EP2057381B1 - Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase - Google Patents

Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase Download PDF

Info

Publication number
EP2057381B1
EP2057381B1 EP07718433A EP07718433A EP2057381B1 EP 2057381 B1 EP2057381 B1 EP 2057381B1 EP 07718433 A EP07718433 A EP 07718433A EP 07718433 A EP07718433 A EP 07718433A EP 2057381 B1 EP2057381 B1 EP 2057381B1
Authority
EP
European Patent Office
Prior art keywords
gas
evaporator
pressure
dosing
dosing receptacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07718433A
Other languages
English (en)
French (fr)
Other versions
EP2057381A1 (de
Inventor
Werner Hermeling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hermeling Katharina Mag
Original Assignee
Hermeling Katharina Mag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hermeling Katharina Mag filed Critical Hermeling Katharina Mag
Priority to PL07718433T priority Critical patent/PL2057381T3/pl
Priority to SI200730238T priority patent/SI2057381T1/sl
Publication of EP2057381A1 publication Critical patent/EP2057381A1/de
Application granted granted Critical
Publication of EP2057381B1 publication Critical patent/EP2057381B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating

Definitions

  • the invention relates to a method for cyclic pistonless compression of the gas phase cryogenic liquefied gases.
  • a method for cyclic pistonless compression of the gas phase cryogenic liquefied gases is for example from the document US-17-2,035,396 known.
  • Substantial energy is used to liquefy gases, with the energy of overheating and evaporation removed from the product.
  • Refrigerated liquefied gases are stored in so-called cryo-tanks.
  • Cryo-tanks which may be stationary, are used as latches for the use of gases in the gaseous state.
  • the gases are removed from such a cryo-tank and converted into the gaseous state, with high-performance high-pressure pumps generally being used for this purpose.
  • the liquid is forced by means of such high pressure pumps in the evaporator, wherein the ambient heat or external energy is used for evaporation in the evaporator.
  • the liquid gases are immediately evaporated and subsequently compressed by gas compressors to the desired pressure. If gas cylinders with a pressure of, for example, 200 bar or 300 bar are to be filled with such systems, it is usually necessary to use about 40 KWh of power for 1000 Nm 3 / h for the compression. If not the liquid but that already vaporized gas is to be compressed in the sequence, the same amount requires a power of about 400 KWh.
  • the invention now aims to significantly reduce the costs incurred in such known methods for the evaporation and filling under pressure power, and has the aim to dispense with the use of pumps and compressors, which in addition to an improvement in the power balance and reduced maintenance leads.
  • the inventive method of the type mentioned is essentially that cryogenic liquefied gas is placed in a dosing and a metered amount is fed to an evaporator, whereupon the vaporized gas is filled or fed into a pipeline network, whereupon the dosing again is filled with liquid gas and the pressure in the last used evaporator is used to squeeze the liquid gas from the dosing into another evaporator, each cyclically different from each other evaporators are fed from the dosing and the pressure in the dosing and, if necessary, in each case to be filled evaporator is degraded before a renewed introduction of a metered amount of the liquefied gas.
  • cryogenic liquefied gases are spent in a dosing, can be used without the aid of the pump directly with the initially in a cryogenic tank usually initially existing vapor pressure of about 5 bar or the geodetic pressure to this transport of the cryogenic liquefied gas in the Dosing to accomplish.
  • the fact that the amount is metered in the sequence which, as it corresponds to a preferred development of the method according to the invention can be done in a simple manner, for example by weighing the metered dose spent in the dosing, it is ensured that in the episode during evaporation a whole certain amount and with known volume a defined the pressure applied to the heat supplied is built up.
  • the required pressure reduction can be made in principle in various ways. According to a preferred embodiment of the method according to the invention is in this case proceeded so that the pressure reduction from the metering vessel or the evaporator is reduced via a throttle in the gas space of the tank, a consumer or the atmosphere.
  • throttle means any device which serves to reduce the pressure.
