DE102016008945A1 - Mikroelektrisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, Modularray und Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche - Google Patents

Mikroelektrisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, Modularray und Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche Download PDF

Info

Publication number
DE102016008945A1
DE102016008945A1 DE102016008945.8A DE102016008945A DE102016008945A1 DE 102016008945 A1 DE102016008945 A1 DE 102016008945A1 DE 102016008945 A DE102016008945 A DE 102016008945A DE 102016008945 A1 DE102016008945 A1 DE 102016008945A1
Authority
DE
Germany
Prior art keywords
electromagnetic radiation
voltage
actuator
electromagnetic
microelectronic module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102016008945.8A
Other languages
English (en)
Inventor
Ralf CASPARI
Robert WEICHWALD
Emanuel ERMANN
Christian Karch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Priority to DE102016008945.8A priority Critical patent/DE102016008945A1/de
Priority to EP17001095.3A priority patent/EP3277060B1/de
Priority to US15/656,333 priority patent/US10426021B2/en
Priority to RU2017126625A priority patent/RU2668956C1/ru
Priority to CN201710617898.0A priority patent/CN107655364A/zh
Publication of DE102016008945A1 publication Critical patent/DE102016008945A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2425Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being flush with the dielectric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H3/00Camouflage, i.e. means or methods for concealment or disguise
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma Technology (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Es wird ein mikroelektronisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche angegeben. Das mikroelektronische Modul weist wenigstens einen Spannungswandler zur Umwandlung einer bereitgestellten ersten Spannung in eine höhere, niedrigere oder identische zweite Spannung auf. Weiter weist das mikroelektronische Modul wenigstens einen Aktuator auf. Der Aktuator weist wenigstens einen Generator zur Erzeugung eines elektrischen Plasmas aus der von dem Spannungswandler bereitgestellten zweiten Spannung auf. Wenigstens der Spannungswandler und der Aktuator sind auf einem dünnschichtigen flächigen Substrat angeordnet. Das durch den Aktuator erzeugte elektrische Plasma interagiert mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung wodurch eine Veränderung der elektromagnetischen Signatur erfolgt.

Description

  • Verschiedene Ausführungsformen betreffen allgemein ein mikroelektronisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, sowie ein Modularray und ein Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche.
  • Die Entwicklung modernder Fahrzeuge, beispielsweise moderner Flugzeuge, geht immer weiter dahin, die Entdeckbarkeit durch beispielsweise gegnerisches Radar zu verringern. Beispielsweise wird dies durch die sogenannte Tarnkappen- oder Stealth-Technologie erreicht. Hierbei wird u. a. die geometrische Form eines Fahrzeugs, wie beispielsweise eines Schiffs, eines Landfahrzeugs oder eines Flugzeugs dahingehend optimiert, dass das Fahrzeug beispielsweise auf einem gegnerischen Radarschirm wesentlich kleiner erscheint, oder an einer anderen Position bzw. verzögert dargestellt wird. Derartige geometrische Optimierungen weisen beispielsweise jedoch den Nachteil auf, dass diese häufig nur passiv wirken und nicht an die jeweilige Situation anpassbar sind.
  • Davon ausgehend ist es Aufgabe der Erfindung, eine Vorrichtung anzugeben, die die vorgenannten Nachteile vermeidet.
  • Diese Aufgabe wird mit einer Vorrichtung mit den Merkmalen des Anspruchs 1 und mit einem Verfahren mit den Merkmalen des Anspruchs 15 gelöst. Beispielhafte Ausführungsformen sind in den abhängigen Ansprüchen dargestellt. Es sei darauf hingewiesen, dass die Merkmale der Ausführungsbeispiele der Vorrichtungen auch für Ausführungsformen des Verfahrens gelten und umgekehrt.
  • Es wird ein mikroelektronisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche angegeben. Das mikroelektronische Modul weist wenigstens einen Spannungswandler zur Umwandlung einer bereitgestellten ersten Spannung in eine höhere, niedrigere oder identische zweite Spannung auf. Weiter weist das mikroelektronische Modul wenigstens einen Aktuator auf. Der Aktuator weist wenigstens einen Generator zur Erzeugung eines elektrischen Plasmas aus der von dem Spannungswandler bereitgestellten zweiten Spannung auf. Wenigstens der Spannungswandler und der Aktuator sind auf einem dünnschichtigen flächigen Substrat angeordnet. Das durch den Aktuator erzeugte elektrische Plasma interagiert mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung wodurch eine Veränderung der elektromagnetischen Signatur erfolgt.
