EP2066637A1 - Nouveaux dérivés de bipyridine substitués et leur utilisation en tant que ligands du récepteur d'adénosine - Google Patents

Nouveaux dérivés de bipyridine substitués et leur utilisation en tant que ligands du récepteur d'adénosine

Info

Publication number
EP2066637A1
EP2066637A1 EP07801993A EP07801993A EP2066637A1 EP 2066637 A1 EP2066637 A1 EP 2066637A1 EP 07801993 A EP07801993 A EP 07801993A EP 07801993 A EP07801993 A EP 07801993A EP 2066637 A1 EP2066637 A1 EP 2066637A1
Authority
EP
European Patent Office
Prior art keywords
substituted
formula
hydroxy
alkyl
alkylamino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07801993A
Other languages
German (de)
English (en)
Inventor
Peter Nell
Walter Hübsch
Barbara ALBRECHT-KÜPPER
Joerg Keldenich
Andreas Knorr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Healthcare AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare AG filed Critical Bayer Healthcare AG
Publication of EP2066637A1 publication Critical patent/EP2066637A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/501Pyridazines; Hydrogenated pyridazines not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • C07D213/85Nitriles in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present application relates to novel substituted 2,4'- and 3,4'-bipyridine derivatives, processes for their preparation, their use for the treatment and / or prophylaxis of diseases and their use for the preparation of medicaments for the treatment and / or prophylaxis of Diseases, preferably for the treatment and / or prevention of hypertension and other cardiovascular diseases.
  • Adenosine a purine nucleoside
  • Adenosine is present in all cells and is released from a variety of physiological and pathophysiological stimuli.
  • Adenosine is produced intracellularly by the degradation of adenosine 5'-monophosphate (AMP) and S-adenosyl homocysteine as an intermediate, but can be released from the cell and then functions as a hormone-like substance or neurotransmitter through binding to specific receptors.
  • AMP adenosine 5'-monophosphate
  • S-adenosyl homocysteine as an intermediate, but can be released from the cell and then functions as a hormone-like substance or neurotransmitter through binding to specific receptors.
  • adenosine Under normoxic conditions, the concentration of free adenosine in the extracellular space is very low. However, the extracellular concentration of adenosine in the affected organs increases dramatically under both ischemic and hypoxic conditions. For example, it is known that adenosine inhibits platelet aggregation and increases blood flow in the coronary arteries. It also affects blood pressure, heart rate, neurotransmitter release and lymphocyte differentiation. In adipocytes, adenosine is able to inhibit lipolysis and thus reduce the concentration of free fatty acids and triglycerides in the blood.
  • adenosine aim to increase the supply of oxygen in the affected organs or to reduce the metabolism of these organs in order to achieve an adaptation of the organ metabolism to the organ perfusion under ischemic or hypoxic conditions.
  • adenosine receptor-selective ligands are substances which bind selectively to one or more subtypes of the adenosine receptors and either mimic the action of adenosine (adenosine agonists) or block its action (adenosine antagonists).
  • adenosine receptors are mediated intracellularly by the messenger cAMP.
  • an activation of the membrane-bound adenylate cyclase leads to an increase in the intracellular cAMP, while the binding of adenosine to the Al or A3 receptors causes a decrease in the intracellular cAMP content via adenylate cyclase inhibition.
  • adenosine receptors In the cardiovascular system, the main effects of activation of adenosine receptors are bradycardia, negative inotropy and protection of the heart from ischemia (preconditioning) via Al receptors, dilation of the vessels via A2a and A2b receptors, as well as inhibition of fibroblasts and smooth muscle cell proliferation via A2b receptors.
  • A2b receptors by adenosine or specific A2b agonists leads to a blood pressure reduction via the dilation of vessels. Lowering blood pressure is accompanied by a reflex increase in heart rate. Heart rate increase can be reduced by activation of Al receptors by specific Al agonists.
  • the above-mentioned receptor selectivity can be determined by the action of the substances on cell lines expressing the respective receptor subtypes after stable transfection with the corresponding cDNA (see in this regard the document ME Olah, H. Ren, J. Ostrowski, KA Jacobson, GL Stiles , "Cloning, expression, and characterization of the unique bovine al adenosine receptor.” Studies on the ligand binding site by site-directed mutagenesis ", J. Biol. Chem. 267 (1992), pp. 10764-10770, the disclosure of which is hereby incorporated by reference Scope is incorporated by reference).
  • adenosine receptor-specific valid ligands are mainly derivatives based on the natural adenosine [S.-A. Poulsen and R.J. Quinn, "Adenosine Receptors: New Opportunities for Future Drugs", Bioorganic and Medicinal Chemistry 6 (1998), pages 619-641].
  • these known from the prior art adenosine ligands usually have the disadvantage that they do not really act receptor specific, are less effective than the natural adenosine or after oral administration are only very weakly effective. Therefore, they are mainly used only for experimental purposes.
  • WO 01/25210 and WO 02/070485 describe substituted 2-thio-3,5-dicyano-4-aryl-6-amino-pyridines as adenosine receptor ligands for the treatment of diseases.
  • 2-thio-3,5-dicyano-4-phenyl-6-aminopyridines are disclosed as selective ligands of the adenosine A1 receptor
  • phenylaminothiazole derivatives are described as dual adenosine A1 / A2b agonists claimed for the treatment of hypertension and other cardiovascular diseases.
  • these compounds have, in some cases only very limited solubility in water and other physiological media, which, for example, complicates their formability or even a parenteral application.
  • WO 01/62233 discloses various pyridine and pyrimidine derivatives and their use as adenosine receptor modulators. Substituted 3,5-dicyanopyridines as calcium-dependent potassium channel openers for the treatment of urological diseases are claimed in EP 1 302 463-A1.
  • WO 2004/054505 claims the use of aminocyanopyridine derivatives as MK 2 inhibitors for the treatment of TNF-mediated diseases.
  • the use of 4-aryl- or 4-heteroaryl-substituted aminocyanopyridines as androgen receptor modulators is described in US 2005/0182105.
  • WO 02/50071 discloses amino thiazole derivatives as tyrosine kinase inhibitors for the treatment of cancer as well as immunological and allergic diseases.
  • the object of the present invention is to provide novel compounds which are selective agonists of the adenosine A1 receptor, as selective agonists of the adenosine A2b receptor or as selective dual agonists of the adenosine A1 and A2b receptor, as such for the treatment and / or prevention in particular of hypertension and other cardiovascular diseases, the metabolic syndrome, diabetes and dyslipidemias and organ protection in transplants and surgical procedures are suitable and beyond have improved solubility in water and physiological media.
  • the present invention relates to compounds of the formula (I)
  • one of the two ring members X and Y is N and the other is CR 6 , wherein
  • R 6 is hydrogen or (C 1 -C 4 ) -alkyl
  • Z is NR 7 or O, in which
  • R 7 is hydrogen or (CrC 4) alkyl which may be substituted with hydroxy or (C r C 4) alkoxy,
  • R 1 and R 2 are identical or different and are each independently of the other hydrogen or (C 1 -C 6 ) -alkyl which is monosubstituted or disubstituted, identical or different, with hydroxyl, (C 1 -C 4 ) -alkoxy,
  • Amino, mono- (Ci-C 4 ) -alkylamino, di- (C r C 4 ) alkylamino, carboxyl, (Ci-C 4 ) alkoxycarbonyl and / or a 4- to 7-membered heterocycle may be substituted , stand,
  • heterocycle contains one or two ring heteroatoms from the series N, O and / or S and in turn once or twice, identically or differently, with (Ci-C 4 ) - alkyl, hydroxy, oxo and / or (Ci -C 4 ) -alkoxy may be substituted,
  • R 1 and R 2 together with the nitrogen atom to which they are attached form a 4- to 7-membered heterocycle containing one further ring heteroatom from the series N, O or S and one or two times, same or different , may be substituted by (C 1 -C 4 ) -alkyl, hydroxyl, oxo and / or (C 1 -C 4 ) -alkoxy,
  • R 3 is hydrogen or (Ci-Ce) -alkyl, which is mono- or disubstituted by identical or different (C 3 -C 6) cycloalkyl, oxo, hydroxy, (C r C4) alkoxy, carboxyl, amino , mono- (C, -C 4) - alkylamino and / or di- (C iC 4) alkylamino may be substituted, or (C 4 -Ce) -CyCIo- alkyl,
  • the mentioned cycloalkyl radicals in turn up to two times by identical or different, may be substituted with (C r C 4) alkyl, hydroxy, oxo and / or (C r C 4) alkoxy, and these cycloalkyl groups one ring -CH 2 group can be exchanged for an O atom,
  • R 4 is hydrogen, halogen, (C r C4) alkyl or (C r C 4) alkoxy, wherein alkyl and alkoxy can be up to trisubstituted by fluorine,
  • R 5 is (C 6 -C 10) -aryl or 5- to 10-membered heteroaryl having up to three ring heteroatoms from the series N, O and / or S, which in each case
  • (U) may be substituted with pyrrolidines, piperidino, morpholino, piperazino, N '- (Ci-C 4 ) alkylpiperazino or a group of the formula -LR 8 , wherein
  • L is a bond, NH or O means
  • R 8 is phenyl or 5- or 6-membered heteroaryl having up to three ring heteroatoms from the series N, O and / or S, which in each case one to three times, identically or differently, with halogen, nitro, cyano, (Ci -C) -Allyl, trifluoromethyl, hydroxy, (C 1 -C 6 ) -alkoxy, difluoromethoxy, trifluoromethoxy, amino, mono- (Ci-C 6) alkylamino, di- (Ci-C 6) alkylamino, (C r C6) -alkoxycarbonyl and / or carboxyl can be substituted,
  • Compounds according to the invention are the compounds of the formula (I) and their salts, solvates and solvates of the salts comprising the compounds of the formulas below and their salts, solvates and solvates of the salts encompassed by formula (I) and those of the formula (I), hereinafter referred to as exemplary compounds and their salts, solvates and solvates of the salts, as far as the compounds of formula (I), the compounds mentioned below are not already salts, solvates and solvates of the salts.
  • the compounds of the invention may exist in stereoisomeric forms (enantiomers, diastereomers).
  • the invention therefore includes the enantiomers or diastereomers and their respective mixtures. From such mixtures of enantiomers and / or diastereomers, the stereoisomerically uniform components can be isolated in a known manner.
  • the present invention encompasses all tautomeric forms.
  • Salts used in the context of the present invention are physiologically acceptable salts of the compounds according to the invention. Also included are salts which are themselves unsuitable for pharmaceutical applications but can be used, for example, for the isolation or purification of the compounds of the invention.
  • Physiologically acceptable salts of the compounds of the invention include acid addition salts of mineral acids, carboxylic acids and sulfonic acids, e.g. Salts of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, naphthalene disulfonic acid, acetic acid, trifluoroacetic acid, propionic acid, lactic acid, tartaric acid, malic acid, citric acid, fumaric acid, maleic acid and benzoic acid.
  • salts of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, naphthalene disulfonic acid acetic acid, trifluoroacetic acid, propi
  • Physiologically acceptable salts of the compounds according to the invention also include salts of customary bases, such as, by way of example and by way of preference, alkali metal salts (for example sodium and potassium salts), alkaline earth salts (for example calcium and magnesium salts) and ammonium salts derived from ammonia or organic amines having 1 to 16 carbon atoms, as exemplified and preferably ethylamine, diethylamine, triethylamine, ethyldiisopropylamine, monoethanolamine, diethanolamine, Triethanolamine, dicyclohexylamine, dimethylaminoethanol, procaine, dibenzylamine, N-methylmorpholine, arginine, lysine, ethylenediamine and N-methylpiperidine.
  • customary bases such as, by way of example and by way of preference, alkali metal salts (for example sodium and potassium salts), alkaline earth salts (for example calcium and magnesium salts) and ammoni
  • solvates are those forms of the compounds according to the invention which form a complex in the solid or liquid state by coordination with solvent molecules. Hydrates are a special form of solvates that coordinate with water. As solvates, hydrates are preferred in the context of the present invention.
  • the present invention also includes prodrugs of the compounds of the invention.
  • prodrugs includes compounds which may themselves be biologically active or inactive, but during their residence time in the body are converted to compounds of the invention (for example metabolically or hydrolytically).
  • (C 1 -Q) -AlkVl and (C 1 -C 1 VAIkVl in the context of the invention are a straight-chain or branched alkyl radical having 1 to 6, 1 to 4 or 1 to 3 carbon atoms.