  • Conventional pressure reducing valves are here due to the temperature conditions, as they occur when working with liquefied gases and the respective expansions, suitable only conditionally, the pressure reduction could of course also be done by forwarding in another consumer and / or against the atmosphere, if as in 2 In case of gas losses can be accepted.
  • the procedure is that the pressure reduction in a condenser is made as a throttle.
  • a condenser serves to substantially reduce the volume, since liquid gas is again eliminated from the gas phase and in this way the pressure is drastically reduced.
  • Such a condenser thus meets the criteria of the invention required throttle to return the gas and the liquid in the sequence in the cryo-tank, which indeed has a much lower vapor pressure.
  • this procedure can be such that the liquefaction and the pressure reduction in the Throttle by spraying liquefied gas and subsequent mixing condensation is made.
  • the gas can be pressed from below through the liquid or condensed by blowing liquid into the gas.
  • a correspondingly defined initial state must be set at the beginning, for which the procedure according to the invention is advantageously such that the containers, condenser and pipelines are cold-rolled before the start of the first evaporation ,
  • A designates a cryo-tank.
  • B denotes a metering container, wherein in the line leading to the cryo-tank, a condenser designated C is switched on as a throttle.
  • D denotes a first evaporator. Parallel to this first evaporator D exists a second evaporator E, wherein alternately from the respective active evaporator a schematically denoted by F.
  • Consumer device such as a bottle is filled.
  • valves connected in the respectively marked lines are designated consecutively with 1 to 19 and connected as follows in the individual process steps:
  • the product is liquid in the cryo-tank A, wherein the remaining facilities, and in particular the dosing B and the evaporators D and E are in this initial phase at atmospheric pressure.
  • Cryo-Tank A there is a slight overpressure of mostly about 5 bar.
  • liquid product flows under the pressure in the cryo-tank in the condenser C until the gas phase is in equilibrium with the liquid phase.
  • An opening of the valves 10 and 11 leads to the venting of gas initially located in the condenser in the atmosphere or in the gas space of the cryo-tank A.
  • valves 1, 3 and 8 are opened.
  • liquid product flows from the cryo-tank into the dosing tank, the valves being closed when the predetermined dosing weight determined by the balance G is reached.
  • Through the valve 8 is vented in the open position of the dosing against the cryo-tank A.
  • valves 1, 3 and 8 are again opened, whereupon cryogenic liquefied gas in turn flows from the cryo-tank A into the dosing tank B and, as described above, a dosage is carried out, the measured values of the balance G being taken into account.
  • the metered amount of cryogenic liquefied gas is pressed with the prevailing pressure in the evaporator D from the dosing into the further evaporator E, whereupon the valves are closed again , Subsequently, the cryogenic liquefied gas evaporates in the evaporator E, after which the valves 15 and 19 are opened after complete evaporation and again a container or the bottle F can be filled. After a check by means of the balance H, the valves are closed again so that now the evaporator and the dosing tank are under a correspondingly higher pressure than at the beginning of the process.
  • the pressure remaining in the evaporator E can again be used by opening the valves 4 and 6 and 16 to press the metered quantity of liquefied gas into the evaporator D, whereupon, as already described above, continues to proceed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Compressor (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur zyklischen kolbenlosen Kompression der Gasphase tiefkalt verflüssigter Gase. Ein derartiges Verfahren ist beispielsweise aus der Druckschrift US-17-2 035 396 bekannt.
  • Für den Transport von Gasen werden diese häufig verflüssigt, da das Volumen von flüssigen Gasen einen Bruchteil des Gasvolumens aufweist, ohne dass hierbei mit hohem Druck gearbeitet werden muss. Drucktanks sind in ihrer Konstruktion aufwändig und eignen sich nur beschränkt für den Straßentransport.
