WO2010037602A2 - Nutzung der fühlbaren wärme des rohgases bei der flugstromvergasung - Google Patents

Nutzung der fühlbaren wärme des rohgases bei der flugstromvergasung Download PDF

Info

Publication number
WO2010037602A2
WO2010037602A2 PCT/EP2009/061029 EP2009061029W WO2010037602A2 WO 2010037602 A2 WO2010037602 A2 WO 2010037602A2 EP 2009061029 W EP2009061029 W EP 2009061029W WO 2010037602 A2 WO2010037602 A2 WO 2010037602A2
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
fed
reactor according
reaction space
zone
Prior art date
Application number
PCT/EP2009/061029
Other languages
English (en)
French (fr)
Other versions
WO2010037602A3 (de
Inventor
Manfred Schingnitz
Christian Görsch
Volker KIRCHHÜBEL
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2010037602A2 publication Critical patent/WO2010037602A2/de
Publication of WO2010037602A3 publication Critical patent/WO2010037602A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0222Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Definitions

  • the invention relates to a reactor for the gasification of solid and liquid fuels in the air stream at temperatures greater than 1300 0 C and pressures between ambient pressure and 10 MPa (100 bar) with a free oxygen-containing Oxidati- onsstoff.
  • the invention relates to an entrainment gasification of different solid and liquid fuels with a free oxygen-containing oxidant under normal- learning or elevated pressure to 10 MPa.
  • Solid fuels are pulverized coal of different rank, petroleum cokes and other grindable solids with a calorific value greater than 7 MJ / kg.
  • liquid fuels are meant oils or oil-solid suspensions.
  • the ratio of fuel to the oxygen-containing gasification agent is chosen so that it reaches temperatures above the melting point of the ash, usually> 1300 0 C, are. Then the ash is melted into liquid slag which leaves the gasification chamber together with the gasification gas or separately and is then cooled.
  • Another way of using the sensible heat of the hot gasification gas is characterized by the E-gas process, in which a coal-water emulsion is injected into the hot gasification gas, in addition to the water vapor and CO2 of the gasification gas by endothermic gasification reactions of the coal Producing hydrogen and carbon monoxide to convert some of the sensible heat into the desired chemically bound energy, known as chemical quenching, is described in "Coal and Petroleum Coke Gasification Application for Coproduction of Hydrogen, Power, and Steam.” , presented in the og conference.
  • the disadvantage here is that part of the sensible heat is already consumed by the evaporation of the water content from the coal-water emulsion and thus is not available for the endothermic reaction.
  • the chemical quenching is combined with the non-catalytic raw gas conversion, which offers the following further advantages:
  • the addition of water vapor instead of water allows a more intensive use of the sensible heat of the gasification gas in addition to the chemical quenching.
  • the simultaneous non-catalytic raw gas conversion allows the use of the exothermic conversion reaction for the chemical quenching and thus increases the amount of H2 and CO in the gasification gas.
  • the dry pneumatic supply of the fuel dust reduces energy losses compared to the hydrous fuel-water emulsions.
  • 1 shows a gasification reactor with combined chemical quenching and non-catalytic raw gas conversion.
  • a gasification reactor according to FIG. 1 with a gross output of 500 MW is supplied hourly with 92 mg of brown coal having a moisture content of 12% by mass via the gasification burner 1 and gasified with oxygen.