  • Der Erfindung liegt der Gedanke zugrunde, die elektromagnetische Signatur einer Oberfläche durch Erzeugung eines elektrischen Plasmas, das mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung interagiert, zu verändern. Hierbei kann das elektrische Plasma in Abhängigkeit von der auf die Oberfläche auftreffenden elektromagnetischen Strahlung erzeugt werden und die elektromagnetische Signatur einer Oberfläche dadurch verändert werden. Die von der Oberfläche abgestrahlte elektromagnetische Signatur ist durch die Interaktion mit dem elektrischen Plasma vorzugsweise gegenüber einer unbeeinflusst zurückreflektierten elektromagnetischen Signatur, d. h. beispielsweise der Radarquerschnitt eines Fahrzeugs erscheint dadurch beispielsweise auf einem Radarschirm verändert, vorzugsweise verkleinert. Somit lässt sich beispielsweise die elektromagnetische Signatur aktiv an die jeweilige Situation anpassen.
  • Die Bezeichnung „Aktuator” kann als jede Art von Vorrichtung verstanden werden, die geeignet ist, ein elektrisches Signal in eine andere physikalische Größe umzuwandeln.
  • Die Bezeichnung „Spannungswandler” kann als jedes elektrische Element verstanden werden, das in der Lage ist, eine Eingangsspannung in eine höhere, niedrigere oder identische Ausgangsspannung umzuwandeln. Für den Fall das die Eingangsspannung der Ausgangsspannung entspricht, kann das elektrische Element auch nur aus einem elektrischen Verbindungselement bestehen.
  • Gemäß einer bevorzugten Ausführungsform weist das mikroelektronische Modul weiter wenigstens eine Detektionseinheit auf. Die Detektionseinheit weist wenigstens einen Sensor zur Detektion einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung auf. Der Sensor kann beispielsweise dazu geeignet sein, elektromagnetische Wechselwirkungen von auf den Sensor auftreffenden Photonen mit den Elektronen bzw. Atomkernen eines Detektormaterials des Sensors zu detektieren.
  • Gemäß einer bevorzugten Ausführungsform weist das mikroelektronische Modul weiter eine Steuereinheit auf. Die Steuereinheit ist eingerichtet zur Steuerung der Erzeugung des elektrischen Plasmas in Abhängigkeit eines Signals von der Detektionseinheit, eines Empfängers, von Steuerbefehlen einer übergeordneten Sende- und/oder Steuerelementes, und/oder Informationen von wenigstens einem weiteren konventionellen Sensors, einer Antenne und/oder eines Steuer- oder Regelsystems auf. Der Empfänger ist eingerichtet zum Empfang von externen Daten, enthaltend Informationen über die Detektion der auf die Oberfläche auftreffenden elektromagnetischen Strahlung. Das mikroelektronische Modul lässt sich somit entsprechend der detektierten elektromagnetischen Strahlung gezielt steuern um die elektromagnetische Signatur einer Oberfläche zu verändern.
  • Gemäß einer bevorzugten Ausführungsform ist der Aktuator weiter eingerichtet, die auf die Oberfläche auftreffende elektromagnetische Strahlung zu detektieren. Alternativ zu externen Sensoren kann auch der Aktuator selbst in der Lage sein, die auf die Oberfläche auftreffende elektromagnetische Strahlung zu detektieren. Dies hat den Vorteil, dass keine weiteren Detektoren bzw. Sensoren benötigt werden, bzw. die Detektion durch Kombination mit weiteren Detektoren bzw. Sensoren verbessert werden kann.
  • Gemäß einer bevorzugten Ausführungsform erfolgt die Erzeugung des elektrischen Plasmas in Abhängigkeit von der detektierten elektromagnetischen Strahlung und/oder den empfangenen Daten über die auf die Oberfläche auftreffende elektromagnetische Strahlung. Abhängig von der detektierten elektromagnetischen Strahlung und/oder den empfangenen Daten über die auf die Oberfläche auftreffende elektromagnetische Strahlung wird das elektrische Plasma erzeugt. Dies hat den Vorteil, dass die Erzeugung des elektrischen Plasmas an die Anfordernisse angepasst werden kann.
