EP2057252A1 - Verfahren zur erzeugung von kraftstoffen aus abfall - Google Patents

Verfahren zur erzeugung von kraftstoffen aus abfall

Info

Publication number
EP2057252A1
EP2057252A1 EP07801883A EP07801883A EP2057252A1 EP 2057252 A1 EP2057252 A1 EP 2057252A1 EP 07801883 A EP07801883 A EP 07801883A EP 07801883 A EP07801883 A EP 07801883A EP 2057252 A1 EP2057252 A1 EP 2057252A1
Authority
EP
European Patent Office
Prior art keywords
synthesis gas
reaction
waste
temperature
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP07801883A
Other languages
English (en)
French (fr)
Inventor
Günter H. KISS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermoselect AG
Original Assignee
Thermoselect AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermoselect AG filed Critical Thermoselect AG
Publication of EP2057252A1 publication Critical patent/EP2057252A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/361Briquettes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1659Conversion of synthesis gas to chemicals to liquid hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to a process in which synthesis gas is first generated from waste and the synthesis gas is subsequently converted into hydrocarbons.
  • the hydrocarbons produced can be used as fuels.
  • the best known method for the alternative production of fuel is the Fischer-Tropsch synthesis.
  • the Fischer-Tropsch process is one of Franz Fischer and his colleague Hans Tropsch in Mülheim an der Ruhr before 1925 developed large-scale process for the conversion of synthesis gas (CO / H 2 ) into liquid hydrocarbons. On a large scale, the process was applied from 1934 by Ruhrchemie AG. There is a build-up reaction of CO / H 2 mixtures of iron or cobalt catalysts to paraffins, olefins and alcohols.
  • Substantially linear hydrocarbon molecules The product mix has different chain lengths. Of particular interest for fuel production is the chain length range of C 5 -C 20 .
  • the chain length can be adjusted by catalyst selection (cobalt, iron, with promoters) and synthesis conditions (especially temperature, synthesis gas composition, pressure).
  • the primary Fischer-Tropsch synthesis products are then chemically processed in terms of high fuel yields and qualities (eg hydrocracking, isomerization, ie processes of petroleum processing).
  • the product Due to the peculiarity of the chemical synthesis mechanism to mainly low-branched hydrocarbon molecules, the product is mainly suitable as a high-quality diesel fuel with high cetane number and extremely low levels of sulfur and aromatics.
  • product mixtures with respect to different chain lengths of the hydrocarbons can be tailored in the
  • the Carbo-V ® process is a three-stage gasification process with the sub-processes:
  • the biomass (water content 15 - 20%) is continuously carbonated in the first process stage by partial oxidation (carbonization) with air or oxygen at temperatures between 400 and 500 0 C, ie in tar-containing gas (volatile constituents) and solid carbon (Biokoks ) decomposed.
  • the tar-containing gas is nachoxi- diert in a combustion chamber above the ash melting point of the fuel with air and / or oxygen under stoichiometric to hot gasification agent.
  • the biofuel ground to the fuel dust is injected into the hot gasification agent.
  • combustible dust and gasification agent in the gasification reactor react endothermically to synthesis crude gas. This can then be tion as fuel gas for electricity, steam and heat generation or as synthesis gas with the aid of the Fischer-Tropsch process for the production of SunDiesel.
  • Disadvantages of this method are that the gasification takes place in several stages and the biocok must be ground up. In addition, this method is not suitable for the gasification of waste of all kinds.
  • Waste and subsequent synthesis of fuels allowed, where possible, the entire waste can be used.