  • Für die Verflüssigung von Gasen wird beträchtliche Energie eingesetzt, wobei die Energie der Überhitzung und der Verdampfung dem Produkt entzogen werden muss. Zwischen dem verflüssigten Produkt und der Umgebung entsteht hierbei ein Temperaturgefälle. Tiefkalt verflüssigte Gase werden in sogenannten Cryo-Tanks gelagert. Cryo-Tanks, welche stationär angeordnet sein können, werden als Zwischenspeicher für die Verwendung der Gase in gasförmigem Zustand eingesetzt. Die Gase werden einem derartigen Cryo-Tank entnommen und in den gasförmigen Zustand übergeführt, wobei zu diesem Zweck in der Regel leistungsstarke Hochdruckpumpen eingesetzt werden. Die Flüssigkeit wird mittels derartiger Hochdruckpumpen in Verdampfer gedrückt, wobei im Verdampfer die Umgebungswärme oder Fremdenergie zur Verdampfung eingesetzt wird. Bei anderen Verfahren werden die flüssigen Gase unmittelbar verdampft und in der Folge erst über Gaskompressoren auf den gewünschten Druck komprimiert. Wenn mit derartigen Anlagen Gasflaschen mit einem Druck von beispielsweise 200 bar oder 300 bar befüllt werden sollen, müssen zumeist für 1000 Nm3/h für die Verdichtung ca. 40 KWh an Leistung eingesetzt werden. Wenn nicht die Flüssigkeit sondern das bereits verdampfte Gas in der Folge komprimiert werden soll, erfordert die gleiche Menge eine Leistung von ca. 400 KWh.
  • Die Erfindung zielt nun darauf ab, die bei derartigen bekannten Verfahren für das Verdampfen und Abfüllen unter Druck aufzuwendende Leistung wesentlich herabzusetzen, und hat das Ziel, auf den Einsatz von Pumpen und Kompressoren zu verzichten, was neben einer Verbesserung der Leistungsbilanz auch zu einem verringerten Wartungsaufwand führt.
  • Zur Lösung dieser Aufgabe besteht das erfindungsgemäße Verfahren der eingangs genannten Art im wesentlichen darin, dass tiefkalt verflüssigtes Gas in einen Dosierbehälter verbracht wird und eine dosierte Menge einem Verdampfer zugeführt wird, worauf die verdampfte Gasmenge abgefüllt oder in ein Leitungsnetz eingespeist wird, worauf der Dosierbehälter neuerlich mit flüssigem Gas gefüllt wird und der Druck im zuletzt eingesetzten Verdampfer zum Auspressen des flüssigen Gases aus dem Dosierbehälter in einen weiteren Verdampfer herangezogen wird, wobei zyklisch jeweils voneinander verschiedene Verdampfer aus dem Dosierbehälter beschickt werden und der Druck im Dosiergefäß sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer vor einem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird. Dadurch, dass tiefkalt verflüssigte Gase in einen Dosierbehälter verbracht werden, kann ohne Zuhilfenahme vom Pumpen unmittelbar mit dem in einem Cryo-Tank überlicherweise anfangs bestehenden Dampfdruck von etwa 5 bar oder aber dem geodetischen Druck gearbeitet werden, um diesen Transport des tiefkalt verflüssigten Gases in den Dosierbehälter zu bewerkstelligen. Dadurch, dass die Menge in der Folge dosiert wird, was, wie es einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens entspricht, in einfacher Weise beispielsweise durch Wiegen der in den Dosierbehälter verbrachten dosierten Menge erfolgen kann, wird sichergestellt, dass in der Folge beim Verdampfen eine ganz bestimmte Menge und bei bekanntem Volumen ein definierter der zugeführten Wärme zugeordneter Druck aufgebaut wird. Dadurch, dass nun die verdampfte Gasmenge unter dem beim Verdampfen entstehenden Druck unmittelbar abgefüllt wird oder gegen dynamische Leitungswiderstände in ein Leitungsnetz eingespeist wird, wird ein Druckausgleich zwischen Verdampfer und dem Verbraucher bzw. den zu befüllenden Flaschen oder Tanks hergestellt, wobei naturgemäß ein Restdruck im Verdampfer verbleibt, sobald die entsprechenden Füllventile geschlossen werden. Um in der Folge zyklisch weiterarbeiten zu können, muss der Dosierbehälter neuerlich mit einer dosierten Menge an flüssigem Gas gefüllt werden, wobei hier so lange der ursprünglich im Cryo-Tank vorhandene Dampfdruck oder der geodetische Druck ausreicht, so lange der Druck im Dosierbehälter unter diesen jeweils für das Befüllen erforderlichen Drucken liegt.
  • Nach mehrmaligem Beschicken des Dosierbehälters stellt sich aber hier ein Druckausgleich zum Verdampfer ein und beim Anfahren der Anlage genügt es, nach einem neuerlichen Beschicken des Dosierbehälters den verbleibenden Dampfdruck im gerade verwendeten Verdampfer für das Auspressen der dosierten Menge an verflüssigtem Gas in einen weiteren auf atmosphärischen bzw. geringeren Druck als den Druck im gerade verwendeten Verdampfer befindlichen Verdampfer zu ermöglichen. Es wird somit mit dem verbleibenden Restdruck des jeweils gerade verwendeten Verdampfers ein weiterer Verdampfer beschickt und bei der dort vorgenommenen Verdampfung wiederum der Dampfdruck aufgebaut, welcher in der Folge für das Befüllen des Tanks der Flaschen bzw. die Einspeisung in das Leitungsnetz vorgesehen ist.