  • a gasification temperature of 1525 ° C. 168,627 Nm3 / h of raw gas are produced therefrom in the gasification space 2, which together with the ash liquefied into slag reaches the first zone 4.1 of the reaction space 4 via the gasification and slag removal 3.
  • the raw gas has the following analysis: H2 1637 kmol / h corresponding to 24.27%
  • the amount of desired components H2 + CO produced is 120,580 Nm3 / h.
  • the 1st stage 4.1 of the subsequent reaction chamber 4 are fed in addition to the crude gas pneumatically 10 mg / h of said lignite coal via port 7 and 10 mg / h via the connection 8 water vapor.
  • the combination of chemical quenching with its endothermic reaction and the non-catalytic crude gas, the temperature is lowered to 1,150 0 C, wherein the amount of H2 + CO increased to 142,382 Nm3 / h, as the following analysis shows:
  • connection 9 It is also possible to feed via the connection 9 in addition to the 4.2 fuel level.
  • coal can dioxide or a carbon dioxide steam mixture turned ⁇ be fed via the connections 8 and 10.
  • FIG. The treated crude gas now leaves the second zone 4.2 of the reaction chamber 4 with a temperature of 1000 0 C on the crude gas discharge 5 and can be further treated in subsequent processes, such as waste heat boiler and dust removal facilities.
  • the slag is withdrawn via the slag outlet 6 from the gasification reactor.
  • the crude gas in the 1st zone 4.1 of the reaction space 4 can also be supplied with CO2.
  • a raw gas quantity of 143,552 Nm3 / h we obtain a raw gas quantity of 143,552 Nm3 / h, with the H2: CO equilibrium shifted to CO, as the further analysis shows:
  • zones 1 and 2 of the reaction space can be added to zones 1 and 2 of the reaction space, whereby the H2 + CO content can be further increased. This is accompanied by a correspondingly more complex regulation and tax expense.
  • a particular embodiment of the invention is given by a reactor for the gasification of solid and liquid fuels in the air stream at temperatures greater than 1300 0 C and pressures between ambient pressure and 10 MPa (100 bar), said solid fuels dusty milled coal different Inohlungsgrades, petroleum coke or other solid carbonaceous substances are and liquid fuels, which may be oils or oil-solid suspensions with a free oxygen-containing oxidant, wherein the gasification chamber 2 of the gasification reactor downstream of a reaction space 4, which is divided into one, two or more zones, in the additionally solid dry or liquid fuels are introduced together with steam in order to carry out the non-catalytic crude gas conversion and the chemical quenching simultaneously.
  • solid and / or liquid fuels are fed together with carbon dioxide into the zone 4.1 of the reaction space.
  • solid and / or liquid fuels are fed together with water vapor and carbon dioxide in the zone 4.1 of the reaction chamber.
  • the partially treated crude gas leaving the zones 4.1 and 4.2 of the reaction space is then fed to a waste heat boiler and to a device for separating out dust.
  • the invention also includes a process for the gasification of solid and liquid fuels in the air stream at temperatures greater than 1300 0 C and pressures between ambient pressure and 10 MPa (100 bar) with a free oxygen-containing oxidant tion means the gasification chamber (2) of the gasification reactor a reaction chamber (4) is arranged downstream, are introduced into the additionally solid dry or liquid fuels (7) with steam (8).
  • connection second zone fuel 10 connection second zone water vapor