  • a method for the disposal and use of waste of all kinds, in which the waste is subjected to zone-wise temperature and thermal separation or conversion and the resulting solid residues are transferred to a high-temperature melt, the waste is compressed in batches to form compact packages and Temperature treatment zones, with at least one low-temperature zone and at least one high-temperature zone, in which synthesis gas is generated from the waste, go through in the direction of rising temperature, the synthesis gas generated passes through a gas-permeable bed and located above the bed stabilization zone for the synthesis gas and then is derived from the stabilizing zone, wherein the synthesis gas is reacted in a subsequent reaction to hydrocarbon molecules.
  • the reaction product is fuel, more preferably diesel fuel.
  • a significant advantage of the method is that now waste of all kinds, i. treated, untreated, pollutant and special waste as well as biowaste, without prior elaborate separation in the inventive method can be used.
  • Such a method is known in the art as Thermoselect method and is for example in European patents EP 1 187 891 Bl, EP 1 252 264 Bl, EP 1 377 358 Bl, EP 0 790 291 Bl or EP 0 726 307 Bl closer described. The full disclosure of these European patents is hereby incorporated by reference.
  • the method provides that at least 70%, preferably 100% of the synthesis gas generated is used for the reaction to hydrocarbons.
  • the unused portion of synthesis gas is advantageously used to cover the energy consumption of the disposal process.
  • the gaseous, liquid and / or solid by-products resulting from the reaction of the synthesis gas with hydrocarbons are introduced into the high-temperature Returned to the synthesis gas production zone, so that the Fischer-Tropsch synthesis without additional waste, which would have to be disposed of subsequently, executable.
  • the by-products of the Fischer-Tropsch synthesis are used to meet the energy requirements of the disposal process.
  • the reaction is known in the art as the Fischer-Tropsch process.
  • the known in the art in the state of
  • the process is controlled such that the hydrocarbons have on average 5 to 20 carbon atoms and are as unbranched as possible.
  • the hydrocarbons have on average 5 to 20 carbon atoms and are as unbranched as possible.
  • the Fischer-Tropsch synthesis the synthesis of longer-chain hydrocarbons is generally possible;
  • longer-chain hydrocarbons eg paraffins, have too high a melting point to be used as a liquid fuel.
  • Hydrocarbons which have an average of 5 to 20 carbon atoms, however, are outstandingly suitable for use as a synthetic diesel fuel.
  • the synthesis gas obtained from the gasification process for the Fischer-Tropsch process has a relatively unfavorable volume ratio of carbon monoxide to hydrogen, it is also advantageous if, before the polymerization reaction, the volume ratio of carbon monoxide to hydrogen is shifted in favor of hydrogen in a shift reaction.
  • This shift reaction is also known to those skilled in the art; Reference is made to the optimized reaction conditions and catalysts used.
  • the volume ratio of carbon monoxide to hydrogen in the shift reaction is set to at least 1: 1.5, preferably at least 1: 2.
  • the process can be used for the synthesis of fuels, preferably for the synthesis of diesel fuels.
  • the process according to the invention is explained in more detail by means of a Thermoselect plant, which has two lines each with 15 t / h waste throughput, ie a total of 30 t / h waste throughput possible. This results in an average waste heat value of 12 MJ / kg Based on waste.
  • H 2 and 14% CO 2 by volume are obtained approximately 30,000 Nm 3 / h of synthesis gas of the composition of 38% by volume of CO, by volume of 38. 1
  • the fuel is produced according to the Fischer-Tropsch process.
  • a portion of the CO is converted to H 2 in a shift reaction.
  • the resulting CO 2 is separated.

