AT503579A4 - Verfahren zur zyklischen kolbenlosen kompression der gasphase tiefkalt verflüssigter gase - Google Patents

Verfahren zur zyklischen kolbenlosen kompression der gasphase tiefkalt verflüssigter gase Download PDF

Info

Publication number
AT503579A4
AT503579A4 AT0079006A AT7902006A AT503579A4 AT 503579 A4 AT503579 A4 AT 503579A4 AT 0079006 A AT0079006 A AT 0079006A AT 7902006 A AT7902006 A AT 7902006A AT 503579 A4 AT503579 A4 AT 503579A4
Authority
AT
Austria
Prior art keywords
gas
evaporator
dosing
pressure
tank
Prior art date
Application number
AT0079006A
Other languages
English (en)
Other versions
AT503579B1 (de
Original Assignee
Hermeling Katharina Mag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT0079006A priority Critical patent/AT503579B1/de
Application filed by Hermeling Katharina Mag filed Critical Hermeling Katharina Mag
Priority to PCT/AT2007/000219 priority patent/WO2007128023A1/de
Priority to ES07718433T priority patent/ES2342952T3/es
Priority to SI200730238T priority patent/SI2057381T1/sl
Priority to EP07718433A priority patent/EP2057381B1/de
Priority to DE502007002955T priority patent/DE502007002955D1/de
Priority to DK07718433.1T priority patent/DK2057381T3/da
Priority to AT07718433T priority patent/ATE458919T1/de
Priority to PT07718433T priority patent/PT2057381E/pt
Priority to PL07718433T priority patent/PL2057381T3/pl
Application granted granted Critical
Publication of AT503579B1 publication Critical patent/AT503579B1/de
Publication of AT503579A4 publication Critical patent/AT503579A4/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Compressor (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

