EP2053690B1 - Radome doté d'une fermeture à plasma intégrée - Google Patents

Radome doté d'une fermeture à plasma intégrée Download PDF

Info

Publication number
EP2053690B1
EP2053690B1 EP08018110A EP08018110A EP2053690B1 EP 2053690 B1 EP2053690 B1 EP 2053690B1 EP 08018110 A EP08018110 A EP 08018110A EP 08018110 A EP08018110 A EP 08018110A EP 2053690 B1 EP2053690 B1 EP 2053690B1
Authority
EP
European Patent Office
Prior art keywords
radome
plasma
electrodes
antenna
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08018110A
Other languages
German (de)
English (en)
Other versions
EP2053690A1 (fr
Inventor
Kay Dittrich
Joachim Dr. Kaiser
Robert Sekora
Herbert Zippold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP2053690A1 publication Critical patent/EP2053690A1/fr
Application granted granted Critical
Publication of EP2053690B1 publication Critical patent/EP2053690B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid

Definitions

  • the invention relates to a radome with integrated plasma closure according to the preamble of claim 1.
  • the radome is designed to be electromagnetically transparent only in the desired frequency range and / or only at times when the antenna is active.
  • Frequency-selective radomes can be realized with different methods, depending on the requirement profile. Specifically, the use of one or more thin structured metal layers, so-called frequency-selective layers (FSS), which have a pronounced frequency dependence of the electromagnetic transparency is, for example, from US 6,218,978 known.
  • FSS frequency-selective layers
  • Switchable radomes can be realized in different ways.
  • mechanical closure systems are known in which diaphragms are pushed in front of the antenna.
  • Another approach is to introduce layers into the radome whose surface impedance is variable, such as through the use of PIN diodes or photoresistors in accordance with DE 39 20 110 C2 ,
  • the variable layer can be electrically conductive and thus reflective or electrically insulating and thus transparent.
  • a plasma layer is electric conductive, and depending on the charge density in the plasma, a sufficiently high electrical conductivity for reflection or attenuation of electromagnetic waves can be achieved. This behavior is already used for plasma-based antennas, see eg US 5,182,496 , By switching the plasma on and off, the desired switching operation can be achieved.
  • plasma capture involves the question of integrating the plasma volume into the radome structure.
  • a plasma shutter system has become known in which the space between the antenna and radome is filled with a plasma.
  • Another concept according to the DE 43 36 841 C1 assumes plasma-filled tubes in front of the antenna, where the plasma is generated by lateral, not in the field of view of the antenna lying electrodes.
  • a disadvantage of the latter concept is the fact that the closure element relative to the radome is a separate component, so that the stability of the radome is reduced by the installation of the closure element.
  • the integration of the closure element in the radome also leads to additional Radarstreuzentren the radome, which affects the radar signature unfavorable.
  • the two electrodes for plasma generation are arranged laterally on the narrow sides of the plasma-guiding layer, which reduces the homogeneity of the electromagnetic field within the plasma-guiding layer.
  • the invention has for its object to provide a radome with integrated plasma shutter to protect the antenna against unwanted radiation incidence, with which the structural strength and the radar signature of the radome are not adversely affected.
  • the present invention is based on the concept of integrating the plasma-guiding layer in the honeycomb core of the sandwiched radome structure and causing the plasma to be generated by electrodes that are RF-transparent at least in the operating frequency range of the antenna.
  • cover plates of the sandwich structure delimiting the plasma layer thus themselves form part of the load-bearing radome primary structure, and the honeycomb structure containing the plasma-guiding layer forms a structural bond with the cover plates.
  • An HF-transparent electrode is in particular formed like a layer and can e.g. be realized in the form of a grid-shaped layer.
  • the lattice constant is selected such that HF transparency is ensured, at least in the operating frequency range of the antenna (for a radar antenna, for example, in the range from 8 to 12 GHz).
  • more complex periodic structures are possible, such as circular or annular slots in a continuous metal layer.
  • Another possibility is to use an electrically low-conductivity layer whose reflection factor is included in the radome design.
  • the electrodes are realized as frequency-selective layers.
  • slot-type types of frequency-selective layers can be used in which a continuous metal layer has structured slots.
  • These layers can be designed as bandpass filters, so that the own operating frequencies of the antenna system are transmitted through the radome, but other frequencies are reflected or absorbed.
  • the radome 1 As in Fig. 1
  • the radome 1 according to the invention with integrated plasma shutter covers an underlying antenna system 2. It is equipped with a plasma-guiding layer 3 located in or directly on the radome, the plasma being conveyed via electrodes (in FIG Fig. 1 not shown) is excited from frequency-selective layers.
  • Fig. 1 shows the principal mechanism of action.
  • the antenna system 2 is shown in this case as a pivotable radar antenna, but without limitation of generality, any other electromagnetically active antenna system, such as a communication antenna, a radar warning receiver or a jammer, be mounted under the radome.
  • the geometry of the Radome 1 is usually based on geometric requirements for radar signature reduction of the outer shape.