Abstract

Die Erfindung betrifft ein Verfahren zur Entsorgung und Nutzbarmachung von Abfallgütern aller Art, bei dem die Abfallgüter chargenweise zu Kompaktpaketen komprimiert werden und Temperaturbehandlungszonen durchlaufen, wobei Synthesegas erzeugt wird, und das Synthesegas in einer anschließenden Reaktion zu Kohlenwasserstoff-Molekülen umgesetzt wird.

Description

Verfahren zur Erzeugung von Kraftstoffen aus Abfall
Vorliegende Erfindung betrifft ein Verfahren, bei dem aus Abfall zunächst Synthesegas erzeugt und das Syn- thesegas anschließend zu Kohlenwasserstoffen umgesetzt wird. Die erzeugten Kohlenwasserstoffe können als Kraftstoffe verwendet werden.
Die Entwicklung des Ölpreises in den letzten Jahren ging immer weiter nach oben. Auch wenn der Ölpreis zwischendurch teilweise fällt, ist langfristig von einem hohen Ölpreis auszugehen, so dass alternative Verfahren zur Herstellung von Treibstoff zukünftig immer interessanter werden.
Bekanntestes Verfahren zur alternativen Herstellung von Treibstoff ist die Fischer-Tropsch-Synthese . Das Fischer-Tropsch-Verfahren ist ein von Franz Fischer und seinem Mitarbeiter Hans Tropsch in Mülheim an der Ruhr vor 1925 entwickeltes großtechnisches Verfahren zur Umwandlung von Synthesegas (CO/H2) in flüssige Kohlenwasserstoffe. Großtechnisch wurde das Verfahren ab 1934 von der Ruhrchemie AG angewandt. Es ist eine Aufbaureaktion von CO/H2-Gemischen an Eisen- oder Cobalt-Katalysatoren zu Paraffinen, Alkenen und Alkoholen.
Der chemische Mechanismus der Fischer-Tropsch Synthesereaktion (Polymerisation) führt hauptsächlich zu langkettigen, gering verzweigten (d.h. im
Wesentlichen linearen) Kohlenwasserstoff-Molekülen. In der Produktmischung finden sich unterschiedliche Kettenlängen. Für die Treibstoffherstellung besonders interessant ist der Kettenlängenbereich von C5-C20. Die Kettenlänge kann durch Katalysatorwahl (Kobalt, Eisen, mit Promotoren) und Synthesebedingungen (vor allem Temperatur, Synthesegas-Zusammensetzung, Druck) eingestellt werden. Die primären Fischer-Tropsch- Syntheseprodukte werden dann im Sinne hoher Kraft- stoff-Ausbeuten und -Qualitäten chemisch aufgearbeitet (z.B. Hydrocracken, Isomerisieren, d.h. Verfahren der Erdölverarbeitung) .
Aufgrund der Besonderheit des chemischen Synthese- mechanismus zu hauptsächlich gering verzweigten Kohlenwasserstoff-Molekülen eignet sich das Produkt vor allem als hochwertiger Dieselkraftstoff mit hoher Cetanzahl und extrem niedrigen Gehalten an Schwefel und Aromaten. Produktmischungen hinsichtlich unterschiedlicher Kettenlänge der Kohlenwasserstoffe können darüber hinaus maßgeschneidert werden im
Hinblick auf Dampfdruck, Siedeverläufe u.a. unter Anwendung der hochentwickelten Erdöl-Raffinerieverfahren. Diese synthetisch hergestellten Diesel- kraftstoffe haben den Vorteil besonders Schadstoffarm und damit umweltfreundlich zu sein.
Momentan ist Südafrika das einzige Land, das einen Großteil seines Treibstoffbedarfs durch die Fischer- Tropsch-Reaktion deckt. Dort wird das Synthesegas für die Synthese aus Kohle hergestellt.
In Deutschland hat das Unternehmen Choren ein Verfahren entwickelt, um aus Biomasse mit dem Carbo-V-Ver- fahren erst Synthesegas und dann mit Hilfe des Fischer-Tropsch-Verfahrens Treibstoff (sog.
SunDiesel) herzustellen. Das Carbo-V®-Verfahren ist ein dreistufiges Vergasungsverfahren mit den Teilprozessen :
• Niedertemperaturvergasung, • Hochtemperaturvergasung und
• endotherme Flugstromvergasung.
Die Biomasse (Wassergehalt 15 - 20 %) wird in der ersten Prozess-Stufe kontinuierlich durch partielle Oxidation (Verschwelung) mit Luft oder Sauerstoff bei Temperaturen zwischen 400 und 500 0C karbonisiert, d.h. in teerhaltiges Gas (flüchtige Bestandteile) und festen Kohlenstoff (Biokoks) zerlegt.
In der zweiten Prozess-Stufe wird das teerhaltige Gas in einer Brennkammer oberhalb des Ascheschmelzpunktes der Brennstoffe mit Luft und/oder Sauerstoff unter- stöchiometrisch zu heißem Vergasungsmittel nachoxi- diert .