  • a straight-chain or branched one is preferred Alkyl radical having from 1 to 4, more preferably from 1 to 3, carbon atoms, by way of example and by preference: methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 1 Ethylpropyl, n-pentyl and n-hexyl.
  • (C7-Cfi) -alkenyl in the context of the invention is a straight-chain or branched alkenyl radical having 2 to 6 carbon atoms and one or two double bonds. Preference is given to a straight-chain or branched alkenyl radical having 2 to 4 carbon atoms and one double bond.
  • Examples which may be mentioned are: methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, tert-butoxy, n-pentoxy and n-hexoxy.
  • (QC alkoxycarbonyl and (C j -QVAlkoxycarbonyl are in the context of the invention a straight-chain or branched alkoxy radical having from 1 to 6 or 1 to 4 carbon atoms, which is linked via a carbonyl group.
  • a linear or branched alkoxy carbonyl group is preferred with From 1 to 4 carbon atoms in the alkoxy group, by way of example and by preference: methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl and tert-butoxycarbonyl.
  • Mono-CC j -QValkylamino and mono-fCVCO-alkylamino stand for the purposes of the invention for an amino group having a straight-chain or branched alkyl substituent which has 1 to 6, 1 to 4 or 1 to 3 carbon atoms. Preference is given to a straight-chain or branched monoalkylamino radical having 1 to 4, particularly preferably 1 to 3, carbon atoms.
  • Examples which may be mentioned are: methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, tert-butylamino, n-pentylamino and n-hexylamino.
  • Mono (C 2 -CW) -alkenylamino in the context of the invention represents an amino group having a straight-chain or branched alkenyl substituent which has 2 to 6 carbon atoms. Preference is given to a straight-chain or branched monoalkenylamino radical having 1 to 4 carbon atoms.
  • allylamino 1-methylprop-2-en-1-ylamino, 2-methylprop-2-en-1-ylamino, but-2-en-1-ylamino and 3-but-1-enyl ylamino.
  • DHCpCaValkylamino and di-fCVCO-alkylamino in the context of the invention represent an amino group having two identical or different straight-chain or branched alkyl substituents, each having 1 to 6, 1 to 4 or 1 to 3 carbon atoms. Preference is given to straight-chain or branched dialkylamino radicals each having 1 to 4, particularly preferably 1 to 3, carbon atoms in each case.
  • N N-dimethylamino, N, N-diethylamino, N-ethyl-N-methylamino, N-methyl-Nn-propylamino, N-isopropyl-Nn-propylamino, N, N-diisopropylamino, Nn Butyl-N-methylamino, N-tert-butyl-N-methylamino, N-ethyl-Nn-pentylamino and Nn-hexyl-N-methylamino.
  • (Cfi-Cjn) -aryl represents in the context of the invention an aromatic carbocycle having 6 or 10 ring carbon atoms.
  • Preferred aryl radicals are phenyl and ⁇ aphthyl.
  • a 4- to 7-membered heterocycle in the context of the invention is a saturated heterocycle having a total of 4 to 7 ring atoms which contains one or two ring heteroatoms from the series ⁇ , O and / or S and via a ring carbon atom or optionally a ring nitrogen atom is linked.
  • Preferred is a 5- or 6-membered heterocycle having one or two ring heteroatoms from the series ⁇ and / or O.
  • 5- to 10-membered heteroaryl is in the context of the invention for a mono- or optionally bicyclic aromatic heterocycle (heteroaromatic) having a total of 5 to 10 ring atoms, up to three identical or different ring heteroatoms from the series N, O and contains S and is linked via a ring carbon atom or optionally via a ring nitrogen atom.
  • aromatic heterocycle heteromatic
  • Examples which may be mentioned are: furyl, pyrrolyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxa zolyl, benzothiazolyl, benzotriazolyl, indolyl, indazolyl, quinolinyl, isoquinolinyl, naphthyridinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pyrazolo [3,4-b] pyridinyl.
  • Halogen in the context of the invention includes fluorine, chlorine, bromine and iodine. Preference is given to chlorine or fluorine.
  • radicals are substituted in the compounds according to the invention, the radicals can, unless otherwise specified, be monosubstituted or polysubstituted. In the context of the present invention, the meaning is independent of each other for all radicals which occur repeatedly. Substitution with one, two or three identical or different substituents is preferred. Most preferably, the substitution with one or two identical or different substituents.
  • one of the two ring members X and Y is N and the other is CH,
  • Z is NR 7 or O, in which
  • R 7 is hydrogen or methyl
  • R 1 is hydrogen or (C r C 4) alkyl substituted with hydroxy, (C r C4) alkoxy, amino, mono- (C r C 4) alkylamino, di- (Ci-C 4) alkylamino , Carboxyl, (C 1 -C 4 ) -alkoxycarbonyl or a 5- or 6-membered heterocycle may be substituted, wherein said heterocycle contains one or two ring heteroatoms from the series N and / or O and in turn may be monosubstituted or disubstituted, identically or differently, by methyl, ethyl, hydroxy, methoxy and / or ethoxy,
  • R 2 is hydrogen or methyl
  • R 1 and R 2 together with the nitrogen atom to which they are attached form a 5- or 6-membered heterocycle containing a further ring heteroatom from the series N and O and one or two times, identical or different, with Methyl, ethyl, hydroxy, methoxy and / or ethoxy may be substituted,
  • R 3 is (Ci-C 4) -alkyl which is mono- or disubstituted by identical or different (C 3 -C 5) cycloalkyl, oxo, hydroxy, (C r C 3) alkoxy, amino, mono- (Ci-C 3) alkylamino and / or di- (C r C 3) - alkylamino may be substituted, or represents cyclopentyl or cyclohexyl,
  • R 4 is hydrogen, fluorine or chlorine
  • R 5 is phenyl or 5- or 6-membered heteroaryl having up to three ring heteroatoms from the series N, O and / or S, which in each case
  • (U) may be substituted with morpholino, N '- (Ci-C 4 ) alkylpiperazino or a group of the formula -LR 8 , wherein
  • L is a bond or NH
  • R 8 is phenyl or 5- or 6-membered heteroaryl having up to three ring heteroatoms from the series N, O and / or S, which in each case one to three times, identically or differently, with fluorine, chlorine, cyano, (C r C 4 ) -alkyl, trifluoromethyl, (C 1 -C 4 ) -alkoxy, trifluoromethoxy and / or carboxyl may be substituted,
  • one of the two ring members X and Y is N and the other is CH,
  • Z is NH or O
  • R 1 is hydrogen or (Ci-C 4) alkyl substituted with hydroxy, (C 1 -Q) -alkoxy, amino, mono- (C r C 4) -alkylamino or di- (C r C 4) alkylamino may be substituted,
  • R 2 is hydrogen or methyl
  • R 1 and R 2 together with the nitrogen atom to which they are attached form a pyrrolidino, piperidino, morpholino or piperazino ring, each one or two times, identically or differently, with methyl, ethyl, hydroxy, methoxy and / or ethoxy may be substituted,
  • R 3 is (Q-GO-alkyl which may be monosubstituted or disubstituted by identical or different substituents, oxo, hydroxy, methoxy, ethoxy and / or amino,
  • R 4 is hydrogen
  • R 5 is phenyl or 5- or 6-membered heteroaryl having up to two ring heteroatoms from the series N, O and / or S, which in each case
  • (//) may be substituted with a group of the formula -LR 8 wherein L is a bond or NH
  • R 8 is phenyl or pyridyl, which in each case may be monosubstituted or disubstituted, identical or different, with fluorine, chlorine, cyano, methyl, trifluoromethyl and / or methoxy,
  • R 1 is hydrogen or (C 1 -C 4 ) -alkyl which is hydroxyl, (C 1 -C 4 ) -alkoxy, amino, mono- (Q-C 4 ) -alkylamino or di- (C 1 -C 4 ) -alkylamino may be substituted,
  • R 2 is hydrogen or methyl
  • R 1 and R 2 together with the nitrogen atom to which they are attached form a pyrrolidino, piperidino, morpholino, piperazino or N'-methylpiperazino ring,
  • R 3 is 2-hydroxyethyl, 2-hydroxy-1-methylethyl, 2-hydroxypropyl, 2-hydroxy-2-methylpropyl, 3-hydroxypropyl or 2,3-dihydroxypropyl,
  • R 4 is hydrogen
  • R 5 is pyrazolyl, oxazolyl, thiazolyl, pyridyl or pyrimidinyl, each of which
  • (/) may be substituted with methyl, ethyl or amino
  • R 8 is phenyl or pyridyl, which in each case may be monosubstituted or disubstituted, identical or different, with fluorine, chlorine, cyano, methyl and / or methoxy,
  • one of the two ring members X and Y is N and the other is CH,
  • Z is NH or O
  • R 1 and R 2 are each hydrogen
  • R 3 is 2-hydroxyethyl, 2-hydroxy-1-methylethyl, 2-hydroxypropyl, 2-hydroxy-2-methylpropyl, 3-hydroxypropyl, 2,3-dihydroxypropyl or acetyl,
  • R 4 is hydrogen
  • R 5 is oxazolyl, thiazolyl or pyridyl, each of which may be substituted with methyl, ethyl, amino or a group of the formula -LR 8 wherein
  • L is a bond or NH
  • R 8 is phenyl or pyridyl, which in each case may be monosubstituted or disubstituted, identical or different, with fluorine, chlorine, cyano, methyl and / or methoxy,
  • Another object of the present invention is a process for the preparation of the compounds of the formula (I) according to the invention, which comprises reacting a compound of the formula (D)
  • Q is a suitable leaving group, preferably halogen, in particular chlorine, bromine or iodine, or mesylate, tosylate or triflate,
  • Suitable solvents for the process according to the invention are all organic solvents which are inert under the reaction conditions. These include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol, ketones such as acetone and methyl ethyl ketone, acyclic and cyclic ethers such as diethyl ether, 1- methyl tert-butyl ether, 1,2- Dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate or butyl acetate, hydrocarbons such as benzene, toluene, xylene, hexane and cyclohexane, chlorinated hydrocarbons such as dichloromethane, trichloromethane and chlorobenzene, or other solvents such as dimethylformamide (DMF), dimethyl sulfoxide (DM
  • Suitable bases are the customary inorganic or organic bases. These include preferably alkali metal hydroxides such as, for example, lithium, sodium or potassium hydroxide, alkali metal carbonates such as lithium, sodium, potassium or cesium carbonate, alkali hydrogen carbonates such as sodium or potassium bicarbonate, alkali metal alcoholates such as sodium or potassium methoxide, sodium or potassium ethanolate or potassium hydroxide.
  • alkali metal hydroxides such as, for example, lithium, sodium or potassium hydroxide
  • alkali metal carbonates such as lithium, sodium, potassium or cesium carbonate
  • alkali hydrogen carbonates such as sodium or potassium bicarbonate
  • alkali metal alcoholates such as sodium or potassium methoxide, sodium or potassium ethanolate or potassium hydroxide.
  • amides such as sodium amide, lithium, sodium or potassium bis (trimethylsilyl) amide or lithium diisopropylamide
  • organometallic compounds such as butyllithium or phenyllithium
  • organic amines such as triethylamine, diisopropylethylamine, pyridine, 1,8-diazabicyclo [5.4 .0] undec-7-ene (DBU) or 1,5-diazabicyclo [4.3.0] non-5-ene (DBN).
  • DBU 1,8-diazabicyclo [5.4 .0] undec-7-ene
  • DBN 1,5-diazabicyclo [4.3.0] non-5-ene
  • the base may in this case be used in an amount of 1 to 10 mol, preferably from 1 to 5 mol, in particular from 1 to 4 mol, based on 1 mol of the compound of the formula (IT).
  • the reaction is generally carried out in a temperature range from -78 ° C to +140 0 C, forthcoming Trains t in the range from -20 0 C to +60 0 C, especially at 0 0 C to +40 0 C.
  • the reaction can in normal, elevated or reduced pressure (eg in the range of 0.5 to 5 bar). Generally, one works at normal pressure.
  • the alkali metal sulfide used is preferably sodium sulfide in an amount of from 1 to 10 mol, preferably from 1 to 5 mol, in particular from 1 to 4 mol, based on 1 mol of the compound of the formula (V).
  • Suitable solvents are all organic solvents which are inert under the reaction conditions. These include preferably dimethylformamide, N-methylpyrrolidinone, pyridine and acetonitrile. It is likewise possible to use mixtures of the abovementioned solvents. Particularly preferred is dimethylformamide.
  • the reaction is generally carried out in a temperature range of +20 0 C to +140 0 C, forthcoming Trains t in the range of +20 0 C to +120 0 C, in particular at +60 0 C to +100 0 C.
  • the reaction can be carried out at normal, elevated or reduced pressure (eg in the range of 0.5 to 5 bar). Generally, one works at normal pressure.
  • the compounds of the formula (V) can be prepared analogously to processes described in the literature [cf. eg Kambe et al., Synthesis, 531-533 (1981); Elnagdi et al., Z. Naturforsch. 47b. 572-578 (1991); Reddy et al., J. Med. Chem. 49, 607-615 (2006); Evdokimov et al., Org. LeU. 8, 899-902 (2006)].
  • Compounds of the formula (II) in which at least one of the two radicals R 1 and R 2 is not hydrogen may be prepared by first compounding compounds of the formula (V) with copper (II) chloride and isoamyl nitrite in a suitable solvent of the formula (VI)
  • R 1A has the abovementioned meaning of R 1 ,
  • R> 2A has the abovementioned meaning of R
  • the process step (V) - »(VI) is generally carried out with a molar ratio of 2 to 12 moles of copper ( ⁇ ) chloride and 2 to 12 moles of isoamyl nitrite based on 1 mol of the compound of formula (V).
  • Suitable solvents for this process step are all organic solvents which are inert under the reaction conditions. These include acyclic and cyclic ethers such as diethyl ether and tetrahydrofuran, esters such as ethyl acetate or butyl acetate, hydrocarbons such as benzene, toluene, xylene, hexane and cyclohexane, chlorinated hydrocarbons such as dichloromethane, 1, 2-dichloroethane and chlorobenzene, or other solvents such as Dimethylformamide, acetonitrile or pyridine. It is likewise possible to use mixtures of the abovementioned solvents.
