Laufschaufeln 7 dargestellt. Der Rotor 5 ist derart ausgebildet, dass das Kuhlmedium 21 über Rotorkuhlleitungen 24 aus dem Hohlraum 22 strombar ist.
Die Zuleitung 23 kann neben einem Ausgleichskolben 4 angeordnet werden. Da der Ausgleichskolben besonders thermisch belastet ist wäre dies eine vorteilhafte Ausfuhrungsform.
Das aus den Rotorkuhlleitung 24 ausströmende Kuhlmedium 21 vermischt sich mit dem aus dem Einstrombereich 10 kommenden Arbeitsmedium, das in der Regel ein Dampf ist. Das Kuhlmedium 21 kühlt unter anderem ab der Zuleitung 23 den Rotor 5 an einer Innenflache 25 des Hohlraums 22.
Die Dampfturbine 1 kann derart ausgebildet sein, dass der Rotor 5 Laufschaufeln 7 aufweist, die derart ausgebildet sind, dass das Kuhlmedium 21 durch die Laufschaufel 7 strom- bar ist. Dadurch werden die Laufschaufei 7 gekühlt. Die Lauf- schaufeln 7 weisen hierbei einzelne Durchtrittsoffnungen auf. Die Laufschaufeln 7 werden durch die so genannte Filmkuhlung gekühlt. Die Filmkuhlung ist aus der Gasturbinentechnologie bekannt .
Vorzugsweise ist der Rotor 5 derart ausgebildet, dass die Laufschaufelfuße, der Ausgleichskolben 4 oder andere kriti¬ sche Bereiche, die thermisch belastet sind, kuhlbar sind.
Der m FIG 2 dargestellte Rotor 5 ist an einer Schweißnaht 26 aus zwei Teilrotoren 27, 28 verschweißt. Dies bietet den Vor¬ teil, dass der erste Teilrotor 27, der thermisch besonders belastet ist, aus einem anderen thermisch belastbaren Material ausgeführt werden kann als der Teilrotor 28. Selbstver- standlich kann der Rotor 5 aus einem einheitlichen Material, d.h. ohne eine Schweißnaht 26 ausgeführt werden. In der FIG 3 ist ein Rotor dargestellt, der aus drei Schei- benlaufern 29, 30, 31 aufgebaut ist. In alternativen Ausfuh¬ rungsformen kann der Rotor 5 aus lediglich zwei Scheibenlau- fern ausgeführt werden. Die drei Scheibenlaufer 29, 30, 31 werden mittels eines Zugankers 32 fest miteinander verspannt. Dazu weist der Zuganker an seinen Enden ein Gewinde 34 auf. Durch Drehen des Zugankers 32 erfolgt eine Bewegung des Zugankers 32 in Rotationsachsenrichtung, was dazu fuhrt, dass die drei Scheibenlaufer 29, 30, 31 zusammengedruckt werden. Zweckmaßigerweise weisen die Scheibenlaufer 29, 30, 31 an ihren Beruhrungsstellen 35, 36 eine Verzahnung zum Übertragen eines Drehmomentes auf. Die Verzahnung kann als Hirth-, Rechteck- oder Trapezverzahnung ausgebildet sein.
In der FIG 4 ist eine erste Ausfuhrungsform einer Verzahnung 37, 38 dargestellt. Die Verzahnung 37, 38 ist als Dreiecksverzahnung 37 ausgeführt. Die Verzahnung 37 ist dabei derart ausgeführt, dass eine Zuleitung 23 ausgebildet ist. Durch die Zuleitung 23 ist das Kuhlmedium 21 strombar.
In der FIG 5 ist eine alternative Ausfuhrungsform einer Verzahnung 37, 38 dargestellt. Die in der FIG 5 dargestellte Verzahnung 38 ist als eine Trapezverzahnung 38 ausgebildet. Dabei ist die Trapezverzahnung 38 derart ausgeführt, dass Zu- leitungen 23 ausgebildet sind, durch die das Kuhlmedium 21 strombar ist.