  • the basic principle known per se for the use of a plasma layer 3 as a variable reflector is based on the fact that the plasma-guiding layer 3 is located between a plasma state (FIG Fig. 1 ) and a recombined state ( Figure a) in Fig. 1 ) can be switched back and forth.
  • the plasma state which is generated by applying the voltage to the electrodes
  • the plasma-guiding layer 3 becomes electrically conductive and reflects all the incident electromagnetic waves 7, 8.
  • the plasma-conducting layer is electrically nonconductive and thus electromagnetically transparent. Accordingly, the shaft 5 passes through the radome.
  • the plasma state is always set. Only in times in which the antenna is active, is switched to the recombined plasma state.
  • the plasma is generated by arranged on the radome, layer-shaped frequency-selective electrodes, which are permeable to electromagnetic radiation only within a certain frequency range, namely the operating frequency range of the antenna. This results in the recombined state of the plasma protection against the ingress of unwanted radiation. This is with the radiation 4 in Fig. 1 a) indicated, which is reflected at a frequency-selective layer.
  • Fig. 2 shows the construction of the radome according to the invention in detail.
  • the plasma-guiding layer comprises a honeycomb core 9 (in this case with cells of hexagonal cross section), which is embedded between the two layered electrodes 10, 11.
  • the plasma-carrying layer with the adjacent electrodes is in turn mounted between the cover layers 12, 13 of the radome structure.
  • the honeycomb core 9 in contrast to known approaches the plasma-conducting layer, ie the honeycomb core 9, with the cover layers 12, 13 has a structural bond.
  • Cellular shapes of hexagonal cross-section are generally particularly suitable for the honeycomb core. But other cell forms, e.g. with triangular or square cell cross sections are possible.
  • a peripheral frame 21 is attached to the edge which serves to connect the radome to the surrounding structure.
  • the radome is divided into an electromagnetically transparent part 19 and an electromagnetically non-transparent part 20, which may be electromagnetically closed in a special embodiment by a continuous electrically conductive layer 22.
  • additional protective layers 14 may be attached against rain erosion.
  • additional frequency-selective layers in the Radomdeck Anlagenen 12,13 or on the surface of the radome are conceivable to adjust the bandpass behavior more precisely.
  • the electrodes 10,11 are formed in layers and consist in the embodiment shown of frequency-selective layers. Particularly suitable as electrodes are slot-type types of frequency-selective layers in which a continuous metal layer has structured slots. In the embodiment shown, the two electrodes 10, 11 each have a regular pattern formed by cross-shaped slots. Such layers can be designed as a bandpass filter, that is, the own operating frequencies of the antenna system 2 are transmitted through the radome 1, but other frequencies reflected or absorbed. Because of their RF transparency in the range of the operating frequencies of the antenna, the electrodes can be easily arranged in the field of view of the antenna.
  • the honeycomb In order for a gas mixture suitable for the generation of a plasma to be introduced into the plasma-guiding layer at a suitable negative pressure, the honeycomb is perforated 15 and thus permeable to air in its plane, so that flushing of the plasma-guiding layer with a suitable gas mixture through one or more connections 18 and suction is possible until reaching the necessary negative pressure to generate the plasma. After setting the desired gas mixture and pressure levels, the connection (s) is closed, this process can be repeated at appropriate intervals for maintenance purposes.
  • the honeycomb 9 is also additionally coated with a protective layer in order to avoid removal of the honeycomb material by the aggressive plasma.
  • the two frequency-selective layers 10, 11 serving as electrodes are connected to a high-voltage source 17 via a switching device 16, so that when the high voltage is applied, the plasma in the plasma-guiding layer can be ignited.
  • Fig. 3 shows the schematic structure according to Fig. 2 in three-dimensional representation.
  • the plasma-guiding layer is not a conventional honeycomb but a so-called folding honeycomb 5, as described in US Pat US 5,028,474 , is described.
  • Such folded honeycombs are formed by bending a flat, closed material layer at defined bend lines.
  • the folding honeycomb 30 is integrated instead of the normal honeycomb in the Radomiscus with the two outer layers 12,13 and the optional protective layers 14.
  • additional frequency-selective layers are integrated in or on the Radomiscus.
  • Folded honeycombs are characterized by the fact that the honeycomb structure can form continuous airways and the folding honeycomb can therefore be ventilated. The need for conventional honeycomb perforation can be eliminated.
  • folding honeycomb by definition can be developed, so that the electrodes of frequency-selective layers can be applied directly to both sides of the honeycomb material before folding the honeycomb.
  • the electrodes 31 are applied to the flat honeycomb feedstock 32 on both sides of frequency-selective layers between the later fold lines 36, for example, printed. Rows of electrodes of the same polarity are connected in parallel by short conductor tracks 34, so that the rows connected in parallel can be contacted from the side together. In this case, in each case the same polarity should be applied to both sides of the honeycomb material at opposite electrodes in order to avoid electrical breakdown by the honeycomb material.
  • Fig. 6 shows the structure of the radome according to the invention according to Fig. 4 and 5 in three-dimensional representation.

