EP2054553B1 - Tilt-lift method for erecting a bridge and vertical lift bridge manufactured accordingly - Google Patents

Tilt-lift method for erecting a bridge and vertical lift bridge manufactured accordingly Download PDF

Info

Publication number
EP2054553B1
EP2054553B1 EP07718451.3A EP07718451A EP2054553B1 EP 2054553 B1 EP2054553 B1 EP 2054553B1 EP 07718451 A EP07718451 A EP 07718451A EP 2054553 B1 EP2054553 B1 EP 2054553B1
Authority
EP
European Patent Office
Prior art keywords
bridge
pier
bridge girder
end point
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07718451.3A
Other languages
German (de)
French (fr)
Other versions
EP2054553A1 (en
Inventor
Johann Kollegger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Wien
Kollegger GmbH
Original Assignee
Technische Universitaet Wien
Kollegger GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Wien, Kollegger GmbH filed Critical Technische Universitaet Wien
Priority to PL07718451T priority Critical patent/PL2054553T3/en
Publication of EP2054553A1 publication Critical patent/EP2054553A1/en
Application granted granted Critical
Publication of EP2054553B1 publication Critical patent/EP2054553B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • E01D21/08Methods or apparatus specially adapted for erecting or assembling bridges by rotational movement of the bridge or bridge sections
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D15/00Movable or portable bridges; Floating bridges
    • E01D15/06Bascule bridges; Roller bascule bridges, e.g. of Scherzer type

Definitions

  • the invention relates to a method for producing a bridge as well as bridges and lifting bridges produced by this method.
  • the feed armor When producing a bridge girder made of concrete by means of feed armor, the feed armor must be designed to take up the dead weight of the girder. The feed armor is stressed by the dead weight of the bridge girder by bending moments.
  • arch bridges The construction of arch bridges involves a great deal of effort in the production of the arch.
  • the bow is usually erected on a scaffolding or in the guyed freewheeler.
  • US-A-517.809 shows a lifting bridge with a pillar, a bridge girder and a support rod.
  • the bridge carrier is moved from an approximately vertical position to a horizontal position by the displacement of an end point of the bridge girder along the pier.
  • the object of the invention is to provide a method for the production of bridges, in which it is possible to dispense with the construction of a framework in which during the Production of the bridge carrier no or only very low bending stresses occur in the bridge girder, which is suitable for the production of bridges with large spans and offers economic advantages over the known methods.
  • a pivotal movement permitting concerns an endpoint of the support rod on the pillar or an endpoint of the bridge girder on the pillar is considered, the adjacent parts are pressed by forces to form a frictional connection against each other.
  • the support rod is understood to mean not only a rod acted upon by longitudinally acting compressive forces, but also a rod subjected to tensile stress, wherein the rod is in each case substantially free from a load on bending.
  • the support rod can be made at the bridge construction site, e.g. also by combining several strands into one cable.
  • a particularly advantageous variant of the method is characterized in that the end points and the support rod are formed so that in the end point an angular rotation ā‡ relative to the bridge girder and the end point an angular rotation ā‡ relative to the pillar can occur and that the sum of the angular rotations ā‡ plus ā‡ greater is 85 Ā° and less than 260 Ā°.
  • a further expedient variant is characterized in that the end point of the support rod and the end point of the bridge girder are formed so that in the end point an angular rotation ā‡ relative to the bridge girder and in the end point an angular rotation ā‡ relative to the pillar can occur and that the angular rotation ā‡ greater than 100th Ā° and smaller than 175 Ā° and that the angular rotation ā‡ is approximately 90 Ā°.
  • a lifting bridge produced by the method according to the invention is characterized in that it consists of at least one pillar, a bridge girder and a support bar, that an end point of the support bar is hinged to the bridge girder, that an end point of the support bar or an end point of the girder to the pillar is connected and that the bridge carrier from the approximately horizontal position by moving an end point of the support rod or an end point of the bridge girder can be rotated so that the clearance of the bridge crossing the traffic route is increased.
  • Pillars, bridge girders and support bar form a statically stable structure.
  • the connections between the bridge girder and the support bar with the pier are subject to only minimal stress and can be produced with simple construction elements.
  • the stress of the pillar is smaller in the method according to the invention in the construction state than in the known bridge construction method with horizontal production of the bridge girder, because the wind attack surface is cheaper and the center of gravity is lower for the determination of earthquake forces.
  • the preparation of the bridge superstructure in an approximately vertical position is advantageous, because thereby no or only very small bending moments occur due to its own weight during manufacture. This is a great advantage, especially in the production of concrete bridges, since in the usual horizontal production of the bridge girder bending moments occur which influence the speed of the construction progress.
  • clock shifting method usually a weekly cycle for the production of a construction section is achieved.
  • cantilever construction or on a scaffold or by means of feed armor the times for producing a construction section are one to three weeks.
  • the bridge girder can be made together with the pier, for example, with a climbing or sliding formwork. This significantly reduces the cost of formwork, manufacturing time and costs.
  • the proposed method will be particularly advantageous to use in bridges with high columns.
  • the span range for the application of the method according to the invention is between 20 m and 400 m, preferably between 50 m and 150 m.
  • the method can be used for the construction and operation of lifting bridges.
  • a first embodiment of the method according to the invention is in Fig.1 to Fig.6 shown.
  • the pillar 4 and the bridge girder 2 concreted in a vertical position.
  • the formwork and concreting operations for the bridge girders correspond in their effort to the processes in the production of the pier 4, which allows substantial savings compared to a production in a horizontal position.
  • the support rods 3 which in this example consist of a cable made of tension wire strands, are installed.
  • the end points 9 of the bridge girder 2 with conventional lifting devices, eg lifted with hydraulic strand lifters and cables from tension wire strands.
  • the lifting devices can be positioned at the top of the pillar 4. In this state, bending moments occur in the bridge girders 2, but they are smaller than in the final state, which in Figure 3 is shown. It may be advantageous to tension tendons in the bridge girder 2 during the folding process, in order to counteract the occurring moments due to its own weight.
  • the end point 9 of the bridge girder 2 may be provided with rollers to allow an approximately frictionless lifting.
  • a sliding layer can be provided in the pillar 4.
  • Known material combinations for Verschubvor Cyprus on a slide are, for example Teflon and steel or bronze and steel.
  • the lifting forces for the in Fig.2 folding process shown are for the weight of the bridge girder 2, the support rods 3 and the frictional forces that occur between the end points 9 of the bridge girder 2 and the pillar 4 to measure.
  • the construction state may also be advantageous for the construction state to equip the bridge girder 2 in the condition of construction only with the statically required cross sections and to have the cross section in the final state, e.g. by making a deck slab, to complete.
  • the length of the bridge girder 2 and the support rods 3 is changed only by the elastic length changes due to the occurring normal forces.
  • 3 tensile forces occur in the support rods and compressive forces in the bridge girders 2 between the points 5 and 9.
  • the support rods 3 are connected in points 6 with the pillar 4 and in the points 5 with the bridge girders 2.
  • the execution of the connection with the pillar 4 is in Figure 4 (Detail A off Fig.1 ) and the execution of the connection with the bridge girder 2 is in Figure 5 (Detail B off Fig.1 ).
  • the existing of a Litzentent support rod 3 is according to Figure 5 guided over a deflection structure in the box cross-section of the bridge girder 2 during the folding process.
  • the angle of rotation ā‡ of approximately 150 Ā° can be recorded in point 5 of the folding process.
  • the angle of rotation ā‡ in the points 6 is in each case about 60 Ā° and is taken up by rolling the support rods 3 over the saddle construction at the tip of the pillar 4.
  • the radii of curvature of the deflection structure in box cross section in Figure 4 and the saddle in Figure 5 are to be adjusted to the permissible radii of curvature of stranded cables.
  • Figure 6 shows a plan view of a section of the bridge girder 2 in the final position.
  • the support rod 3 is arranged in this example in the middle of the bridge girder 2, so that the lanes can be guided laterally on the support rod 3.
  • a second embodiment of the method according to the invention is in the Fig.7 to Fig.10 shown.
  • the pillar 4 made of a suitable building material such as concrete, masonry, steel or wood.
  • the bridge girder 2 which may be made of steel or wood in this example, is mounted in a vertical position.
  • the bridge girder 2 may consist of individual elements which are positively connected to each other in this position.
  • the support rod 3 made of a steel profile is mounted and articulated at point 5 to the bridge girder 2 and at point 6 to the pillar 4.
  • Figure 10 shows a plan view of a section of the bridge girder 2 in the final position.
  • the support rods 3 are arranged laterally of the bridge girder 2 in this example, so that the lanes can be passed between the support rods 3.
  • a third embodiment of the method according to the invention is in Fig.11 to Fig.14 shown.
  • the pillar 4 made of concrete.
  • the pillar 4 has a constant width, but a variable thickness over the height.
  • the Bridge girders 2 are erected in this example on the foundation plate of the pier 4.
  • the bridge girders 2 have a constant width, but a variable cross-sectional height. Pillar 4, support rods 3 and bridge girder 2 are advantageously produced at the same time, for example by means of climbing formwork.
  • the support rods 3 are connected in points 5 with the bridge girders 2.
  • the bridge girders 2 are connected at the points 7 with the pillar 4.
  • Fig. 14 It is shown how the support rods 3 can be advantageously installed in the shape of the pillar 4 to allow rapid production of the pillar 4, the support rods 3 and the bridge girder 2.
  • FIGS. 15 to 17 A fourth embodiment of the method according to the invention is in FIGS. 15 to 17 shown.
  • bridge girder 2 and support rods 3 are erected in approximately vertical position.
  • a support rod 3 is connected in this example to the bridge girder 2 at point 5 and to the pier 4 at point 6.
  • the second support rod 3 is connected at point 5 to the bridge girder 2.
  • the second end point 8 of this support rod 3 is according to Fig. 16 raised. The lifting causes the bridge girder 2 to move from the approximately vertical position to a horizontal position, which in FIG Figure 17 is shown, is rotated.
  • the bridge 1 can be used as a lifting bridge 12. By lowering the point 8 in Fig. 17 the bridge girder 2 is moved upwards, so that the clearance profile of the traffic route crossing the bridge 1 is increased.
  • a fifth embodiment of the method according to the invention is in Fig.18 to Fig.20 shown.
  • auxiliary pillar 10 bridge girder 2 and support rods 3 produced in a vertical position.
  • the end points 8 of the bridge girder 2 are higher in this position than the top of the pier 4. Therefore, the establishment of an auxiliary pier 10 is required.
  • the bridge girders 2 are connected at the points 7 with the pillar 4.
  • the support rods 3 are connected in points 5 with the bridge girders 2.
  • the other end points 8 of the support rods 3 are according to Fig. 19 lowered from the auxiliary pier 10.
  • restraints 13 are used.
  • These bracing 13 may consist of stranded cables, which are connected to the bridge girder 2 and, for example, claimed by the tip of the pillar 4 with a certain force.
  • the length of the bracing 13 increases during the rotation of the bridge girder 2, which can be easily ensured by tracking the stranded cable.
  • auxiliary pillar 10 may be removed or used for mounting additional cables to support the bridge girders 2.
  • the bracing 13 can remain as a permanent cable in the bridge 1 or replaced by inclined cable.
  • a sixth embodiment of the method according to the invention is in Fig.21 to Fig.23 shown.
  • Pillars 4 are made in approximately vertical position.
  • Figure 24 shows a bridge 1 with two abutments 11, two pillars 4, four bridge beams 2 and four support rods 3.
  • the view of the bridge 1 in Figure 24 shows how the method can be used advantageously for the production of viaducts.
  • the end points 14 of the bridge girders 2 in the middle of the main span of the bridge 1 are rigidly connected in the final state.
  • the other two end points 14 of the bridge girder are with the Abutment 11 connected.
  • the support rods 3 can then be removed, if this is required, for example, for design reasons.
  • the inventive method can also be used for the production of curved in plan bridges, such as Figure 25 for a four-span bridge shows.
  • the bridge girder 2 must be supplemented in this example with spacers to complete the bridge 1.
  • FIGS. 26 to 29 A seventh embodiment of the method is in FIGS. 26 to 29 shown.
  • the Fig. 26 shows a state during the lifting of the end points 9 of the bridge girder 2.
  • the pier 4 in this example has an opening 19 extending along the pier height.
  • Fig. 27 (Detail C off Fig. 26 ).
  • the support rod 3 may consist of a diagonal cable 17 and it may be several diagonal cables 17 are arranged one behind the other.
  • the support rod 3 extends approximately vertically along the pillar 4 to the end point 5, where it is connected to the bridge girder 2.
  • the force in the support rod 3 is much smaller at the beginning of the lifting process than in the final state. This circumstance contributes to the design of the deflecting saddle 18 for the support rod 3 in Fig. 27 Bill.
  • the contact pressure of the support rod 3 in the deflection saddle 18 can be calculated from the tensile force of the support rod 3 divided by the product of deflection radius and width of the support rod 3.
  • R 1 is calculated with R 1 times the ratio of the tensile forces in the support rod at the end and at the beginning of the lifting operation
  • the contact pressure on the support rod 3rd by the deflecting saddle 18 during the lifting process constant when the lying between R 1 and R 2 radii of Umlenksattels 18 are calculated according to the forces occurring in the support rod 3.
  • Fig. 28 shows a plan view of the bridge 1 during the lifting process.
  • the pillar 4 is designed with an opening 19, so that touch the bridge girder 2 during the lifting operation and the resulting pressure forces in the rolling joints are transmitted via Hertzian pressure.
  • the cross section of the bridge girder 2 in the example according to Fig. 28 is a box cross section.
  • the projecting parts of the carriageway plate are only produced after completion of the lifting process.
  • cross members are required in the end points 5 of the support rods 3, which are connected to the bridge girders 2, therefore.
  • the stabilization of the bridge girder 2 during the lifting process can take place with suitable devices 15, eg roller bearings.
  • Fig. 29 (Detail D off Fig. 26 ).
  • the bridge girders 2 in the lines P 1 and P 1 'touch In the in Fig. 29 shown position of the bridge girder 2 is the contact in the lines P 2 and P 2 'instead. In the final state, the touch will occur in P 3 and P 3 '.
  • the ends of the bridge girder 2 in the example according to Fig. 29 are executed with circularly bent steel sheets, which are connected with dowels or welded reinforcement with the concrete of the bridge girder 2.
  • the lifting process occurs in the circular cylindrical ends of the bridge support 2 along the lines of contact, eg P 2 and P 2 'in Fig.
  • Hertzian pressure an increased pressure, referred to as Hertzian pressure.
  • the radii of the end regions of the bridge girders 2 are to be dimensioned for the Hertzian stresses occurring during the lifting process.
  • the radius for the ends of the bridge girders 2 in Fig. 28 is constant. However, it could also be adapted to the forces occurring in the bridge girders 2 and, for example, increase from a smaller radius in the lines P 1 , P 1 'to a larger radius in the lines P 3 , P 3 ', in order to obtain a lift during the lifting operation To obtain approximately constant Hertzian pressure in the contact lines.
  • FIGS. 30 to 32 An eighth embodiment of the method is in the FIGS. 30 to 32 shown.
  • the Fig. 30 shows a state during the lifting of the end points 8 of the support rods 3.
  • the pillar 4 has an opening 19 extending along the pillar height.
  • Fig. 31 (Detail E off Fig. 30 ).
  • the contact takes place along the lines P 4 , P 4 '.
  • Fig. 31 a state is shown in which the contact between the support rod 3 and the bridge girder 2 takes place along the lines P 5 , P 5 '.
  • an external tendon 16 is shown, which is arranged in the gravity axis of the formed with a T-beam cross-section bridge girder 2. While the lifting operation, the external tendon is biased so that no or only low tensile forces occur in the bridge girder 2.
  • FIG. 32 An alternative embodiment for the connection of the support rod 3 to the bridge girder 2 (detail E from Fig. 30 ) is in Fig. 32 shown.
  • the bridge girder of this alternative embodiment has a box cross-section.
  • the mutual rotation in the end point 5 between the support rod 3 and bridge support 2 takes place outside the box cross-section of the bridge girder 2.
  • the resulting offset moment generates bending stresses in the bridge girder 2, which must be taken into account in the dimensioning of the bridge girder 2.
  • the external clamping member 16 is arranged in the gravity axis of the box cross-section of the bridge girder 2.
  • the method is preferably suitable for the production of prestressed concrete and reinforced concrete bridges, but can also be used for steel bridges, steel-concrete composite bridges, wooden bridges or plastic bridges.
  • a bridge girder 2 could be made of prestressed concrete and the top of the bridge girder 2 adjacent to the end point 14 would be made of a steel construction to reduce its own weight at the tip of the cantilever and thereby the building crimping moments.
  • inventive method can also be used in building construction and civil engineering, if it is advantageous to produce carrier in an approximately vertical position and then to turn into an approximately horizontal end position.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer BrĆ¼cke sowie nach diesem Verfahren hergestellte BrĆ¼cken und HubbrĆ¼cken.The invention relates to a method for producing a bridge as well as bridges and lifting bridges produced by this method.