  • Um nun zu verhindern, dass insgesamt der Dosierbehälter und die Verdampfer durch zyklischen Druckausgleich das gleiche Druckniveau erreichen, muss jeweils ein selektiver Druckabbau vorgenommen werden, wobei erfindungsgemäß hierzu so vorgegangen wird, dass nach dem zyklischen Beschicken jeweils voneinander verschiedener Verdampfer und der Verwendung des Restdrucks in jeweils einem der beiden Verdampfer der Druck im Dosiergefäß sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer vor dem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird. Auf diese Weise gelingt es ohne Zuhilfenahme von Pumpen jeweils immer die erforderliche Druckdifferenz in der Anlage aufrecht zu erhalten, welche ein abwechselndes bzw. zyklisches Beschicken von gesonderten Verdampfern aus einem Cryo-Tank mit definiertem Dampfdruck ermöglicht.
  • Der geforderte Druckabbau kann prinzipiell auf verschiedene Weise vorgenommen werden. Gemäß einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens wird hierbei so vorgegangen, dass der Druckabbau aus dem Dosiergefäß bzw. dem Verdampfer über eine Drossel in den Gasraum des Tanks, einen Verbraucher oder die Atmosphäre abgebaut wird. Der Begriff Drossel bezeichnet hier eine beliebige Einrichtung, welche der Druckminderung dient. Klassische Druckminderventile sind hier aufgrund der Temperaturverhältnisse, wie sie beim Arbeiten mit verflüssigten Gasen und bei den jeweiligen Expansionen auftreten, nur bedingt geeignet, wobei der Druckabbau naturgemäß auch durch Fortleitung in einem anderen Verbraucher und/oder gegen die Atmosphäre erfolgen könnte, wenn wie im 2. Fall Gasverluste in Kauf genommen werden. In besonders vorteilhafter Weise wird aber so vorgegangen, dass der Druckabbau in einem Verflüssiger als Drossel vorgenommen wird. Ein Verflüssiger dient hierbei der wesentlichen Reduktion des Volumens, da flüssiges Gas aus der Gasphase wiederum ausgeschieden wird und auf diese Weise der Druck drastisch herabgesetzt wird. Ein derartiger Verflüssiger erfüllt somit die Kriterien der erfindungsgemäß erforderlichen Drossel, um das Gas und die Flüssigkeit in der Folge in den Cryo-Tank rückführen zu können, welcher ja einen wesentlich geringeren Dampfdruck aufweist.
  • In besonders einfacher Weise kann hierbei so vorgegangen werden, dass die Verflüssigung und der Druckabbau in der Drossel durch Einsprühen von verflüssigtem Gas und daran anschließende Mischkondensation vorgenommen wird.
  • Es ist möglich, durch Mischkondensation im Cryo-Tank das eingeblasene Gas ganz oder teilweise zu kondensieren. Dabei kann das Gas von unten durch die Flüssigkeit gedrückt werden oder durch Einblasen von Flüssigkeit in das Gas kondensiert werden.
  • Wie bereits eingangs erwähnt, ist es für den sicheren Betrieb und insbesondere für das Befüllen von Gasflaschen oder Tanks von wesentlicher Bedeutung, dass eine dosierte Menge an Gasen abgefüllt wird. Hierzu wird, wie bereits erwähnt, bevorzugt so vorgegangen, dass die in den Dosierbehälter dosierte Menge durch Wiegen bestimmt wird, wobei zur Kontrolle mit Vorteil auch die abgefüllte Druckgasmenge jeweils gemessen, insbesondere gewogen wird.
  • Um insgesamt bei Beginn des Füllvorgangs rasch zu reproduzierbaren Druckverhältnissen und einem reibungslosen Betrieb zu finden, muss zu Beginn ein entsprechend definierter Ausgangszustand eingestellt werden, wofür erfindungsgemäß mit Vorteil so vorgegangen wird, dass die Behälter, Verflüssiger und die Rohrleitungen vor Beginn der ersten Verdampfung kaltgefahren werden.
  • Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert.
  • In der Zeichnung ist mit A ein Cryo-Tank bezeichnet. B bezeichnet einen Dosierbehälter, wobei in der zum Cryo-Tank rückführenden Leitung ein mit C bezeichneter Verflüssiger als Drossel eingeschaltet ist. Mit D ist ein erster Verdampfer bezeichnet. Parallel zu diesem ersten Verdampfer D existiert ein zweiter Verdampfer E, wobei abwechselnd aus dem jeweils aktiven Verdampfer eine schematisch mit F bezeichnete Verbrauchereinrichtung, wie beispielsweise eine Flasche, befüllt wird.
  • Mit G ist schematisch eine Waage für die in den Dosierbehälter B abgefüllte Menge angedeutet. Ebenso existiert eine mit H angedeutete Waage für die Messung der in die Flasche F abgefüllten Menge.
  • Die in die jeweils eingezeichneten Leitungen geschalteten Ventile sind fortlaufend mit 1 bis 19 bezeichnet und in den einzelnen Verfahrensschritten wie folgt geschaltet:
  • Zum Kaltfahren des Verflüssigers liegt das Produkt im Cryo-Tank A flüssig vor, wobei die verbleibenden Einrichtungen, und insbesondere der Dosierbehälter B und die Verdampfer D und E in dieser Ausgangsphase sich auf atmosphärischem Druck befinden. Im Cryo-Tank A herrscht ein leichter Überdruck von zumeist etwa 5 bar. Nach Öffnen der Ventile 1 und 2 strömt flüssiges Produkt unter dem Druck im Cryo-Tank in den Verflüssiger C, bis die Gasphase im Gleichgewicht mit der flüssigen Phase ist. Ein Öffnen der Ventile 10 und 11 führt zur Entlüftung von anfänglich im Verflüssiger befindlichem Gas in die Atmosphäre bzw. in den Gasraum des Cryo-Tanks A.