  • Gemäß einer bevorzugten Ausführungsform erfolgt die Veränderung der elektromagnetischen Signatur der Oberfläche durch Absorption und/oder Reflektion einer äußeren Welle der elektromagnetischen Strahlung. Durch Verringerung der Rückstreuung der elektromagnetischen Strahlung und/oder durch Dämpfung der Oberflächenwelle der elektromagnetischen Strahlung kann beispielweise die Absorption und/oder Reflektion der elektromagnetischen Strahlung verändert werden. Alternativ kann die Veränderung der elektromagnetischen Signatur der Oberfläche auch beispielweise durch eine Kombination der zuvor beschriebenen Absorption bzw. Reflektion mit beispielsweise einer konventionellen RAM-(radarabsorbierendes Material)Beschichtung oder anderweitigen radarabsorbierenden Materialien oder auch einer Infrarottarnung erfolgen. Dies hat den Vorteil, dass beispielsweise die radarabsorbierenden Eigenschaften einer RAM-Beschichtung verbessert werden können.
  • Gemäß einer bevorzugten Ausführungsform wird mit Hilfe des wenigstens einen Aktuators eine frequenzselektive Oberfläche erzeugt. Durch Ansteuerung des wenigstens einen Aktuators sind verteilte oder periodisch leitfähige Plasmastrukturen bevorzugt auf, in oder unter der Oberfläche generierbar. Das erzeugte Plasma weist bevorzugt ein spezifisches Frequenzband auf. Die Breite des Frequenzbandes und/oder die Mittelfrequenz sind bevorzugt durch ein angelegtes magnetisches Feld steuerbar. Durch die Beeinflussung des generierten Plasmas wird bevorzugt ein aktives Metamaterial gebildet. Das aktive Metamaterial ist beispielsweise als Bandpass, Bandstopp, Hochpass, Tiefpass oder einer Kombinationen dieser, zur Veränderung der elektromagnetischen Wellen einsetzbar. Dies hat den Vorteil, dass die elektromagnetische Strahlung gezielt verändert werden kann um dadurch beispielsweise das Radarbild zu verfälschen.
  • Gemäß einer bevorzugten Ausführungsform ist das dünnschichtige flächige Substrat eine flexible und/oder mehrdimensional verformbare Folie oder Gitter. Beispielsweise kann das Gitter eine flexible und/oder mehrdimensional verformbare Gitterstruktur aufweisen. Das dünnschichtige flächige Substrat kann alternativ auch aus einem vergleichbaren Material bestehen, das geeignet ist, das die Bauteile des Moduls auf diesem auf-, ein- bzw. angebracht werden können und das möglichst dünn und stabil genug ist. Beispielsweise kann das Substrat auch ein Gewebe, eine Gitterstruktur oder einen Verbundwerkstoff aufweisen. Dies hat den Vorteil, dass das Modul in seinen geometrischen Abmessungen gering gehalten werden kann, wobei eine ausreichende Stabilität gegeben ist, um das Modul beispielsweise auf einer Oberfläche dauerhaft oder reversibel aufzubringen, beispielsweise zu kleben.
  • Gemäß einer bevorzugten Ausführungsform weist das Modul eine Mehrzahl von Aktuatoren auf. Die Mehrzahl der Aktuatoren weist bevorzugt eine unterschiedliche und/oder identische Orientierung auf. Dies hat den Vorteil, dass die beispielsweise aus unterschiedlichen Richtungen auf das Modul auftreffende elektromagnetische Strahlung gezielt verändert werden kann.
  • Gemäß einer bevorzugten Ausführungsform weist das Modul wenigstens ein Schaltelement zur Aktivierung und/oder Deaktivierung des Moduls und/oder wenigstens eines der Mehrzahl von Aktuatoren auf. Dies hat den Vorteil, dass das ein einzelnes Modul selbst, oder ein Modul bzw. mehrere Module einer Mehrzahl von Modulen gezielt aktiviert oder/oder deaktiviert werden können.
  • Die Bezeichnung „Schaltelement” kann als jede Art von Vorrichtung verstanden werden, die geeignet ist, eine Verbindung von einem unterbrochenen Zustand in einen verbundenen Zustand zu verändern. Hierunter kann auch eine einseitig offene Verbindung zu verstehen sein, die beispielsweise durch anschließen des Moduls an beispielsweise eine elektronische Einheit zur Steuerung dauerhaft oder reversibel geschlossen werden kann.
  • Gemäß einer bevorzugten Ausführungsform ist durch die Aktuatoren eine auf der Oberfläche frei definierbare Antenne oder ein Antennenarray zur Anpassung von Antennengewinn, Polarisation und Empfangsrichtung ausbildbar.