Bei den bekannten Verfahren zur Herstellung von BrĆ¼cken sind im Bauzustand hohe Aufwendungen erforderlich, um das Eigengewicht des BrĆ¼ckentrƤgers aufzunehmen.In the known method for the production of bridges high expenditures are required in the construction state to absorb the weight of the bridge girder.

Bei der Herstellung des BrĆ¼ckentrƤgers auf einem LehrgerĆ¼st entstehen Aufwendungen fĆ¼r die GrĆ¼ndung und den Aufbau des LehrgerĆ¼sts.In the construction of the bridge girder on a scaffolding arise expenses for the founding and construction of the scaffold.

Bei der Herstellung eines BrĆ¼ckentrƤgers aus Beton mittels VorschubrĆ¼stung muss die VorschubrĆ¼stung fĆ¼r die Aufnahme des Eigengewichts des BrĆ¼ckentrƤgers ausgelegt werden. Die VorschubrĆ¼stung wird durch das Eigengewicht des BrĆ¼ckentrƤgers durch Biegemomente beansprucht.When producing a bridge girder made of concrete by means of feed armor, the feed armor must be designed to take up the dead weight of the girder. The feed armor is stressed by the dead weight of the bridge girder by bending moments.

Bei der Herstellung des BrĆ¼ckentrƤgers von Beton- oder StahlbrĆ¼cken mit dem Taktschiebeverfahren entstehen wƤhrend des Baus zusƤtzliche Aufwendungen fĆ¼r den BrĆ¼ckentrƤger, weil jeder Querschnitt des BrĆ¼ckentrƤgers wƤhrend des Verschubs positiven und negativen Biegemomenten aus der Beanspruchung durch Eigengewicht ausgesetzt wird. BrĆ¼cken, die nach dem Taktschiebeverfahren hergestellt werden, weisen deshalb besonders hohe Querschnitte und hohen Materialeinsatz auf.During the construction of the bridge girder concrete or steel bridges with the clock sliding method incurred during construction additional expenses for the bridge girder, because each cross-section of the bridge girder is exposed during the Verschubs positive and negative bending moments from the load by its own weight. Bridges that are produced by the clock shift method, therefore, have particularly high cross-sections and high material usage.

Bei der Herstellung des BrĆ¼ckentrƤgers im Freivorbau entstehen in den BauzustƤnden groƟe negative Biegemomente infolge Eigengewicht im BrĆ¼ckentrƤger. Die groƟen Kragmomente Ć¼ber den StĆ¼tzen mĆ¼ssen durch Querschnitte mit ausreichender Hƶhe aufgenommen werden.In the construction of the bridge girder in cantilever construction, large negative bending moments due to its own weight in the bridge girder occur during construction. The large Kragmomente over the supports must be absorbed by cross sections with sufficient height.

Bei der Herstellung des BrĆ¼ckentrƤgers im Freivorbau mit Abspannungen von einem Pylon (SchrƤgkabelbrĆ¼cken) werden diese Kragmomente vermieden, dafĆ¼r entstehen zusƤtzliche Aufwendungen fĆ¼r die Errichtung des Pylons und fĆ¼r den Einbau der Abspannungen. Die LƤnge der Vorbauabschnitte beim Freivorbau mit Abspannungen wird durch die Biegebeanspruchungen auf 5 m bis 10 m begrenzt.In the construction of the bridge girder in cantilever construction with guying from a pylon (diagonal cable bridges) these Kragmomente be avoided, this will incur additional expenses for the construction of the pylon and for the installation of the bracing. The length of the stem sections in cantilevered cantilevered construction is limited to 5 m to 10 m by the bending stresses.

Beim Bau von BogenbrĆ¼cken entsteht ein hoher Aufwand bei der Herstellung des Bogens. Der Bogen wird meistens auf einem LehrgerĆ¼st oder im abgespannten Freivorbau errichtet.The construction of arch bridges involves a great deal of effort in the production of the arch. The bow is usually erected on a scaffolding or in the guyed freewheeler.

Eine weitere Methode zur Errichtung des Bogens ist das Bogenklappverfahren (BETON, Heft 5, Mai 1984, S. 200). Bei diesem Verfahren werden zwei BetonbogenhƤlften mittels Kletterschalung in annƤhernd senkrechter Lage hergestellt, um das LehrgerĆ¼st bzw. die Abspannungen beim Bau einzusparen und damit einen raschen Baufortschritt zu erreichen. Nach Fertigstellung der BogenhƤlften werden diese mittels RĆ¼ckhaltekabeln eingeklappt.Another method for the construction of the sheet is the Bogenklappverfahren (BETON, Issue 5, May 1984, p 200). In this process, two concrete sheet halves are made by means of climbing formwork in approximately vertical position to save the scaffold or the guying of the construction and thus to achieve a rapid construction progress. After completion of the bow halves they are folded by means of retaining cables.

Die Herstellung eines TrƤgers fĆ¼r eine Dachkonstruktion in annƤhernd senkrechter Lage ist in der JP 4237773 beschrieben. Durch das Nachlassen eines RĆ¼ckhaltekabels wird der an seinem FuƟpunkt gelenkig gelagerte TrƤger in eine horizontale Lage gedreht. Ein Ƥhnliches Verfahren zur Herstellung von BrĆ¼cken ist in der JP 3025107 beschrieben. Diese beiden Verfahren funktionieren so wie man es von einer ZugbrĆ¼cke kennt. Die LƤnge des BrĆ¼ckentrƤgers ist im Wesentlichen auf die LƤnge zwischen unterem Gelenk und oberem Festhaltepunkt beschrƤnkt. Diese LƤnge kann durch eine Auskragung des BrĆ¼ckentrƤgers Ć¼ber die Pylonspitze etwas vergrĆ¶ĆŸert werden.The production of a support for a roof construction in approximately vertical position is in the JP 4237773 described. By slackening a restraint cable articulated at its base support is rotated in a horizontal position. A similar process for the preparation of bridges is in JP 3025107 described. These two methods work the way you know it from a drawbridge. The length of the bridge girder is essentially limited to the length between the lower hinge and the upper retaining point. This length can be slightly increased by a projection of the bridge girder over the pylon tip.

Verfahren zur Herstellung von BetonbrĆ¼cken in annƤhernd vertikaler Lage sind aus der US 2004/0045253 bekannt. Um ein Drehgelenk, das zwischen zwei Pfeilern oder im Widerlager angeordnet sein kann, wird der BrĆ¼ckentrƤger mittels eines Krans, eines speziellen Montagekrans oder einer Winde in die annƤhernd horizontale Endlage gedreht. Diese Verfahren sind auf BrĆ¼ckenspannweiten bis ca. 40 m beschrƤnkt, da die Stabilisierung des frei auskragenden BrĆ¼ckentrƤgers im Bauzustand gegen Wind- und ErdbebenkrƤfte aufwƤndige ZusatzmaƟnahmen bedingt. Auch wird der Drehvorgang mittels Winde und Zusatzgewicht oder mittels eines speziellen Montagekrans fĆ¼r grĆ¶ĆŸere Spannweiten zu aufwƤndig und deshalb unwirtschaftlich.Process for the production of concrete bridges in approximately vertical position are from US 2004/0045253 known. To a swivel joint, which can be arranged between two pillars or in the abutment, the bridge girder is rotated by means of a crane, a special assembly crane or a winch in the approximately horizontal end position. These methods are limited to bridge spans up to about 40 m, since the stabilization of the cantilevered bridge girder in the construction state against wind and earthquake forces requires complex additional measures. Also, the turning process by means of winch and additional weight or by means of a special assembly crane for larger spans too costly and therefore uneconomical.

Weiters ist aus DE 197 47 109 A1 eine Vorrichtung zum Falten einer aus zwei BrĆ¼ckenabschnitten bestehenden KlappbrĆ¼cke bekannt.Furthermore, it is off DE 197 47 109 A1 a device for folding a bridge bridge consisting of two bridge sections known.

US-A-517,809 zeigt eine HubbrĆ¼cke mit einem Pfeiler, einem BrĆ¼ckentrƤger sowie einem StĆ¼tzstab. Der BrĆ¼ckentrƤger wird von einer annƤhernd senkrechten Position in eine waagrechte Position durch die Verschiebung eines Endpunktes des BrĆ¼ckentrƤgers entlang des Pfeilers bewegt. US-A-517.809 shows a lifting bridge with a pillar, a bridge girder and a support rod. The bridge carrier is moved from an approximately vertical position to a horizontal position by the displacement of an end point of the bridge girder along the pier.

Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung von BrĆ¼cken zu schaffen, bei dem auf die Errichtung eines GerĆ¼sts verzichtet werden kann, bei dem wƤhrend der Herstellung des BrĆ¼ckentrƤgers keine bzw. nur sehr geringe Biegebeanspruchungen im BrĆ¼ckentrƤger auftreten, das fĆ¼r die Herstellung von BrĆ¼cken mit groƟen Spannweiten geeignet ist und das wirtschaftliche Vorteile gegenĆ¼ber den bekannten Verfahren bietet.The object of the invention is to provide a method for the production of bridges, in which it is possible to dispense with the construction of a framework in which during the Production of the bridge carrier no or only very low bending stresses occur in the bridge girder, which is suitable for the production of bridges with large spans and offers economic advantages over the known methods.