Claims

Patentansprüche
1. Dampfturbine, umfassend ein Gehäuse (2, 3, 39) und einen Rotor (5), wobei das Gehäuse (2, 3, 39) eine Durchfuhrung (20) zum Durchfuhren von externem Kuhlmedium (21) aufweist, wobei der Rotor (5) zumindest teilweise hohl ausgeführt ist, dadurch gekennzeichnet, dass der Rotor (5) eine Zuleitung (23) zum Durchfuhren des externen Kuhlmediums (21) in den Hohlraum (22) des Rotors (5) aufweist .
2. Dampfturbine nach Anspruch 1, wobei der Rotor (5) derart ausgebildet ist, dass das Kuhlmedium (21) über Rotorkuhlleitungen (24) aus dem Hohlraum (22) strombar ist.
3. Dampfturbine nach Anspruch 1 oder 2, bei der die Zuleitung (23) im Bereich eines Emstromberei- ches (10) angeordnet ist.
4. Dampfturbine nach Anspruch 1, 2 oder 3, bei der die Zuleitung (23) neben einem Ausgleichskolben (4) angeordnet ist.
5. Dampfturbine nach einem der vorhergehenden Ansprüche, bei der das aus dem Rotor (5) im Betrieb ausströmende Kuhlmedium (21) mit einem Stromungsmedium vermischbar ist.
6. Dampfturbine nach einem der vorhergehenden Ansprüche, bei der der Rotor (5) Laufschaufeln (7) aufweist, die derart ausgebildet sind, dass das Kuhlmedium (21) durch die Laufschaufeln (7) strom- bar ist.
7. Dampfturbine nach Anspruch 6, bei der die Laufschaufeln (7) mittels Filmkuhlung kuhlbar sind.
8. Dampfturbine nach einem der vorhergehenden Ansprüche, wobei der Rotor (5) derart ausgebildet ist, dass Laufschaufelfuße, der Schubausgleichskolben (4) oder andere thermisch belastete Bereiche des Rotors (5) kuhlbar sind.
9. Dampfturbine nach einem der vorhergehenden Ansprüche, wobei der Rotor (5) Austrittsoffnungen zum radialen Austreten des Kuhldampfes (21) aufweist.
10. Dampfturbine nach einem der vorhergehenden Ansprüche, wobei der Rotor (5) als verschweißte Hohlwelle ausgeführt ist.
11. Dampfturbine nach einem der Ansprüche 1 bis 9, bei dem der Rotor (5) als ein mit einem Zuganker (32) verspannter Scheibenlaufer (29, 30, 31) ausgeführt ist.
12. Dampfturbine nach Anspruch 11, bei dem die Scheibenlaufer (29, 30, 31) mit Verzahnungen (37,38) zum Übertragen eines Drehmomentes ausgebildet sind.
13. Dampfturbine nach Anspruch 12, wobei die Verzahnung (37, 38) als Hirth-, Rechteck- oder Trapezverzahnung ausgebildet ist.
14. Dampfturbine nach Anspruch 11 oder 12, bei der die Verzahnung (37, 38) derart ausgebildet ist, dass das Kuhlmedium (21) zwischen zwei benachbarten Schei- benlaufern strombar ist.
15. Dampfturbine nach Anspruch 14, wobei die Verzahnung (37, 38) Durchtrittsoffnungen aufweist
EP07803598A 2006-10-09 2007-09-25 Rotor für eine strömungsmaschine Not-in-force EP2078137B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07803598A EP2078137B1 (de) 2006-10-09 2007-09-25 Rotor für eine strömungsmaschine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06021139A EP1911933A1 (de) 2006-10-09 2006-10-09 Rotor für eine Strömungsmaschine
EP07803598A EP2078137B1 (de) 2006-10-09 2007-09-25 Rotor für eine strömungsmaschine
PCT/EP2007/060141 WO2008043663A1 (de) 2006-10-09 2007-09-25 Rotor für eine strömungsmaschine

Publications (2)

Publication Number Publication Date
EP2078137A1 true EP2078137A1 (de) 2009-07-15
EP2078137B1 EP2078137B1 (de) 2010-02-17

Family

ID=37872372

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06021139A Withdrawn EP1911933A1 (de) 2006-10-09 2006-10-09 Rotor für eine Strömungsmaschine
EP07803598A Not-in-force EP2078137B1 (de) 2006-10-09 2007-09-25 Rotor für eine strömungsmaschine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06021139A Withdrawn EP1911933A1 (de) 2006-10-09 2006-10-09 Rotor für eine Strömungsmaschine

Country Status (5)