  • Die Antenne oder das Antennenarray ist gemäß einer bevorzugten Ausführungsform als Sende- und/oder Empfangsantenne für elektromagnetische Strahlung einsetzbar. Dies hat den Vorteil, dass die Antenne oder das Antennenarray, falls erforderlich, zum Versenden und/oder Empfangen von Daten eingesetzt werden kann. Dies hat den Vorteil, dass das Modul auch als Empfangs- bzw. Sendeantenne verwendbar ist.
  • Gemäß einer bevorzugten Ausführungsform ist die Sende- und/oder Empfangsantenne über eine Ein- und/oder Auskopplungseinrichtung an einen externen Sender und/oder Empfänger ankoppelbar. Dies hat den Vorteil, dass die Antenne bzw. das Antennenarray, das beispielsweise als Sende- und/oder Empfangsantenne ausgebildet sein kann, mit einem externen Sender und/oder Empfänger verbindbar ist. Dadurch können beispielsweise Daten von dem externen Sender über die, als Sendeantenne ausgebildete Antenne bzw. das Antennenarray, versandt werden und/oder Daten von dem externen Empfänger über die als Empfangsantenne ausgebildete Antenne bzw. das Antennenarray, empfangen werden.
  • Gemäß einer bevorzugten Ausführungsform sind der Spannungswandler, das Schaltelement, der Aktuator, die Detektionseinheit, der Sensor, der Empfänger, der Sender und/oder das Steuerelement als MEMS-(Micro-Elektro-Mechanisches System) Struktur ausgeführt. Alternativ können der Spannungswandler, das Schaltelement, der Aktuator, die Detektionseinheit, der Sensor, der Empfänger, der Sender und/oder das Steuerelement auch als Nanoelektromechanisches System ausgebildet sein. Weitere vorteilhafte Komponenten des Moduls können, soweit vorteilhaft und anwendbar, auch beispielsweise als MEMS-Struktur oder als Nanoelektromechanisches System ausgebildet sein. Dies hat den Vorteil, dass das Modul und dessen Komponenten in den Abmessungen sehr klein gehalten werden können. Der für das Modul notwendige Platz kann somit beispielsweise auf Minimum reduziert werden.
  • Weiter wird ein Modularray, aufweisend eine Mehrzahl von zuvor beschriebenen mikroelektronischen Modulen angegeben. Durch die Anordnung einer Mehrzahl der Module in einem Array kann die Veränderung der elektromagnetischen Struktur einer Oberfläche verstärkt werden und/oder gezielt ausgerichtet eingesetzt werden.
  • Gemäß einer Ausführungsform können auch mehrere mikroelektronische Module auf einem gemeinsamen dünnschichtigen flächigen Substrat angeordnet sein. Dies hat den Vorteil, dass beispielsweise die Aufbringung des Moduls auf einer Oberfläche erleichtert, bzw. beschleunigt werden kann wodurch die Kosten für die Montage reduziert werden können.
  • Gemäß einer bevorzugten Ausführungsform sind die Aktuatoren der Mehrzahl der Module zeitversetzt und/oder phasenverschoben ansteuerbar. Die Intensität ist beispielsweise durch Ausnutzung von Interferenzerscheinungen beeinflussbar. Durch eine zeitversetzte und/oder phasenverschobene Ansteuerung der Aktuatoren können gezielt Interferenzerscheinungen bei der Erzeugung des elektrischen Plasmas ausgenutzt werden.
  • Gemäß einer bevorzugten Ausführungsform weist das Modularray ein oder mehrere Schaltelemente auf, die eingerichtet sind, ein oder mehrere Aktuatoren des Modularrays zu aktivieren und/oder zu deaktivieren. Dies hat den Vorteil, dass das Modularray individuell gesteuert werden kann und die geometrischen Abmessungen je nach Anwendung gering gehalten werden können.
  • Weiter wird eine Anordnung wenigstens eines zuvor beschriebenen mikroelektronischen Moduls oder wenigstens eines zuvor beschriebenen Modularrays auf und/oder in einer Oberfläche eines Fahrzeugs angegeben.
  • Gemäß einer bevorzugten Ausführungsform weist die Oberfläche eine Beschichtung auf, die eine auf die Oberfläche auftreffende elektromagnetische Strahlung wenigstens Teilweise absorbiert. Die Beschichtung kann beispielsweise aus einem RAM-Material bestehen.