In der dritten Prozess-Stufe wird der zu Brennstaub gemahlene Biokoks in das heiße Vergasungsmittel eingeblasen. Dabei reagieren Brennstaub und Vergasungsmittel im Vergasungsreaktor endotherm zu Synthese-Rohgas. Dieses kann dann nach entsprechender Kon- ditionierung als Brenngas zur Strom-, Dampf- und Wärmeerzeugung oder als Synthesegas mit Hilfe des Fischer-Tropsch-Verfahrens für die SunDiesel-Herstel- lung genutzt werden. Nachteile dieses Verfahrens sind, dass die Vergasung in mehreren Stufen abläuft und der Biokoks aufgemahlen werden muss . Außerdem eignet sich dieses Verfahren nicht zur Vergasung von Abfällen aller Art.
Somit ist es Aufgabe vorliegender Erfindung, ein Verfahren bereitzustellen, das eine Vergasung von
Abfall sowie anschließende Synthese von Kraftstoffen erlaubt, wobei möglichst der gesamte Abfall genutzt werden kann.
Diese Aufgabe wird durch das Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Ein möglicher Verwendungszweck des Verfahrens wird in Patentanspruch 10 gegeben. Die abhängigen Ansprüche bilden dabei vorteilhafte Weiterbildungen.
Erfindungsgemäß wird ein Verfahren zur Entsorgung und Nutzung von Abfallgütern aller Art bereitgestellt, bei dem die Abfallgüter einer zonenweisen Temperaturbeaufschlagung und thermischen Trennung bzw. Stoffum- Wandlung unterzogen und die anfallenden festen Rückstände in eine Hochtemperaturschmelze überführt werden, wobei die Abfallgüter chargenweise zu Kompaktpaketen komprimiert werden und Temperaturbehandlungszonen, mit mindestens einer Niedertemperaturzone und mindestens einer Hochtemperaturzone, in der aus dem Entsorgungsgut Synthesegas erzeugt wird, in Richtung steigender Temperatur durchlaufen, das erzeugte Synthesegas eine gasdurchlässige Schüttung sowie eine oberhalb der Schüttung befindliche Stabilisierungszo- ne für die Synthesegase durchläuft und anschließend aus der Stabilisierungszone abgeleitet wird, wobei das Synthesegas in einer anschließenden Reaktion zu Kohlenwasserstoff-Molekülen umgesetzt wird. Bevorzugt handelt es sich bei dem Reaktionsprodukt um Kraftstoff, besonders bevorzugt um Dieselkraftstoff.
Ein wesentlicher Vorteil des Verfahrens ist es, dass nunmehr Abfallgüter aller Art, d.h. behandelter, unbehandelter, Schadstoff- und sondermüllhaltiger sowie Bioabfall, ohne vorherige aufwändige Trennung beim erfindungsgemäßen Verfahren eingesetzt werden kann. Ein derartiges Verfahren ist im Stand der Technik als Thermoselect-Verfahren bekannt und wird beispielsweise in den europäischen Patenten EP 1 187 891 Bl, EP 1 252 264 Bl, EP 1 377 358 Bl, EP 0 790 291 Bl oder EP 0 726 307 Bl näher beschrieben. Der komplette Offenbarungsgehalt dieser europäischen Patente wird hiermit eingeschlossen.
In einer vorteilhaften Weiterbildung sieht das Verfahren vor, dass mindestens 70 %, bevorzugt 100 % des erzeugten Synthesegases zur Reaktion zu Kohlenwasserstoffen genutzt wird. Dabei wird vorteilhafterweise der nicht genutzte Anteil an Synthesegas zur Deckung des energetischen Eigenbedarfs des Entsorgungsverfahrens verwendet. Dies bringt den Vorteil mit sich, dass eine neutrale Energiebilanz des Verfahrens gewährleistet ist. Weiterhin ist es ein wesentlicher Vorteil des Verfahrens, dass ein quasi emissionsfreier Ablauf gewährleistet ist.
In einer weiteren bevorzugten Ausführungsform werden die bei der Reaktion des Synthesegases zu Kohlenwasserstoffen anfallenden gasförmigen, flüssigen und/oder festen Nebenprodukte in die Hochtemperatur- zone der Synthesegaserzeugung zurückgeführt, so dass auch die Fischer-Tropsch-Synthese ohne weitere Abfälle, die nachträglich entsorgt werden müssten, ausführbar ist.
In einer weiteren bevorzugten Ausführungsform werden die Nebenprodukte der Fischer-Tropsch-Synthese zur Deckung des energetischen Eigenbedarfs des Entsorgungsverfahrens verwendet .
Zur Erzielung von guten Ausbeuten ist es günstig, wenn die Reaktion in einem Temperaturbereich von 200 0C bis 350 0C und Drücken von 10 - 30 bar gemäß der allgemeinen Reaktionsgleichung