Landscapes

  • Details Of Aerials (AREA)

Claims (6)

  1. Radome (1) doté d'un dispositif de fermeture intégré, lequel comprend une couche conductrice de plasma ainsi que des électrodes (10, 11) à des fins d'excitation plasma, caractérisé en ce que le radome (1) présente une structure en sandwich constituée d'un noyau alvéolé (9) et de plaques de couvercle (12, 13), dans lequel la couche conductrice de plasma est contenue dans le noyau alvéolé (9) de la structure en sandwich et les électrodes (10, 11) disposées entre le noyau alvéolé (9) et les plaques de couvercle (12, 13) sont transparentes aux HF au moins dans la plage de fréquence de fonctionnement de l'antenne (2).
  2. Radome (1) selon la revendication 1, caractérisé en ce que les électrodes (10, 11) sont constituées de couches sélectives de fréquence, qui sont étalées comme un filtre passe-bande dans la plage de fréquence de fonctionnement de l'antenne.
  3. Radome (1) selon la revendication 1 ou 2, caractérisé en ce que les électrodes (10, 11) sont disposées sur les plaques de couvercle (12, 13).
  4. Radome (1) selon la revendication 1 ou 2, caractérisé en ce que les électrodes (12, 13) sont disposées sur les parois du noyau alvéolé (9).
  5. Radome (1) selon l'une des revendications précédentes, caractérisé en ce que le noyau alvéolé est une structure alvéolaire pliée (30).
  6. Radome (1) selon l'une des revendications 1 à 4, caractérisé en ce que les parois du noyau alvéolé (9) sont perforées.
EP08018110A 2007-10-26 2008-10-16 Radome doté d'une fermeture à plasma intégrée Active EP2053690B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007051243A DE102007051243B3 (de) 2007-10-26 2007-10-26 Radom mit darin integriertem Plasmaverschluss

Publications (2)

Publication Number Publication Date
EP2053690A1 EP2053690A1 (fr) 2009-04-29
EP2053690B1 true EP2053690B1 (fr) 2011-08-03

Family

ID=40028954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08018110A Active EP2053690B1 (fr) 2007-10-26 2008-10-16 Radome doté d'une fermeture à plasma intégrée