Diese Aufgabe wird dadurch gelƶst, dass

  • ein Pfeiler, mindestens ein BrĆ¼ckentrƤger mit Endpunkten und mindestens ein StĆ¼tzstab mit Endpunkten in annƤhernd senkrechter Position errichtet werden,
  • ein Endpunkt des StĆ¼tzstabes mit dem BrĆ¼ckentrƤger gelenkig verbunden wird und entweder - nach einer ersten Variante -
  • ein Endpunkt des StĆ¼tzstabes mit einem Pfeiler gelenkig verbunden wird, der BrĆ¼ckentrƤger durch eine annƤhernd senkrechte Bewegung des Endpunktes des BrĆ¼ckentrƤgers am Pfeiler in eine annƤhernd waagrechte Position gebracht wird und der bewegte Endpunkt des BrĆ¼ckentrƤgers mit dem Pfeiler verbunden wird, oder - nach einer zweiten Variante -
  • ein Endpunkt des BrĆ¼ckentrƤgers mit dem Pfeiler gelenkig verbunden wird, der BrĆ¼ckentrƤger durch eine annƤhernd senkrechte Bewegung des Endpunktes des StĆ¼tzstabes am Pfeiler in eine annƤhernd waagrechte Position gebracht wird und der bewegte Endpunkt des StĆ¼tzstabes mit dem Pfeiler verbunden wird,
  • dass der auskragende Endpunkt des BrĆ¼ckentrƤgers mit einem Widerlager oder einem weiteren Endpunkt eines zweiten BrĆ¼ckentrƤgers verbunden wird.
This object is achieved in that
  • a pillar, at least one bridge girder with end points and at least one support bar with end points are erected in approximately vertical position,
  • an end point of the support rod is hinged to the bridge girder and either - after a first variant -
  • An end point of the support rod is pivotally connected to a pillar, the bridge carrier is brought by an approximately vertical movement of the end point of the bridge girder on the pillar in an approximately horizontal position and the moving end point of the bridge girder is connected to the pillar, or - after a second variant -
  • an end point of the bridge girder is pivotally connected to the pier, the bridge girder is brought into an approximately horizontal position by an approximately vertical movement of the end point of the support bar on the pier and the moving end point of the support bar is connected to the pier,
  • that the projecting end point of the bridge girder is connected to an abutment or a further end point of a second bridge girder.

Vorteilhafte Weiterbildungen der Erfindung sind in den UnteransprĆ¼chen definiert.Advantageous developments of the invention are defined in the subclaims.

Unter einer gelenkigen Verbindung wird erfindungsgemƤƟ auch ein eine Schwenkbewegung zulassendes Anliegen eines Endpunktes des StĆ¼tzstabes am Pfeiler bzw. eines Endpunktes des BrĆ¼ckentrƤgers an dem Pfeiler angesehen, wobei die aneinanderliegenden Teile durch KrƤfte unter Bildung eines Kraftschlusses gegeneinander gepresst werden.Under an articulated connection according to the invention a pivotal movement permitting concerns an endpoint of the support rod on the pillar or an endpoint of the bridge girder on the pillar is considered, the adjacent parts are pressed by forces to form a frictional connection against each other.

Am StĆ¼tzstab ist erfindungsgemƤƟ nicht nur ein mit in LƤngsrichtung wirkenden DruckkrƤften beaufschlagter Stab zu verstehen, sondern auch ein auf Zug beanspruchter Stab, wobei der Stab in jedem Fall im Wesentlichen frei ist von einer Belastung auf Biegung.According to the invention, the support rod is understood to mean not only a rod acted upon by longitudinally acting compressive forces, but also a rod subjected to tensile stress, wherein the rod is in each case substantially free from a load on bending.

ErfindungsgemƤƟ kann der StĆ¼tzstab an der BrĆ¼ckenbaustelle hergestellt werden, z.B. auch durch Zusammenfassen mehrerer Litzen zu einem Kabel.According to the invention, the support rod can be made at the bridge construction site, e.g. also by combining several strands into one cable.

Eine besonders vorteilhafte Variante des Verfahrens ist dadurch gekennzeichnet, dass die Endpunkte und des StĆ¼tzstabes so ausgebildet werden, dass im Endpunkt eine Winkeldrehung Ī± gegenĆ¼ber dem BrĆ¼ckentrƤger und dem Endpunkt eine Winkeldrehung Ī² gegenĆ¼ber dem Pfeiler auftreten kann und dass die Summe der Winkeldrehungen Ī± plus Ī² grĆ¶ĆŸer als 85Ā° und kleiner als 260Ā° ist.A particularly advantageous variant of the method is characterized in that the end points and the support rod are formed so that in the end point an angular rotation Ī± relative to the bridge girder and the end point an angular rotation Ī² relative to the pillar can occur and that the sum of the angular rotations Ī± plus Ī² greater is 85 Ā° and less than 260 Ā°.

Eine weitere zweckmƤƟige Variante ist dadurch gekennzeichnet, dass der Endpunkt des StĆ¼tzstabes und der Endpunkt des BrĆ¼ckentrƤgers so ausgebildet werden, dass im Endpunkt eine Winkeldrehung Ī± gegenĆ¼ber dem BrĆ¼ckentrƤger und im Endpunkt eine Winkeldrehung Ī² gegenĆ¼ber dem Pfeiler auftreten kann und dass die Winkeldrehung Ī± grĆ¶ĆŸer als 100Ā° und kleiner als 175Ā° ist und dass die Winkeldrehung Ī² annƤhernd 90Ā° ist.A further expedient variant is characterized in that the end point of the support rod and the end point of the bridge girder are formed so that in the end point an angular rotation Ī± relative to the bridge girder and in the end point an angular rotation Ī² relative to the pillar can occur and that the angular rotation Ī± greater than 100th Ā° and smaller than 175 Ā° and that the angular rotation Ī² is approximately 90 Ā°.

Eine durch das erfindungsgemƤƟe Verfahren hergestellte HubbrĆ¼cke ist dadurch gekennzeichnet, dass sie aus mindestens einem Pfeiler, einem BrĆ¼ckentrƤger und einem StĆ¼tzstab besteht, dass ein Endpunkt des StĆ¼tzstabes mit dem BrĆ¼ckentrƤger gelenkig verbunden ist, dass ein Endpunkt des StĆ¼tzstabes oder ein Endpunkt des BrĆ¼ckentrƤgers mit dem Pfeiler verbunden ist und dass der BrĆ¼ckentrƤger aus der annƤhernd waagrechten Position durch das Bewegen eines Endpunktes des StĆ¼tzstabes oder eines Endpunktes des BrĆ¼ckentrƤgers so gedreht werden kann, dass das Lichtraumprofil des die BrĆ¼cke kreuzenden Verkehrsweges vergrĆ¶ĆŸert wird.A lifting bridge produced by the method according to the invention is characterized in that it consists of at least one pillar, a bridge girder and a support bar, that an end point of the support bar is hinged to the bridge girder, that an end point of the support bar or an end point of the girder to the pillar is connected and that the bridge carrier from the approximately horizontal position by moving an end point of the support rod or an end point of the bridge girder can be rotated so that the clearance of the bridge crossing the traffic route is increased.

Pfeiler, BrĆ¼ckentrƤger und StĆ¼tzstab bilden ein statisch stabiles Tragwerk. Die Verbindungen von BrĆ¼ckentrƤger und StĆ¼tzstab mit dem Pfeiler sind nur geringen Beanspruchungen ausgesetzt und kƶnnen mit einfachen Konstruktionselementen hergestellt werden. Die Beanspruchung des Pfeilers ist beim erfindungsgemƤƟen Verfahren im Bauzustand kleiner als bei den bekannten BrĆ¼ckenbauverfahren mit horizontaler Herstellung des BrĆ¼ckentrƤgers, weil die WindangriffsflƤche gĆ¼nstiger ist und der fĆ¼r die Ermittlung der ErdbebenkrƤfte bedeutende Masseschwerpunkt tiefer liegt.Pillars, bridge girders and support bar form a statically stable structure. The connections between the bridge girder and the support bar with the pier are subject to only minimal stress and can be produced with simple construction elements. The stress of the pillar is smaller in the method according to the invention in the construction state than in the known bridge construction method with horizontal production of the bridge girder, because the wind attack surface is cheaper and the center of gravity is lower for the determination of earthquake forces.

Die Herstellung des BrĆ¼ckenĆ¼berbaus in einer annƤhernd senkrechten Lage ist vorteilhaft, weil dadurch wƤhrend der Herstellung keine oder nur sehr kleine Biegemomente infolge Eigengewicht auftreten. Besonders bei der Herstellung von BetonbrĆ¼cken ist dies ein groƟer Vorteil, da bei der Ć¼blichen waagrechten Herstellung des BrĆ¼ckentrƤgers Biegemomente auftreten, die die Geschwindigkeit des Baufortschritts beeinflussen. Beim Taktschiebeverfahren wird Ć¼blicherweise ein Wochentakt fĆ¼r die Herstellung eines Bauabschnitts erreicht. Beim Freivorbau oder bei der Herstellung auf einem LehrgerĆ¼st oder mittels VorschubrĆ¼stung liegen die Zeiten zur Herstellung eines Bauabschnitts bei ein bis drei Wochen.The preparation of the bridge superstructure in an approximately vertical position is advantageous, because thereby no or only very small bending moments occur due to its own weight during manufacture. This is a great advantage, especially in the production of concrete bridges, since in the usual horizontal production of the bridge girder bending moments occur which influence the speed of the construction progress. In clock shifting method usually a weekly cycle for the production of a construction section is achieved. In cantilever construction or on a scaffold or by means of feed armor, the times for producing a construction section are one to three weeks.

Bei annƤhernd senkrechter Herstellung ist der BetontrƤger viel geringeren Beanspruchungen ausgesetzt und kann dadurch schneller hergestellt werden. Die bekannten Verfahren der Gleitschalung oder Kletterschalung, die ohnedies zur Herstellung des Betonpfeilers verwendet werden, kƶnnen bei dem erfindungsgemƤƟen Verfahren auch zur Herstellung des BrĆ¼ckentrƤgers eingesetzt werden.At approximately vertical production, the concrete beam is exposed to much lower stresses and can therefore be made faster. The known methods of slip formwork or climbing formwork, which are used anyway for the production of concrete pillar, can also be used in the inventive method for the preparation of the bridge girder.

Der BrĆ¼ckentrƤger kann zusammen mit dem Pfeiler beispielsweise mit einer Kletter- oder Gleitschalung hergestellt werden. Dies verringert den Schalungsaufwand, die Herstellungszeit und die Kosten wesentlich.The bridge girder can be made together with the pier, for example, with a climbing or sliding formwork. This significantly reduces the cost of formwork, manufacturing time and costs.

Das vorgeschlagene Verfahren wird besonders vorteilhaft bei BrĆ¼cken mit hohen Pfeilern einzusetzen sein. Der Spannweitenbereich fĆ¼r die Anwendung des erfindungsgemƤƟen Verfahrens liegt zwischen 20 m und 400 m, vorzugsweise zwischen 50 m und 150 m.The proposed method will be particularly advantageous to use in bridges with high columns. The span range for the application of the method according to the invention is between 20 m and 400 m, preferably between 50 m and 150 m.

Erfolgt keine feste Verbindung des bewegten Endpunktes des BrĆ¼ckentrƤgers oder des StĆ¼tzstabes mit dem Pfeiler, kann das Verfahren fĆ¼r den Bau und Betrieb von HubbrĆ¼cken verwendet werden.If there is no firm connection of the moving end point of the bridge girder or the support bar with the pier, the method can be used for the construction and operation of lifting bridges.

Im Folgenden wird die Erfindung anhand der in den Zeichnungen dargestellten AusfĆ¼hrungsbeispiele beschrieben.In the following the invention will be described with reference to the embodiments illustrated in the drawings.