πCO + ( 2n+l ) H2 → CnH2n+2 + ^H2O
durchgeführt wird. Die Reaktion ist im Stand der Technik als Fischer-Tropsch-Verfahren bekannt. Dazu wird auf die dem Fachmann bekannten, im Stand der
Technik erwähnten optimierten Verfahrensbedingungen verwiesen, wie z.B. Druck, Temperaturen und Katalysatorensysteme .
Weiterhin ist es vorteilhaft, wenn das Verfahren so gesteuert wird, dass die Kohlenwasserstoffe im Mittel 5 bis 20 Kohlenstoffatome aufweisen und möglichst unverzweigt sind. Mit der Fischer-Tropsch-Synthese ist generell auch die Synthese von längerkettigen Kohlen- Wasserstoffen möglich; längerkettige Kohlenwasserstoffe, z.B. Paraffine, weisen jedoch einen zu hohen Schmelzpunkt auf, um als flüssiger Kraftstoff eingesetzt werden zu können. Kohlenwasserstoffe, die im Mittel 5 bis 20 Kohlenstoffatome aufweisen, eigenen sich hingegen hervorragend zum Einsatz als synthetischer Dieselkraftstoff. Da das aus dem Vergasungsverfahren erhaltene Synthesegas für das Fischer-Tropsch-Verfahren ein relativ ungünstiges Volumenverhältnis von Kohlenmonoxid zu Wasserstoff aufweist, ist es weiterhin vorteilig, wenn vor der Polymerisationsreaktion das Volumenverhältnis von Kohlenmonoxid zu Wasserstoff in einer Shift-Reaktion zugunsten von Wasserstoff verschoben wird. Diese Shift-Reaktion ist dem Fachmann aus dem Stand der Technik ebenfalls bekannt; es wird auf die optimierten Reaktionsbedingungen und verwendeten Katalysatoren verwiesen.
In einer weiteren zu bevorzugenden Ausführungsform wird dabei das Volumenverhältnis von Kohlenmonoxid zu Wasserstoff in der Shift-Reaktion auf mindestens 1 zu 1,5, bevorzugt mindestens 1 zu 2 eingestellt.
Weiterhin wird mit vorliegender Erfindung eine Ver- wendung des voranstehend beschriebenen Verfahrens angegeben. Erfindungsgemäß kann das Verfahren zur Synthese von Treibstoffen, bevorzugt zur Synthese von Dieselkraftstoffen, verwendet werden.
Im nachfolgenden wird erfindungsgemäßes Verfahren anhand eines Beispiels näher erläutert, ohne die Erfindung auf die dort verwendeten Verfahrensparameter zu beschränken.
Beispiel zur Verfahrensführung
Das erfindungsgemäße Verfahren wird anhand einer Thermoselect-Anlage näher erläutert, die zwei Linien mit je 15 t/h Abfalldurchsatz aufweist, d.h. insge- samt 30 t/h Abfalldurchsatz ermöglicht. Dabei wird ein durchschnittlicher Abfallheizwert von 12 MJ/kg Abfall zugrunde gelegt. Bei einer kontinuierlichen Betreibung der Anlage können dabei ca. 30.000 Nm3/h Synthesegas der Zusammensetzung 38 VoI-% CO, 38 VoI-1 H2 und 14 Vol-% CO2 erhalten werden. Die Treibstoffherstellung erfolgt gemäß des Fischer-Tropsch- Verfahrens . Um ein für die Fischer-Tropsch-Reaktion günstiges CO/H2-Verhältnis einzustellen, wird in einer Shift-Reaktion ein Teil des CO zu H2 konvertiert. Das hierbei entstehende CO2 wird abgetrennt.
CO + H2O -> H2 + CO2
Von den 38 % CO im Synthesegases werden 13 % CO in der Shift-Reaktion umgesetzt, d.h. nach der Shift-Reaktion erhält man ein Synthesegas mit 25 % CO und 51 % H2, das dann in die Fischer-Tropsch-Synthese einge- setzt wird. Das so mit Wasserstoff angereicherte, auf ein für die Fischer-Tropsch-Reaktion günstiges Verhältnis von CO zu H2 gebrachte Synthesegas wird nun zu Dieselkraftstoff polymerisiert
25 % CO + 51 % H2 => "Diesel"
Als Ausbeute über alle Stufen der Treibstoffherstellung wurden 60 % des eingesetzten Synthesegases erzielt. Dies liegt sehr nahe am Literaturwert, der für ein optimiertes Verfahren unter Laborbedingungen 75 % angibt. Für die Berechnung der Massenbilanz wurden die spezifischen Raumgewichte von CO und Wasserstoff zugrunde gelegt. Die Gleichung ist im Folgenden angegeben
21 . 000 m3/h' ( 0 , 25 1 , 258 kg/m3 + 0 , 51 ' 0 , 089 kg/m3 ) =7557 kg/h
Bei einer durchschnittlichen Dichte von 0,83 kg/1 des synthetischen Diesels ergibt sich somit eine Menge von 7.800 l/h Diesel. Mit einer 2-Linien-Thermo- select-Anlage können also 7.800 Liter Diesel pro Stunde produziert werden.