1
Die Erfindung bezieht sich auf ein Verfahren zur zyklischen kolbenlosen Kompression der Gasphase tiefkalt verflüssigter Gase. Für den Transport von Gasen werden diese häufig verflüssigt, da das Volumen von flüssigen Gasen einen Bruchteil des Gasvolumens aufweist, ohne dass hierbei mit hohem Druck gearbeitet werden muss. Drucktanks sind in ihrer Konstruktion aufwändig und eignen sich nur beschränkt für den Straßentransport. Für die Verflüssigung von Gasen wird beträchtliche Energie eingesetzt, wobei die Energie der Überhitzung und der Verdampfung dem Produkt entzogen werden muss. Zwischen dem verflüssigten Produkt und der Umgebung entsteht hierbei ein Temperaturgefälle. Tiefkalt verflüssigte Gase werden in sogenannten Cryo-Tanks gelagert. Cryo-Tanks, welche stationär angeordnet sein können, werden als Zwischenspeicher für die Verwendung der Gase in gasförmigem Zustand eingesetzt. Die Gase werden einem derartigen Cryo-Tank entnommen und in den gasförmigen Zustand übergeführt, wobei zu diesem Zweck in der Regel leistungsstarke Hochdruckpumpen eingesetzt werden. Die Flüssigkeit wird mittels derartiger Hochdruckpumpen in Verdampfer gedrückt, wobei im Verdampfer die Umgebungswärme oder Fremdenergie zur Verdampfung eingesetzt wird. Bei anderen Verfahren werden die flüssigen Gase unmittelbar verdampft und in der Folge erst über Gaskompressoren auf den gewünschten Druck komprimiert. Wenn mit derartigen Anlagen Gasflaschen mit einem Druck von beispielsweise 200 bar oder 300 bar befüllt werden sollen, müssen zumeist für 1000 Nm3/h für die Verdichtung ca. 40 KWh an Leistung eingesetzt werden. Wenn nicht die Flüssigkeit sondern das bereits verdampfte Gas in der Folge komprimiert werden soll, erfordert die gleiche Menge eine Leistung von ca. 400 KWh.
Die Erfindung zielt nun darauf ab, die bei derartigen bekannten Verfahren für das Verdampfen und Abfüllen unter Druck aufzuwendende Leistung wesentlich herabzusetzen, und hat das Ziel, auf den Einsatz von Pumpen und Kompressoren zu verzieh- 2 ten, was neben einer Verbesserung der Leistungsbilanz auch zu einem verringerten Wartungsaufwand führt.
Zur Lösung dieser Aufgabe besteht das erfindungsgemäße Verfahren der eingangs genannten Art im wesentlichen darin, dass tiefkalt verflüssigtes Gas in einen Dosierbehälter verbracht wird und eine dosierte Menge einem Verdampfer zugeführt wird, worauf die verdampfte Gasmenge abgefüllt oder in ein Leitungsnetz eingespeist wird, worauf der Dosierbehälter neuerlich mit flüssigem Gas gefüllt wird und der Druck im zuletzt eingesetzten Verdampfer zum Auspressen des flüssigen Gases aus dem Dosierbehälter in einen weiteren Verdampfer herangezogen wird, wobei zyklisch jeweils voneinander verschiedene Verdampfer aus dem Dosierbehälter beschickt werden und der Druck im Dosiergefäß sowie erforderlichenfalls im jeweils zu befüllen-den Verdampfer vor einem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird. Dadurch, dass .tiefkalt verflüssigte Gase in einen Dosierbehälter verbracht werden, kann ohne Zuhilfenahme vom Pumpen unmittelbar mit dem in einem Cryo-Tank überlicherweise anfangs bestehenden Dampfdruck von etwa 5 bar oder aber dem geodetischen Druck gearbeitet werden, um diesen Transport des tiefkalt verflüssigten Gases in den Dosierbehälter zu bewerkstelligen. Dadurch, dass die Menge in der Folge dosiert wird, was, wie es einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens entspricht, in einfacher Weise beispielsweise durch Wiegen der in den Dosierbehälter verbrachten dosierten Menge erfolgen kann, wird sichergestellt, dass in der Folge beim Verdampfen eine ganz bestimmte Menge und bei bekanntem Volumen ein definierter der zugeführten Wärme zugeordneter Druck aufgebaut wird. Dadurch, dass nun die verdampfte Gasmenge unter dem beim Verdampfen entstehenden Druck unmittelbar abgefüllt wird oder gegen dynamische Leitungswiderstände in ein Leitungsnetz eingespeist wird, wird ein Druckausgleich zwischen Verdampfer und dem Verbraucher bzw. den zu befüllenden Flaschen oder Tanks hergestellt, wobei naturgemäß ein Restdruck im Verdampfer verbleibt, sobald die entsprechenden Füllventile geschlossen werden. Um in der Folge zyklisch Weiterarbeiten zu können, muss 3 der Dosierbehälter neuerlich mit einer dosierten Menge an flüssigem Gas gefüllt werden, wobei hier so lange der ursprünglich im Cryo-Tank vorhandene Dampfdruck oder der geodetische Druck ausreicht, so lange der Druck im Dosierbehälter unter diesen jeweils für das Befüllen erforderlichen Drucken liegt.
Nach mehrmaligem Beschicken des Dosierbehälters stellt sich aber hier ein Druckausgleich zum Verdampfer ein und beim Anfahren der Anlage genügt es, nach einem neuerlichen Beschicken des Dosierbehälters den verbleibenden Dampfdruck im gerade verwendeten Verdampfer für das Auspressen der dosierten Menge an verflüssigtem Gas in einen weiteren auf atmosphärischen bzw. geringeren Druck als den Druck im gerade verwendeten Verdampfer befindlichen Verdampfer zu ermöglichen. Es wird somit mit dem verbleibenden Restdruck des jeweils gerade verwendeten Verdampfers ein weiterer Verdampfer beschickt und bei der dort vorgenommenen Verdampfung wiederum der Dampfdruck aufgebaut, welcher in der Folge für das Befüllen des Tanks der Flaschen bzw. die Einspeisung in das Leitungsnetz vorgesehen ist.