Abstract

Ein Verfahren zur Flugstromvergasung von festen und flüssigen Brennstoffen kombiniert in einem dem Vergasungsraum nachgeordneten, in Zonen unterteilten Reaktionsraum die nichtkatalytische Rohgaskonvertierung mit der chemischen Quenchung, um die fühlbare Wärme des Rohgases zur Erzeugung chemisch gebundener Energie zu nutzen. Dazu wird trockener fester oder flüssiger Brennstoff gemeinsam mit Wasserdampf oder Kohlendioxid in eine oder mehrere Zonen des Reaktionsraumes dem heißen Rohgas zugeführt.

Description

Beschreibung
Nutzung der fühlbaren Wärme des Rohgases bei der Flugstromvergasung
Die Erfindung betrifft einen Reaktor zur Vergasung von festen und flüssigen Brennstoffen im Flugstrom bei Temperaturen größer 1.3000C und Drücken zwischen Umgebungsdruck und 10 MPa (100 bar) mit einem freien Sauerstoff enthaltenden Oxidati- onsmittel.
Die Erfindung bezieht sich auf eine Flugstromvergasung unterschiedlicher fester und flüssiger Brennstoffe mit einem freien Sauerstoff enthaltenden Oxidationsmittel unter norma- lern oder erhöhtem Druck bis 10 MPa. Feste Brennstoffe sind dabei zu Staub aufgemahlene Kohlen unterschiedlichen Inkohlungsgrades, Petrolkokse sowie andere mahlbare Feststoffe mit einem Heizwert größer 7 MJ/kg. Unter flüssigen Brennstoffen sind Öle oder Öl-Feststoff-Suspensionen zu verstehen. In der Technik der Gaserzeugung ist die autotherme Flugstromvergasung langjährig bekannt. Das Verhältnis von Brennstoff zum sauerstoffhaltigen Vergasungsmittel wird dabei so gewählt, dass man Temperaturen erreicht, die über dem Schmelzpunkt der Asche, in der Regel > 13000C, liegen. Dann wird die Asche zu flüssiger Schlacke aufgeschmolzen, die gemeinsam mit dem Vergasungsgas oder getrennt den Vergasungsraum verlässt und anschließend gekühlt wird. Eine solche Vorrichtung geht aus DE 197 181 317 Al hervor. Eine ausführliche Beschreibung eines solchen mit einem Kühlschirm ausgerüsteten Vergasungsreaktors findet sich in J. Carl u.a. „NOELL- KONVERS IONSVERFAHREN; EF- Verlag für Energie- und Umwelttechnik GmbH 1996. Die darin beschriebene direkte Kühlung des > 13000C heißen Vergasungsgases durch das Einspritzen von Wasser erhöht den Wasserdampfgehalt des Rohgases und führt zu erheblichen wärmetech- nischen Verlusten und zur Verringerung des Wirkungsgrades des Gesamtprozesses. Es gibt umfangreiche Bemühungen, solche Verluste zu minimieren. So werden verschiedene Verfahren entwickelt, die durch eine indirekte Kühlung des heißen Verga- sungsgases in Abhitzekesseln Mitteldruckdampf erzeugen und auf diesem Wege die thermischen Verluste teilweise minimieren. Genannt sei beispielsweise das Prenflow- Verfahren, das in P. Casero u.a. „Puertollano IGCC- Plant. Present Position and Future Competitiveness", the 7th European Gasification Conference, 25th-27th April 2006 in Barcelona, Spanien, beschrieben wurde. Nachteilig sind hierbei die hohe Störanfälligkeit der für die indirekte Kühlung verwendeten Abhitzekessel, sowie die nicht optimale Erzeugung von Mitteldruck- dampf. Einen anderen Weg zur Nutzung der fühlbaren Wärme des heißen Vergasungsgases kennzeichnet das E- Gas- Verfahren, bei dem eine Kohle- Wasser- Emulsion in das heiße Vergasungsgas eingedüst wird, um durch endotherme Vergasungsreaktionen der Kohle mit dem Wasserdampf und CO2 des Vergasungsgases zu- sätzlich Wasserstoff und Kohlenmonoxid herzustellen und damit einen Teil der fühlbaren Wärme in die gewünschte chemisch gebundene Energie zu überführen. Diesen Vorgang bezeichnet man als chemisches Quenchen. Eine ausführliche Darstellung findet sich in „Coal and Petroleum Coke Gasification Application for Coproduction