  • Beim anschließenden Kaltfahren des Dosierbehälters werden die Ventile 1, 3 und 8 geöffnet. In diesem Fall strömt flüssiges Produkt vom Cryo-Tank in den Dosierbehälter, wobei die Ventile geschlossen werden, wenn das mittels der Waage G ermittelte vorgegebene Dosiergewicht erreicht ist. Durch das Ventil 8 wird in der Offenstellung der Dosierbehälter gegen den Cryo-Tank A entlüftet.
  • Bei einem anschließenden Öffnen der Ventile 4, 6 und einem weiterhin Offenhalten des Ventils 8 strömt das flüssige Produkt vom Dosierbehälter B in den ersten Verdampfer D. Wiederum erfolgt ein Druckausgleich über das Ventil 8 gegen den Cryo-Tank A, wobei unmittelbar im Anschluss an die Entleerung des Dosierbehälters das Ventil 6 und das Ventil 4 geschlossen werden, um diesen vom Verdampfer D zu trennen.
  • Bei der anschließenden Verdampfung im Verdampfer D wird das Produkt vollständig verdampft, worauf nach vollständiger Verdampfung die Ventile 14 und 19 geöffnet werden, um das nun gasförmige Produkt in die Flasche F zu verbringen. Bei dieser Gelegenheit kann eine Kontrolle durch Wiegen mittels der schematisch angedeuteten Waage H vorgenommen werden.
  • Nach Schließen der Ventile herrscht im Verdampfer D der zuletzt durch Verdampfen gebildete Dampfdruck.
  • In der Folge werden die Ventile 1, 3 und 8 wiederum geöffnet, worauf wiederum tiefkalt verflüssigtes Gas vom Cryo-Tank A in den Dosierbehälter B strömt und neuerlich, wie beschrieben, eine Dosierung vorgenommen wird, wobei die Messwerte der Waage G Berücksichtigung finden.
  • Nach Schließen der gerade geöffneten Ventile und anschließendes Öffnen der Ventile 4, 5, 6, 14 und 17 wird die dosierte Menge tiefkalt verflüssigten Gases mit dem im Verdampfer D herrschenden Druck aus dem Dosierbehälter in den weiteren Verdampfer E ausgepresst, worauf die Ventile wieder geschlossen werden. Anschließend verdampft das tiefkalt verflüssige Gas im Verdampfer E, worauf nach vollständigem Verdampfen die Ventile 15 und 19 geöffnet werden und wiederum ein Behälter bzw. die Flasche F gefüllt werden kann. Nach einer Kontrolle mittels der Waage H werden die Ventile wieder geschlossen, sodass nun die Verdampfer und der Dosierbehälter unter entsprechend höherem Druck als zu Beginn des Verfahrens stehen. Sobald dieser Druck, und insbesondere der Druck im Dosierbehälter, den Druck im Cryo-Tank überschreitet, gelingt es nicht mehr ohne weiteres, unter Zuhilfenahme des geodetischen Drucks ein neuerliches Befüllen des Dosierbehälters zu bewirken. Es muss somit hier ein gedrosselter Druckabbau erfolgen, wobei davon ausgegangen wird, dass der Dosierbehälter nach der zuletzt beschriebenen Entleerung unter dem Druck des Verdampfers D steht. Die Ventile 7, 9 und 12 werden in der Folge geöffnet, worauf im Wärmetauscher des Verflüssigers das gasförmige Produkt durch flüssiges Produkt möglichst weit herabgekühlt wird, sodass der Druck entsprechend reduziert wird und bei der Drosselung im Ventil 9 die Dampflinie erreicht wird.
  • Nach einem vorangehenden Druckausgleich ist die Befüllung des Dosierbehälters wieder mit dem geodetischen Druck möglich. Um aber in der Folge ein Verbringen der dosierten menge an tiefkalt verflüssigtem Gas aus dem Dosierbehälter in den Verdampfer D zu ermöglichen, muss dieser zu befüllende Verdampfer naturgemäß wiederum auf ein Druckniveau gebracht werden, welches geringer ist als das noch zur Verfügung stehende Druckniveau, welches aus dem anderen Verdampfer zum Auspressen des Dosierbehälters zur Verfügung steht. Mit anderen Worten bedeutet dies, dass auch der nächste zu befüllende Verdampfer, in diesem Falle der Verdampfer D, einem entsprechenden Druckausgleich unterworfen werden muss und ebenso wie der Dosierbehälter B in geeigneter Weise auf den Druck im Gasraum des Cryo-Tanks A oder darunter gebracht werden muss. Dies gelingt durch Öffnen der Ventile 14 und 17 sowie je nach Volumen durch Öffnen des Ventils 8 unter unmittelbarem Rückexpandieren in den Gasraum des Cryo-Tanks A oder durch Öffnen des Ventils 7 und Rückführung über den Verflüssiger.
  • Nach dem nachfolgenden Beschicken des Dosierbehälters in der bereits beschriebenen Weise kann wiederum durch Öffnen der Ventile 4 und 6 sowie 16 der im Verdampfer E verbleibende Druck zum Auspressen der dosierten Menge an verflüssigtem Gas in den Verdampfer D herangezogen werden, wonach, wie bereits zuvor beschrieben, weiter verfahren wird.
  • Bei der jeweiligen Drosselung bzw. beim Druckabbau im Verflüssiger wird durch Öffnen des Ventils 13 unterkühlte Flüssigkeit aus dem Oberteil des Verflüssigers in den Wärmetauscherbereich des Verflüssigers geführt. Durch Öffnen der Ventile 11 und 12 wird ein Druckausgleich zwischen dem Verflüssiger C und dem Cryo-Tank A erreicht, worauf der Prozess durch Öffnen der Ventile 1 und 2 wiederum in den Ausgangszustand versetzt wird, welcher neuerliche Zyklen ermöglicht.