  • acyclic and cyclic ethers such as diethyl ether and tetrahydrofuran
  • esters such as ethyl acetate or butyl acetate
  • hydrocarbons such as benzene, toluene, xylene,
  • Preferred solvents are acetonitrile and dimethylformamide.
  • the reaction is generally carried out in a temperature range from -78 ° C to +180 0 C, preferably in the range of +20 0 C to +100 0 C, in particular at +20 0 C to +60 0 C.
  • the reaction can be carried out under normal , increased or decreased pressure (eg in the range of 0.5 to 5 bar). Generally, one works at normal pressure.
  • the process step (VI) + (VII) -> (VOT) is generally carried out with a molar ratio of 1 to 8 mol of the compound of formula (VIT) based on 1 mol of the compound of formula (VI).
  • Suitable solvents for this process step are all organic solvents which are inert under the reaction conditions. These include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol, ketones such as acetone and methyl ethyl ketone, acyclic and cyclic ethers such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate or Butyl acetate, hydrocarbons such as benzene, toluene, xylene, hexane and cyclohexane, chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chlorobenzene, or other solvents such as dimethylformamide, acetonitrile, pyridine or dimethyl sulfoxide. Water is also suitable as a
  • the reaction is generally carried out in a temperature range from 0 ° C to +180 0 C, preferably in the range of +20 0 C to +120 0 C, in particular at +20 0 C to +100 0 C.
  • the reaction may be at atmospheric, increased or decreased pressure (eg in the range of 0.5 to 5 bar). Generally, one works at normal pressure.
  • the process step (VHT) - »(H) is generally carried out with a molar ratio of 1 to 8 MoI sodium sulfide based on 1 mol of the compound of formula (VIET).
  • Suitable solvents for this process step are all organic solvents which are inert under the reaction conditions. These include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol, ketones such as acetone and methyl ethyl ketone, acyclic and cyclic ethers such as diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran and dioxane, esters such as ethyl acetate or Butyl acetate, hydrocarbons such as benzene, toluene, xylene, hexane and cyclohexane, chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chlorobenzene, or other solvents such as dimethylformamide, acetonitrile, pyridine, dimethyl sulfoxide or N-methylpyrrolidin
  • the reaction is generally carried out in a temperature range of 0 0 C to +180 0 C, preferably in the range of +20 0 C to +120 0 C, in particular at +40 0 C to +100 0 C.
  • the reaction may be at atmospheric, increased or decreased pressure (eg in the range of 0.5 to 5 bar). Generally, one works at normal pressure.
  • the compounds of the formula (VII) are either commercially available, known to the person skilled in the art or can be prepared by customary methods.
  • reaction parameters previously described for the sequence (V) - »(VI) -> (VIE), such as solvents, reaction temperatures and molar ratios find application in an analogous manner.
  • the compounds of formula (HI) are likewise commercially available, known from the literature or can be prepared by methods known from the literature.
  • amides, thioamides or thiourea derivatives with a 1,3-dihaloacetone, 2-substituted oxazole and thiazole derivatives of the formula (III-A), (DI-B) or (DI-C) obtained (see Scheme 6):
  • NCS N-chlorosuccinimide
  • Oxazole derivatives of the formula (II) substituted in the 5-position can be obtained, for example, by reduction and subsequent halogenation of corresponding oxazole-4-carboxylic acid esters, which in turn are accessible by acylation of ⁇ -isocyanatoacetates (see Scheme 9): Scheme 9
  • [DBU 1, 8-diazabicyclo [5.4.0] undec-7-ene; see. e.g. M. Suzuki et al., J. Org. Chem. 1973, 38, 3571-3575].
  • Cat. Catalyst; see. eg, Finch, N., et al., J. Med. Chem. 1980, 23, 1405-1410; ibid. 1978, 21, 1269-1274].
  • NMM N-methylmorpholine
  • ⁇ MMO N-methylmorpholine-N-oxide
  • Pr n-propyl
  • the compounds of the invention show an unpredictable, valuable pharmacological activity spectrum and are therefore particularly suitable for the prophylaxis and / or treatment of diseases.
  • the substances according to the invention have an improved solubility in water and other physiological media compared with the compounds of the prior art, which is advantageous, for example, for formability and / or parenteral administration.
  • the pharmaceutical activity of the compounds according to the invention can be explained by their action as potent, selective ligands on adenosine A1 and / or A2b receptors. They act as selective Al, selective A2b or as selective dual Al / A2b agonists.
  • adenosine receptor ligands on adenosine A1 and / or A2b receptors those adenosine receptor ligands are referred to, in which on the one hand a significant effect on Al and / or A2b adenosine receptor subtypes and on the other hand no or a clear weaker effect (factor 10 or higher) on A2a and A3 adenosine receptor subtypes, with respect to the test methods for the selectivity of activity, reference is made to those described in section BI. described tests.
  • the compounds of the formula (J) are suitable, alone or in combination with one or more other active substances, for the prophylaxis and / or treatment of various diseases, for example, in particular in hypertension and other diseases of the cardiovascular system (cardiovascular diseases) and for cardioprotection.
  • diseases of the cardiovascular system or of cardiovascular diseases, in addition to hypertension are to be understood as meaning, in particular, the following diseases: peripheral and cardiac vascular diseases, coronary heart disease, coronary restenosis, e.g. Restenosis after balloon dilatation of peripheral blood vessels, acute coronary syndrome, stable and unstable angina pectoris, heart failure, tachycardia, arrhythmias, atrial and ventricular fibrillation and peripheral circulatory disorders.
  • peripheral and cardiac vascular diseases e.g. Restenosis after balloon dilatation of peripheral blood vessels, acute coronary syndrome, stable and unstable angina pectoris, heart failure, tachycardia, arrhythmias, atrial and ventricular fibrillation and peripheral circulatory disorders.
  • the compounds according to the invention are also particularly suitable for the reduction of the myocardium affected by an infarct and for the prophylaxis of secondary infarcts.
  • the compounds according to the invention are particularly suitable for the prophylaxis and / or treatment of thromboembolic disorders and ischaemias such as myocardial infarction, stroke and transient ischemic attacks as well as for the protection of organs during transplantations and surgical interventions, for example at the heart.
  • the compounds according to the invention are, for example, in particular the prophylaxis and / or treatment of diseases of the genitourinary area, such as irritable bladder, erectile dysfunction and female sexual dysfunction, but also the prophylaxis and / or treatment of inflammatory diseases, such as asthma and inflammatory dermatoses, neuroinflammatory diseases of the central nervous system, such as, for example, conditions after cerebral infarction, Alzheimer's disease, neurodegenerative diseases, as well as pain, cancer and nausea and vomiting associated with cancer treatment.
  • diseases of the genitourinary area such as irritable bladder, erectile dysfunction and female sexual dysfunction
  • inflammatory diseases such as asthma and inflammatory dermatoses
  • neuroinflammatory diseases of the central nervous system such as, for example, conditions after cerebral infarction, Alzheimer's disease, neurodegenerative diseases, as well as pain, cancer and nausea and vomiting associated with cancer treatment.
  • a further area of indication are, for example, in particular the prophylaxis and / or treatment of respiratory diseases such as, for example, asthma, chronic bronchitis, emphysema of the lungs, bronchiectasis, cystic fibrosis (cystic fibrosis) and pulmonary hypertension.
  • respiratory diseases such as, for example, asthma, chronic bronchitis, emphysema of the lungs, bronchiectasis, cystic fibrosis (cystic fibrosis) and pulmonary hypertension.
  • the compounds of the invention for example, in particular for the prophylaxis and / or treatment of diabetes, especially diabetes mellitus, diabetic sequelae such. Nephropathy and neuropathy, the metabolic syndrome and dyslipidaemias.
  • Another object of the present invention is the use of the compounds of the invention for the treatment and / or prophylaxis of diseases, in particular the aforementioned diseases.
  • Another object of the present invention is the use of the compounds of the invention for the manufacture of a medicament for the treatment and / or prophylaxis of Erkran- kungen, in particular the aforementioned diseases.
  • Another object of the present invention is a method for the treatment and / or prophylaxis of diseases, in particular the aforementioned diseases, using an effective amount of at least one of the compounds of the invention.
  • the compounds of the invention may be used alone or as needed in combination with other agents.
  • Another object of the present invention are pharmaceutical compositions containing at least one of the compounds of the invention and one or more other active ingredients, in particular for the treatment and / or prophylaxis of the aforementioned diseases.
  • Suitable combination active ingredients which may be mentioned by way of example and preferably include lipid metabolism-changing active ingredients, antidiabetics, hypotensive agents, circulation-promoting and / or antithrombotic agents, antioxidants, chemokine receptor antagonists, p38 kinase inhibitors, NPY agonists, orexin Agonists, anorectics, PAF-AH inhibitors, anti-phlogists (COX inhibitors, LTB 4 receptor antagonists) and analgesics such as aspirin.
  • the present invention particularly relates to combinations of at least one of the compounds according to the invention with at least one active substance which alters the lipid metabolism. substance, an antidiabetic agent, a hypotensive agent and / or an antithrombotic agent.
  • the compounds of the invention may preferably be with one or more
  • the lipid metabolism-changing active substances by way of example and preferably from the group of HMG-CoA reductase inhibitors, inhibitors of HMG-CoA reductase expression,
  • Squalene synthesis inhibitors include ACAT inhibitors, LDL receptor inducers, cholesterol absorption inhibitors, polymeric bile acid adsorbers, bile acid reabsorption inhibitors, MTP inhibitors, lipase inhibitors, LpL activators, fibrates, niacin, CETP inhibitors, PPAR- ⁇ -, PPAR- ⁇ and / or PPAR- ⁇ agonists, RXR modulators, FXR modulators, LXR modulators, thyroid hormones and / or thyroid mimetics, ATP citrate lyase inhibitors,
  • Lp (a) antagonists cannabinoid receptor 1 antagonists, leptin receptor agonists, bomberin receptor agonists, histamine receptor agonists and the antioxidants / free radical scavengers;
  • Antidiabetic agents mentioned in Red List 2004 / H, Chapter 12 and by way of example and preferably those from the group of sulfonylureas, biguanides, meglitinide derivatives,
  • Glucosidase inhibitors oxadiazolidinones, thiazolidinediones, GLP1 receptor agonists, glutagon antagonists, insulin sensitizers, CCK1 receptor agonists, leptin receptor agonists, inhibitors of liver enzymes involved in the stimulation of gluconeogenesis and / or or glycogenolysis, modulators of glucose uptake and potassium channel openers, such as those disclosed in WO 97/26265 and WO 99/03861;
  • hypotensive agents by way of example and preferably from the group of calcium antagonists, angiotensin Aue antagonists, ACE inhibitors, beta-receptor blockers, alpha-receptor blockers, diuretics, phosphodiesterase inhibitors, sGC stimulators, enhancers of the cGMP levels, aldosterone antagonists, mineralocorticoid receptor antagonists, ECE inhibitors and the vasopeptidase inhibitors, and / or
  • Antithrombotic agents by way of example and preferably from the group of platelet aggregation inhibitors or anticoagulants
  • lipid metabolism-changing active compounds are preferably compounds from the group of HMG-Co A reductase inhibitors, squalene synthesis inhibitors, ACAT inhibitors,
  • Cholesterol absorption inhibitors MTP inhibitors, lipase inhibitors, thyroid hormones and / or
  • Thyroid mimetics niacin receptor agonists, CETP inhibitors, PPAR- ⁇ agonists, PPAR- ⁇ - Agonists, PPAR- ⁇ agonists, polymeric bile acid adsorbers, bile acid reabsorption inhibitors, antioxidants / radical scavengers, and the cannabinoid receptor 1 antagonists.
  • the compounds according to the invention are administered in combination with an HMG-CoA reductase inhibitor from the class of statins, such as by way of example and preferably lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, rosuvastatin, cerivastatin or pitavastatin.
  • statins such as by way of example and preferably lovastatin, simvastatin, pravastatin, fluvastatin, atorvastatin, rosuvastatin, cerivastatin or pitavastatin.