of Hydrogen, Power and Steam", vorgestellt in der o.g. Konferenz. Nachteilig ist hierbei, dass durch die Verdampfung des Wasseranteiles aus der Kohle- Wasser- Emulsion ein Teil der fühlbaren Wärme schon verbraucht wird und damit nicht für die endotherme Reaktion zur Verfügung steht. Eine weitere Möglichkeit zur Behandlung des heißen Vergasungsgases beschreibt das Patent DE 4318444 C2 mit der nicht- katalytischen CO- Konvertierung. Durch stufenweises Einspritzen von Wasser in das > 13000C heiße Rohgas wird der Wasserdampfgehalt erhöht und damit das CO-H2-Gleichgewicht zu ge- wünschten höheren H2- Gehalten verschoben. Dies bringt den
Nachteil, dass durch die Verdampfung des Wassers ein wesentlicher Teil sowohl der fühlbaren Wärme des Rohgases sowie der Reaktionswärme der nichtkatalytischen CO- Konvertierung verbraucht werden.
Aufgabe der vorliegenden Erfindung ist die Vermeidung der genannten Nachteile. Die Aufgabe wird durch die in Anspruch 1 genannte Lehre gelöst .
Erfindungsgemäß wird die chemische Quenchung mit der nichtka- talytischen Rohgaskonvertierung verbunden, was folgende weitere Vorteile bietet:
Die Zuführung von Wasserdampf anstelle von Wasser lässt eine intensivere Nutzung der fühlbaren Wärme des Vergasungsgases zusätzlich für die chemische Quenchung zu. Die simultan ablaufende nichtkatalytische Rohgaskonvertierung erlaubt die Nutzung der exotheremen Konvertierungsreaktion für die chemische Quenchung und sorgt damit für eine Erhöhung der H2- und CO Menge im Vergasungsgas. Die trockene pneumatische Zufüh- rung des Brennstaubes verringert Energieverluste gegenüber den wasserhaltigen Brennstaub-Wasser-Emulsionen .
Die Erfindung wird im Folgenden als Ausführungsbeispiel in einem zum Verständnis erforderlichen Umfang anhand einer Fi- gur erläutert. Dabei zeigt:
Figur 1 einen Vergasungsreaktor mit kombinierter chemischer Quenchung und nichtkatalytischer Rohgaskonvertierung.
Einem Vergasungsreaktor nach Figur 1 mit einer Bruttoleistung von 500 MW werden stündlich 92 Mg Braunkohle mit einem Feuchtegehalt von 12 Ma% über den Vergasungsbrenner 1 zugeführt und mit Sauerstoff vergast. Bei einer Vergasungstemperatur von 1.525° C entstehen daraus im Vergasungsraum 2 168.627 Nm3/h Rohgas, das gemeinsam mit der zu Schlacke verflüssigten Asche über die Vergasungs- und Schlackeabführung 3 in die erste Zone 4.1 des Reaktionsraumes 4 gelangt. Das Rohgas weist folgende Analyse auf: H2 1637 kmol/h entsprechend 24,27 Vol%
CO 3743 kmol/h entsprechend 55,48 VoI %
CO2 469 kmol/h entsprechend 6, 96 Vol%
H2O 833 kmol/h entsprechend 12,34 VoI %
Die erzeugte Menge der gewünschten Komponenten H2 + CO beträgt 120.580 Nm3/h. Der 1. Stufe 4.1 des nachfolgenden Reaktionsraumes 4 werden neben dem Rohgas pneumatisch 10 Mg/h der genannten Braunkohle über den Anschluss 7 sowie 10 Mg/h über den Anschluss 8 Wasserdampf zugeführt. Durch die Kombination von chemischer Quenchung mit ihrer endothermen Reaktion und der nichtkatalytischen Rohgaskonvertierung sinkt die Temperatur auf 1.1500C, wobei sich die Menge an H2 + CO auf 142.382 Nm3/h erhöht, wie nachfolgende Analyse zeigt:
H2 2325 kmol/h entsprechend 29, 05 VoI %
CO 4028 kmol/h entsprechend 50, 34 Vol%
CO2 639 kmol/h entsprechend 7, 98 VoI %
H2O 946 kmol/h entsprechend 11, 82 Vol%
Mit der genannten Temperatur von 1.1500C tritt das Rohgas in die zweite Stufe 4.2 des Reaktionsraumes 4 ein, wo nochmals 20 Mg/h Wasserdampf über den Anschluss 10 zugeführt werden, wobei eine Verschiebung des H2 : CO- Gleichgewichtes statt- findet, wie aus der nachfolgende Analyse zu ersehen ist:
H2 2676 kmol/h entsprechend 29, 37 Vol%