Claims (7)

  1. Verfahren zur zyklischen kolbenlosen Kompression der Gasphase tiefkalt verflüssigter Gase, dadurch gekennzeichnet, dass tiefkalt verflüssigte Gase in einen Dosierbehälter (B) verbracht werden und eine dosierte Menge einem Verdampfer (D), zugeführt wird, worauf die verdampfte Gasmenge abgefüllt oder in ein Leitungsnetz (F) eingespeist wird, worauf der Dosierbehälter (B) neuerlich mit flüssigem Gas gefüllt wird und der Druck im zuletzt eingesetzten Verdampfer (D, E) zum Auspressen des flüssigen Gases aus dem Dosierbehälter (B) in einen weiteren Verdampfer (E) herangezogen wird, wobei zyklisch jeweils voneinander verschiedene Verdampfer (D, E) aus dem Dosierbehälter (B) beschickt werden und der Druck im Dosiergefäß (B) sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer (D, E) vor einem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Druckabbau aus dem Dosiergefäß (B) bzw. dem Verdampfer (D, E) über eine Drossel (10, 11) in den Gasraum des Tanks (A), einen Verbraucher (F) oder die Atmosphäre abgebaut wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Druckabbau in einem Verflüssiger (C) als Drossel (9) vorgenommen wird.
  4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Verflüssigung (C) und der Druckabbau durch Einsprühen von verflüssigtem Gas und daran anschließende Mischkondensation vorgenommen wird, wobei auch eine Mischkondensation durch Durchleiten des Gases durch die Flüssigphase des Tanks (A) möglich ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in den Dosierbehälter (B) dosierte Menge vorzugsweise durch Wiegen (G) bestimmt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die abgefüllte Druckgasmenge jeweils gemessen, insbesondere gewogen wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Behälter (AB), Verflüssiger (C) und die Rohrleitungen vor Beginn der ersten Verdampfung kaltgefahren werden.
EP07718433A 2006-05-08 2007-05-08 Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase Not-in-force EP2057381B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL07718433T PL2057381T3 (pl) 2006-05-08 2007-05-08 Sposób cyklicznego beztłokowego sprężania fazy gazowej gazów skraplanych w niskich temperaturach
SI200730238T SI2057381T1 (sl) 2006-05-08 2007-05-08 Postopek ciklične brezbatne kompresije plinske faze globoko zamrznjenih utekočinjenih plinov