Claims

Patentansprüche
1. Verfahren zur Entsorgung und Nutzbarmachung von Abfallgütern aller Art, bei dem die Abfallgüter einer zonenweisen Temperaturbeaufschlagung und thermischen Trennung bzw. StoffumWandlung unterzogen und die anfallenden festen Rückstände in eine Hochtemperaturschmelze überführt werden, wobei die Abfallgüter chargenweise zu Kompaktpaketen komprimiert werden und Temperaturbehand- lungszonen, mit mindestens einer Niedertemperaturzone und mindestens einer Hochtemperaturzone, in der aus dem Entsorgungsgut Synthesegas erzeugt wird, in Richtung steigender Temperatur durchlaufen, das erzeugte Synthesegas eine gas- durchlässige Schüttung sowie eine oberhalb der
Schüttung befindliche Stabilisierungszone für die Synthesegase durchläuft und anschließend aus der Stabilisierungszone abgeleitet wird,
d a d u r c h g e k e n n z e i c h n e t,
dass das Synthesegas in einer anschließenden Reaktion zu Kohlenwasserstoff-Molekülen umgesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mindestens 70 %, bevorzugt 80 %, ganz besonders bevorzugt 100 % des erzeugten Synthesegases zur Reaktion zu Kohlenwasserstoffen genutzt wird.
3. Verfahren nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass der nicht zur Reaktion genutzte Anteil an Synthesegas zur Deckung des energetischen Eigenbedarfs des Entsorgungsver- fahrens verwendet wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die bei der Reaktion anfallenden gasförmigen, flüssigen und/oder festen Nebenprodukte in die mindestens eine Hochtemperaturzone der Synthesegaserzeugung zurückgeführt werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die rückgeführten Nebenprodukte zur Deckung des energetischen Eigenbedarfs des Ent- sorgungsverfahrens eingesetzt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Reaktion in einem Temperaturbereich von 200 0C bis 350 0C gemäß der allgemeinen Reaktionsgleichung nCO + ( 2π+l ) H2 → CnH2n+2 + πH2O durchgeführt wird .
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kohlenwasserstoffe im Mittel 5 bis 20 Kohlenstoffatome aufweisen.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Volumenverhältnis von Kohlenmonoxid zu Wasserstoff des Synthesegases vor der Reaktion in einer Shift- Reaktion zu Gunsten von Wasserstoff verschoben wird.
9. Verfahren nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass das Volumenverhältnis von Kohlenmonoxid zu Wasserstoff nach der Shift- Reaktion mindestens 1 : 1,5, bevorzugt mindes- tens 1 : 2 beträgt .
10. Verwendung des Verfahrens nach einem der vorhergehenden Ansprüche zur Synthese von Treibstoff.
11. Verwendung nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass der Treibstoff Dieselkraft- stoff ist.
EP07801883A 2006-08-31 2007-08-24 Verfahren zur erzeugung von kraftstoffen aus abfall Ceased EP2057252A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006040770A DE102006040770A1 (de) 2006-08-31 2006-08-31 Verfahren zur Erzeugung von Kraftstoffen aus Abfall
PCT/EP2007/007456 WO2008025493A1 (de) 2006-08-31 2007-08-24 Verfahren zur erzeugung von kraftstoffen aus abfall