Die Erfindung ist in den Fig.1 bis Fig.32 dargestellt. Es zeigt

Fig. 1
eine Ansicht einer ersten AusfĆ¼hrungsform nach der Herstellung des Pfeilers, der StĆ¼tzstƤbe und der BrĆ¼ckentrƤger
Fig. 2
eine Ansicht der ersten AusfĆ¼hrungsform wƤhrend des Klappvorganges
Fig. 3
eine Ansicht der ersten AusfĆ¼hrungsform nach Abschluss des Klappvorganges
Fig. 4
Detail A der Fig.1
Fig. 5
Detail B der Fig.1
Fig. 6
einen Schnitt lƤngs der Linie VI-VI der Fig.3
Fig. 7
eine Ansicht einer zweiten AusfĆ¼hrungsform nach Herstellung des Pfeilers, des StĆ¼tzstabes und des BrĆ¼ckentrƤgers
Fig. 8
eine Ansicht der zweiten AusfĆ¼hrungsform wƤhrend des Klappvorganges
Fig. 9
eine Ansicht der zweiten AusfĆ¼hrungsform nach Abschluss des Klappvorganges
Fig. 10
einen Schnitt lƤngs der Linie X-X der Fig.9
Fig. 11
eine Ansicht einer dritten AusfĆ¼hrungsform nach Herstellung des Pfeilers, der StĆ¼tzstƤbe und der BrĆ¼ckentrƤger
Fig. 12
eine Ansicht der dritten AusfĆ¼hrungsform wƤhrend des Klappvorganges
Fig. 13
eine Ansicht der dritten AusfĆ¼hrungsform nach Abschluss des Klappvorganges
Fig. 14
einen Schnitt lƤngs der Linie XIV-XIV in Fig.11
Fig. 15
eine Ansicht einer vierten AusfĆ¼hrungsform nach Herstellung des Pfeilers, der StĆ¼tzstƤbe und der BrĆ¼ckentrƤger
Fig. 16
eine Ansicht der vierten AusfĆ¼hrungsform wƤhrend des Klappvorganges
Fig. 17
eine Ansicht der vierten AusfĆ¼hrungsform nach Abschluss des Klappvorganges
Fig. 18
eine Ansicht einer fĆ¼nften AusfĆ¼hrungsform nach Herstellung des Pfeilers, der StĆ¼tzstƤbe und der BrĆ¼ckentrƤger
Fig. 19
eine Ansicht der fĆ¼nften AusfĆ¼hrungsform wƤhrend des Klappvorganges
Fig. 20
eine Ansicht der fĆ¼nften AusfĆ¼hrungsform nach Abschluss des Klappvorganges
Fig. 21
eine Ansicht einer sechsten AusfĆ¼hrungsform nach Herstellung des Pfeilers, der StĆ¼tzstƤbe und der BrĆ¼ckentrƤger
Fig. 22
eine Ansicht der sechsten AusfĆ¼hrungsform wƤhrend des Klappvorganges
Fig. 23
eine Ansicht der sechsten AusfĆ¼hrungsform nach Abschluss des Klappvorganges
Fig. 24
eine Ansicht einer fertig gestellten BrĆ¼cke
Fig. 25
einen Grundriss einer im Grundriss gekrĆ¼mmten BrĆ¼cke
Fig. 26
einen Schnitt einer siebenten AusfĆ¼hrungsform wƤhrend des Klappvorganges lƤngs der Linie XXVI -XXVI der Fig. 28
Fig. 27
Detail C der Fig. 26
Fig. 28
eine Draufsicht auf die siebente AusfĆ¼hrungsform wƤhrend des Klappvorganges lƤngs der Linie XXVIII - XXVIII der Fig. 26
Fig. 29
Detail D der Fig. 26 und gleichzeitig Schnitt lƤngs der Linie XXIX - XXIX der Fig. 28
Fig. 30
einen Schnitt einer achten AusfĆ¼hrungsform wƤhrend des Klappvorganges
Fig. 31
Detail E der Fig. 30
Fig. 32
alternative AusfĆ¼hrungsform des Details E der Fig. 30
The invention is in the Fig.1 to Fig.32 shown. It shows
Fig. 1
a view of a first embodiment after the preparation of the pillar, the support rods and the bridge girder
Fig. 2
a view of the first embodiment during the folding process
Fig. 3
a view of the first embodiment after completion of the folding process
Fig. 4
Detail A of Fig.1
Fig. 5
Detail B the Fig.1
Fig. 6
a section along the line VI-VI of Figure 3
Fig. 7
a view of a second embodiment after the preparation of the pillar, the support rod and the bridge girder
Fig. 8
a view of the second embodiment during the folding process
Fig. 9
a view of the second embodiment after completion of the folding process
Fig. 10
a section along the line XX of Figure 9
Fig. 11
a view of a third embodiment after the preparation of the pillar, the support rods and the bridge girder
Fig. 12
a view of the third embodiment during the folding process
Fig. 13
a view of the third embodiment after completion of the folding process
Fig. 14
a section along the line XIV-XIV in Figure 11
Fig. 15
a view of a fourth embodiment after the preparation of the pillar, the support rods and the bridge girder
Fig. 16
a view of the fourth embodiment during the folding process
Fig. 17
a view of the fourth embodiment after completion of the folding process
Fig. 18
a view of a fifth embodiment after the preparation of the pillar, the support rods and the bridge girder
Fig. 19
a view of the fifth embodiment during the folding process
Fig. 20
a view of the fifth embodiment after completion of the folding process
Fig. 21
a view of a sixth embodiment after the preparation of the pillar, the support rods and the bridge girder
Fig. 22
a view of the sixth embodiment during the folding process
Fig. 23
a view of the sixth embodiment after completion of the folding process
Fig. 24
a view of a completed bridge
Fig. 25
a floor plan of a curved bridge in the floor plan
Fig. 26
a section of a seventh embodiment during the folding process along the line XXVI -XXVI the Fig. 28
Fig. 27
Detail C the Fig. 26
Fig. 28
a plan view of the seventh embodiment during the folding operation along the line XXVIII - XXVIII of Fig. 26
Fig. 29
Detail D the Fig. 26 and at the same time section along the line XXIX - XXIX of Fig. 28
Fig. 30
a section of an eighth embodiment during the folding process
Fig. 31
Detail E the Fig. 30
Fig. 32
alternative embodiment of the detail E of Fig. 30

Eine erste AusfĆ¼hrungsform des erfindungsgemƤƟen Verfahrens ist in Fig.1 bis Fig.6 dargestellt.A first embodiment of the method according to the invention is in Fig.1 to Fig.6 shown.

Im ersten Schritt werden gemƤƟ Fig.1 der Pfeiler 4 und die BrĆ¼ckentrƤger 2 in senkrechter Position betoniert. Die Schalungs- und BetonierungsablƤufe fĆ¼r die BrĆ¼ckentrƤger entsprechen in ihrem Aufwand den AblƤufen bei der Herstellung des Pfeilers 4, was wesentliche Einsparungen im Vergleich zu einer Herstellung in waagrechter Position ermƶglicht.In the first step, according to Fig.1 the pillar 4 and the bridge girder 2 concreted in a vertical position. The formwork and concreting operations for the bridge girders correspond in their effort to the processes in the production of the pier 4, which allows substantial savings compared to a production in a horizontal position.

Im zweiten Schnitt werden die StĆ¼tzstabe 3, die bei diesem Beispiel aus einem Kabel aus Spanndrahtlitzen bestehen, eingebaut.In the second section, the support rods 3, which in this example consist of a cable made of tension wire strands, are installed.

Im nƤchsten Schritt werden gemƤƟ Fig.2 die Endpunkte 9 der BrĆ¼ckentrƤger 2 mit Ć¼blichen Hubvorrichtungen, z.B. mit hydraulischen Litzenhebern und Kabeln aus Spanndrahtlitzen angehoben. Die Hubvorrichtungen kƶnnen an der Spitze des Pfeilers 4 positioniert werden. In diesem Zustand treten in den BrĆ¼ckentrƤgern 2 Biegemomente auf, die aber kleiner sind als im Endzustand, der in Fig.3 dargestellt ist. Es kann von Vorteil sein, wƤhrend des Klappvorganges Spannglieder im BrĆ¼ckentrƤger 2 anzuspannen, um den auftretenden Momenten infolge Eigengewicht entgegenzuwirken.In the next step, according to Fig.2 the end points 9 of the bridge girder 2 with conventional lifting devices, eg lifted with hydraulic strand lifters and cables from tension wire strands. The lifting devices can be positioned at the top of the pillar 4. In this state, bending moments occur in the bridge girders 2, but they are smaller than in the final state, which in Figure 3 is shown. It may be advantageous to tension tendons in the bridge girder 2 during the folding process, in order to counteract the occurring moments due to its own weight.

Der Endpunkt 9 des BrĆ¼ckentrƤgers 2 kann mit Rollen ausgestattet sein, um ein annƤhernd reibungsfreies Anheben zu ermƶglichen. Alternativ kann im Pfeiler 4 eine Gleitschicht vorgesehen werden. Bekannte Werkstoffkombinationen fĆ¼r VerschubvorgƤnge auf einer Gleitbahn sind beispielsweise Teflon und Stahl oder Bronze und Stahl.The end point 9 of the bridge girder 2 may be provided with rollers to allow an approximately frictionless lifting. Alternatively, a sliding layer can be provided in the pillar 4. Known material combinations for VerschubvorgƤnge on a slide are, for example Teflon and steel or bronze and steel.

Die HubkrƤfte fĆ¼r den in Fig.2 dargestellten Klappvorgang sind fĆ¼r das Eigengewicht der BrĆ¼ckentrƤger 2, der StĆ¼tzstƤbe 3 und die ReibungskrƤfte, die zwischen den Endpunkten 9 des BrĆ¼ckentrƤgers 2 und dem Pfeiler 4 auftreten, zu bemessen.The lifting forces for the in Fig.2 folding process shown are for the weight of the bridge girder 2, the support rods 3 and the frictional forces that occur between the end points 9 of the bridge girder 2 and the pillar 4 to measure.

Vorteilhaft fĆ¼r den Bauzustand kann auch sein, den BrĆ¼ckentrƤger 2 im Bauzustand nur mit den statisch erforderlichen Querschnitten auszustatten und den Querschnitt im Endzustand, z.B. durch das Herstellen einer Fahrbahnplatte, zu ergƤnzen.It may also be advantageous for the construction state to equip the bridge girder 2 in the condition of construction only with the statically required cross sections and to have the cross section in the final state, e.g. by making a deck slab, to complete.

WƤhrend des in Fig.2 dargestellten Klappvorganges wird die LƤnge der BrĆ¼ckentrƤger 2 und der StĆ¼tzstƤbe 3 nur durch die elastischen LƤngenƤnderungen auf Grund der auftretenden NormalkrƤfte verƤndert. Bei diesem Beispiel treten in den StĆ¼tzstƤben 3 ZugkrƤfte und in den BrĆ¼ckentrƤgern 2 zwischen den Punkten 5 und 9 DruckkrƤfte auf. Die StĆ¼tzstƤbe 3 sind in den Punkten 6 mit dem Pfeiler 4 und in den Punkten 5 mit den BrĆ¼ckentrƤgern 2 verbunden. Die AusfĆ¼hrung der Verbindung mit dem Pfeiler 4 ist in Fig.4 (Detail A aus Fig.1) und die AusfĆ¼hrung der Verbindung mit dem BrĆ¼ckentrƤger 2 ist in Fig.5 (Detail B aus Fig.1) dargestellt. Der aus einem Litzenkabel bestehende StĆ¼tzstab 3 wird gemƤƟ Fig.5 Ć¼ber eine Umlenkkonstruktion im Kastenquerschnitt des BrĆ¼ckentrƤgers 2 wƤhrend des Klappvorganges gefĆ¼hrt. Dadurch kann der Drehwinkel Ī± von ca. 150Ā° im Punkt 5 des Klappvorganges aufgenommen werden. Der Drehwinkel Ī² in den Punkten 6 betrƤgt jeweils ca. 60Ā° und wird Ć¼ber ein Abrollen der StĆ¼tzstƤbe 3 Ć¼ber die Sattelkonstruktion an der Spitze des Pfeilers 4 aufgenommen. Die KrĆ¼mmungsradien der Umlenkkonstruktion im Kastenquerschnitt in Fig.4 und des Sattels in Fig.5 sind auf die zulƤssigen KrĆ¼mmungsradien von Litzenkabeln abzustimmen.During the in Fig.2 folding process shown, the length of the bridge girder 2 and the support rods 3 is changed only by the elastic length changes due to the occurring normal forces. In this example, 3 tensile forces occur in the support rods and compressive forces in the bridge girders 2 between the points 5 and 9. The support rods 3 are connected in points 6 with the pillar 4 and in the points 5 with the bridge girders 2. The execution of the connection with the pillar 4 is in Figure 4 (Detail A off Fig.1 ) and the execution of the connection with the bridge girder 2 is in Figure 5 (Detail B off Fig.1 ). The existing of a Litzenkabel support rod 3 is according to Figure 5 guided over a deflection structure in the box cross-section of the bridge girder 2 during the folding process. As a result, the angle of rotation Ī± of approximately 150 Ā° can be recorded in point 5 of the folding process. The angle of rotation Ī² in the points 6 is in each case about 60 Ā° and is taken up by rolling the support rods 3 over the saddle construction at the tip of the pillar 4. The radii of curvature of the deflection structure in box cross section in Figure 4 and the saddle in Figure 5 are to be adjusted to the permissible radii of curvature of stranded cables.

Fig.6 zeigt eine Draufsicht auf einen Ausschnitt des BrĆ¼ckentrƤgers 2 in der endgĆ¼ltigen Position. Der StĆ¼tzstab 3 ist bei diesem Beispiel in der Mitte des BrĆ¼ckentrƤgers 2 angeordnet, sodass die Fahrstreifen seitlich am StĆ¼tzstab 3 vorbeigefĆ¼hrt werden kƶnnen. Figure 6 shows a plan view of a section of the bridge girder 2 in the final position. The support rod 3 is arranged in this example in the middle of the bridge girder 2, so that the lanes can be guided laterally on the support rod 3.