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0079006A AT503579B1 (de) 2006-05-08 2006-05-08 Verfahren zur zyklischen kolbenlosen kompression der gasphase tiefkalt verflüssigter gase
PCT/AT2007/000219 WO2007128023A1 (de) 2006-05-08 2007-05-08 Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase

Publications (2)

Publication Number Publication Date
EP2057381A1 EP2057381A1 (de) 2009-05-13
EP2057381B1 true EP2057381B1 (de) 2010-02-24

Family

ID=38477174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07718433A Not-in-force EP2057381B1 (de) 2006-05-08 2007-05-08 Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase

Country Status (9)

Country Link
EP (1) EP2057381B1 (de)
AT (2) AT503579B1 (de)
DE (1) DE502007002955D1 (de)
DK (1) DK2057381T3 (de)
ES (1) ES2342952T3 (de)
PL (1) PL2057381T3 (de)
PT (1) PT2057381E (de)
SI (1) SI2057381T1 (de)
WO (1) WO2007128023A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236822A1 (de) 2009-04-01 2010-10-06 Werner Hermeling Verfahren zur bedarfsabhängigen Regelung und Glättung der elektrischen Ausgangsleistung eines Energie-Wandlers sowie Vorrichtung zur Durchführung dieses Verfahrens
EP2457014B1 (de) * 2009-07-22 2013-07-24 LO Solutions GmbH Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens
AT509334B1 (de) 2010-07-09 2011-08-15 Lo Solutions Gmbh Verfahren und vorrichtung zur bereitstellung von elektrischer und thermischer energie, insbesondere in einer hafenanlage
AT512979B1 (de) * 2012-06-05 2015-11-15 Hermeling Werner Dipl Ing Verfahren und Vorrichtung zum Regasifizieren von tiefkalt verflüssigtem Gas
FR3123643B1 (fr) * 2021-06-03 2024-03-08 Air Liquide Installation et procédé de stockage et de distribution de fluide
FR3136037B1 (fr) * 2022-05-24 2024-09-27 Air Liquide Installation de remplissage de récipients de gaz avec de l’oxygène gazeux

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL49146C (de) * 1935-03-01 1900-01-01
BE419633A (de) * 1936-02-18 1900-01-01
GB847508A (en) * 1957-01-15 1960-09-07 Air Prod Inc Improvements in pumping and vaporizing liquefied gases
DE2047363A1 (en) * 1970-09-25 1972-03-30 Linde Ag, 6200 Wiesbaden Evaporated liquefied gas blanket - is utilised by feeding it directly to gas bottles
FR2379018A1 (fr) * 1976-12-23 1978-08-25 Air Liquide Procede et installation cryogeniques de distribution de gaz sous pression
EP0439994A1 (de) * 1990-01-31 1991-08-07 Carbagas Verfahren und Einrichtung zum Aufbewahren technischer Gase
JPH04198296A (ja) * 1990-11-27 1992-07-17 Tokyo Gas Co Ltd 天然ガスの充填装置
ATE172524T1 (de) * 1995-05-02 1998-11-15 Linde Ag Hochdruckgasversorgung
EP1353112A1 (de) * 2002-04-10 2003-10-15 Linde Aktiengesellschaft Methode zum Fördern kryogener Flüssigkeiten

Also Published As

Publication number Publication date
AT503579B1 (de) 2007-11-15
ES2342952T3 (es) 2010-07-19
WO2007128023A1 (de) 2007-11-15
EP2057381A1 (de) 2009-05-13
ATE458919T1 (de) 2010-03-15
SI2057381T1 (sl) 2010-08-31
PL2057381T3 (pl) 2010-09-30
AT503579A4 (de) 2007-11-15
DK2057381T3 (da) 2010-06-21
PT2057381E (pt) 2010-05-31
DE502007002955D1 (de) 2010-04-08