CO 3677 kmol/h entsprechend 40, 36 VoI
CO2 990 kmol/h entsprechend 10, 86 Vol%
H2O 1705 kmol/h entsprechend 18, 71 VoI %
Es ist auch möglich, über den Anschluss 9 zusätzlich in die Stufe 4.2 Brennstoff einzuspeisen.
Neben Wasserdampf kann über die Anschlüsse 8 und 10 auch Koh- lendioxid oder eine Kohlendioxid- Wasserdampfmischung einge¬ speist werden. Das behandelte Rohgas verlässt nunmehr die 2. Zone 4.2 des Reaktionsraumes 4 mit einer Temperatur von 10000C über die Rohgasabführung 5 und kann in nachfolgenden Prozessen weiterbehandelt werden, wie beispielsweise Abhitzekessel und Ein- richtungen zur Staubabscheidung. Die Schlacke wird über den Schlackeabzug 6 aus dem Vergasungsreaktor abgezogen. Anstelle von Wasserdampf kann dem Rohgas in der 1. Zone 4.1 des Reaktionsraumes 4 auch CO2 zugeführt werden. Dann erhalten wir bei einer Zuführung von 9,7 Mg/h eine Roh- gasmenge von 143.552 Nm3/h, wobei das H2 : CO- Gleichgewicht zum CO verschoben ist, wie die weitere Analyse zeigt:
H2 2050 kmol/h entsprechend 26, 77 Vol%
CO 4355 kmol/h entsprechend 56, 87 VoI%
CO2 560 kmol/h entsprechend 7, 31 Vol%
H2O 661 kmol/h entsprechend 8, 63 VoI%
Natürlich können den Zonen 1 und 2 des Reaktionsraumes weitere Zonen hinzugefügt werden, wobei sich der H2 + CO Anteil weiter erhöhen lässt. Dies geht mit einem entsprechend komplexeren Regel- und Steueraufwand einher.
Eine besondere Ausgestaltung der Erfindung ist gegeben durch einen Reaktor zur Vergasung von festen und flüssigen Brenn- Stoffen im Flugstrom bei Temperaturen größer 1.3000C und Drücken zwischen Umgebungsdruck und 10 MPa (100 bar), wobei feste Brennstoffe staubfein aufgemahlene Kohlen unterschiedlichen Inkohlungsgrades, Petrolkokse oder andere feste kohlenstoffhaltige Stoffe sind und flüssige Brennstoffe, die Öle oder Öl-Feststoff-Suspensionen sein können mit einem freien Sauerstoff enthaltenden Oxidationsmittel, wobei dem Vergasungsraum 2 des Vergasungsreaktors ein Reaktionsraum 4 nachgeordnet ist, der in ein, zwei oder mehrere Zonen unterteilt ist, in die zusätzlich feste trockene oder flüssige Brenn- Stoffe gemeinsam mit Wasserdampf eingeführt werden, um die nichtkatalytische Rohgaskonvertierung und die chemische Quen- chung simultan durchzuführen. In einer besonderen Weiterbildung der Erfindung werden in die Zone 4.1 des Reaktionsraumes feste und/ oder flüssige Brennstoffe gemeinsam mit Kohlendioxid eingespeist.
In einer besonderen Weiterbildung der Erfindung werden in die Zone 4.1 des Reaktionsraumes 4 feste und/oder flüssige Brennstoffe gemeinsam mit Wasserdampf und Kohlendioxid eingespeist .
In einer besonderen Weiterbildung der Erfindung wird das die Zonen 4.1 und 4.2 des Reaktionsraumes verlassende teilbehandelte Rohgas anschließend einem Abhitzekessel sowie einer Einrichtung zur Staubabscheidung zugeführt.
Die Erfindung umfasst auch ein Verfahren zur Vergasung von festen und flüssigen Brennstoffen im Flugstrom bei Temperaturen größer 1.3000C und Drücken zwischen Umgebungsdruck und 10 MPa (100 bar) mit einem freien Sauerstoff enthaltenden Oxida- tionsmittel wobei dem Vergasungsraum (2) des Vergasungsreak- tors ein Reaktionsraum (4) nachgeordnet ist, in den zusätzlich feste trockene oder flüssige Brennstoffe (7) mit Wasserdampf (8) eingeführt werden.
Bezugszeichen 1 - Vergasungsbrenner 2 - Vergasungsraum
3 - Vergasungs- und Schlackeabführung
4 — Reaktionsraum
4.1 - erste Zone des Reaktionsraumes
4.2 - zweite Zone des Reaktionsraumes 5 - Rohgasabführung
6 - Schlackeabgang
7 - Anschluss zusätzlicher Brennstoff
8 - Anschluss erste Zone Wasserdampf
9 - Anschluss zweite Zone Brennstoff 10 - Anschluss zweite Zone Wasserdampf