Country Link
EP (2) EP1911933A1 (de)
JP (1) JP4990365B2 (de)
AT (1) ATE458125T1 (de)
DE (1) DE502007002883D1 (de)
WO (1) WO2008043663A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699978A1 (de) * 2008-11-26 2010-05-31 Alstom Technology Ltd Dampfturbine.
ITMI20091740A1 (it) * 2009-10-12 2011-04-13 Alstom Technology Ltd Turbina a vapore assiale alimentata radialmente ad alta temperatura
JP6178273B2 (ja) * 2014-03-28 2017-08-09 株式会社東芝 蒸気タービン
EP2998506A1 (de) * 2014-09-19 2016-03-23 Siemens Aktiengesellschaft System zur Verringerung der Anfahrzeit einer Dampfturbine
CN109236379A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的双流高温转子
CN109236378A (zh) * 2018-09-11 2019-01-18 上海发电设备成套设计研究院有限责任公司 一种内部蒸汽冷却的高参数汽轮机的单流高温转子
CN109356663A (zh) * 2018-12-10 2019-02-19 上海发电设备成套设计研究院有限责任公司 一种640℃~650℃汽轮机内部冷却的高温转子
JP7242597B2 (ja) * 2020-03-12 2023-03-20 東芝エネルギーシステムズ株式会社 タービンロータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857007A (ja) * 1981-09-30 1983-04-05 Hitachi Ltd 蒸気タ−ビンのノズルダイヤフラム
JPS63167001A (ja) * 1986-12-26 1988-07-11 Fuji Electric Co Ltd 反動タ−ビン
DE4239710A1 (de) * 1992-11-26 1994-06-01 Abb Patent Gmbh Läufer einer Turbine
ATE230065T1 (de) * 1996-06-21 2003-01-15 Siemens Ag Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle
DE59803075D1 (de) * 1997-06-27 2002-03-21 Siemens Ag Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
JPH11257007A (ja) * 1998-03-17 1999-09-21 Hitachi Ltd 蒸気タービン翼勘合部
US6695582B2 (en) * 2002-06-06 2004-02-24 General Electric Company Turbine blade wall cooling apparatus and method of fabrication
EP1452688A1 (de) * 2003-02-05 2004-09-01 Siemens Aktiengesellschaft Dampfturbinenrotor sowie Verfahren und Verwendung einer aktiven Kühlung eines Dampfturbinenrotors
DE10355738A1 (de) * 2003-11-28 2005-06-16 Alstom Technology Ltd Rotor für eine Turbine
EP1674669A1 (de) * 2004-12-21 2006-06-28 Siemens Aktiengesellschaft Verfahren zur Kühlung einer Dampfturbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008043663A1 *

Also Published As

Publication number Publication date
ATE458125T1 (de) 2010-03-15
WO2008043663A1 (de) 2008-04-17
EP2078137B1 (de) 2010-02-17
EP1911933A1 (de) 2008-04-16
DE502007002883D1 (de) 2010-04-01
JP2010506080A (ja) 2010-02-25
JP4990365B2 (ja) 2012-08-01

Similar Documents

Publication Publication Date Title
EP1945911B1 (de) Dampfturbine
EP2078137B1 (de) Rotor für eine strömungsmaschine
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
DE859089C (de) Beschaufelte, von einem Arbeitsmittel durchstroemte Kreiselmaschine
EP0906494B1 (de) Turbinenwelle sowie verfahren zur kühlung einer turbinenwelle
EP0991850B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
EP2379846B1 (de) Leitschaufelträger einer strömungsmaschine
DE1601564A1 (de) Mantelring fuer Gasturbinenanlagen
EP1389690A1 (de) Innenkühlbare Schraube
DE1601557A1 (de) Stroemungsmittelgekuehlte Statoranordnung
WO2012022551A2 (de) Interne kühlung für eine strömungsmaschine
DE830853C (de) Duesenring fuer mit hohen Betriebstemperaturen arbeitende Turbinen, insbesondere Gasturbinen
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
EP2206885A1 (de) Gasturbine
EP2823154B1 (de) Kühlmittelüberbrückungsleitung, zugehörige turbinenschaufel, gasturbine und kraftwerksanlage
EP3155226B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
WO2000060219A1 (de) Strömungsmaschine mit einer kühlbaren anordnung von wandelementen und verfahren zur kühlung einer anordnung von wandelementen
EP2347100B1 (de) Gasturbine mit kühleinsatz
DE4336143A1 (de) Kühlverfahren für Turbomaschinen
EP1892376B1 (de) Gekühlter Dampfturbinenrotor mit Innenrohr
WO2006072528A1 (de) Gasturbine mit einem vordrallerzeuger sowie ein verfahren zum betreiben einer gasturbine
EP1895094B1 (de) Drallgekühlte Rotor-Schweissnaht
EP1905949A1 (de) Kühlung eines Dampfturbinenbauteils
EP2211017A1 (de) Rotor mit Hohlraum für eine Strömungsmaschine
EP1803903A1 (de) Antriebsvorrichtung zum Drehen von verstellbaren Schaufeln einer Turbomaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007002883

Country of ref document: DE

Date of ref document: 20100401

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100217

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100518

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100517

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100925

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 458125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151120

Year of fee payment: 9

Ref country code: CH

Payment date: 20151202

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160914

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160914

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160928

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007002883

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170925

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170925