Das bekannte Bogenklappverfahren weist gegenĆ¼ber dem erfindungsgemƤƟen Verfahren folgende Nachteile auf:

  • o Die BogenhƤlften mĆ¼ssen wƤhrend des Baus durch Abspannungen gestĆ¼tzt und wƤhrend des Bauzustandes gedreht werden, um die Biegebeanspruchungen im Bogen klein zu halten. Die annƤhernd geraden BrĆ¼ckentrƤger 2 werden ohne LageƤnderung betoniert und kƶnnen ohne groƟen Aufwand am Pfeiler 4 befestigt werden.
  • o Die RĆ¼ckhaltekabel fĆ¼r das Einklappen der BogenhƤlften geben ihre ZugkrƤfte an GrĆ¼ndungselemente ab, die nur fĆ¼r das Eintragen dieser KrƤfte in den Baugrund hergestellt werden mĆ¼ssen. Das Anheben der BrĆ¼ckentrƤger 2 beim erfindungsgemƤƟen Verfahren erfordert keine zusƤtzlichen konstruktiven Aufwendungen, da die ReaktionskrƤfte aus dem Anheben in den Pfeiler 4 eingeleitet werden.
The known bow folding method has the following disadvantages compared with the method according to the invention:
  • o The sheet halves must be braced during the construction and rotated during construction to minimize the bending stresses in the arch. The approximately straight bridge girder 2 are concreted without change in position and can be attached to the pier 4 without much effort.
  • o The retaining cables for folding in the sheet halves release their tensile forces on foundation elements, which only have to be made for the entry of these forces into the ground. The lifting of the bridge girder 2 in the method according to the invention requires no additional design effort, since the reaction forces are introduced from the lifting in the pillar 4.

Eine zweite AusfĆ¼hrungsform des erfindungsgemƤƟen Verfahrens ist in den Fig.7 bis Fig.10 dargestellt.A second embodiment of the method according to the invention is in the Fig.7 to Fig.10 shown.

Im ersten Schritt des Verfahrens wird gemƤƟ Fig.7 der Pfeiler 4 aus einem geeigneten Baustoff wie Beton, Mauerwerk, Stahl oder Holz hergestellt. Im nƤchsten Schritt wird der BrĆ¼ckentrƤger 2, der bei diesem Beispiel aus Stahl oder Holz bestehen kann, in einer senkrechten Lage montiert. Der BrĆ¼ckentrƤger 2 kann aus einzelnen Elementen bestehen, die in dieser Lage miteinander kraftschlĆ¼ssig verbunden werden. Der StĆ¼tzstab 3 aus einem Stahlprofil wird montiert und im Punkt 5 mit dem BrĆ¼ckentrƤger 2 und im Punkt 6 mit dem Pfeiler 4 gelenkig verbunden.In the first step of the method is according to Figure 7 the pillar 4 made of a suitable building material such as concrete, masonry, steel or wood. In the next step, the bridge girder 2, which may be made of steel or wood in this example, is mounted in a vertical position. The bridge girder 2 may consist of individual elements which are positively connected to each other in this position. The support rod 3 made of a steel profile is mounted and articulated at point 5 to the bridge girder 2 and at point 6 to the pillar 4.

Durch das in Fig.8 dargestellte Absenken des Endpunktes 9 des BrĆ¼ckentrƤgers 2 entsteht die in Fig.9 dargestellte einhĆ¼ftige BrĆ¼cke 1. Im Endpunkt 5 tritt eine bleibende Verdrehung Ī± und im Endpunkt 6 tritt eine bleibende Verdrehung Ī² auf. Die Summe der Drehwinkel Ī± plus Ī² ist gleich 90Ā°.Through the in Figure 8 shown lowering the end point 9 of the bridge girder 2 is formed in Figure 9 shown einhĆ¼ftige bridge 1. In the end point 5 occurs a permanent rotation Ī± and in the end point 6 occurs a permanent rotation Ī². The sum of the angles of rotation Ī± plus Ī² is equal to 90 Ā°.

Fig.10 zeigt eine Draufsicht auf einen Ausschnitt des BrĆ¼ckentrƤgers 2 in der endgĆ¼ltigen Position. Die StĆ¼tzstƤbe 3 sind bei diesem Beispiel seitlich des BrĆ¼ckentrƤgers 2 angeordnet, sodass die Fahrstreifen zwischen den StĆ¼tzstƤben 3 vorbeigefĆ¼hrt werden kƶnnen. Figure 10 shows a plan view of a section of the bridge girder 2 in the final position. The support rods 3 are arranged laterally of the bridge girder 2 in this example, so that the lanes can be passed between the support rods 3.

Eine dritte AusfĆ¼hrungsform des erfindungsgemƤƟen Verfahrens ist in Fig.11 bis Fig.14 dargestellt.A third embodiment of the method according to the invention is in Fig.11 to Fig.14 shown.

Im ersten Schritt des Verfahrens wird gemƤƟ Fig.11 der Pfeiler 4 aus Beton hergestellt. Der Pfeiler 4 weist eine konstante Breite, aber eine verƤnderliche Dicke Ć¼ber die Hƶhe auf. Die BrĆ¼ckentrƤger 2 werden bei diesem Beispiel auf der GrĆ¼ndungsplatte des Pfeilers 4 errichtet. Die BrĆ¼ckentrƤger 2 weisen eine konstante Breite, aber eine verƤnderliche Querschnittshƶhe auf. Pfeiler 4, StĆ¼tzstƤbe 3 und BrĆ¼ckentrƤger 2 werden vorteilhaft gleichzeitig z.B. mittels Kletterschalung hergestellt. Die StĆ¼tzstƤbe 3 sind in den Punkten 5 mit den BrĆ¼ckentrƤgern 2 verbunden. Die BrĆ¼ckentrƤger 2 sind in den Punkten 7 mit dem Pfeiler 4 verbunden.In the first step of the method is according to Figure 11 the pillar 4 made of concrete. The pillar 4 has a constant width, but a variable thickness over the height. The Bridge girders 2 are erected in this example on the foundation plate of the pier 4. The bridge girders 2 have a constant width, but a variable cross-sectional height. Pillar 4, support rods 3 and bridge girder 2 are advantageously produced at the same time, for example by means of climbing formwork. The support rods 3 are connected in points 5 with the bridge girders 2. The bridge girders 2 are connected at the points 7 with the pillar 4.

Es kann zweckmƤƟig sein, die Endpunkte 5 der StĆ¼tzstƤbe 3 annƤhernd horizontal vom Pfeiler 4 wegzudrĆ¼cken, bevor mit dem Anheben begonnen wird. Durch das in Fig.12 dargestellte Anheben der Endpunkte 8 der StĆ¼tzstƤbe 3 entsteht schlieƟlich die in Fig. 13 dargestellte BrĆ¼cke 1. WƤhrend des Klappvorganges tritt im Endpunkt 5 des StĆ¼tzstabes 3 eine Winkelrotation Ī± von 140Ā° auf. Im Endpunkt 7 des BrĆ¼ckentrƤgers 2 tritt eine Winkelrotation Ī² von 90Ā° auf. Die bleibenden Winkeldrehungen in den Endpunkten 5 und 7 kƶnnen durch im Betonbau Ć¼bliche konstruktive Ausbildungen beispielsweise durch Betongelenke oder durch das Biegen von BewehrungsstƤben aufgenommen werden.It may be expedient to push the end points 5 of the support rods 3 approximately horizontally away from the pillar 4 before starting lifting. Through the in Figure 12 shown lifting the end points 8 of the support rods 3 is finally formed in Fig. 13 illustrated bridge 1. During the folding process occurs in the end point 5 of the support rod 3, an angular rotation Ī± of 140 Ā°. In the end point 7 of the bridge girder 2, an angular rotation Ī² of 90 Ā° occurs. The permanent angular rotations in the end points 5 and 7 can be absorbed by constructive formations customary in concrete construction, for example by concrete joints or by the bending of reinforcing bars.

Durch das VerfĆ¼llen der Fuge zwischen den beiden BrĆ¼ckentrƤgern 2 mit Vergussbeton und den Einbau von KontinuitƤtsspannungsgliedern weist die BrĆ¼cke 1 Ć¼ber der Spitze des Pfeilers 4 eine biegesteife Verbindung auf.By filling the gap between the two bridge girders 2 with grouting concrete and the installation of continuity tension members, the bridge 1 on the top of the pillar 4 on a rigid connection.

In Fig. 14 ist dargestellt, wie die StĆ¼tzstƤbe 3 vorteilhaft in die Form des Pfeilers 4 eingebaut werden kƶnnen, um eine rasche Herstellung des Pfeilers 4, der StĆ¼tzstƤbe 3 und der BrĆ¼ckentrƤger 2 zu ermƶglichen.In Fig. 14 It is shown how the support rods 3 can be advantageously installed in the shape of the pillar 4 to allow rapid production of the pillar 4, the support rods 3 and the bridge girder 2.

Eine vierte AusfĆ¼hrungsform des erfindungsgemƤƟen Verfahrens ist in Fig. 15 bis Fig. 17 dargestellt.A fourth embodiment of the method according to the invention is in FIGS. 15 to 17 shown.

GemƤƟ Fig. 15 werden Pfeiler 4, BrĆ¼ckentrƤger 2 und StĆ¼tzstƤbe 3 in annƤhernd senkrechter Position errichtet. Ein StĆ¼tzstab 3 ist bei diesem Beispiel mit dem BrĆ¼ckentrƤger 2 im Punkt 5 und mit dem Pfeiler 4 im Punkt 6 verbunden. Der zweite StĆ¼tzstab 3 ist im Punkt 5 mit dem BrĆ¼ckentrƤger 2 verbunden. Der zweite Endpunkt 8 dieses StĆ¼tzstabes 3 wird gemƤƟ Fig. 16 angehoben. Das Anheben bewirkt, dass der BrĆ¼ckentrƤger 2 aus der annƤhernd senkrechten Position in eine waagrechte Position, die in Fig.17 dargestellt ist, gedreht wird.According to Fig. 15 Pillar 4, bridge girder 2 and support rods 3 are erected in approximately vertical position. A support rod 3 is connected in this example to the bridge girder 2 at point 5 and to the pier 4 at point 6. The second support rod 3 is connected at point 5 to the bridge girder 2. The second end point 8 of this support rod 3 is according to Fig. 16 raised. The lifting causes the bridge girder 2 to move from the approximately vertical position to a horizontal position, which in FIG Figure 17 is shown, is rotated.

Wird der in dieser Position neben dem Pfeiler 4 liegende Endpunkt des BrĆ¼ckentrƤgers 2 mit dem Pfeiler 4 nicht fest verbunden, kann die BrĆ¼cke 1 als HubbrĆ¼cke 12 verwendet werden. Durch Absenken des Punktes 8 in Fig. 17 wird der BrĆ¼ckentrƤger 2 nach oben bewegt, so dass das Lichtraumprofil des die BrĆ¼cke 1 kreuzenden Verkehrsweges vergrĆ¶ĆŸert wird.If the end point of the bridge girder 2 lying in this position next to the pier 4 is not firmly connected to the pier 4, the bridge 1 can be used as a lifting bridge 12. By lowering the point 8 in Fig. 17 the bridge girder 2 is moved upwards, so that the clearance profile of the traffic route crossing the bridge 1 is increased.

Eine fĆ¼nfte AusfĆ¼hrungsform des erfindungsgemƤƟen Verfahrens ist in Fig.18 bis Fig.20 dargestellt.A fifth embodiment of the method according to the invention is in Fig.18 to Fig.20 shown.

Im ersten Schritt werden gemƤƟ Fig. 18 Pfeiler 4, Hilfspfeiler 10, BrĆ¼ckentrƤger 2 und StĆ¼tzstƤbe 3 in senkrechter Lage hergestellt. Die Endpunkte 8 der BrĆ¼ckentrƤger 2 liegen in dieser Position hƶher als die Spitze des Pfeilers 4. Deswegen ist die Errichtung eines Hilfspfeilers 10 erforderlich. Die BrĆ¼ckentrƤger 2 sind in den Punkten 7 mit dem Pfeiler 4 verbunden. Die StĆ¼tzstƤbe 3 sind in den Punkten 5 mit den BrĆ¼ckentrƤgern 2 verbunden.In the first step, according to Fig. 18 Pillar 4, auxiliary pillar 10, bridge girder 2 and support rods 3 produced in a vertical position. The end points 8 of the bridge girder 2 are higher in this position than the top of the pier 4. Therefore, the establishment of an auxiliary pier 10 is required. The bridge girders 2 are connected at the points 7 with the pillar 4. The support rods 3 are connected in points 5 with the bridge girders 2.