Um nun zu verhindern, dass insgesamt der Dosierbehälter und die Verdampfer durch zyklischen Druckausgleich das gleiche Druckniveau erreichen, muss jeweils ein selektiver Druckabbau vorgenommen werden, wobei erfindungsgemäß hierzu so vorgegangen wird, dass nach dem zyklischen Beschicken jeweils voneinander verschiedener Verdampfer und der Verwendung des Restdrucks in jeweils einem der beiden Verdampfer der Druck im Dosiergefäß sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer vor dem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird. Auf diese Weise gelingt es ohne Zuhilfenahme von Pumpen jeweils immer die erforderliche Druckdifferenz in der Anlage aufrecht zu erhalten, welche ein abwechselndes bzw. zyklisches Beschicken von gesonderten Verdampfern aus einem Cryo-Tank mit definiertem Dampfdruck ermöglicht.
Der geforderte Druckabbau kann prinzipiell auf verschiedene Weise vorgenommen werden. Gemäß einer bevorzugten Weiter- 4 bildung des erfindungsgemäßen Verfahrens wird hierbei so vorgegangen, dass der Druckabbau aus dem Dosiergefäß bzw. dem Verdampfer über eine Drossel in den Gasraum des Tanks, einen Verbraucher oder die Atmosphäre abgebaut wird. Der Begriff Drossel bezeichnet hier eine beliebige Einrichtung, welche der Druckminderung dient. Klassische Druckminderventile sind hier aufgrund der Temperaturverhältnisse, wie sie beim Arbeiten mit verflüssigten Gasen und bei den jeweiligen Expansionen auftreten, nur bedingt geeignet, wobei der Druckabbau naturgemäß auch durch Fortleitung in einem anderen Verbraucher und/oder gegen die Atmosphäre erfolgen könnte, wenn wie im 2. Fall Gasverluste in Kauf genommen werden. In besonders vorteilhafter Weise wird aber so vorgegangen, dass der Druckabbau in einem Verflüssiger als Drossel vorgenommen wird. Ein Verflüssiger dient hierbei der wesentlichen Reduktion des Volumens, da flüssiges Gas aus der Gasphase wiederum ausgeschieden wird und auf diese Weise der Druck drastisch herabgesetzt wird. Ein derartiger Verflüssiger erfüllt somit »die Kriterien der erfindungsgemäß erforderlichen Drossel, um das Gas und die Flüssigkeit in der Folge in den Cryo-Tank rückführen zu können, welcher ja einen wesentlich geringeren Dampfdruck aufweist.
In besonders einfacher Weise kann hierbei so vorgegangen werden, dass die Verflüssigung und der Druckabbau in der Drossel durch Einsprühen von verflüssigtem Gas und daran anschließende Mischkondensation vorgenommen wird.
Es ist möglich, durch Mischkondensation im Cryo-Tank das eingeblasene Gas ganz oder teilweise zu kondensieren. Dabei kann das Gas von unten durch die Flüssigkeit gedrückt werden oder durch Einblasen von Flüssigkeit in das Gas kondensiert werden.
Wie bereits eingangs erwähnt, ist es für den sicheren Betrieb und insbesondere für das Befüllen von Gasflaschen oder Tanks von wesentlicher Bedeutung, dass eine dosierte Menge an Gasen abgefüllt wird. Hierzu wird, wie bereits erwähnt, bevorzugt so vorgegangen, dass die in den Dosierbehälter dosierte Menge durch Wiegen bestimmt wird, wobei zur Kontrolle mit Vor- 5 teil auch die abgefüllte Druckgasmenge jeweils gemessen, insbesondere gewogen wird.
Um insgesamt bei Beginn des Füllvorgangs rasch zu reproduzierbaren Druckverhältnissen und einem reibungslosen Betrieb zu finden, muss zu Beginn ein entsprechend definierter Ausgangszustand eingestellt werden, wofür erfindungsgemäß mit Vorteil so vorgegangen wird, dass die Behälter, Verflüssiger und die Rohrleitungen vor Beginn der ersten Verdampfung kaltgefahren werden.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert .
In der Zeichnung ist mit A ein Cryo-Tank bezeichnet. B bezeichnet einen Dosierbehälter, wobei in der zum Cryo-Tank rückführenden Leitung ein mit C bezeichneter Verflüssiger als Drossel eingeschaltet ist. Mit D ist ein erster Verdampfer bezeichnet. Parallel zu diesem ersten Verdampfer D existiert ein zweiter Verdampfer E, wobei abwechselnd aus dem jeweils aktiven Verdampfer eine schematisch mit F bezeichnete Verbrauchereinrichtung, wie beispielsweise eine Flasche, befüllt wird.
Mit G ist schematisch eine Waage für die in den Dosierbehälter B abgefüllte Menge angedeutet. Ebenso existiert eine mit H angedeutete Waage für die Messung der in die Flasche F abgefüllten Menge.
Die in die jeweils eingezeichneten Leitungen geschalteten Ventile sind fortlaufend mit 1 bis 19 bezeichnet und in den einzelnen Verfahrensschritten wie folgt geschaltet:
Zum Kaltfahren des Verflüssigers liegt das Produkt im Cryo-Tank A flüssig vor, wobei die verbleibenden Einrichtungen, und insbesondere der Dosierbehälter B und die Verdampfer D und E in dieser Ausgangsphase sich auf atmosphärischem Druck befinden. Im Cryo-Tank A herrscht ein leichter Überdruck von zumeist etwa 5 bar. Nach Öffnen der Ventile 1 und 2 strömt flüssiges Produkt unter dem Druck im Cryo-Tank in den Verflüssiger C, bis die Gasphase im Gleichgewicht mit der flüssigen Phase ist. Ein Öffnen der Ventile 10 und 11 führt zur Entlüf- 6 tung von anfänglich im Verflüssiger befindlichem Gas in die Atmosphäre bzw. in den Gasraum des Cryo-Tanks A.