Country Status (3)

Country Link
US (1) US8159407B2 (fr)
EP (1) EP2053690B1 (fr)
DE (1) DE102007051243B3 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403271B2 (en) 2010-08-24 2013-03-26 Lockheed Martin Corporation Passive robust flow control micro device
US8636254B2 (en) 2010-09-29 2014-01-28 Lockheed Martin Corporation Dynamically controlled cross flow instability inhibiting assembly
FR2966983B1 (fr) * 2010-10-29 2012-12-28 Thales Sa Paroi multicouches pour radome selectif en frequence.
KR101544832B1 (ko) * 2011-04-26 2015-08-17 한국전자통신연구원 교란 신호 차폐 장치 및 방법
US9257743B2 (en) * 2012-02-16 2016-02-09 Lockheed Martin Corporation System and method for providing a frequency selective radome
US8890765B1 (en) 2012-04-21 2014-11-18 The United States Of America As Represented By The Secretary Of The Navy Antenna having an active radome
WO2014171866A1 (fr) * 2013-04-18 2014-10-23 Saab Ab Agencement de protection pour une protection contre des micro-ondes haute puissance
JP6211374B2 (ja) * 2013-10-11 2017-10-11 三菱重工業株式会社 電波選択構造及び電波選択方法
US9608321B2 (en) * 2013-11-11 2017-03-28 Gogo Llc Radome having localized areas of reduced radio signal attenuation
US9568280B1 (en) * 2013-11-25 2017-02-14 Lockheed Martin Corporation Solid nose cone and related components
US9534868B1 (en) 2014-06-03 2017-01-03 Lockheed Martin Corporation Aerodynamic conformal nose cone and scanning mechanism
JP6249906B2 (ja) * 2014-08-28 2017-12-20 三菱電機株式会社 アレーアンテナ装置
DE102015014256B4 (de) 2015-11-05 2020-06-18 Airbus Defence and Space GmbH Mikroelektronisches Modul zur Reinigung einer Oberfläche, Modularray und Verfahren zur Reinigung einer Oberfläche
US10270160B2 (en) * 2016-04-27 2019-04-23 Topcon Positioning Systems, Inc. Antenna radomes forming a cut-off pattern
DE102016008945A1 (de) 2016-07-26 2018-02-01 Airbus Defence and Space GmbH Mikroelektrisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, Modularray und Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche
US10770785B2 (en) * 2017-04-05 2020-09-08 Smartsky Networks LLC Plasma radome with flexible density control
US10784571B2 (en) * 2017-06-16 2020-09-22 Raytheon Company Dielectric-encapsulated wideband metal radome
WO2019134599A1 (fr) * 2018-01-08 2019-07-11 深圳光启尖端技术有限责任公司 Couvercle d'antenne
CN109494475A (zh) * 2018-07-13 2019-03-19 中国航空工业集团公司济南特种结构研究所 一种具有增强雷达罩根部刚度的多层蜂窝结构
RU2738429C1 (ru) * 2020-04-24 2020-12-14 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Антенный обтекатель
RU2738428C1 (ru) * 2020-04-24 2020-12-14 Акционерное общество «Обнинское научно-производственное предприятие «Технология» им. А.Г.Ромашина» Антенный обтекатель