Publications (1)

Publication Number Publication Date
EP2057252A1 true EP2057252A1 (de) 2009-05-13

Family

ID=38917672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07801883A Ceased EP2057252A1 (de) 2006-08-31 2007-08-24 Verfahren zur erzeugung von kraftstoffen aus abfall

Country Status (10)

Country Link
US (1) US8198339B2 (de)
EP (1) EP2057252A1 (de)
JP (1) JP2010501685A (de)
CN (1) CN101506335A (de)
BR (1) BRPI0716221A2 (de)
CA (1) CA2661601C (de)
DE (1) DE102006040770A1 (de)
RU (1) RU2459860C2 (de)
UA (1) UA66411U (de)
WO (1) WO2008025493A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008032957A1 (de) * 2008-07-12 2010-01-14 Dinano Ecotechnology Llc Verfahren zur Gewinnung von synthetischem Diesel
AT508614B1 (de) * 2009-07-23 2012-03-15 Wittkowsky Johannes Anlage zur verarbeitung von organischem substrat
CN102705832B (zh) * 2012-05-11 2013-07-10 袁永扬 无烟气排放的固体废弃物焚烧炉
CN105263697B (zh) 2013-04-08 2017-07-14 国际热化学恢复股份有限公司 具有带多缸体液压回路的压缩阶段的液压进给系统
US9458099B2 (en) 2013-07-25 2016-10-04 Thermoselect Aktiengesellschaft Method of manufacturing urea from refuse, preferably domestic waste, of any composition
CN104341322B (zh) * 2013-07-30 2016-08-24 热选择有限公司 由具有任何组成的废弃物,优选家庭废弃物,制备尿素的方法
RU2591075C1 (ru) * 2015-05-12 2016-07-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) Полигенерирующий энерготехнологический комплекс
KR20210056561A (ko) 2019-11-11 2021-05-20 주식회사 위드폼 건축물 슬래브 성형을 위한 거푸집의 서포트 및 그 서포트를 이용한 존치 유닛

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922090A (en) * 1994-03-10 1999-07-13 Ebara Corporation Method and apparatus for treating wastes by gasification
EP0726307B1 (de) * 1995-02-13 1999-11-24 Thermoselect Aktiengesellschaft Verfahren zum Beseitigen organischer Schadstoffreste in bei der Müllvergasung anfallendem Synthesegas
ATE203267T1 (de) * 1996-02-16 2001-08-15 Thermoselect Ag Verfahren zum betreiben eines hochtemperaturreaktors zur behandlung von entsorgungsgütern
DE19928581C2 (de) * 1999-06-22 2001-06-28 Thermoselect Ag Vaduz Verfahren und Vorrichtung zur Entsorgung und Nutzbarmachung von Abfallgütern
DE19949142C1 (de) * 1999-10-12 2001-05-10 Thermoselect Ag Vaduz Verfahren und Vorrichtung zur Entsorgung und Nutzbarmachung von Abfallgütern
DE10004138C2 (de) * 2000-01-31 2002-05-16 Thermoselect Ag Vaduz Verfahren und Vorrichtung zur Entsorgung und Verwertung von Abfallgütern
DE10118961B4 (de) * 2001-04-10 2006-08-31 Thermoselect Ag Wäscher und Verfahren zum Reinigen von Gasen
RU2208475C2 (ru) * 2001-04-26 2003-07-20 Институт катализа им. Г.К. Борескова СО РАН Каталитический реактор для получения синтез-газа
RU2217199C1 (ru) * 2002-03-29 2003-11-27 Научно-инженерный центр "Цеосит" Объединенного института катализа СО РАН Способ переработки органических отходов
FI20030241A (fi) * 2003-02-17 2004-08-18 Fortum Oyj Menetelmä synteesikaasun tuottamiseksi
CA2518597C (en) * 2003-03-10 2012-01-17 Sasol Technology (Proprietary) Limited Production of linear alkyl benzene
FR2861402B1 (fr) * 2003-10-24 2008-09-12 Inst Francais Du Petrole Production de carburants liquides par un enchainement de procedes de traitement d'une charge hydrocarbonee
US20070100003A1 (en) * 2005-10-28 2007-05-03 Holley James L Hybrid system for Gasification of Biomass and conversion to synthesis gas suitable for fuel synthesis, with 3 potential applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Ullmann's Encyclopedia of Industrial Chemistry", 15 September 2001, WILEY-VCH VERLAG GMBH & CO. KGAA, Weinheim, Germany, ISBN: 978-3-52-730673-2, article TAKAO KANEKO ET AL: "Coal Liquefaction", XP055070480, DOI: 10.1002/14356007.a07_197 *