Beim anschließenden Kaltfahren des Dosierbehälters werden die Ventile 1, 3 und 8 geöffnet. In diesem Fall strömt flüssiges Produkt vom Cryo-Tank in den Dosierbehälter, wobei die Ventile geschlossen werden, wenn das mittels der Waage G ermittelte vorgegebene Dosiergewicht erreicht ist. Durch das Ventil 8 wird in der Offenstellung der Dosierbehälter gegen den Cryo-Tank A entlüftet.
Bei einem anschließenden Öffnen der Ventile 4, 6 und einem weiterhin Offenhalten des Ventils 8 strömt das flüssige Produkt vom Dosierbehälter B in den ersten Verdampfer D. Wiederum erfolgt ein Druckausgleich über das Ventil 8 gegen den Cryo-Tank A, wobei unmittelbar im Anschluss an die Entleerung des Dosierbehälters das Ventil 6 und das Ventil 4 geschlossen werden, um diesen vom Verdampfer D zu trennen.
Bei der anschließenden Verdampfung im Verdampfer D wird das Produkt vollständig verdampft, worauf nach vollständiger Verdampfung die Ventile 14 und 19 geöffnet werden, um das nun gasförmige Produkt in die Flasche F zu verbringen. Bei dieser Gelegenheit kann eine Kontrolle durch Wiegen mittels der schematisch angedeuteten Waage H vorgenommen werden.
Nach Schließen der Ventile herrscht im Verdampfer D der zuletzt durch Verdampfen gebildete Dampfdruck.
In der Folge werden die Ventile 1, 3 und 8 wiederum geöffnet, worauf wiederum tiefkalt verflüssigtes Gas vom Cryo-Tank A in den Dosierbehälter B strömt und neuerlich, wie beschrieben, eine Dosierung vorgenommen wird, wobei die Messwerte der Waage G Berücksichtigung finden.
Nach Schließen der gerade geöffneten Ventile und anschließendes Öffnen der Ventile 4, 5 und 17 wird die dosierte Menge tiefkalt verflüssigten Gases mit dem im Verdampfer D herrschenden Druck aus dem Dosierbehälter in den weiteren Verdampfer E ausgepresst, worauf die Ventile wieder geschlossen werden. Anschließend verdampft das tiefkalt verflüssige Gas im Verdampfer E, worauf nach vollständigem Verdampfen die Ventile 15 und 19 geöffnet werden und wiederum ein Behäl- m > ter bzw. die Flasche F gefüllt werden kann. Nach einer Kontrolle mittels der Waage H werden die Ventile wieder geschlossen, sodass nun die Verdampfer und der Dosierbehälter unter entsprechend höherem Druck als zu Beginn des Verfahrens stehen. Sobald dieser Druck, und insbesondere der Druck im Dosierbehälter, den Druck im Cryo-Tank überschreitet, gelingt es nicht mehr ohne weiteres, unter Zuhilfenahme des geodetischen Drucks ein neuerliches Befüllen des Dosierbehälters zu bewirken. Es muss somit hier ein gedrosselter Druckabbau erfolgen, wobei davon ausgegangen wird, dass der Dosierbehälter nach der zuletzt beschriebenen Entleerung unter dem Druck des Verdampfers D steht. Die Ventile 7, 9 und 12 werden in der Folge geöffnet, worauf im Wärmetauscher des Verflüssigers das gasförmige Produkt durch flüssiges Produkt möglichst weit herabgekühlt wird, sodass der Druck entsprechend reduziert wird und bei der Drosselung im Ventil 9 die Dampflinie erreicht wird.
Nach einem vorangehenden Druckausgleich ist die Befüllung des Dosierbehälters wieder mit dem geödetischen Druck möglich. Um aber in der Folge ein Verbringen der dosierten Menge an tiefkalt verflüssigtem Gas aus dem Dosierbehälter in den Verdampfer D zu ermöglichen, muss dieser zu befüllende Verdampfer naturgemäß wiederum auf ein Druckniveau gebracht werden, welches geringer ist als das noch zur Verfügung stehende Druckniveau, welches aus dem anderen Verdampfer zum Auspressen des Dosierbehälters zur Verfügung steht. Mit anderen Worten bedeutet dies, dass auch der nächste zu befüllende Verdampfer, in diesem Falle der Verdampfer D, einem entsprechenden Druckausgleich unterworfen werden muss und ebenso wie der Dosierbehälter B in geeigneter Weise auf den Druck im Gasraum des Cryo-Tanks A oder darunter gebracht werden muss. Dies gelingt durch Öffnen des Ventils 17 sowie je nach Volumen durch Öffnen des Ventils 8 unter unmittelbarem Rückexpandieren in den Gasraum des Cryo-Tanks A oder durch Öffnen des Ventils 7 und Rückführung über den Verflüssiger.
Nach dem nachfolgenden Beschicken des Dosierbehälters in der bereits beschriebenen Weise kann wiederum durch Öffnen der Ventile 4 und 6 sowie 16 der im Verdampfer E verbleibende 8
Druck zum Auspressen der dosierten Menge an verflüssigtem Gas in den Verdampfer D herangezogen werden, wonach, wie bereits zuvor beschrieben, weiter verfahren wird.
Bei der jeweiligen Drosselung bzw. beim Druckabbau im Verflüssiger wird durch Öffnen des Ventils 13 unterkühlte Flüssigkeit aus dem Oberteil des Verflüssigers in den Wärmetauscherbereich des Verflüssigers geführt. Durch Öffnen der Ventile 11 und 12 wird ein Druckausgleich zwischen dem Verflüssiger C und dem Cryo-Tank A erreicht, worauf der Prozess durch Öffnen der Ventile 1 und 2 wiederum in den Ausgangszustand versetzt wird, welcher neuerliche Zyklen ermöglicht . 1