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574471A (en) * 1982-09-07 1996-11-12 Radant Systems, Inc. Electromagnetic energy shield
US5621423A (en) * 1983-08-29 1997-04-15 Radant Systems, Inc. Electromagnetic energy shield
US4684954A (en) * 1985-08-19 1987-08-04 Radant Technologies, Inc. Electromagnetic energy shield
DE3920110A1 (de) * 1989-06-20 1991-02-07 Dornier Luftfahrt Elektromagnetisches fenster/radarabsorber
US5028474A (en) * 1989-07-25 1991-07-02 Czaplicki Ronald M Cellular core structure providing gridlike bearing surfaces on opposing parallel planes of the formed core
DE4002951A1 (de) * 1990-02-01 1991-08-08 Medicoat Ag Niederrohrdorf Festelektrolyt - brennstoffzelle und verfahren zu ihrer herstellung
DE4140944A1 (de) * 1991-12-12 1993-06-17 Deutsche Aerospace Absorber fuer elektromagnetische strahlung
US5182496A (en) * 1992-04-07 1993-01-26 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for forming an agile plasma mirror effective as a microwave reflector
DE4336841C1 (de) * 1993-10-28 1995-05-04 Deutsche Aerospace Abdeckung für Radarantennen
GB2328319B (en) * 1994-06-22 1999-06-02 British Aerospace A frequency selective surface
HUP9802572A3 (en) * 1995-07-18 1999-09-28 Pflug Jochen Folded-sheet honeycomb structure
US6870517B1 (en) * 2003-08-27 2005-03-22 Theodore R. Anderson Configurable arrays for steerable antennas and wireless network incorporating the steerable antennas
US6767606B2 (en) * 2002-08-29 2004-07-27 The Boeing Company Vented cell structure and fabrication method
US7292191B2 (en) * 2004-06-21 2007-11-06 Theodore Anderson Tunable plasma frequency devices
US7755254B2 (en) * 2006-12-04 2010-07-13 Ngk Insulators, Ltd. Honeycomb-type piezoelectric/electrostrictive element

Also Published As

Publication number Publication date
US20090109115A1 (en) 2009-04-30
US8159407B2 (en) 2012-04-17
EP2053690A1 (fr) 2009-04-29
DE102007051243B3 (de) 2009-04-09

Similar Documents

Publication Publication Date Title
EP2053690B1 (fr) Radome doté d'une fermeture à plasma intégrée
DE102016101583B4 (de) Radom
DE60015822T2 (de) Mehrkeulenantenne mit frequenzselektiven oder polarisationsempfindlichen Zonen
EP2890655B1 (fr) Vitre revêtue avec zones partiellement sans revêtement
EP3029770B1 (fr) Antenne planaire dotée d'un recouvrement
DE60202778T2 (de) Elektromagnetisches fenster
EP3533108B1 (fr) Paroi de radôme pour les applications des communications
EP2784874B1 (fr) Antenne monopôle à large bande pour deux bandes de fréquences séparées par un écart de fréquence dans la plage d'ondes décimétriques pour des véhicules
DE4216377A1 (de) Funkantennenanordnung in der Nähe von Fahrzeugfensterscheiben
DE2803900A1 (de) Mikrowellenantenne
DE2362913C3 (de) Spiralantenne
EP3465817B1 (fr) Dispositif d'antenne pour un détecteur de radar ayant au moins deux directions de rayonnement et véhicule automobile ayant au moins un détecteur de radar
WO2016042061A1 (fr) Antenne unipolaire à bande large à structure multiple pour deux bandes de fréquence séparées par un espace blanc dans la plage d'ondes décimétriques, destinée à des véhicules
DE102021100501A1 (de) Batteriepack
DE3218690C1 (de) Bikonische Rundstrahlantenne
EP2144363A1 (fr) Générateur de micro-ondes
DE19513263A1 (de) Antennenanordnung auf einem Fenster mit hoher Wärmetransmissionsdämpfung
DE202022107107U1 (de) Integrierte Basisstationsantenne
EP2375491A1 (fr) Antenne à ondes de fuite
DE3431986A1 (de) Polarisationstrennender reflektor
DE102009038038B4 (de) Antennenanordnung für ein Kraftfahrzeug und Kraftfahrzeug
DE3048703A1 (de) "quasioptischer frequenzdiplexer"
EP1145368B1 (fr) Antenne plane a double foyer
EP2485329B1 (fr) Antenne groupée
EP3701771A1 (fr) Porte pour appareil électroménager à micro-ondes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20090922

17P Request for examination filed

Effective date: 20090826

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004360

Country of ref document: DE

Effective date: 20111006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004360

Country of ref document: DE

Effective date: 20120504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008004360

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140814

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20180605

Ref country code: FR

Ref legal event code: CD

Owner name: EADS DEUTSCHLAND GMBH, DE

Effective date: 20180605

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231024

Year of fee payment: 16

Ref country code: DE

Payment date: 20231020

Year of fee payment: 16