Claims

Patentansprüche
1. Reaktor zur Vergasung von festen und flüssigen Brennstoffen im Flugstrom bei Temperaturen größer 1.3000C und Drücken zwischen Umgebungsdruck und 10 MPa (100 bar) mit einem freien Sauerstoff enthaltenden Oxidationsmittel dadurch gekennzeichnet, dass dem Vergasungsraum (2) des Vergasungsreaktors ein Reaktionsraum (4) nachgeordnet ist, in den zusätzlich feste trockene oder flüssige Brennstoffe (7) gemeinsam mit Wasserdampf (8) einführbar sind, wobei eine nichtkatalytische Rohgaskonvertierung und eine chemische Quenchung simultan durchführbar sind.
2. Reaktor nach Anspruch 1 dadurch gekennzeichnet, dass der Reaktionsraum in mindestens zwei Zonen (4.1, 4.2) unterteilt ist, wobei der dem Vergasungsraum nähergelegenen, ersten Zone (4.1) der zusätzliche Brennstoff (7) und Wasserdampf (8) zuführbar sind und der dem Vergasungsraum weiter entfernt liegenden, zweiten Zone (4.2) weiterer Wasserdampf (10) zuführbar ist.
3. Reaktor nach Anspruch 2 dadurch gekennzeichnet, dass in die zweite Zone (4.2) zusätzlicher Brennstoff (9) zuführbar ist.
4. Reaktor nach einem der vorstehenden Ansprüche da du r ch g e k e n n z e i ch n e t , d a s s in den Reaktionsraum (4) Kohlendioxid CO2 eingespeisbar ist.
5. Reaktor nach Anspruch 4 da du r ch g e k e n n z e i ch n e t , d a s s das Kohlendioxid CO2 gemeinsam mit dem Wasserdampf (8, 10) in den Reaktionsraum eingespeisbar ist.
6. Reaktor nach Anspruch 4 bis 5 da du r ch g e k e n n z e i ch n e t , d a s s das Kohlendioxid CO2 gemeinsam mit dem Brennstoff (7, 9) in den Reaktionsraum eingespeisbar ist.
7. Reaktor nach einem der Ansprüche 2 bis 6 dadurch gekennzeichnet, dass das Kohlendioxid CO2 in die erste Zone (4.1) des Reaktionsraumes eingespeisbar ist.
8. Reaktor nach einem der vorstehenden Ansprüche dadurch gekennzeichnet, dass das die Zonen 4.1 und 4.2 des Reaktionsraumes verlassende teilbehandelte Rohgas anschließend einem Abhitzekessel sowie einer Einrichtung zur Staubabscheidung zuführbar ist.
PCT/EP2009/061029 2008-09-30 2009-08-27 Nutzung der fühlbaren wärme des rohgases bei der flugstromvergasung WO2010037602A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810049716 DE102008049716A1 (de) 2008-09-30 2008-09-30 Nutzung der fühlbaren Wärme des Rohgases bei der Flugstromvergasung
DE102008049716.9 2008-09-30

Publications (2)

Publication Number Publication Date
WO2010037602A2 true WO2010037602A2 (de) 2010-04-08
WO2010037602A3 WO2010037602A3 (de) 2010-09-10

Family

ID=41794954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/061029 WO2010037602A2 (de) 2008-09-30 2009-08-27 Nutzung der fühlbaren wärme des rohgases bei der flugstromvergasung

Country Status (2)

Country Link
DE (1) DE102008049716A1 (de)
WO (1) WO2010037602A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010008384A1 (de) * 2010-02-17 2011-08-18 Uhde GmbH, 44141 Verfahren und Vorrichtung zur Nutzung der Enthalpie eines Synthesegases durch Zugabe von nachwachsenden Brennstoffen in den Abkühlraum einer Flugstromvergasung
KR101633951B1 (ko) 2009-03-04 2016-06-27 티센크루프 인더스트리얼 솔루션스 아게 재생연료를 추가 및 후-가스화하여 합성가스의 엔탈피를 이용하기 위한 방법 및 장치
DE102011107726B4 (de) * 2011-07-14 2016-06-30 Thyssenkrupp Industrial Solutions Ag Vorrichtung und Verfahren zum Einleiten von nachwachsenden Brennstoffen in den Bereich der Strahlungskesselwand von Vergasungsreaktoren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423401A1 (de) * 1985-11-29 1991-04-24 The Dow Chemical Company Zweistufiges Kohlevergasungsverfahren
WO1996006901A1 (en) * 1994-08-26 1996-03-07 Stork Comprimo B.V. Process for cooling a hot gas stream
EP0870818A2 (de) * 1997-04-08 1998-10-14 MAN Gutehoffnungshütte Aktiengesellschaft Synthesegaserzeuger mit Brenn- und Quenchkammer
US20070079554A1 (en) * 2005-10-07 2007-04-12 Future Energy Gmbh Method and device for high-capacity entrained flow gasifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782913A (en) * 1972-03-23 1974-01-01 Us Interior Two-stage gasification of coal with forced reactant mixing and steam treatment of recycled char
DE4318444C2 (de) 1993-06-03 1997-01-23 Bfi Entsorgungstech Verfahren zur Hochtemperatur-Konvertierung
DE19718131C2 (de) 1997-04-29 1999-10-14 Krc Umwelttechnik Gmbh Verfahren und Vorrichtung zur Regeneration einer beim Kraftprozeß zum Aufschluß von Holz anfallenden Flüssigkeit durch Vergasung
DE19747324C2 (de) * 1997-10-28 1999-11-04 Bodo Wolf Vorrichtung zur Erzeugung von Brenn-, Synthese- und Reduktionsgas aus nachwachsenden und fossilen Brennstoffen, Biomassen, Müll oder Schlämmen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423401A1 (de) * 1985-11-29 1991-04-24 The Dow Chemical Company Zweistufiges Kohlevergasungsverfahren
WO1996006901A1 (en) * 1994-08-26 1996-03-07 Stork Comprimo B.V. Process for cooling a hot gas stream
EP0870818A2 (de) * 1997-04-08 1998-10-14 MAN Gutehoffnungshütte Aktiengesellschaft Synthesegaserzeuger mit Brenn- und Quenchkammer
US20070079554A1 (en) * 2005-10-07 2007-04-12 Future Energy Gmbh Method and device for high-capacity entrained flow gasifier