Claims (8)

  1. Patentansprüche : 1. Verfahren zur zyklischen kolbenlosen Kompression der Gasphase tiefkalt verflüssigter Gase, dadurch gekennzeichnet, dass tiefkalt verflüssigte Gase in einen Dosierbehälter verbracht werden und eine dosierte Menge einem Verdampfer zugeführt wird, worauf die verdampfte Gasmenge abgefüllt oder in ein Leitungsnetz eingespeist wird, worauf der Dosierbehälter neuerlich mit flüssigem Gas gefüllt wird und der Druck im zuletzt eingesetzten Verdampfer zum Auspressen des flüssigen Gases aus dem Dosierbehälter in einen weiteren Verdampfer herangezogen wird, wobei zyklisch jeweils voneinander verschiedene Verdampfer aus dem Dosierbehälter beschickt werden und der Druck im Dosiergefäß sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer vor einem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Druckabbau aus dem Dosierg^fäß bzw. dem Verdampfer über eine Drossel in den Gasraum des Tanks, einen Verbraucher oder die Atmosphäre abgebaut wird.
  3. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Druckabbau in einem Verflüssiger als Drossel vorgenommen wird.
  4. 4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Verflüssigung und der Druckabbau durch Einsprühen von verflüssigtem Gas und daran anschließende Mischkondensation vorgenommen wird, wobei auch eine Mischkondensation durch Durchleiten des Gases durch die Flüssigphase des Tanks möglich ist.
  5. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in den Dosierbehälter dosierte Menge vorzugsweise durch Wiegen bestimmt wird.
  6. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die abgefüllte Druckgasmenge jeweils gemessen, insbesondere gewogen wird.
  7. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Behälter, Verflüssiger und die Rohr- 10 leitungen vor Beginn der ersten Verdampfung kaltgefahren werden. Wien, am
  8. 8. Mai 2006 Mag. Katharina Hermeling
    Haffner
AT0079006A 2006-05-08 2006-05-08 Verfahren zur zyklischen kolbenlosen kompression der gasphase tiefkalt verflüssigter gase AT503579B1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AT0079006A AT503579B1 (de) 2006-05-08 2006-05-08 Verfahren zur zyklischen kolbenlosen kompression der gasphase tiefkalt verflüssigter gase
ES07718433T ES2342952T3 (es) 2006-05-08 2007-05-08 Procedimiento para la compresion ciclica sin piston de la fase gaseosa de gases licuados profundamente congelados.
SI200730238T SI2057381T1 (sl) 2006-05-08 2007-05-08 Postopek ciklične brezbatne kompresije plinske faze globoko zamrznjenih utekočinjenih plinov
EP07718433A EP2057381B1 (de) 2006-05-08 2007-05-08 Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase
PCT/AT2007/000219 WO2007128023A1 (de) 2006-05-08 2007-05-08 Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase
DE502007002955T DE502007002955D1 (de) 2006-05-08 2007-05-08 Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase
DK07718433.1T DK2057381T3 (da) 2006-05-08 2007-05-08 Fremgangsmåde til cyklisk, stempelfri kompression af gasfasen af frosne, fortættede gasser
AT07718433T ATE458919T1 (de) 2006-05-08 2007-05-08 Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase
PT07718433T PT2057381E (pt) 2006-05-08 2007-05-08 Processo de compressão cíclica sem pistão da fase gasosa de gases liquefeitos a muito baixa temperatura
PL07718433T PL2057381T3 (pl) 2006-05-08 2007-05-08 Sposób cyklicznego beztłokowego sprężania fazy gazowej gazów skraplanych w niskich temperaturach