Die anderen Endpunkte 8 der StĆ¼tzstƤbe 3 werden gemƤƟ Fig. 19 vom Hilfspfeiler 10 abgesenkt. Um die Biegemomente in den BrĆ¼ckentrƤgern 2 wƤhrend des Absenkens zu reduzieren, werden bei diesem Beispiel Abspannungen 13 eingesetzt. Diese Abspannungen 13 kƶnnen aus Litzenkabeln bestehen, die mit dem BrĆ¼ckentrƤger 2 verbunden sind und beispielsweise von der Spitze des Pfeilers 4 mit einer bestimmten Kraft beansprucht werden. Die LƤnge der Abspannungen 13 vergrĆ¶ĆŸert sich wƤhrend der Drehung der BrĆ¼ckentrƤger 2, was durch ein NachfĆ¼hren der Litzenkabel problemlos gewƤhrleistet werden kann.The other end points 8 of the support rods 3 are according to Fig. 19 lowered from the auxiliary pier 10. In order to reduce the bending moments in the bridge girders 2 during the lowering, in this example restraints 13 are used. These bracing 13 may consist of stranded cables, which are connected to the bridge girder 2 and, for example, claimed by the tip of the pillar 4 with a certain force. The length of the bracing 13 increases during the rotation of the bridge girder 2, which can be easily ensured by tracking the stranded cable.

In der Endposition gemƤƟ Fig. 20 kann der Hilfspfeiler 10 entfernt werden oder fĆ¼r die Montage von zusƤtzlichen Kabeln zur StĆ¼tzung der BrĆ¼ckentrƤger 2 verwendet werden. Die Abspannungen 13 kƶnnen als permanente Kabel in der BrĆ¼cke 1 verbleiben oder gegen SchrƤgkabel ausgetauscht werden.In the final position according to Fig. 20 For example, the auxiliary pillar 10 may be removed or used for mounting additional cables to support the bridge girders 2. The bracing 13 can remain as a permanent cable in the bridge 1 or replaced by inclined cable.

Eine sechste AusfĆ¼hrungsform des erfindungsgemƤƟen Verfahrens ist in Fig.21 bis Fig.23 dargestellt.A sixth embodiment of the method according to the invention is in Fig.21 to Fig.23 shown.

GemƤƟ Fig.21 werden Pfeiler 4, BrĆ¼ckentrƤger 2 und StĆ¼tzstƤbe 3 in annƤhernd senkrechter Lage hergestellt.According to Figure 21 Pillars 4, bridge girder 2 and support rods 3 are made in approximately vertical position.

Durch Anheben der Endpunkte 8 der StĆ¼tzstƤbe 3 gemƤƟ Fig.22 wird die in Fig.23 dargestellte BrĆ¼cke 1 fertig gestellt.By lifting the end points 8 of the support rods 3 according to Figure 22 will the in Figure 23 illustrated bridge 1 completed.

Fig.24 zeigt eine BrĆ¼cke 1 mit zwei Widerlagern 11, zwei Pfeilern 4, vier BrĆ¼ckentrƤgern 2 und vier StĆ¼tzstƤben 3. Die Ansicht der BrĆ¼cke 1 in Fig.24 zeigt, wie das Verfahren vorteilhaft zur Herstellung von TalbrĆ¼cken eingesetzt werden kann. Die Endpunkte 14 der BrĆ¼ckentrƤger 2 in der Mitte der Hauptspannweite der BrĆ¼cke 1 werden im Endzustand biegesteif verbunden. Die beiden anderen Endpunkte 14 des BrĆ¼ckentrƤgers werden mit dem Widerlager 11 verbunden. Die StĆ¼tzstƤbe 3 kƶnnen anschlieƟend entfernt werden, falls dies z.B. aus gestalterischen GrĆ¼nden gefordert wird. Figure 24 shows a bridge 1 with two abutments 11, two pillars 4, four bridge beams 2 and four support rods 3. The view of the bridge 1 in Figure 24 shows how the method can be used advantageously for the production of viaducts. The end points 14 of the bridge girders 2 in the middle of the main span of the bridge 1 are rigidly connected in the final state. The other two end points 14 of the bridge girder are with the Abutment 11 connected. The support rods 3 can then be removed, if this is required, for example, for design reasons.

Das erfindungsgemƤƟe Verfahren kann auch zur Herstellung von im Grundriss gekrĆ¼mmten BrĆ¼cken eingesetzt werden, wie Fig.25 fĆ¼r eine vierfeldrige BrĆ¼cke zeigt. Die BrĆ¼ckentrƤger 2 mĆ¼ssen bei diesem Beispiel mit ZwischenstĆ¼cken ergƤnzt werden, um die BrĆ¼cke 1 fertig zu stellen.The inventive method can also be used for the production of curved in plan bridges, such as Figure 25 for a four-span bridge shows. The bridge girder 2 must be supplemented in this example with spacers to complete the bridge 1.

Eine siebente AusfĆ¼hrungsform des Verfahrens ist in Fig. 26 bis 29 dargestellt. Die Fig. 26 zeigt einen Zustand wƤhrend des Anhebens der Endpunkte 9 der BrĆ¼ckentrƤger 2. Der Pfeiler 4 weist bei diesem Beispiel eine sich entlang der Pfeilerhƶhe erstreckende Ɩffnung 19 auf.A seventh embodiment of the method is in FIGS. 26 to 29 shown. The Fig. 26 shows a state during the lifting of the end points 9 of the bridge girder 2. The pier 4 in this example has an opening 19 extending along the pier height.

Die AusfĆ¼hrung der Verbindung des StĆ¼tzstabes 3 mit dem Pfeiler 4 ist in Fig. 27 (Detail C aus Fig. 26) dargestellt. Der Ɯbersichtlichkeit halber ist nur der nach rechts fĆ¼hrende StĆ¼tzstab 3 in Fig. 27 eingezeichnet. Der StĆ¼tzstab 3 kann aus einem SchrƤgkabel 17 bestehen und es kƶnnen mehrere SchrƤgkabel 17 hintereinander angeordnet werden. Zu Beginn des Hebevorganges verlƤuft der StĆ¼tzstab 3 annƤhernd senkrecht entlang des Pfeilers 4 zum Endpunkt 5, wo er mit dem BrĆ¼ckentrƤger 2 verbunden ist. Die Kraft im StĆ¼tzstab 3 ist zu Beginn des Hebevorganges viel kleiner als im Endzustand. Diesem Umstand trƤgt die Ausbildung des Umlenksattels 18 fĆ¼r den StĆ¼tzstab 3 in Fig. 27 Rechnung. Der Anpressdruck des StĆ¼tzstabes 3 im Umlenksattel 18 lƤsst sich aus der Zugkraft des StĆ¼tzstabes 3 geteilt durch das Produkt aus Umlenkradius und Breite des StĆ¼tzstabes 3 berechnen. Bei einer AusfĆ¼hrung des Umlenksattels gemƤƟ Fig. 27 mit einem kleinen Radius R1 zu Beginn des Hebevorganges und einem grĆ¶ĆŸeren Radius R2 beim Abschluss des Hebevorganges, wobei R2 berechnet wird mit R1 mal VerhƤltnis der ZugkrƤfte im StĆ¼tzstab am Ende und zu Beginn des Hebvorganges, ist der Anpressdruck auf den StĆ¼tzstab 3 durch den Umlenksattel 18 wƤhrend des Hebevorganges konstant, wenn die zwischen R1 und R2 liegenden Radien des Umlenksattels 18 gemƤƟ den auftretenden KrƤften im StĆ¼tzstab 3 berechnet werden.The execution of the connection of the support rod 3 with the pillar 4 is in Fig. 27 (Detail C off Fig. 26 ). For the sake of clarity, only the right leading support rod 3 in Fig. 27 located. The support rod 3 may consist of a diagonal cable 17 and it may be several diagonal cables 17 are arranged one behind the other. At the beginning of the lifting process, the support rod 3 extends approximately vertically along the pillar 4 to the end point 5, where it is connected to the bridge girder 2. The force in the support rod 3 is much smaller at the beginning of the lifting process than in the final state. This circumstance contributes to the design of the deflecting saddle 18 for the support rod 3 in Fig. 27 Bill. The contact pressure of the support rod 3 in the deflection saddle 18 can be calculated from the tensile force of the support rod 3 divided by the product of deflection radius and width of the support rod 3. In an embodiment of the deflecting saddle according to Fig. 27 with a small radius R 1 at the beginning of the lifting operation and a larger radius R 2 at the conclusion of the lifting process, wherein R 2 is calculated with R 1 times the ratio of the tensile forces in the support rod at the end and at the beginning of the lifting operation, the contact pressure on the support rod 3rd by the deflecting saddle 18 during the lifting process constant when the lying between R 1 and R 2 radii of Umlenksattels 18 are calculated according to the forces occurring in the support rod 3.

Fig. 28 zeigt eine Draufsicht auf die BrĆ¼cke 1 wƤhrend des Hebevorganges. Der Pfeiler 4 ist mit einer Ɩffnung 19 ausgefĆ¼hrt, so dass sich die BrĆ¼ckentrƤger 2 wƤhrend des Hebevorganges berĆ¼hren und die entstehenden DruckkrƤfte in den WƤlzgelenken Ć¼ber Hertzsche Pressungen Ć¼bertragen werden. Der Querschnitt der BrĆ¼ckentrƤger 2 im Beispiel gemƤƟ Fig. 28 ist ein Kastenquerschnitt. Um das Gewicht der BrĆ¼ckentrƤger 2 wƤhrend des Hebevorganges gering zu halten, werden die auskragenden Teile der Fahrbahnplatte erst nach Abschluss des Hebevorganges hergestellt. In den Endpunkten 5 der StĆ¼tzstƤbe 3, die mit den BrĆ¼ckentrƤgern 2 verbunden sind, sind deshalb QuertrƤger erforderlich. Die Stabilisierung der BrĆ¼ckentrƤger 2 wƤhrend des Hebevorganges kann mit geeigneten Vorrichtungen 15, z.B. Rollenlagern, erfolgen. Fig. 28 shows a plan view of the bridge 1 during the lifting process. The pillar 4 is designed with an opening 19, so that touch the bridge girder 2 during the lifting operation and the resulting pressure forces in the rolling joints are transmitted via Hertzian pressure. The cross section of the bridge girder 2 in the example according to Fig. 28 is a box cross section. In order to keep the weight of the bridge girder 2 low during the lifting process, the projecting parts of the carriageway plate are only produced after completion of the lifting process. In the end points 5 of the support rods 3, which are connected to the bridge girders 2, therefore, cross members are required. The stabilization of the bridge girder 2 during the lifting process can take place with suitable devices 15, eg roller bearings.

Die AusfĆ¼hrung der Verbindung der BrĆ¼ckentrƤger 2 ist in Fig. 29 (Detail D aus Fig. 26) dargestellt. Zu Beginn des Hebevorganges berĆ¼hren sich die BrĆ¼ckentrƤger 2 in den Linien P1 und P1'. In der in Fig. 29 dargestellten Lage der BrĆ¼ckentrƤger 2 findet die BerĆ¼hrung in den Linien P2 und P2' statt. Im Endzustand wird die BerĆ¼hrung in P3 und P3' erfolgen. Die Enden der BrĆ¼ckentrƤger 2 im Beispiel gemƤƟ Fig. 29 sind mit kreisfƶrmig gebogenen Stahlblechen ausgefĆ¼hrt, die mit DĆ¼beln oder angeschweiƟter Bewehrung mit dem Beton der BrĆ¼ckentrƤger 2 verbunden sind. WƤhrend des Hebevorganges tritt in den kreiszylinderfƶrmig ausgebildeten Enden der BrĆ¼ckentrƤger 2 entlang der BerĆ¼hrungslinien, z.B. P2 und P2' in Fig. 29, eine erhƶhte Pressung auf, die als Hertzsche Pressung bezeichnet wird. Die Radien der Endbereiche der BrĆ¼ckentrƤger 2 sind fĆ¼r die wƤhrend des Hebevorganges auftretenden Hertzschen Pressungen zu dimensionieren. Der Radius fĆ¼r die Enden der BrĆ¼ckentrƤger 2 in Fig. 28 ist konstant. Es kƶnnte aber auch an die in den BrĆ¼ckentrƤgern 2 auftretenden KrƤfte angepasst werden und zum Beispiel von einem kleineren Radius in den Linien P1, P1' auf einen grĆ¶ĆŸeren Radius in den Linien P3, P3' ansteigen, um wƤhrend des Hebevorganges eine annƤhernd konstante Hertzsche Pressung in den BerĆ¼hrungslinien zu erhalten.The execution of the connection of the bridge girder 2 is in Fig. 29 (Detail D off Fig. 26 ). At the beginning of the lifting operation, the bridge girders 2 in the lines P 1 and P 1 'touch. In the in Fig. 29 shown position of the bridge girder 2 is the contact in the lines P 2 and P 2 'instead. In the final state, the touch will occur in P 3 and P 3 '. The ends of the bridge girder 2 in the example according to Fig. 29 are executed with circularly bent steel sheets, which are connected with dowels or welded reinforcement with the concrete of the bridge girder 2. During the lifting process occurs in the circular cylindrical ends of the bridge support 2 along the lines of contact, eg P 2 and P 2 'in Fig. 29 , an increased pressure, referred to as Hertzian pressure. The radii of the end regions of the bridge girders 2 are to be dimensioned for the Hertzian stresses occurring during the lifting process. The radius for the ends of the bridge girders 2 in Fig. 28 is constant. However, it could also be adapted to the forces occurring in the bridge girders 2 and, for example, increase from a smaller radius in the lines P 1 , P 1 'to a larger radius in the lines P 3 , P 3 ', in order to obtain a lift during the lifting operation To obtain approximately constant Hertzian pressure in the contact lines.