  • the compounds according to the invention are administered in combination with a squalene synthesis inhibitor, such as by way of example and preferably BMS-188494 or TAK-475.
  • a squalene synthesis inhibitor such as by way of example and preferably BMS-188494 or TAK-475.
  • the compounds according to the invention are administered in combination with an ACAT inhibitor, such as by way of example and preferably avasimibe, melinamide, pactimibe, eflucimibe or SMP-797.
  • an ACAT inhibitor such as by way of example and preferably avasimibe, melinamide, pactimibe, eflucimibe or SMP-797.
  • the compounds according to the invention are administered in combination with a cholesterol absorption inhibitor, such as by way of example and preferably ezetimibe, tiqueside or pamaqueside.
  • a cholesterol absorption inhibitor such as by way of example and preferably ezetimibe, tiqueside or pamaqueside.
  • the compounds according to the invention are administered in combination with an MTP inhibitor such as, for example and preferably, implitapide, BMS-201038, R-103757 or JTT-130.
  • an MTP inhibitor such as, for example and preferably, implitapide, BMS-201038, R-103757 or JTT-130.
  • the compounds according to the invention are administered in combination with a lipase inhibitor, such as, for example and preferably, orlistat.
  • a lipase inhibitor such as, for example and preferably, orlistat.
  • the compounds according to the invention are administered in combination with a thyroid hormone and / or thyroid mimetic, such as by way of example and preferably D-thyroxine or 3,5,3'-triiodothyronine (T3).
  • a thyroid hormone and / or thyroid mimetic such as by way of example and preferably D-thyroxine or 3,5,3'-triiodothyronine (T3).
  • the compounds according to the invention are administered in combination with an agonist of the Niac ⁇ i receptor, such as by way of example and preferably niacin, Acipimox, Agravecol.
  • the compounds according to the invention are administered in combination with a CETP inhibitor, such as, by way of example and by way of preference, torcetrapib, JTT-705, BAY 60-5521, BAY 78-7499 or CETP vaccine (Avant).
  • a CETP inhibitor such as, by way of example and by way of preference, torcetrapib, JTT-705, BAY 60-5521, BAY 78-7499 or CETP vaccine (Avant).
  • the compounds according to the invention are administered in combination with a PPAR- ⁇ agonist, by way of example and preferably pioglitazone or rosiglitazone.
  • the compounds according to the invention are administered in combination with a PPAR- ⁇ agonist, such as by way of example and preferably GW-501516 or BAY 68-5042.
  • a PPAR- ⁇ agonist such as by way of example and preferably GW-501516 or BAY 68-5042.
  • the compounds according to the invention are administered in combination with a polymeric bile acid adsorbent, such as, by way of example and by way of preference, cholestyramine, colestipol, colesolvam, cholesta gel or colestimide.
  • a polymeric bile acid adsorbent such as, by way of example and by way of preference, cholestyramine, colestipol, colesolvam, cholesta gel or colestimide.
  • ASBT BAT
  • AZD-7806 S-8921
  • AK-105 AK-105
  • BARI-1741 AK-105
  • SC-435 SC-635.
  • the compounds according to the invention are administered in combination with an antioxidant / free-radical scavenger, such as, for example, Ubiaft and preferably probucol, AGI-1067, BO-653 or AEOL-10150.
  • an antioxidant / free-radical scavenger such as, for example, Ubiaft and preferably probucol, AGI-1067, BO-653 or AEOL-10150.
  • the compounds according to the invention are administered in combination with a cannabinoid receptor 1 antagonist, such as by way of example and preferably rimonabant or SR-147778.
  • a cannabinoid receptor 1 antagonist such as by way of example and preferably rimonabant or SR-147778.
  • Antidiabetic agents are preferably understood as meaning insulin and insulin derivatives as well as orally active hypoglycemic agents.
  • Insulin and insulin derivatives here include both insulins of animal, human or biotechnological origin as well as mixtures thereof.
  • the orally active hypoglycans are preferably sulfonylureas, biguanides, meglitinide derivatives, glucosidase inhibitors and PPAR- ⁇ agonists.
  • the compounds according to the invention are administered in combination with insulin.
  • the compounds according to the invention are administered in combination with a sulphonylurea, such as, by way of example and by way of preference, tolbutamide, glibenclamide, glimepiride, glipizide or gliclazide.
  • a sulphonylurea such as, by way of example and by way of preference, tolbutamide, glibenclamide, glimepiride, glipizide or gliclazide.
  • the compounds according to the invention are administered in combination with a biguanide, by way of example and preferably metformin.
  • the compounds according to the invention are administered in combination with a meglitinide derivative, such as by way of example and preferably repaglinide or nateglinide.
  • a meglitinide derivative such as by way of example and preferably repaglinide or nateglinide.
  • the compounds according to the invention are administered in combination with a glucosidase inhibitor, such as by way of example and preferably migolith or acarbose.
  • the compounds according to the invention are administered in combination with a PPAR- ⁇ agonist, for example from the class of thiazolidinediones, such as, by way of example and by way of preference, pioglitazone or rosiglitazone.
  • a PPAR- ⁇ agonist for example from the class of thiazolidinediones, such as, by way of example and by way of preference, pioglitazone or rosiglitazone.
  • the blood pressure lowering agents are preferably understood as meaning compounds from the group of calcium antagonists, angiotensin AH antagonists, ACE inhibitors, beta-receptor blockers, alpha-receptor B-relaxers and diuretics.
  • the compounds according to the invention are administered in combination with a calcium antagonist, such as, by way of example and by way of preference, nifedipine, amlodipine, verapamil or diltiazem.
  • a calcium antagonist such as, by way of example and by way of preference, nifedipine, amlodipine, verapamil or diltiazem.
  • the compounds according to the invention are administered in combination with an angiotensin AH antagonist, such as by way of example and preferably losartan, valsartan, candesartan, embusartan, olmesartan or telmisartan.
  • angiotensin AH antagonist such as by way of example and preferably losartan, valsartan, candesartan, embusartan, olmesartan or telmisartan.
  • the compounds according to the invention are administered in combination with an ACE inhibitor, such as by way of example and preferably enalapril, captopril, lisinopril, ramipril, delapril, fosinopril, quinopril, perindopril or trandopril.
  • an ACE inhibitor such as by way of example and preferably enalapril, captopril, lisinopril, ramipril, delapril, fosinopril, quinopril, perindopril or trandopril.
  • the compounds according to the invention are used in combination with a beta-receptor blocker such as, by way of example and by way of preference, propranolol, atenolol, timolol, pindolol, alprenolol, oxprenolol, penbutolol, bupranolol, metipropanol, nadolol, mepindolol, carazalol, Sotalol, metoprolol, betaxolol, celiprolol, bisoprolol, Carteolol, esmolol, labetalol, carvedilol, adaprolol, landiolol, nebivolol, epanolol or bucine dolol administered.
  • a beta-receptor blocker such as, by way of example and by way of preference, propranolol, atenolol
  • the compounds according to the invention are used in combination with a diuretic, such as by way of example and preferably furosemide, bumetanide, torsemide, bendroflumethiazide, chlorothiazide, hydrochlorothiazide, hydroflumethiazide, methyclothiazide, polythiazide, trichloromethiazide, chlorthalidone, indapamide, metolazone, quineth- azon, acetazolamide, dichlorophenamide, methazolamide, glycerol, isosorbide, mannitol, amiloride or triamterene.
  • a diuretic such as by way of example and preferably furosemide, bumetanide, torsemide, bendroflumethiazide, chlorothiazide, hydrochlorothiazide, hydroflumethiazide, methyclothiazide, polythiazide, trich
  • the compounds according to the invention are administered in combination with antisympathotonics such as reserpine, clonidine or alpha-methyl-dopa, with potassium channel agonists such as minoxidil, diazoxide, dihydralazine or hydralazine, or with nitric oxide-releasing substances such as glyceryl nitrate or nitroprusside sodium.
  • antisympathotonics such as reserpine, clonidine or alpha-methyl-dopa
  • potassium channel agonists such as minoxidil, diazoxide, dihydralazine or hydralazine
  • nitric oxide-releasing substances such as glyceryl nitrate or nitroprusside sodium.
  • Antithrombotic agents are preferably understood as meaning compounds from the group of platelet aggregation inhibitors or anticoagulants.
  • the compounds according to the invention are administered in combination with a platelet aggregation inhibitor, such as, by way of example and by way of preference, aspirin, clopidogrel, ticlopidine or dipyridamole.
  • a platelet aggregation inhibitor such as, by way of example and by way of preference, aspirin, clopidogrel, ticlopidine or dipyridamole.
  • the compounds according to the invention are administered in combination with a thrombin inhibitor, such as, by way of example and by way of preference, ximelagatran, melagatran, bivalirudin or Clexane.
  • a thrombin inhibitor such as, by way of example and by way of preference, ximelagatran, melagatran, bivalirudin or Clexane.
  • the compounds according to the invention are administered in combination with a GPUb / IHa antagonist, such as, by way of example and by way of preference, tirofiban or abciximab.
  • a GPUb / IHa antagonist such as, by way of example and by way of preference, tirofiban or abciximab.
  • the compounds according to the invention are used in combination with a factor Xa inhibitor, such as by way of example and preferably rivaroxaban (BAY 59-7939), DU-176b, apixaban, otamixaban, fidexaban, razaxaban, fondaparinux, idraparinux, PMD No. 3112, YM-150, KFA-1982, EMD-503982, MCM-17, MLN-1021, DX 9065a, DPC 906, JTV 803, SSR-126512 or SSR-128428.
  • the compounds according to the invention are administered in combination with heparin or a low molecular weight (LMW) heparin derivative.
  • LMW low molecular weight
  • the compounds according to the invention are administered in combination with a vitamin K antagonist, such as by way of example and preferably coumarin.
  • compositions containing at least one compound of the invention usually together with one or more inert, non-toxic, pharmaceutically suitable excipients, and their use for the purposes mentioned above.
  • the compounds according to the invention can act systemically and / or locally.
  • they may be applied in a suitable manner, e.g. oral, parenteral, pulmonary, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctivae otic or as an implant or stent.
  • the compounds according to the invention can be administered in suitable administration forms.
  • the compounds of the invention rapidly and / or modified donating application forms containing the compounds of the invention in crystalline and / or amorphized and / or dissolved form, such.
  • Tablets uncoated or coated tablets, for example with enteric or delayed-release or insoluble coatings which control the release of the compound of the invention
  • Parenteral administration can be accomplished by bypassing a resorption step (e.g., intravenous, intraarterial, intracardiac, intraspinal, or intralumbar) or by resorting to absorption (e.g., intramuscular, subcutaneous, intracutaneous, percutaneous, or intraperitoneal).
  • a resorption step e.g., intravenous, intraarterial, intracardiac, intraspinal, or intralumbar
  • absorption e.g., intramuscular, subcutaneous, intracutaneous, percutaneous, or intraperitoneal.
  • parenteral administration are suitable as application forms u.a. Injection and infusion preparations in the form of solutions, suspensions, emulsions, lyophilisates or sterile powders.
  • inhalation medicaments eg powder inhalers, nebulizers
  • nasal drops solutions or sprays
  • lingual, sublingual or buccal are suitable.
  • the compounds according to the invention can be converted into the stated administration forms. This can be done in a conventional manner by mixing with inert, non-toxic, pharmaceutically suitable excipients.
  • These adjuvants include, among others. Carriers (for example microcrystalline cellulose, lactose, mannitol), solvents (for example liquid polyethylene glycols), emulsifiers and dispersants or wetting agents (for example sodium dodecyl sulfate, polyoxysorbitanoleate), binders (for example polyvinylpyrrolidone), synthetic and natural polymers (for example albumin ), Stabilizers (eg antioxidants such as ascorbic acid), dyes (eg inorganic pigments such as iron oxides) and flavor and / or odoriferous agents.
  • Carriers for example microcrystalline cellulose, lactose, mannitol
  • solvents for example liquid polyethylene glycols
  • emulsifiers and dispersants or wetting agents for example sodium dodec
  • the dosage is about 0.01 to 100 mg / kg, preferably about 0.01 to 20 mg / kg and most preferably 0.1 to 10 mg / kg body weight.
  • Device type MS Micromass ZQ