Also Published As

Publication number Publication date
RU2459860C2 (ru) 2012-08-27
US8198339B2 (en) 2012-06-12
CA2661601C (en) 2015-03-24
WO2008025493A1 (de) 2008-03-06
US20100022667A1 (en) 2010-01-28
CA2661601A1 (en) 2008-03-06
JP2010501685A (ja) 2010-01-21
UA66411U (ru) 2012-01-10
CN101506335A (zh) 2009-08-12
RU2009108731A (ru) 2010-10-10
BRPI0716221A2 (pt) 2013-10-15
DE102006040770A1 (de) 2008-03-13

Similar Documents

Publication Publication Date Title
EP2057252A1 (de) Verfahren zur erzeugung von kraftstoffen aus abfall
DE2521189C2 (de) Verfahren zur Herstellung eines methanreichen Gases
DE2536249A1 (de) Verfahren zur kontinuierlichen herstellung von heizgas und synthesegas aus festen, kohlenstoffhaltigen brennstoffen
EP2303995A2 (de) Verfahren und vorrichtung zur herstellung von teerarmem synthesegas aus biomasse
DE2460901A1 (de) Verfahren zur herstellung eines methanreichen gases
DE2312350A1 (de) Zweistufige vergasung von vorbehandelter kohle
DE3140028A1 (de) Verfahren zur erzeugung eines wasserstoffreichen gases durch unterirdische kohlevergasung
DE102020128868A1 (de) Umwandlung von CO2 in chemische Energieträger und Produkte
JP2010501685A5 (de)
DE2164142B2 (de) Verfahren zur Herstellung von Methan
DD147677A5 (de) Integriertes kohleverfluessigungs-vergasungs-schwerbenzinreformingverfahren
EP2650257B1 (de) Vorrichtung zur synthese von regenerativem methanol aus co2-haltigem methangas
DE69925754T2 (de) Teiloxidationsverfahren mit rückgewinnung von russfiltermassen
WO2022223458A1 (de) Anlage und verfahren zur herstellung von synthetischen kraftstoffen ohne kohlendioxidemission
WO2018130535A1 (de) Verfahren und vorrichtung zur herstellung von organischen verbindungen aus biogas
DE102013224037A1 (de) Aufbereitung und Konditionierung von Syntheserohgasen
EP2148135B1 (de) Verfahren und Vorrichtung zur thermischen Behandlung von Abfallgütern
WO2010037602A2 (de) Nutzung der fühlbaren wärme des rohgases bei der flugstromvergasung
EP3988501A1 (de) Verfahren und anlage zum herstellen von co-reichem synthesegas durch partialoxidation
DE2604140C3 (de) Verfahren zur Herstellung von Synthese- und Reduktionsgas
EP3898504B1 (de) Verfahren zur herstellung von wasserstoff, kohlenmonoxid und einem kohlenstoffhaltigen produkt
DE1088642B (de) Verfahren zur Hydrierung von fluessigen Kohlenwasserstoffen
EP0605810A1 (de) Verfahren zur Herstellung von Methanol aus Abfällen
DE2808623A1 (de) Verfahren zur herstellung erdoelartiger kohlefluessigkeiten durch hydrierung und verfluessigung von kohle
DE102020211407A1 (de) Verfahren und Vorrichtung zur Herstellung von Synthesegas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KISS, HANS GUENTER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THERMOSELECT AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20110126

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20131115