Eine achte AusfĆ¼hrungsform des Verfahrens ist in den Fig. 30 bis 32 dargestellt. Die Fig. 30 zeigt einen Zustand wƤhrend des Anhebens der Endpunkte 8 der StĆ¼tzstƤbe 3. Der Pfeiler 4 weist eine sich entlang der Pfeilerhƶhe erstreckende Ɩffnung 19 auf.An eighth embodiment of the method is in the FIGS. 30 to 32 shown. The Fig. 30 shows a state during the lifting of the end points 8 of the support rods 3. The pillar 4 has an opening 19 extending along the pillar height.

Die AusfĆ¼hrung der Verbindung des StĆ¼tzstabes 3 mit dem BrĆ¼ckentrƤger 2 ist in Fig. 31 (Detail E aus Fig. 30) dargestellt. Die gegenseitige Verdrehung von StĆ¼tzstab 3 und BrĆ¼ckentrƤger 2, die bei diesem Beispiel wƤhrend des Hebevorganges ca. 150Ā° betrƤgt, wird durch ein AbwƤlzen entlang von zylinderfƶrmigen BerĆ¼hrungsflƤchen bewerkstelligt. Zu Beginn des Hebevorganges findet die BerĆ¼hrung entlang der Linien P4, P4' statt. In Fig. 31 ist ein Zustand dargestellt, bei dem die BerĆ¼hrung zwischen StĆ¼tzstab 3 und BrĆ¼ckentrƤger 2 entlang der Linien P5, P5' stattfindet. Nach Abschluss des Hebevorganges wird die KraftĆ¼bertragung zwischen BrĆ¼ckentrƤger 2 und StĆ¼tzstab 3 entlang der Linien P6, P6' erfolgen. In Fig. 31 ist ein externes Spannglied 16 dargestellt, das in der Schwerachse des mit einem Plattenbalkenquerschnitt ausgebildeten BrĆ¼ckentrƤger 2 angeordnet ist. WƤhrend des Hebevorganges wird das externe Spannglied so vorgespannt, dass im BrĆ¼ckentrƤger 2 keine oder nur geringe ZugkrƤfte auftreten.The execution of the connection of the support rod 3 to the bridge girder 2 is in Fig. 31 (Detail E off Fig. 30 ). The mutual rotation of support bar 3 and bridge girder 2, which in this example during the lifting operation is about 150 Ā°, is accomplished by rolling along cylindrical contact surfaces. At the beginning of the lifting operation, the contact takes place along the lines P 4 , P 4 '. In Fig. 31 a state is shown in which the contact between the support rod 3 and the bridge girder 2 takes place along the lines P 5 , P 5 '. After completion of the lifting operation, the power transmission between the bridge girder 2 and support bar 3 along the lines P 6 , P 6 'take place. In Fig. 31 an external tendon 16 is shown, which is arranged in the gravity axis of the formed with a T-beam cross-section bridge girder 2. While the lifting operation, the external tendon is biased so that no or only low tensile forces occur in the bridge girder 2.

Eine alternative AusfĆ¼hrungsform fĆ¼r die Verbindung des StĆ¼tzstabes 3 mit dem BrĆ¼ckentrƤger 2 (Detail E aus Fig. 30) ist in Fig. 32 dargestellt. Der BrĆ¼ckentrƤger dieser alternativen AusfĆ¼hrungsform weist einen Kastenquerschnitt auf. Die gegenseitige Verdrehung im Endpunkt 5 zwischen StĆ¼tzstab 3 und BrĆ¼ckentrƤger 2 findet auƟerhalb des Kastenquerschnitts des BrĆ¼ckentrƤgers 2 statt. Das dadurch entstehende Versatzmoment erzeugt Biegebeanspruchungen im BrĆ¼ckentrƤger 2, die bei der Dimensionierung des BrĆ¼ckentrƤgers 2 zu beachten sind. Das externe Spannglied 16 ist in der Schwerachse des Kastenquerschnitts des BrĆ¼ckentrƤgers 2 angeordnet.An alternative embodiment for the connection of the support rod 3 to the bridge girder 2 (detail E from Fig. 30 ) is in Fig. 32 shown. The bridge girder of this alternative embodiment has a box cross-section. The mutual rotation in the end point 5 between the support rod 3 and bridge support 2 takes place outside the box cross-section of the bridge girder 2. The resulting offset moment generates bending stresses in the bridge girder 2, which must be taken into account in the dimensioning of the bridge girder 2. The external clamping member 16 is arranged in the gravity axis of the box cross-section of the bridge girder 2.

Die mit dem erfindungsgemƤƟen Verfahren erreichbare Spannweite einer BrĆ¼cke 1 zwischen zwei Pfeilern 4 entspricht bei druckbeanspruchten StĆ¼tzstƤben 3 der Summe der Hƶhe der beiden Pfeiler 4. Die Anwendung des Verfahrens bei zugbeanspruchten StĆ¼tzstƤben 3 ermƶglicht die Herstellung einer BrĆ¼cke 1 mit einer Spannweite, die grĆ¶ĆŸer ist als die Summe der Pfeilerhƶhen.The achievable with the inventive method span of a bridge 1 between two pillars 4 corresponds to pressure-loaded support rods 3 the sum of the height of the two pillars 4. The application of the method in zugbeanspruchten support rods 3 allows the production of a bridge 1 with a span greater than the sum of the pillar heights.

Das Verfahren ist vorzugsweise fĆ¼r die Herstellung von Spannbeton- und StahlbetonbrĆ¼cken geeignet, kann aber auch fĆ¼r StahlbrĆ¼cken, Stahl - Beton - VerbundbrĆ¼cken, HolzbrĆ¼cken oder KunststoffbrĆ¼cken verwendet werden.The method is preferably suitable for the production of prestressed concrete and reinforced concrete bridges, but can also be used for steel bridges, steel-concrete composite bridges, wooden bridges or plastic bridges.

Es kann auch vorteilhaft sein, unterschiedliche Baustoffe zu kombinieren. Beispielsweise kƶnnte ein BrĆ¼ckentrƤger 2 aus Spannbeton hergestellt werden und die Spitze des BrĆ¼ckentrƤgers 2 neben dem Endpunkt 14 aus einer Stahlkonstruktion bestehen, um das Eigengewicht an der Spitze des Kragarmes und dadurch die Kragmomente im Bauzustand zu reduzieren.It may also be advantageous to combine different building materials. For example, a bridge girder 2 could be made of prestressed concrete and the top of the bridge girder 2 adjacent to the end point 14 would be made of a steel construction to reduce its own weight at the tip of the cantilever and thereby the building crimping moments.

SinngemƤƟ kann das erfindungsgemƤƟe Verfahren auch im Hochbau und im Ingenieurbau eingesetzt werden, wenn es vorteilhaft ist TrƤger in einer annƤhernd senkrechten Position herzustellen und anschlieƟend in eine annƤhernd waagrechte Endposition zu drehen.Analogously, the inventive method can also be used in building construction and civil engineering, if it is advantageous to produce carrier in an approximately vertical position and then to turn into an approximately horizontal end position.

Claims (19)

  1. A process for the manufacture of a bridge, wherein a pier (4) as well as at least one bridge girder (2) with end points (7, 9, 14) are erected in an approximately vertical position, characterized in that
    ā€¢ at least one supporting rod (3) with end points (5, 6, 8) is erected in an approximately vertical position, wherein
    ā€¢ one end point (5) of the supporting rod (3) is hinged to the bridge girder (2), and either - according to a first variant -
    ā€¢ one end point (6) of the supporting rod (3) is hinged to the pier (4), the bridge girder (2) is brought into an approximately horizontal position by an approximately vertical motion of the end point (9) of the bridge girder (2) on the pier (4) and the moved end point (9) of the bridge girder (2) is connected to the pier (4), or - according to a second variant -
    ā€¢ one end point (7) of the bridge girder (2) is hinged to the pier (4), the bridge girder (2) is brought into an approximately horizontal position by an approximately vertical motion of the end point (8) of the supporting rod (3) on the pier (4) and the moved end point (8) of the supporting rod (3) is connected to the pier (4),
    ā€¢ as well as that, in both variants, the projecting end point (14) of the bridge girder (2) is connected to an abutment (11) or a further end point (14) of a second bridge girder (2).
  2. A process for the manufacture of a bridge according to claim 1, characterized in that bridge girders (2) and supporting rods (3) are arranged on both sides of the pier (4) and the two end points (8) of supporting rods (3) on the pier (4) or the two end points (9) of the bridge girder (2) on the pier (4) are moved approximately vertically.
  3. A process for the manufacture of a bridge according to any of claims 1 or 2, characterized in that the bridge girder (2) is manufactured with a variable cross-sectional height.
  4. A process for the manufacture of a bridge according to any of claims 1 to 3, characterized in that the bridge girder (2) is manufactured with a curvature in the elevation in the approximately horizontal final position.
  5. A process for the manufacture of a bridge according to any of claims 1 to 4, characterized in that the bridge girder (2) is manufactured with a curvature in the ground plan in the approximately horizontal final position.
  6. A process for the manufacture of a bridge according to any of claims 1 to 5, characterized in that the pier (4) is integrated into the abutment (11).
  7. A process for the manufacture of a bridge according to any of claims 1 to 6, characterized in that the moved end points (8,9) of the supporting rods (3) and of the bridge girders (2), respectively, contact each other while the end points (8,9) are being moved.
  8. A process for the manufacture of a bridge according to any of claims 1 to 7, characterized in that the pier (4) is manufactured with an opening (19) extending along the height of the pier, in which the end points (8,9) of the supporting rods (3) or the bridge girders (2) support each other while being moved, with the opening (19) being delimited downwards and upwards by the pier (4).
  9. A process for the manufacture of a bridge according to any of claims 1 to 8, characterized in that the compressive forces in the end points (5, 6, 7, 8, 9) are transmitted via rolling contact joints during the movement of the supporting rod (3) and the bridge girder (2).
  10. A process for the manufacture of a bridge according to any of claims 1 to 9, characterized in that the surfaces of the rolling contact joints are formed from thin-walled, bent steel sheets which are back-filled with concrete in the end points (8,9) of the supporting rods (3) or the bridge girders (2).
  11. A process for the manufacture of a bridge according to any of claims 1 to 10, characterized in that the radius of a rolling contact joint is not constant, but is adjusted to the compressive stress such that a small radius is provided for small strains and a larger radius is provided for larger strains.
  12. A process for the manufacture of a bridge according to any of claims 1 to 11, characterized in that a supporting rod (3) subject to tensile stress is provided as a stay cable (17) and the tensile forces in the end points (5,6) are transferred into the bridge girder (2) and the pier (4) via deflection saddles (18) during the movement of the supporting rod (3).
  13. A process for the manufacture of a bridge according to any of claims 1 to 12, characterized in that the radius of the deflection saddle (18) is not constant, but is adjusted to the tensile stress of the supporting rod (3) such that a small radius is provided for small strains and a larger radius is provided for larger strains.
  14. A process for the manufacture of a bridge according to any of claims 1 to 13, characterized in that two end points (8,9) of supporting rods (3) or bridge girders (2) are moved approximately vertically and that, during the movement, the end points (8,9) are supported against the pier (4) with a stabilizing device (15).
  15. A process for the manufacture of a bridge according to any of claims 1 to 14, characterized in that the end points (5) and (6) of the supporting rod (3) are designed such that an angular rotation Ī± relative to the bridge girder (2) can occur in the end point (5) and an angular rotation Ī² relative to the pier (4) can occur in the end point (6) and that the sum of the angular rotations Ī± plus Ī² is larger than 85Ā° and smaller than 260Ā°.
  16. A process for the manufacture of a bridge according to any of claims 1 to 14, characterized in that the end point (5) of the supporting rod (3) and the end point (7) of the bridge girder (2) are designed such that an angular rotation Ī± relative to the bridge girder (2) can occur in the end point (5) and an angular rotation Ī² relative to the pier (4) can occur in the end point (7) and that the angular rotation Ī± is larger than 100Ā° and smaller than 175Ā° and that the angular rotation Ī² is approximately 90Ā°.
  17. A process for the manufacture of a bridge, characterized by a combination of the first variant defined in claim 1 with the second variant defined in claim 1 as well as optionally according to any of claims 2 to 16.
  18. A process for the manufacture of a bridge according to any of claims 1 to 17, characterized in that tension members made of strands and hydraulic strand lifters are used for raising the end points (9, 8).
  19. A lift bridge (12), manufactured according to a process according to any of claims 1 to 18, comprising a pier (4) erected in an approximately vertical position as well as two bridge girders (2) with end points (7, 9, 14), characterized by two supporting rods (3) with end points (5, 6, 8), wherein one end point (5) each of a supporting rod (3) is hinged to one bridge girder (2) each and
    either
    the other respective end point (6) of each supporting rod (3) is hinged to the pier (4), wherein, starting from an approximately vertical position of the two bridge girders (2) and the two supporting rods (3), each bridge girder (2) is movable at its, in each case, one end point (9) approximately vertically along the pier (4), whereby, through said movement, the bridge girders (2) can, in each case, be brought into an approximately horizontal position and the moved end points (9) of the bridge girders (2) are, in each case, connectable to the pier (4), or
    one end point (7) each of each bridge girder (2) is hinged to the pier (4) and the other end point (8) of each supporting rod (3) is movable approximately vertically along the pier (4), starting from an approximately vertical position of the two bridge girders (2) and the two supporting rods (3), whereby, through said movement, the bridge girders (2) can, in each case, be brought into an approximately horizontal position and the moved end points (8) of the supporting rods (3) are, in each case, connectable to the pier (4),
    wherein, in both variants, the projecting end points (14) of the bridge girders (2) are, in each case, connectable to an abutment (11) or a further end point (14) of a further bridge girder (2).
EP07718451.3A 2006-08-23 2007-05-21 Tilt-lift method for erecting a bridge and vertical lift bridge manufactured accordingly Active EP2054553B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07718451T PL2054553T3 (en) 2006-08-23 2007-05-21 Tilt-lift method for erecting a bridge and vertical lift bridge manufactured accordingly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006039551A DE102006039551B3 (en) 2006-08-23 2006-08-23 Bridge manufacturing method involves articulating end point of support rod with bridge carrier, and column, a bridge carrier with end points and support rod with end points is manufactured in perpendicular position
PCT/AT2007/000240 WO2008022359A1 (en) 2006-08-23 2007-05-21 Tilt-lift method for erecting a bridge