  • Device type HPLC Waters Alliance 2795; Column: Phenomenex Synergi 2 ⁇ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l of water + 0.5 ml of 50% formic acid, eluent B: 1 l of acetonitrile + 0.5 ml of 50% formic acid; Gradient: 0.0 min 90% A - »2.5 min 30% A ⁇ 3.0 min 5% A ⁇ 4.5 min 5% A; Flow: 0.0 min 1 ml / min ⁇ 2.5 min / 3.0 min / 4.5 min 2 ml / min; Oven: 5O 0 C; UV detection: 210 nm.
  • Device type MS Micromass ZQ
  • Device type HPLC HP 1100 Series
  • UV DAD Column: Phenomenex Synergi 2 ⁇ Hydro-RP Mercury 20 mm x 4 mm
  • Eluent A 1 l of water + 0.5 ml of 50% formic acid
  • eluent B 1 l of acetonitrile + 0.5 ml of 50% formic acid
  • Flow 0.0 min 1 ml / min ⁇ 2.5 min / 3.0 min / 4.5 min 2 ml / min
  • Oven 5O 0 C
  • UV detection 210 nm.
  • Device type MS Micromass ZQ
  • Device type HPLC Waters Alliance 2795; Column: Merck Chromolith SpeedROD RP-18e 100 mm x 4.6 mm; Eluent A: water + 500 ⁇ l 50% formic acid / 1, eluent B: acetonitrile + 500 ⁇ l 50% formic acid / 1; Gradient: 0.0 min 10% B ⁇ 7.0 min 95% B ⁇ 9.0 min 95% B; Oven: 35 ° C; Flow: 0.0 min 1.0 ml / min ⁇ 7.0 min 2.0 ml / min ⁇ 9.0 min 2.0 ml / min; UV detection: 210 nm.
  • Device type MS Micromass ZQ
  • Device type HPLC HP 1100 Series
  • UV DAD Column: Phenomenex Gemini 3 ⁇ 30 mm x 3.00 mm
  • Eluent A 1 l of water + 0.5 ml of 50% formic acid
  • eluent B 1 l of acetonitrile + 0.5 ml of 50% formic acid
  • Flow 0.0 min 1 ml / min ⁇ 2.5 min / 3.0 min / 4.5 min 2 ml / min
  • Oven 50 ° C .
  • UV detection 210 nm.
  • Device Type MS Waters ZQ
  • Device type HPLC Waters Alliance 2795
  • Eluent A 1 l of water + 0.5 ml of 50% formic acid
  • eluent B 1 l of acetonitrile + 0.5 ml of 50% formic acid
  • Flow 2 ml / min
  • Oven 40 ° C
  • UV detection 210 nm.
  • Device type MS Micromass ZQ
  • Device type HPLC Waters Alliance 2795; Column: Phenomenex syn ergi 2.5 ⁇ MAX-RP 100A Mercury 20mm x 4mm; Eluent A: 1 l of water + 0.5 ml of 50% formic acid, eluent B: 1 l of acetonitrile + 0.5 ml of 50% formic acid; Gradient: 0.0 min 90% A ⁇ 0.1 min 90% A ⁇ 3.0 min 5% A ⁇ 4.0 min 5% A ⁇ 4.01 min 90% A; Flow: 2 ml / min; Oven: 50 ° C .; UV detection: 210 nm.
  • the aqueous phase is extracted three times with 20 ml of ethyl acetate each time. After combining the organic phases, the solvent is removed on a rotary evaporator and the residue is purified chromatographically on silica gel 60 (mobile phase: gradient cyclohexane / ethyl acetate 10: 1 ⁇ 2: 1).
  • the title compound is prepared analogously to PK Mahata et al., Tetrahedron 59, 2631-2639 (2003): 1.5 g (5.3 mmol) of the compound from Example 13A and 263 mg (5.26 mmol) of hydrazine hydrate are dissolved in 40 ml of ethanol and heated to reflux for 2 h. The solvent is removed on a rotary evaporator and the residue is purified chromatographically on silica gel 60 (mobile phase: gradient cyclohexane / ethyl acetate 5: 1 ⁇ 2: 1).
  • reaction mixture is stirred for 8 h while slowly warming to RT.
  • the reaction solution is then cooled again to 0 0 C, carefully mixed with 0.4 ml of water and 0.8 ml of 1 N sodium hydroxide solution and stirred after heating to RT for 8 h at this temperature.
  • the mixture is filtered and the filtrate is concentrated on a rotary evaporator. The remaining crude product is used without further purification in the subsequent reaction.
  • the phases are separated and the organic phase is washed twice with 30 ml of water each time.
  • the organic phase is dried over magnesium sulfate and the solvent is removed on a rotary evaporator. removed.
  • the residue is purified by column chromatography on silica gel 60 (mobile phase gradient: cyclohexane / ethyl acetate 50: 1 ⁇ 2: 1). The product thus obtained is used without further purification in the subsequent stage.
  • Example 32A The title compound is prepared analogously to Example 32A starting from S - (-) - 2,3-dimethyl-1,3-dioxolane-4-methanol.
  • the product fraction obtained is washed with sat. Sodium bicarbonate solution (5 ml) and extracted with ethyl acetate (three times 5 ml each). The combined organic phases are dried over magnesium sulfate and the solvent is removed on a rotary evaporator.
  • Example 42 The title compound is prepared analogously to Example 42 starting from 81 mg (0.14 mmol) of the compound from Example 33A.
  • the purification of the crude product is likewise carried out as described in Example 42.
  • Cells of the permanent line CHO are stably transfected with the cDNA for the adenosine receptor subtypes Al, A2a and A2b.
  • the adenosine Al receptors are coupled to adenylate cyclase s proteins of the Gj on proteins, while the adenosine A2a and A2b receptors via G. Accordingly, cAMP production in the cell is inhibited or stimulated. Via a cAMP-dependent promoter, the expression of the luciferase is then modulated.
  • the luciferase test is optimized with the aim of high sensitivity and reproducibility, low variance and suitability for implementation on a robotic system by varying several test parameters, such as cell density, growing phase and test incubation, forskolin concentration and medium composition.
  • test parameters such as cell density, growing phase and test incubation, forskolin concentration and medium composition.
  • the stock cultures are grown in DMEM / F12 medium with 10% FCS (fetal calf serum) at 37 ° C under 5% CO 2 and split 1:10 each after 2-3 days.
  • Test cultures are seeded at 2,000 cells per well in 384-well plates and grown at 37 ° C for approximately 48 hours. Then the medium is replaced by a physiological saline solution (130 mM sodium chloride, 5 mM potassium chloride, 2 mM calcium chloride, 20 mM HEPES, 1 mM magnesium chloride hexahydrate, 5 mM sodium hydrogen carbonate, pH 7.4).
  • DMSO substances to be tested are in a dilution series of 5 x 10 '11 M to 3 x 10 "6 M (final concentration) to the test cultures pipetted (maximum DMSO final concentration in test mixture: 0.5%). 10 minutes later, forskolin to All cultures are then incubated for four hours at 37 ° C. Thereafter, 35 ⁇ l of a solution consisting of 50% lysis reagent (30 mM disodium hydrogenphosphate, 10% glycerol, 3% triton XIOO) are added to the test cultures.
  • 50% lysis reagent (30 mM disodium hydrogenphosphate, 10% glycerol, 3% triton XIOO) are added to the test cultures.
  • luciferase substrate solution 25 mM TrisHCl, 2 mM dithiothreitol (DTT), pH 7.8) and 50% luciferase substrate solution (2.5 mM ATP, 0.5 mM luciferin, 0.1 mM coenzyme A, 10 mM tricine, 1.35 mM magnesium sulfate, 15 mM DTT, pH 7.8), shaken for about 1 minute and the luciferase activity measured with a camera system.
  • the EC 50 values ie the concentrations at which the Al cell inhibits 50% of the luciferase response or in the case of the A2b and A2a cells 50% of the maximum stimulability mi t of the corresponding substance are reached.
  • the reference compound used in these experiments is the adenosine-analogous compound NECA (5-N-ethylcarboxamido-adenosine), which binds with high affinity to all adenosine receptor subtypes and a has an agonistic activity [Klotz, KN, Hessling, J., Hegler, J., Owman, C, KuIl, B., Fredholm, BB, Lohse, MJ, "Comparative pharmacology of human adenosine receptor subtypes - characterization of stably transfected receptors in CHO cells ", Naunyn Schmiedeberg's Arch. Pharmacol. 357. 1-9 (1998)].
  • NECA adenosine-analogous compound
  • Table 1 lists the EC 50 values of representative embodiments for the receptor stimulation on adenosine A1, A2a and A2b receptor subtypes:
  • the caudal artery is prepared and clamped in a conventional apparatus for measuring isolated vessels.
  • the vessels are perfused in a heat bath and contracted with phenylephrine.
  • the degree of contraction is determined by a contraction knife.
  • test substances are given and measured the decrease in the contraction of the vessels.
  • a decrease in contraction corresponds to a dilatation of the vessels.
  • the EC 50 value of a test substance with regard to its relaxing properties is the concentration at which the contraction of the vessels is reduced by 50%.
  • Guards Claw monkeys carrying an internal transmitter which can permanently measure both blood pressure and heart rate (telemetric detection of hemodynamic parameters), test substances are administered orally in various concentrations. Subsequently, blood pressure and heart rate and their changes are recorded over 6-24 hours.
  • PBS buffer pH 7.4 90.00 g NaCl pa (for example from Merck, Item No. 1.06404.1000), 13.61 g KH 2 PO 4 pa (for example from Merck, Item No. 1.04873.1000) and 83.35 g of 1N NaOH (eg Fa. Bernd
  • Acetate buffer pH 4.6 Weigh out 5.4 g of sodium acetate x 3 H 2 O pa (eg from Merck, Item No. 1.06267.0500) into a 100 ml volumetric flask, dissolve in 50 ml of water, add 2.4 g of glacial acetic acid, make up to 100 ml with water, check the pH and adjust to pH 4.6 if necessary;
  • Dimethylsulfoxide e.g., Baker Co., Art No. 71572500
  • Preparation of the starting solution for calibration solutions (stock solution): Approximately 0.5 mg of the test substance is weighed exactly into a 2 ml Eppendorf Safe-Lock tube (Eppendorf, Item No. 0030 120,094) to a concentration of 600 ⁇ g / ml mixed with DMSO (eg 0.5 mg of substance + 833 ⁇ l of DMSO) and shaken to complete dissolution by means of a vortexer.
  • Calibration solution 1 (20 ⁇ g / ml): Mix 34.4 ⁇ l of the stock solution with 1000 ⁇ l of DMSO and homogenize.
  • Calibration solution 2 (2.5 ⁇ g / ml): 100 ⁇ l of the calibration solution 1 are mixed with 700 ⁇ l of DMSO and homogenized.
  • Sample solution for solubility up to 10 g / l in PBS buffer pH 7.4 Approximately 5 mg of the test substance are weighed exactly into a 2 ml Eppendorf Safe-Lock tube (Eppendorf, Art Concentration of 5 g / l with PBS buffer pH 7.4 added (eg, 5 mg of substance + 500 ul PBS buffer pH 7.4).
  • Sample solution for solubility up to 10 g / l in acetate buffer pH 4.6 Approximately 5 mg of the test substance are weighed exactly into a 2 ml Eppendorf-Safe-Lock tube (Eppendorf, Art No. 0030 120,094) and added to a concentration of 5 g / l with acetate buffer pH 4.6 added (eg 5 mg of substance + 500 ul acetate buffer pH 4.6).
  • Sample solution for solubility up to 10 g / l in water Approximately 5 mg of the test substance are weighed exactly into a 2 ml Eppendorf Safe-Lock tube (Eppendorf, article No. 0030 120,094) and added to a concentration of 5 g / l mixed with water (eg 5 mg substance + 500 ul water).
  • the sample solutions thus prepared are shaken for 24 hours at 1400 rpm in a temperature shaker (for example, Fa. Eppendorf Thermomixer comfort No. 5355 000.011 with shift block Ref. 5362.000.019) at 20 0 C. Of these solutions are each 180 ul and transferred to Beckman Polyallomer Centrifuge Tubes (Item No. 343621). These solutions are centrifuged for 1 hour at about 223,000 xg (eg Beckman Optima L-90K Ultracentrifuge with Type 42.2 Ti rotor at 42,000 rpm).
  • 100 ⁇ l of the supernatant are taken from each sample solution and diluted 1: 5, 1: 100 and 1: 1000 with the respectively used solvent (water, PBS buffer 7.4 or acetate buffer pH 4.6). Each dilution is bottled in a suitable vessel for HPLC analysis.
  • Agilent 1100 with DAD (G1315A), quat. Pump (G1311A), autosampler CTC HTS PAL, degasser (G1322A) and column thermostat (G1316A); Column: Phenomenex Gemini C18, 50 mm x 2 mm, 5 ⁇ ; Temperature: 40 ° C .; Eluent A: water / phosphoric acid pH 2; Eluent B: acetonitrile; Flow rate: 0.7 ml / min; Gradient: 0-0.5 min 85% A, 15% B; Ramp: 0.5-3 min 10% A, 90% B; 3-3.5 min 10% A, 90% B; Ramp: 3.5-4 min 85% A, 15% B; 4-5 minutes 85% A, 15% B.
  • Agilent 1100 with DAD (G1315A), quat. Pump (G1311A), autosampler CTC HTS PAL, degasser (G1322A) and column thermostat (G1316A); Column: VDSoptilab Kromasil 100 Cl 8, 60 mm x 2.1 mm, 3.5 ⁇ ; Temperature: 30 ° C .; Eluent A: water + 5 ml perchloric acid / l; Eluent B: acetonitrile; Flow rate: 0.75 ml / min; Gradient: 0-0.5 min 98% A, 2% B; Ramp: 0.5-4.5 min 10% A, 90% B; 4.5-6 min 10% A, 90% B; Ramp: 6.5-6.7 min 98% A, 2% B; 6.7-7.5 min 98% A, 2% B.
  • the compounds according to the invention can be converted into pharmaceutical preparations as follows:
  • the mixture of compound of the invention, lactose and starch is granulated with a 5% solution (m / m) of the PVP in water.
  • the granules are mixed after drying with the magnesium stearate for 5 minutes.
  • This mixture is compressed with a conventional tablet press (for the tablet format see above).
  • a pressing force of 15 kN is used as a guideline for the compression.
  • a single dose of 100 mg of the compound of the invention corresponds to 10 ml of oral suspension.
  • the rhodigel is suspended in ethanol, the compound according to the invention is added to the suspension. While stirring, the addition of water. Until the completion of the swelling of Rhodigels is stirred for about 6 h.
  • the compound of the invention is suspended in the mixture of polyethylene glycol and polysorbate with stirring. The stirring is continued until complete dissolution of the erf ⁇ ndungswashen connection.
  • the compound of the invention is dissolved in a concentration below saturation solubility in a physiologically acceptable solvent (e.g., isotonic saline, glucose solution 5% and / or PEG 400 solution 30%).
  • a physiologically acceptable solvent e.g., isotonic saline, glucose solution 5% and / or PEG 400 solution 30%.
  • the solution is sterile filtered and filled into sterile and pyrogen-free injection containers.