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0079006A AT503579B1 (de) 2006-05-08 2006-05-08 Verfahren zur zyklischen kolbenlosen kompression der gasphase tiefkalt verflüssigter gase

Publications (2)

Publication Number Publication Date
AT503579B1 AT503579B1 (de) 2007-11-15
AT503579A4 true AT503579A4 (de) 2007-11-15

Family

ID=38477174

Family Applications (2)

Application Number Title Priority Date Filing Date
AT0079006A AT503579B1 (de) 2006-05-08 2006-05-08 Verfahren zur zyklischen kolbenlosen kompression der gasphase tiefkalt verflüssigter gase
AT07718433T ATE458919T1 (de) 2006-05-08 2007-05-08 Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase

Family Applications After (1)

Application Number Title Priority Date Filing Date
AT07718433T ATE458919T1 (de) 2006-05-08 2007-05-08 Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase

Country Status (9)

Country Link
EP (1) EP2057381B1 (de)
AT (2) AT503579B1 (de)
DE (1) DE502007002955D1 (de)
DK (1) DK2057381T3 (de)
ES (1) ES2342952T3 (de)
PL (1) PL2057381T3 (de)
PT (1) PT2057381E (de)
SI (1) SI2057381T1 (de)
WO (1) WO2007128023A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236822A1 (de) 2009-04-01 2010-10-06 Werner Hermeling Verfahren zur bedarfsabhängigen Regelung und Glättung der elektrischen Ausgangsleistung eines Energie-Wandlers sowie Vorrichtung zur Durchführung dieses Verfahrens
WO2011009149A1 (de) * 2009-07-22 2011-01-27 Lo Solutions Gmbh Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens
AT509334B1 (de) 2010-07-09 2011-08-15 Lo Solutions Gmbh Verfahren und vorrichtung zur bereitstellung von elektrischer und thermischer energie, insbesondere in einer hafenanlage
AT512979B1 (de) * 2012-06-05 2015-11-15 Hermeling Werner Dipl Ing Verfahren und Vorrichtung zum Regasifizieren von tiefkalt verflüssigtem Gas
FR3123643B1 (fr) * 2021-06-03 2024-03-08 Air Liquide Installation et procédé de stockage et de distribution de fluide
FR3136037A1 (fr) * 2022-05-24 2023-12-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation de remplissage de récipients de gaz avec de l’oxygène gazeux