Also Published As

Publication number Publication date
WO2010037602A3 (de) 2010-09-10
DE102008049716A1 (de) 2010-04-08

Similar Documents

Publication Publication Date Title
DE102012015314B4 (de) Verfahren und Anlage zur Erzeugung von Kohlenmonoxid
EP2265696A2 (de) Verfahren und vorrichtung zur umwandlung kohlenstoffhaltiger rohstoffe
EP1749872A2 (de) Verfahren zur endothermen Vergasung von Kohlenstoff
DE3140028C2 (de) Verfahren zur Untertagevergasung
WO2011012393A2 (de) Flugstromvergaser mit integriertem strahlungskühler
DE112009000341B4 (de) Verfahren und Systeme zur integrierten Kesselspeisewassererwärmung
DE102005006305B4 (de) Verfahren zur Erzeugung von Brenn- und Synthesegasen mit Hochdruckdampferzeugung
DE1944307A1 (de) Turbinenkraftwerksprozess
EP2438199B1 (de) Verfahren zur gleichzeitigen herstellung von eisen und eines co und h2 enthaltenden rohsynthesegases
DE202011105262U1 (de) Anlage zur kohlendioxidarmen, vorzugsweise kohlendioxidfreien Erzeugung eines flüssigen kohlenwasserstoffhaltigen Energieträgers und/oder zur Direktreduktion von Metalloxiden
EP2057252A1 (de) Verfahren zur erzeugung von kraftstoffen aus abfall
DE102011112093A1 (de) Verfahren und Anlage zur kohlendioxidarmen, vorzugsweise kohlendioxidfreien, Erzeugung eines flüssigen kohlenwasserstoffhaltigen Energieträgers und/oder zur Direktreduktion von Metalloxiden
EP2485980B1 (de) Verfahren zum betrieb eines igcc-kraftwerkprozesses mit integrierter co2-abtrennung
WO2010037602A2 (de) Nutzung der fühlbaren wärme des rohgases bei der flugstromvergasung
DD147677A5 (de) Integriertes kohleverfluessigungs-vergasungs-schwerbenzinreformingverfahren
DE2807326A1 (de) Verfahren und anlage zur brennstoffversorgung eines der spitzenstromerzeugung dienenden gas-dampfturbinenkraftwerkes
WO2008138735A2 (de) Verfahren zur erzeugung motorischer energie aus fossilen brennstoffen mit abführung von reinem kohlendioxid
WO2008090028A1 (de) Verfahren und vorrichtung zur herstellung von energie, treibstoffen oder chemischen rohstoffen unter einsatz von co2-neutralen biogenen einsatzstoffen
EP0159611B1 (de) Kraftwerk mit einem Hochtemperaturreaktor und einer Anlage zur Herstellung von Chemierohstoffen
DE102004055407A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine, insbesondere eines Gasmotors
DE10227074A1 (de) Verfahren zur Vergasung von Biomasse und Anlage hierzu
DE69925754T2 (de) Teiloxidationsverfahren mit rückgewinnung von russfiltermassen
DE102008014297A1 (de) Verfahren und Vorrichtung zur Umwandlung kohlenstoffhaltiger Rohstoffe
EP3988501A1 (de) Verfahren und anlage zum herstellen von co-reichem synthesegas durch partialoxidation
DE102010033612A1 (de) Erzeugung von Methan aus nicht gasförmigen Brennstoffen

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782243

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 09782243

Country of ref document: EP

Kind code of ref document: A2