Abstract

La présente invention concerne de nouveaux dérivés de 2,4'- et 3,4'-bipyridine substitués, un procédé pour leur production, leur utilisation pour le traitement et/ou la prophylaxie de maladies et leur utilisation pour la production de médicaments pour le traitement et/ou la prophylaxie de maladies, de préférence pour le traitement et/ou la prévention de l'hypertonie et d'autres maladies cardiovasculaires.
EP07801993A 2006-09-08 2007-08-30 Nouveaux dérivés de bipyridine substitués et leur utilisation en tant que ligands du récepteur d'adénosine Withdrawn EP2066637A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006042143A DE102006042143A1 (de) 2006-09-08 2006-09-08 Neue substituierte Bipyridin-Derivate und ihre Verwendung
PCT/EP2007/007572 WO2008028590A1 (fr) 2006-09-08 2007-08-30 Nouveaux dérivés de bipyridine substitués et leur utilisation en tant que ligands du récepteur d'adénosine

Publications (1)

Publication Number Publication Date
EP2066637A1 true EP2066637A1 (fr) 2009-06-10

Family

ID=38896950

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07801993A Withdrawn EP2066637A1 (fr) 2006-09-08 2007-08-30 Nouveaux dérivés de bipyridine substitués et leur utilisation en tant que ligands du récepteur d'adénosine