  • Gemäß einer bevorzugten Ausführungsform ist das Fahrzeug ein Luftfahrzeug, ein Wasserfahrzeug oder ein Landfahrzeug ist. Durch die Anordnung wenigstens eines Moduls oder wenigstens eines Modularrays kann die elektromagnetische Signatur verändert werden, so dass beispielsweise die elektromagnetische Signatur reduziert werden kann und dadurch das Radarabbild des Fahrzeugs verfälscht werden kann.
  • Weiter wird ein Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche unter Verwendung wenigstens eines zuvor beschriebenen mikroelektronischen Moduls oder wenigstens eines zuvor beschriebenen Modularrays angegeben. Das Verfahren weist den Schritt Umwandeln einer bereitgestellten ersten Spannung in eine höhere, niedrigere oder identische zweite Spannung auf. Weiter weist das Verfahren den Schritt Detektion einer elektromagnetischen Strahlung auf. Das Verfahren weist weiter den Schritt Erzeugen eines elektrischen Plasmas aus der zweiten Spannung auf. Weiter weist das Verfahren den Schritt Verändern der elektromagnetischen Signatur der Oberfläche durch Interaktion des erzeugten elektrischen Plasmas mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung auf.
  • In den Zeichnungen beziehen sich im Allgemeinen gleiche Bezugszeichen auf die gleichen Teile über die verschiedenen Ansichten hinweg. Die Zeichnungen sind nicht notwendigerweise maßstabsgetreu; Wert wird stattdessen im Allgemeinen auf die Veranschaulichung der Prinzipien der Erfindung gelegt. In der folgenden Beschreibung werden verschiedene Ausführungsformen der Erfindung beschrieben unter Bezugnahme auf die folgenden Zeichnungen, in denen:
  • 1 eine erste Ausführungsform eines mikroelektronischen Moduls zeigt;
  • 2 ein Modularray aufweisend eine Mehrzahl von mikroelektronischen Modulen zeigt;
  • 3 die Anordnung einer Mehrzahl mikroelektronischer Module auf der Oberfläche eines Flugzeugs zeigt; und
  • 4 ein Flussdiagramm eines Verfahrens zur Veränderung der elektromagnetischen Signatur einer Oberfläche zeigt.
  • Die folgende detaillierte Beschreibung nimmt Bezug auf die beigefügten Zeichnungen, welche zur Erläuterung spezifische Details und Ausführungsformen zeigen, in welchem die Erfindung praktiziert werden kann.
  • Das Wort „beispielhaft” wird hierin verwendet mit der Bedeutung „als ein Beispiel, Fall oder Veranschaulichung dienend”. Jede Ausführungsform oder Ausgestaltung, die hierin als „beispielhaft” beschrieben ist, ist nicht notwendigerweise als bevorzugt oder vorteilhaft gegenüber anderen Ausführungsformen oder Ausgestaltungen auszulegen.
  • In der folgenden ausführlichen Beschreibung wird auf die beigefügten Zeichnungen Bezug genommen, die einen Teil dieser Beschreibung bilden und in denen zur Veranschaulichung spezifische Ausführungsformen gezeigt sind, in denen die Erfindung ausgeübt werden kann. In dieser Hinsicht wird Richtungsterminologie wie etwa „oben”, „unten”, „vorne”, „hinten”, „vorderes”, „hinteres”, usw. mit Bezug auf die Orientierung der beschriebenen Figur(en) verwendet. Da Komponenten von Ausführungsformen in einer Anzahl verschiedener Orientierungen positioniert werden können, dient die Richtungsterminologie zur Veranschaulichung und ist auf keinerlei Weise einschränkend. Es versteht sich, dass andere Ausführungsformen benutzt und strukturelle oder logische Änderungen vorgenommen werden können, ohne von dem Schutzumfang der vorliegenden Erfindung abzuweichen. Es versteht sich, dass die Merkmale der hierin beschriebenen verschiedenen beispielhaften Ausführungsformen miteinander kombiniert werden können, sofern nicht spezifisch anders angegeben. Die folgende ausführliche Beschreibung ist deshalb nicht in einschränkendem Sinne aufzufassen, und der Schutzumfang der vorliegenden Erfindung wird durch die angefügten Ansprüche definiert.