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL49146C (de) * 1935-03-01 1900-01-01
BE419633A (de) * 1936-02-18 1900-01-01
GB847508A (en) * 1957-01-15 1960-09-07 Air Prod Inc Improvements in pumping and vaporizing liquefied gases
DE2047363A1 (en) * 1970-09-25 1972-03-30 Linde Ag, 6200 Wiesbaden Evaporated liquefied gas blanket - is utilised by feeding it directly to gas bottles
FR2379018A1 (fr) * 1976-12-23 1978-08-25 Air Liquide Procede et installation cryogeniques de distribution de gaz sous pression
EP0439994A1 (de) * 1990-01-31 1991-08-07 Carbagas Verfahren und Einrichtung zum Aufbewahren technischer Gase
JPH04198296A (ja) * 1990-11-27 1992-07-17 Tokyo Gas Co Ltd 天然ガスの充填装置
ATE172524T1 (de) * 1995-05-02 1998-11-15 Linde Ag Hochdruckgasversorgung
EP1353112A1 (de) * 2002-04-10 2003-10-15 Linde Aktiengesellschaft Methode zum Fördern kryogener Flüssigkeiten

Also Published As

Publication number Publication date
PT2057381E (pt) 2010-05-31
ES2342952T3 (es) 2010-07-19
WO2007128023A1 (de) 2007-11-15
SI2057381T1 (sl) 2010-08-31
DE502007002955D1 (de) 2010-04-08
ATE458919T1 (de) 2010-03-15
AT503579B1 (de) 2007-11-15
DK2057381T3 (da) 2010-06-21
EP2057381A1 (de) 2009-05-13
PL2057381T3 (pl) 2010-09-30
EP2057381B1 (de) 2010-02-24

Similar Documents

Publication Publication Date Title
EP2057381B1 (de) Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase
DE69934923T3 (de) Verfahren zum Befüllen von Flaschen mit kryogenem Fluid
DE69838370T2 (de) Abgabesystem für ein cryogenen Fluidums unter hohem Druck
CH615518A5 (en) Gas-mixing device for breathing, diving, medical and laboratory technology
EP1717510B1 (de) Verfahren und Vorrichtung zum Befüllen eines Behälters mit einem Füllgas oder Füllgasgemisch
DE102007023821B4 (de) Verfahren zum Befüllen eines kryogenen Wasserstoff vorgesehenen Speicherbehälters insbesondere eines Kraftfahrzeugs
DE2028463A1 (de)
DE102017008210B4 (de) Vorrichtung und Verfahren zum Befüllen eines mobilen Kältemitteltanks mit einem kryogenen Kältemittel
DE19730459C2 (de) Vorrichtungen und Verfahren zur Isothermen Betankung von Erdgasfahrzeugen mit komprimiertem Erdgas CNG
WO2019158395A1 (de) Vorrichtung zum befüllen von gasspeichern
DE69821296T2 (de) Mischen von flüssigen Gasen
WO1996035078A1 (de) Hochdruckgasversorgung
DE10118361A1 (de) Verfahren und Vorrichtung zum Lagern von Flüssigkeiten und verflüssigten Gasen
EP2906350A2 (de) Verfahren und vorrichtung zum regasifizieren von tiefkalt verflüssigtem gas
EP3450819B1 (de) Verfahren zum befüllen eines mobilen kältemitteltanks mit einem kryogenen kältemittel
DE102006000626A1 (de) Verfahren zur Herstellung eines unter Druck stehenden Gasgemisches
EP3017980A2 (de) Vorrichtung und verfahren zum warten einer klimaanlage
DE102021105999B4 (de) Verfahren und Vorrichtung zur Rückverflüssigung von BOG
DE932223C (de) Verdampfungsanlage fuer fluessige Gase, insbesondere fuer fluessigen Sauerstoff fuer Atemschutzgeraete
DE102021001650B4 (de) Verfahren und Vorrichtung zur Rückverflüssigung von BOG
DE102018201494A1 (de) Prüfvorrichtung zur zyklischen Druckbelastung von mindestens einem Druckbehälter
AT514741B1 (de) Vorrichtung und Verfahren zum Warten einer Klimaanlage
DE2940755C2 (de) Vorrichtung zum Entleeren von Behältern
AT32661B (de) Verfahren zum Umfüllen hochgespannter Gase.
DE332556C (de) Gaswaage

Legal Events

Date Code Title Description
EIH Change in the person of patent owner
MM01 Lapse because of not paying annual fees

Effective date: 20140508