Country Status (11)

Country Link
US (2) US8653109B2 (fr)
EP (1) EP2066637A1 (fr)
JP (1) JP5331693B2 (fr)
AR (1) AR062630A1 (fr)
CA (1) CA2662728C (fr)
CL (1) CL2007002610A1 (fr)
DE (1) DE102006042143A1 (fr)
PE (1) PE20080772A1 (fr)
TW (1) TW200823209A (fr)
UY (1) UY30578A1 (fr)
WO (1) WO2008028590A1 (fr)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042607A1 (de) 2004-09-03 2006-03-09 Bayer Healthcare Ag Substituierte Phenylaminothiazole und ihre Verwendung
DE102006056739A1 (de) 2006-12-01 2008-06-05 Bayer Healthcare Ag Substituierte 4-Amino-3,5-dicyano-2-thiopyridine und ihre Verwendung
DE102006056740A1 (de) 2006-12-01 2008-06-05 Bayer Healthcare Ag Cyclisch substituierte 3,5-Dicyano-2-thiopyridine und ihre Verwendung
DE102007035367A1 (de) 2007-07-27 2009-01-29 Bayer Healthcare Ag Substituierte Aryloxazole und ihre Verwendung
DE102007036076A1 (de) 2007-08-01 2009-02-05 Bayer Healthcare Aktiengesellschaft Dipeptoid-Produgs und ihre Verwendung
EP2025674A1 (fr) 2007-08-15 2009-02-18 sanofi-aventis Tetrahydronaphthaline substituée, son procédé de fabrication et son utilisation en tant que médicament
DE102007061764A1 (de) * 2007-12-20 2009-06-25 Bayer Healthcare Ag Anellierte Cyanopyridine und ihre Verwendung
DE102007061763A1 (de) * 2007-12-20 2009-06-25 Bayer Healthcare Ag Substituierte azabicyclische Verbindungen und ihre Verwendung
DE102008013587A1 (de) * 2008-03-11 2009-09-17 Bayer Schering Pharma Aktiengesellschaft Heteroaryl-substituierte Dicyanopyridine und ihre Verwendung
EP2297104B1 (fr) * 2008-05-29 2013-08-07 Bayer Intellectual Property GmbH Dicyanopyridines substituées par du 2-alcoxy et leur utilisation
DE102008062567A1 (de) 2008-12-16 2010-06-17 Bayer Schering Pharma Aktiengesellschaft Dipeptoid-Prodrugs und ihre Verwendung
AU2015272011C1 (en) * 2009-01-29 2017-12-14 Bayer Intellectual Property Gmbh Alkylamine-substituted dicyanopyridine and amino acid ester prodrugs thereof
DE102009006602A1 (de) * 2009-01-29 2010-08-05 Bayer Schering Pharma Aktiengesellschaft Alkylamino-substituierte Dicyanopyridine und deren Aminosäureester-Prodrugs
ES2552657T3 (es) 2010-05-26 2015-12-01 Satiogen Pharmaceuticals, Inc. Inhibidores del reciclado de ácidos biliares y saciógenos para el tratamiento de diabetes, obesidad, y afecciones gastrointestinales inflamatorias
EP2582709B1 (fr) 2010-06-18 2018-01-24 Sanofi Dérivés d'azolopyridin-3-one en tant qu'inhibiteurs de lipases et de phospholipases
DE102010030688A1 (de) 2010-06-30 2012-01-05 Bayer Schering Pharma Aktiengesellschaft Substituierte Dicyanopyridine und ihre Verwendung
US20120058983A1 (en) 2010-09-02 2012-03-08 Bayer Pharma Aktiengesellschaft Adenosine A1 agonists for the treatment of glaucoma and ocular hypertension
TWI555737B (zh) 2011-05-24 2016-11-01 拜耳知識產權公司 含有硫醯亞胺基團之4-芳基-n-苯基-1,3,5-三氮雜苯-2-胺
EP2567959B1 (fr) 2011-09-12 2014-04-16 Sanofi Dérivés d'amide d'acide 6-(4-hydroxy-phényl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylique en tant qu'inhibiteurs de kinase
EP2770990A4 (fr) 2011-10-28 2015-03-11 Lumena Pharmaceuticals Inc Inhibiteurs du recyclage de l'acide biliaire pour traitement de l'hypercholémie et de la maladie cholestatique hépatique
WO2013063512A1 (fr) 2011-10-28 2013-05-02 Lumena Pharmaceuticals, Inc Inhibiteurs du recyclage de l'acide biliaire pour traitement de maladies cholestatiques hépatiques pédiatriques
WO2014060493A2 (fr) 2012-10-18 2014-04-24 Bayer Pharma Aktiengesellschaft Dérivés n-(pyridin-2-yl)pyrimidin-4-amine contenant un groupe sulfone
EP2909176B1 (fr) * 2012-10-18 2016-07-20 Bayer Pharma Aktiengesellschaft Derives de n-(pyridin-2-yl)pyridin-2-amine contenant un group sulfone
AU2013346939B2 (en) 2012-11-15 2017-06-08 Bayer Pharma Aktiengesellschaft 5-fluoro-N-(pyridin-2-yl)pyridin-2-amine derivatives containing a sulfoximine group
TW201418243A (zh) 2012-11-15 2014-05-16 Bayer Pharma AG 含有磺醯亞胺基團之n-(吡啶-2-基)嘧啶-4-胺衍生物
RU2015139732A (ru) 2013-03-15 2017-04-24 ЛУМЕНА ФАРМАСЬЮТИКАЛС ЭлЭлСи Ингибиторы рециркуляции желчных кислот для лечения пищевода барретта и гастроэзофагеальной рефлюксной болезни
RU2015139731A (ru) 2013-03-15 2017-04-20 ЛУМЕНА ФАРМАСЬЮТИКАЛС ЭлЭлСи Ингибиторы рециркуляции желчных кислот для лечения первичного склерозирующего холангита и воспалительного заболевания кишечника
JP6371385B2 (ja) 2013-07-04 2018-08-08 バイエル ファーマ アクチエンゲゼルシャフト スルホキシイミン置換5−フルオロ−n−(ピリジン−2−イル)ピリジン−2−アミン誘導体およびそのcdk9キナーゼ阻害薬としての使用
EP3116869A1 (fr) 2014-03-13 2017-01-18 Bayer Pharma Aktiengesellschaft Dérivés 5-fluoro-n-(pyridin-2-yl)pyridin-2-amine contenant un groupe sulfone
EP3126338B1 (fr) 2014-04-01 2019-09-04 Bayer Pharma Aktiengesellschaft Dérivés de 5-fluoropyrimidine disubstitués contenant un groupe sulfone diimine
WO2015155197A1 (fr) 2014-04-11 2015-10-15 Bayer Pharma Aktiengesellschaft Nouveaux composés macrocycliques
CA2964683A1 (fr) 2014-10-16 2016-04-21 Bayer Pharma Aktiengesellschaft Derives de benzofuranyle-pyrimidine fluores contenant un groupe sulfone
ES2691227T3 (es) 2014-10-16 2018-11-26 Bayer Pharma Aktiengesellschaft Derivados fluorados de benzofuranil-pirimidina que contienen un grupo sulfoximina
WO2018153898A1 (fr) 2017-02-22 2018-08-30 Bayer Pharma Aktiengesellschaft Agonistes partiels sélectifs du récepteur a1 de l'adénosine en combinaison avec des antagonistes du récepteur des minéralocorticoïdes
WO2018153899A1 (fr) 2017-02-22 2018-08-30 Bayer Pharma Aktiengesellschaft Agonistes partiels sélectifs du récepteur a1 de l'adénosine en combinaison avec des stimulateurs et/ou activateurs de la guanylate cyclase soluble (sgc)
WO2018153897A1 (fr) 2017-02-22 2018-08-30 Bayer Pharma Aktiengesellschaft Agonistes partiels sélectifs du récepteur a1 de l'adénosine en combinaison avec des inhibiteurs des canaux hcn
WO2018153900A1 (fr) 2017-02-22 2018-08-30 Bayer Aktiengesellschaft Agonistes partiels sélectifs du récepteur a1 de l'adénosine en combinaison avec des inhibiteurs de sglt-2
WO2018153895A1 (fr) 2017-02-22 2018-08-30 Bayer Pharma Aktiengesellschaft Agonistes partiels sélectifs du récepteur a1 de l'adénosine en combinaison avec un inhibiteur de l'endopeptidase neutre et/ou un antagoniste du récepteur de l'angiotensine ii
EP3601253B1 (fr) 2017-03-28 2021-09-15 Bayer Aktiengesellschaft Nouveaux composés macrocycliques inhibiteurs de ptefb
WO2018177889A1 (fr) 2017-03-28 2018-10-04 Bayer Aktiengesellschaft Nouveaux composés macrocycliques inhibiteurs de ptefb
EP3752487A1 (fr) 2018-02-13 2020-12-23 Bayer Aktiengesellschaft Utilisation de 5-fluoro-4-(4-fluoro-2-méthoxyphényl)-n-{4-[(s-méthylsulfonimidoyl)méthyl]pyridin-2-yl}pyridin-2-amine pour traiter un lymphome diffus à grandes cellules b
CA3129735A1 (fr) 2019-02-12 2020-08-20 Mirum Pharmaceuticals, Inc. Procedes pour augmenter la croissance chez des sujets pediatriques ayant une maladie hepatique cholestatique