Similar Documents

Publication Publication Date Title
EP2057381B1 (de) Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase
DE69006143T2 (de) Hochdruckgaszufuhrsystem.
DE69934923T3 (de) Verfahren zum Befüllen von Flaschen mit kryogenem Fluid
DE69838370T2 (de) Abgabesystem für ein cryogenen Fluidums unter hohem Druck
CH703773A2 (de) Verfahren zum Verflüssigen einer kohlenwasserstoffreichen Einsatzfraktion.
CH615518A5 (en) Gas-mixing device for breathing, diving, medical and laboratory technology
EP3676529B1 (de) Verfahren zum befüllen eines mobilen kältemitteltanks mit einem kryogenen kältemittel
DE19730459A1 (de) Vorrichtungen und Verfahren zur Isothermen Betankung von Erdgasfahrzeugen mit komprimiertem Erdgas CNG
EP3450819B1 (de) Verfahren zum befüllen eines mobilen kältemitteltanks mit einem kryogenen kältemittel
EP0823968A1 (de) Hochdruckgasversorgung
DE102006000626A1 (de) Verfahren zur Herstellung eines unter Druck stehenden Gasgemisches
DE102021105999B4 (de) Verfahren und Vorrichtung zur Rückverflüssigung von BOG
WO2013182907A2 (de) Verfahren und vorrichtung zum regasifizieren von tiefkalt verflüssigtem gas
EP1846691A1 (de) Verfahren und vorrichtung zum befüllen von druckbehältern mit nicht verflüssigten gasen oder gasgemischen
DE102021001650B4 (de) Verfahren und Vorrichtung zur Rückverflüssigung von BOG
EP3017980A2 (de) Vorrichtung und verfahren zum warten einer klimaanlage
DE10118361A1 (de) Verfahren und Vorrichtung zum Lagern von Flüssigkeiten und verflüssigten Gasen
DE638203C (de) Einrichtung zum volumetrisch gemessenen Abfuellen von fluessigem Gas
DE2047363A1 (en) Evaporated liquefied gas blanket - is utilised by feeding it directly to gas bottles
DE2940755C2 (de) Vorrichtung zum Entleeren von Behältern
AT512979B1 (de) Verfahren und Vorrichtung zum Regasifizieren von tiefkalt verflüssigtem Gas
AT514741B1 (de) Vorrichtung und Verfahren zum Warten einer Klimaanlage
DE2630010A1 (de) Speichertankanlage fuer fluessiggas
WO2020020484A1 (de) Verfahren und anlage zur versorgung mit kryogenem fluid
AT126276B (de) Verfahren zur Wiederverflüssigung der beim Abzapfen und Umfüllen verflüssigter Gase entstehenden unvermeidlichen Verdampfungsprodukte.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007002955

Country of ref document: DE

Date of ref document: 20100408

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20100524

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2342952

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100525

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7735

Country of ref document: SK

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E008320

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007002955

Country of ref document: DE

Representative=s name: FLEISCHER, GODEMEYER, KIERDORF & PARTNER, PATE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007002955

Country of ref document: DE

Representative=s name: GODEMEYER BLUM LENZE PATENTANWAELTE, PARTNERSC, DE

Effective date: 20110920

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007002955

Country of ref document: DE

Representative=s name: GODEMEYER BLUM LENZE PARTNERSCHAFT, PATENTANWA, DE

Effective date: 20110920

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007002955

Country of ref document: DE

Owner name: LO SOLUTIONS GMBH, AT

Free format text: FORMER OWNER: HERMELING, KATHARINA MAG., NEUSIEDL AM SEE, AT

Effective date: 20110920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120410

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20130423

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 458919

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20130408

Year of fee payment: 7

Ref country code: CZ

Payment date: 20130502

Year of fee payment: 7

Ref country code: SK

Payment date: 20130507

Year of fee payment: 7

Ref country code: DE

Payment date: 20130503

Year of fee payment: 7

Ref country code: GB

Payment date: 20130508

Year of fee payment: 7

Ref country code: CH

Payment date: 20130523

Year of fee payment: 7

Ref country code: DK

Payment date: 20130513

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20130416

Year of fee payment: 7

Ref country code: NL

Payment date: 20130410

Year of fee payment: 7

Ref country code: IT

Payment date: 20130508

Year of fee payment: 7

Ref country code: RO

Payment date: 20130507

Year of fee payment: 7

Ref country code: PT

Payment date: 20130412

Year of fee payment: 7

Ref country code: BE

Payment date: 20130531

Year of fee payment: 7

Ref country code: SI

Payment date: 20130403

Year of fee payment: 7

Ref country code: FR

Payment date: 20130605

Year of fee payment: 7

Ref country code: TR

Payment date: 20130425

Year of fee payment: 7

Ref country code: PL

Payment date: 20130404

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20130415

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007002955

Country of ref document: DE

Representative=s name: GODEMEYER BLUM LENZE PATENTANWAELTE, PARTNERSC, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007002955

Country of ref document: DE

Representative=s name: GODEMEYER BLUM LENZE PARTNERSCHAFT, PATENTANWA, DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20141110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007002955

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141110

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7735

Country of ref document: SK

Effective date: 20140508

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007002955

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140509

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140509

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

Ref country code: SI

Ref legal event code: KO00

Effective date: 20150106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140508