Publications (2)

Publication Number Publication Date
EP2054553A1 EP2054553A1 (en) 2009-05-06
EP2054553B1 true EP2054553B1 (en) 2016-04-27

Family

ID=38352967

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07718451.3A Active EP2054553B1 (en) 2006-08-23 2007-05-21 Tilt-lift method for erecting a bridge and vertical lift bridge manufactured accordingly

Country Status (12)

Country Link
US (1) US7996944B2 (en)
EP (1) EP2054553B1 (en)
JP (1) JP5302195B2 (en)
CN (1) CN101535571B (en)
AU (1) AU2007288151B2 (en)
CA (1) CA2661311C (en)
DE (1) DE102006039551B3 (en)
ES (1) ES2572608T3 (en)
NO (1) NO338580B1 (en)
PL (1) PL2054553T3 (en)
RU (1) RU2436890C2 (en)
WO (1) WO2008022359A1 (en)

Families Citing this family (12)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
AT508047A1 (en) * 2009-03-18 2010-10-15 Univ Wien Tech SUPPORT STRUCTURE
CN102116011B (en) * 2011-01-07 2012-12-05 äø­é“å››å±€é›†å›¢ē¬¬äŗŒå·„ēØ‹ęœ‰é™å…¬åø No-balance-weight horizontal-rotation construction method of steel truss girder bridge spanning railway operating line
CN103047481A (en) * 2012-12-18 2013-04-17 äø­å›½ę øåŠØ力ē ”ē©¶č®¾č®”院 Cable tray for pressurized water reactor top structure
CN104532734B (en) * 2014-12-25 2016-08-17 ę±Ÿč‹ēœę°“利ęœŗę¢°åˆ¶é€ ęœ‰é™å…¬åø A kind of lift bridge
DE102015105021A1 (en) 2015-03-31 2016-10-06 SEH Engineering GmbH HubbrĆ¼cke
JP6573277B2 (en) * 2015-11-02 2019-09-11 äø‰äŗ•ä½å‹å»ŗčØ­ę Ŗ式会ē¤¾ How to build a main tower or pier
CN106836008A (en) * 2017-02-15 2017-06-13 č®øę˜Œä¹‰ A kind of construction method of bridge balanced type vertical transfer
WO2019090374A1 (en) 2017-11-07 2019-05-16 Kollegger Gmbh Method for producing a bridge support of a prestressed concrete bridge
CN109753746B (en) * 2019-01-14 2022-10-11 é•æ安大学 Bridge self-adaptive boundary bending moment control system, bridge deflection self-adaptive method and method for calculating bridge deflection
CN110468740A (en) * 2019-08-19 2019-11-19 äø­é“ę­¦ę±‰å‹˜åÆŸč®¾č®”ē ”ē©¶é™¢ęœ‰é™å…¬åø A kind of bridge rotating system and method for drag-line traction Auxiliary support
CN112647415B (en) * 2021-02-22 2021-08-31 ē¦å·žå¤§å­¦ Inhaul cable opposite-pulling system for providing arch rib lateral rotation and construction method thereof
AT524664B1 (en) 2021-06-09 2022-08-15 Kollegger Gmbh Process for the construction of a bridge from prefabricated girders and roadway slab elements

Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US517809A (en) * 1894-04-03 Drawbridge

Family Cites Families (27)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
DE336062C (en) * 1918-04-19 1921-04-21 Hendrik Van Heyst Dipl Ing Drawbridge
US1648574A (en) * 1924-12-19 1927-11-08 Jr Thomas E Brown Operating mechanism for movable bridges and the like
US2040445A (en) * 1933-11-11 1936-05-12 Sakamoto Taneyoshi Vertical lift bridge
US2482562A (en) * 1945-05-22 1949-09-20 Bank Security-First National Vertical lift bridge
US3394420A (en) * 1965-08-31 1968-07-30 Popov Vladimir Bridges
DE2422984A1 (en) * 1973-07-10 1975-01-30 Rella & Co Bauges Concrete bridge erection over open space - with structure erected vertically and tilted into final position after hardening
US4169296A (en) * 1978-03-21 1979-10-02 Ingenieursbureau Marcon (Marine Consultants) B.V. Connecting bridge for personnel to connect two mutually movable marine structures
SE419329B (en) * 1978-09-06 1981-07-27 Jernkonstruktioner Ab HIGH AND SUBSTANTABLE BRIDGE FOR CONNECTING TO FERRIES AND CARGOING, PREFERRED WITH OWN CLAP
GB2054013A (en) * 1979-07-19 1981-02-11 Tileman & Co Ltd Method of constructing a deck
US4473916A (en) * 1982-02-24 1984-10-02 Gec Mechanical Handling Limited Access means
US4535498A (en) * 1983-04-14 1985-08-20 Webster David R Suspension bridge
JPH01136520U (en) * 1988-02-22 1989-09-19
US5044829A (en) * 1988-08-05 1991-09-03 Hemminger Paul W Mooring system
JPH0765297B2 (en) * 1989-06-20 1995-07-19 住友å»ŗčØ­ę Ŗ式会ē¤¾ How to erection a cane ramen bridge
JPH04237773A (en) * 1991-01-21 1992-08-26 Mitsubishi Heavy Ind Ltd Method for erecting steel structural product
US5421051A (en) * 1991-04-05 1995-06-06 Patten; Roger W. Bascule bridge with hinged section
US5454127A (en) * 1994-03-30 1995-10-03 Teng & Associates, Inc. Unbalanced bascule bridge with concrete slab roadway
JPH08177013A (en) * 1994-12-27 1996-07-09 Kazutomo Ishikawa Folding road device
JP2859163B2 (en) * 1995-05-18 1999-02-17 ę Ŗ式会ē¤¾å·“ć‚³ćƒ¼ćƒćƒ¬ćƒ¼ć‚·ćƒ§ćƒ³ Rotary erection method for bridges with high piers
JPH10195826A (en) * 1997-01-09 1998-07-28 Japan Steel & Tube Constr Co Ltd Bridge construction method and device thereof
US5915423A (en) * 1997-05-27 1999-06-29 Williams Fairey Engineering Limited Bridge construction
DE19747109C2 (en) * 1997-10-24 1999-11-11 Univ Magdeburg Tech Device for folding a bascule bridge consisting of two bridge sections
JP2000045229A (en) * 1998-07-28 2000-02-15 Nishimatsu Constr Co Ltd Constructing method of bridge
US6832459B2 (en) * 2002-01-18 2004-12-21 Matthew Russell Methods and apparatus for forming and placing generally horizontal structures
FR2860013B1 (en) * 2003-09-22 2007-12-28 Eurodim Sa BRIDGE INTENDED TO EXCEED A PASSWORD OF A NAVIGATION ROAD
CN1609341A (en) * 2003-10-22 2005-04-27 äøŠęµ·åø‚åŸŗē”€å·„ē؋公åø Over head bridge erection construction technology
US7020924B2 (en) * 2004-03-29 2006-04-04 Steward Machine Co., Inc. Static stabilizers for bridges

Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US517809A (en) * 1894-04-03 Drawbridge

Also Published As

Publication number Publication date
EP2054553A1 (en) 2009-05-06
US7996944B2 (en) 2011-08-16
CN101535571B (en) 2013-05-29
RU2009110174A (en) 2010-09-27
PL2054553T3 (en) 2016-08-31
ES2572608T3 (en) 2016-06-01
RU2436890C2 (en) 2011-12-20
WO2008022359A1 (en) 2008-02-28
AU2007288151B2 (en) 2013-01-31
DE102006039551B3 (en) 2007-09-20
NO20090770L (en) 2009-03-20
US20090313771A1 (en) 2009-12-24
JP5302195B2 (en) 2013-10-02
CN101535571A (en) 2009-09-16
JP2010501743A (en) 2010-01-21
CA2661311A1 (en) 2008-02-28
AU2007288151A1 (en) 2008-02-28
CA2661311C (en) 2012-11-20
NO338580B1 (en) 2016-09-12

Similar Documents

Publication Publication Date Title
EP2054553B1 (en) Tilt-lift method for erecting a bridge and vertical lift bridge manufactured accordingly
DE60309668T3 (en) WIND TURBINE
EP2914790B1 (en) Method for producing a tower construction from reinforced concrete
EP3673113B1 (en) Method for producing an integral bridge, and integral bridge
CN107849831A (en) Method for carrying out pushing tow/construction bridge using prefabricated panel and steel-pipe concrete truss
CN110205938B (en) Steel pipe arch installation method of through beam-arch combination bridge
WO2007006640A1 (en) Fixed running track on a bridge structure
DE2752222A1 (en) PRE-TENSIONED STRUCTURE
AT517231B1 (en) Method for producing a roadway slab for a bridge
AT524664B1 (en) Process for the construction of a bridge from prefabricated girders and roadway slab elements
DE2247609B1 (en) PROCESS FOR CREATING A BRIDGE STRUCTURE FROM PRE-STRENGTHENED CONCRETE IN SECTIONAL FREE FRONT-FRAME
DE1237603B (en) Process for the production of long structures, in particular bridges, from steel or prestressed concrete
KR102597271B1 (en) Construction method of prestressed i-girder bridge using girder istrallation process and i-girder bridge constructed thereby
DE102007003552B3 (en) Bridge bearing structure has U-shaped concrete structure arranged in supporting region of superstructure beneath bottom booms of steel box girders which are equidistantly arranged from middle vertical plane
DE2718616A1 (en) Cable stressed modular concrete bridge construction - has rigid anchor units inserted for direct cable anchorage before site concreting
DE920013C (en) Process for the production of composite structures, in particular girder bridges and shell roofs
JPH0692643B2 (en) Construction method of structure and its equipment
DE2422984A1 (en) Concrete bridge erection over open space - with structure erected vertically and tilted into final position after hardening
DE2607574C2 (en) Process for the production of arched structures
DE1046650B (en) Suspension bridge made of prestressed concrete
DE975592C (en) Process for the production of a truss bridge made of reinforced concrete and movable scaffolding for carrying out the process
EP0056422A1 (en) Process and falsework for constructing bridges of reinforced concrete
AT526142A4 (en) Method for producing a bridge from longitudinal girders and deck slab elements
DE3021666A1 (en) Reinforced or prestressed concrete bridge girder erection - involves swinging from vertical setting about horizontal pivot axis on pier
DE3242153A1 (en) Method for installing a multi-field support framework

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KOLLEGGER GMBH

17Q First examination report despatched

Effective date: 20110610

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNISCHE UNIVERSITAET WIEN

Owner name: KOLLEGGER GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150709

INTG Intention to grant announced

Effective date: 20151119

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNISCHE UNIVERSITAET WIEN

Owner name: KOLLEGGER GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 794973

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2572608

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014760

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014760

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160521

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160521

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220531

Year of fee payment: 16

Ref country code: GB

Payment date: 20220523

Year of fee payment: 16

Ref country code: ES

Payment date: 20220617

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220512

Year of fee payment: 16

Ref country code: FI

Payment date: 20220517

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 17

Ref country code: DE

Payment date: 20230519

Year of fee payment: 17

Ref country code: CH

Payment date: 20230602

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230522

Year of fee payment: 17

Ref country code: AT

Payment date: 20230516

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230521