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4052510A (en) * 1974-12-18 1977-10-04 Sandoz, Inc. 4-alkyl-2,6-di(secondary or tertiary alkylamino) pyridines, compositions thereof and methods for treating diabetes and obesity
TW299333B (fr) 1992-12-29 1997-03-01 Takeda Pharm Industry Co Ltd
NZ284846A (en) 1994-06-16 1998-12-23 Pfizer 1-substituted-pyrazolo[3,4-b]pyridin-5-carboxylic acid derivatives, preparation, use, intermediates and pharmaceutical compositions thereof
DE4430638A1 (de) * 1994-08-29 1996-03-07 Bayer Ag Verwendung von substituierten 4-Phenyl-6-amino-nicotinsäurederivaten als Arzneimittel
JPH09132529A (ja) 1995-11-09 1997-05-20 Ono Pharmaceut Co Ltd 一酸化窒素合成酵素阻害剤
CZ220498A3 (cs) * 1996-01-17 1998-11-11 Novo Nordisk A/S Deriváty 1,2,4-thiadiazinu a 1,4-thiazinu, příprava a použití
JP4431638B2 (ja) 1996-01-29 2010-03-17 アメリカ合衆国 ジヒドロピリジン―、ピリジン―、ベンゾピラン―オン―およびトリアゾロキナゾリン誘導体、それらの製造およびそれらのアデノシン受容体アンタゴニストとしての用途
JPH10324687A (ja) 1997-02-19 1998-12-08 Nippon Soda Co Ltd ピロール化合物、製法および農園芸用殺菌剤
US6191280B1 (en) * 1997-05-30 2001-02-20 Basf Aktiengesellschaft Method for producing substituted thiopyridines
KR20010021936A (ko) 1997-07-16 2001-03-15 한센 핀 베네드, 안네 제헤르, 웨이콥 마리안느 융합된 1,2,4-티아디아진 유도체, 그의 제조와 사용
US6632823B1 (en) * 1997-12-22 2003-10-14 Merck & Co., Inc. Substituted pyridine compounds useful as modulators of acetylcholine receptors
DE19834047A1 (de) * 1998-07-29 2000-02-03 Bayer Ag Substituierte Pyrazolderivate
DE19834044A1 (de) * 1998-07-29 2000-02-03 Bayer Ag Neue substituierte Pyrazolderivate
DE19943635A1 (de) * 1999-09-13 2001-03-15 Bayer Ag Neuartige Aminodicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE19943634A1 (de) * 1999-09-13 2001-04-12 Bayer Ag Neuartige Dicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE19943636A1 (de) * 1999-09-13 2001-03-15 Bayer Ag Neuartige Dicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE19947154A1 (de) * 1999-10-01 2001-10-04 Bayer Ag Substituierte 2-Thio-3,5-dicyano-4-aryl-6-aminopyridine und ihre Verwendung
PL203805B1 (pl) 2000-02-25 2009-11-30 Hoffmann La Roche Zastosowanie cyklicznych związków heteroaromatycznych, lek i cykliczne związki heteroaromatyczne
MXPA03000436A (es) 2000-07-18 2003-06-24 Yamanouchi Pharma Co Ltd Medicamentos que compreden derivados de dicianopiridina.
AR031176A1 (es) * 2000-11-22 2003-09-10 Bayer Ag Nuevos derivados de pirazolpiridina sustituidos con piridina
WO2002048115A2 (fr) 2000-12-11 2002-06-20 E. I. Du Pont De Nemours And Company Quinazolinones et pyridinylpyrimidinones pour la regulation de nuisibles invertebres
PT1347971E (pt) 2000-12-21 2006-06-30 Bristol Myers Squibb Co Inibidores tiazolilicos de tirosina-cinases da familia tec
DE10110438A1 (de) * 2001-03-05 2002-09-19 Bayer Ag Substituierte 2-Oxy-3,5-dicyano-4-aryl-6-aminopyridine und ihre Verwendung
DE10110749A1 (de) * 2001-03-07 2002-09-12 Bayer Ag Substituierte Aminodicarbonsäurederivate
DE10110747A1 (de) 2001-03-07 2002-09-12 Bayer Ag Substituierte 2,6-Diamino-3,5-dicyano-4-aryl-pyridine und ihre Verwendung
DE10110750A1 (de) * 2001-03-07 2002-09-12 Bayer Ag Neuartige Aminodicarbonsäurederivate mit pharmazeutischen Eigenschaften
DE10110754A1 (de) 2001-03-07 2002-09-19 Bayer Ag Substituierte 2-Thio-3,5-dicyano-4-aryl-6-aminopyridine und ihre Verwendung
DE10115922A1 (de) * 2001-03-30 2002-10-10 Bayer Ag Cyclisch substituierte 2-Thio-3,5-dicyano-4-aryl-6-aminopyridine und ihre Verwendung
DE10115945A1 (de) * 2001-03-30 2002-10-02 Bayer Ag Substituierte 2-Carba-3,5-dicyano-4-aryl-6-aminopyridine und ihre Verwendung
DE10134481A1 (de) * 2001-07-16 2003-01-30 Bayer Ag Substituierte 2-Thio-3,5-dicyano-4-phenyl-6-aminopyridine und ihre Verwendung
DE10238113A1 (de) * 2001-12-11 2003-06-18 Bayer Ag Substituierte 2-Thio-3,5-dicyano-4-phenyl-6-aminopyridine und ihre Verwendung
JP2003183254A (ja) 2001-12-20 2003-07-03 Yamanouchi Pharmaceut Co Ltd 2−アシルアミノ−3,5−ジシアノピリジン誘導体又はその塩
WO2003091246A1 (fr) 2002-04-26 2003-11-06 Vertex Pharmaceuticals Incorporated Derives de pyrrole utilises en tant qu'inhibiteurs de erk2 et leurs utilisations
DE10220570A1 (de) * 2002-05-08 2003-11-20 Bayer Ag Carbamat-substituierte Pyrazolopyridine
EP1388342A1 (fr) 2002-08-07 2004-02-11 Aventis Pharma Deutschland GmbH Dérivés de cycloalkenylamine condensé avec un hététoaryle et acylé et leur utilisation comme produits pharmaceutiques
AU2003259749A1 (en) * 2002-08-12 2004-02-25 Sugen, Inc. 3-pyrrolyl-pyridopyrazoles and 3-pyrrolyl-indazoles as novel kinase inhibitors
EP1569645A2 (fr) 2002-12-12 2005-09-07 Pharmacia Corporation Procede d'utilisation de composes d'aminocyanopyridine en tant qu'inhibiteurs de la proteine mapkap kinase-2
TWI270549B (en) * 2002-12-26 2007-01-11 Taisho Pharmaceutical Co Ltd Pyrrolopyrimidine and pyrrolopyridine derivatives substituted with cyclic amino group
TW200418829A (en) * 2003-02-14 2004-10-01 Avanir Pharmaceutics Inhibitors of macrophage migration inhibitory factor and methods for identifying the same
AR045047A1 (es) 2003-07-11 2005-10-12 Arena Pharm Inc Derivados arilo y heteroarilo trisustituidos como moduladores del metabolismo y de la profilaxis y tratamiento de desordenes relacionados con los mismos
US7692017B2 (en) * 2003-09-23 2010-04-06 Merck Sharp & Dohme Corp. Quinoline potassium channel inhibitors
WO2005046603A2 (fr) * 2003-11-10 2005-05-26 Synta Pharmaceuticals, Corp. Composes pyridiniques
US20050182105A1 (en) * 2004-02-04 2005-08-18 Nirschl Alexandra A. Method of using 3-cyano-4-arylpyridine derivatives as modulators of androgen receptor function
JP2007161585A (ja) * 2004-06-25 2007-06-28 Taisho Pharmaceut Co Ltd 環状アミノ基で置換されているピロロピリミジン及びピロロピリジン誘導体
RU2007102683A (ru) * 2004-06-25 2008-07-27 Тайсо Фармасьютикал Ко., Лтд. (Jp) Производные пирролпиримидина и пирролпиридина, замещенные тетрагидропиридином, в качестве антагонистов crf
DE102004032651A1 (de) * 2004-07-06 2006-02-16 Bayer Healthcare Ag Verwendung von substituierten 2-Thio-3,5-dicyano-4-phenyl-6-aminopyriden bei der Behandlung von Übelkeit und Erbrechen
DE102004042607A1 (de) 2004-09-03 2006-03-09 Bayer Healthcare Ag Substituierte Phenylaminothiazole und ihre Verwendung
WO2006034446A2 (fr) * 2004-09-20 2006-03-30 Xenon Pharmaceuticals Inc. Derives heterocycliques et leur utilisation comme agents therapeutiques
US20090221649A1 (en) * 2005-03-24 2009-09-03 Bayer Healthcare Ag Use of substituted 2-thio-3,5-dicyano-4-phenyl-6-aminopyridines for the treatment of reperfusion injury and reperfusion damage
US7750015B2 (en) * 2005-05-17 2010-07-06 Schering Corporation Nitrogen-containing heterocyclic compounds and methods of use thereof
WO2007073855A1 (fr) 2005-12-23 2007-07-05 Bayer Healthcare Ag Utilisation d’agonistes des recepteurs a1 de l’adenosine en vue de proteger les cellules renales contre les effets toxiques induits par des aminoglycosides au cours du traitement de maladies infectieuses
DE102006009813A1 (de) * 2006-03-01 2007-09-06 Bayer Healthcare Ag Verwendung von A2b/A1 Rezeptor Agonisten zur Modulation der Lipidspiegel
US20100009973A1 (en) * 2006-04-28 2010-01-14 Avexa Limited Integrase Inhibitors 3
DE102006056740A1 (de) 2006-12-01 2008-06-05 Bayer Healthcare Ag Cyclisch substituierte 3,5-Dicyano-2-thiopyridine und ihre Verwendung
DE102006056739A1 (de) 2006-12-01 2008-06-05 Bayer Healthcare Ag Substituierte 4-Amino-3,5-dicyano-2-thiopyridine und ihre Verwendung
DE102007035367A1 (de) 2007-07-27 2009-01-29 Bayer Healthcare Ag Substituierte Aryloxazole und ihre Verwendung
DE102007036076A1 (de) 2007-08-01 2009-02-05 Bayer Healthcare Aktiengesellschaft Dipeptoid-Produgs und ihre Verwendung
DE102008013587A1 (de) 2008-03-11 2009-09-17 Bayer Schering Pharma Aktiengesellschaft Heteroaryl-substituierte Dicyanopyridine und ihre Verwendung
DE102008062567A1 (de) 2008-12-16 2010-06-17 Bayer Schering Pharma Aktiengesellschaft Dipeptoid-Prodrugs und ihre Verwendung
DE102009006602A1 (de) 2009-01-29 2010-08-05 Bayer Schering Pharma Aktiengesellschaft Alkylamino-substituierte Dicyanopyridine und deren Aminosäureester-Prodrugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008028590A1 *

Also Published As

Publication number Publication date
AR062630A1 (es) 2008-11-19
CA2662728A1 (fr) 2008-03-13
TW200823209A (en) 2008-06-01
JP5331693B2 (ja) 2013-10-30
US20140155401A1 (en) 2014-06-05
PE20080772A1 (es) 2008-08-07
WO2008028590A1 (fr) 2008-03-13
US8653109B2 (en) 2014-02-18
CA2662728C (fr) 2015-03-31
JP2010502659A (ja) 2010-01-28
CL2007002610A1 (es) 2008-02-01
DE102006042143A1 (de) 2008-03-27
US20100093728A1 (en) 2010-04-15
UY30578A1 (es) 2008-05-02

Similar Documents

Publication Publication Date Title
EP2066637A1 (fr) Nouveaux dérivés de bipyridine substitués et leur utilisation en tant que ligands du récepteur d'adénosine
EP2099781B1 (fr) 4-amino-3,5-dicyano-2-thiopyridine substituée et son utilisation
EP2099788B1 (fr) 3,5-dicyano-2-thiopyridines substituées de manière cyclique et leur utilisation
EP2274299B1 (fr) Dicyanopyridines substituées par hétéroaryle et leur utilisation dans le traitement des maladies cardiovasculaires
EP2185550B1 (fr) Aryloxazoles substitués et leur utilisation
EP2235011B1 (fr) Pyrrolo[2,3-b]- et pyrazolo[3,4-b]-pyridines substituées comme ligands de récepteur de l'adénosine
EP2297104B1 (fr) Dicyanopyridines substituées par du 2-alcoxy et leur utilisation
DE102006009813A1 (de) Verwendung von A2b/A1 Rezeptor Agonisten zur Modulation der Lipidspiegel
WO2009100827A1 (fr) 4-phényl-3,5-dicyanopyridines substituées par un groupe cycloalkoxy, et leur utilisation
EP2556831B1 (fr) 6-Carbonitriles de 3,4-Dihydro-4-oxo-5-aryl-pyrido[2,3-d]pyrimidine en tant que ligand pour le récepteur Adenosin pour le traitement des maladies cardiovasculaires

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090408

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER SCHERING PHARMA AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER PHARMA AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

17Q First examination report despatched

Effective date: 20140730

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160408