  • Im Rahmen dieser Beschreibung werden die Begriffe ”verbunden”, ”angeschlossen” sowie ”gekoppelt” verwendet zum Beschreiben sowohl einer direkten als auch einer indirekten Verbindung, eines direkten oder indirekten Anschlusses sowie einer direkten oder indirekten Kopplung. In den Figuren werden identische oder ähnliche Elemente mit identischen Bezugszeichen versehen, soweit dies zweckmäßig ist.
  • Bei den hier beschriebenen Verfahren können die Schritte in nahezu jeder beliebigen Reihenfolge ausgeführt werden, ohne von den Prinzipien der Erfindung abzuweichen, wenn nicht ausdrücklich eine zeitliche oder funktionale Abfolge aufgeführt ist. Wenn in einem Patentanspruch dargelegt wird, dass zuerst ein Schritt ausgeführt wird und dann mehrere andere Schritte nacheinander ausgeführt werden, so ist dies so zu verstehen, dass der erste Schritt vor allen anderen Schritten durchgeführt wird, die anderen Schritte jedoch in jeder beliebigen geeigneten Reihenfolge durchgeführt werden können, wenn nicht innerhalb der anderen Schritte eine Abfolge dargelegt ist. Teile von Ansprüchen, in denen beispielsweise „Schritt A, Schritt B, Schritt C, Schritt D und Schritt E” aufgeführt sind, sind so zu verstehen, dass Schritt A zuerst ausgeführt wird, Schritt E zuletzt ausgeführt wird und die Schritte B, C und D in jeder beliebigen Reihenfolge zwischen den Schritten A und E ausgeführt werden können, und dass die Abfolge in den formulierten Schutzumfang des beanspruchten Verfahrens fällt. Des Weiteren können angegebene Schritte gleichzeitig ausgeführt werden, wenn nicht eine ausdrückliche Formulierung im Anspruch darlegt, dass sie separat auszuführen sind. Beispielsweise können ein Schritt zum Ausführung von X im Anspruch und ein Schritt zum Ausführen von Y im Anspruch gleichzeitig innerhalb eines einzelnen Vorgangs durchgeführt werden, und der daraus resultierende Prozess fällt in den formulierten Schutzumfang des beanspruchten Verfahrens.
  • 1 zeigt eine erste Ausführungsform eines mikroelektronischen Moduls 100. Das mikroelektronische Modul 100 zur Veränderung der elektromagnetischen Signatur einer Oberfläche weist in der dargestellten Ausführungsform einen Spannungswandler 101. Der Spannungswandler 101 dient zur Umwandlung einer bereitgestellten ersten Spannung V1 in eine höhere, niedrigere oder identische zweite Spannung V2. Das mikroelektronische Modul 100 weist in der dargestellten Ausführungsform weiter einen Aktuator 102 auf. Der Aktuator 102 weist in der dargestellten Ausführungsform einen Generator 103 zur Erzeugung eines elektrischen Plasmas aus der von dem Spannungswandler 101 bereitgestellten zweiten Spannung V2 auf. Der Spannungswandler 101 und der Aktuator 102 sind auf einem dünnschichtigen flächigen Substrat 104 angeordnet. Das dünnschichtige flächige Substrat 104 ist beispielsweise eine Folie. Das durch den Aktuator 102 erzeugte elektrische Plasma interagiert mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung. Durch das elektrische Plasma wird hierbei die elektromagnetische Signatur der auf die Oberfläche auftreffenden elektromagnetischen Strahlung verändert, vorzugsweise reduziert. Der Spannungswandler 101 ist mit dem Aktuator 102 elektrisch gekoppelt.
  • Gemäß einer weiteren nicht dargestellten Ausführungsform kann das mikroelektronische Modul 100 auch mehr als einen Spannungswandler 101 aufweisen, wobei die mehreren Spannungswandler auch miteinander elektrisch verschaltet sein können und dadurch beispielsweise interagieren können. Das mikroelektronische Modul 100 kann auch mehrere Aktuatoren 102 aufweisen, wobei jeder Aktuator 102 beispielsweise ein oder mehrere Generatoren 103 zur Erzeugung eines elektrischen Plasmas aufweisen können. Weiter kann das mikroelektronische Modul 100 gemäß einer nicht dargestellten Ausführungsform eine Detektionseinheit zur Detektion der auf die Oberfläche auftreffenden elektromagnetischen Strahlung aufweisen, und/oder eine Steuereinheit, eingerichtet zur Steuerung der Erzeugung des elektrischen Plasmas in Abhängigkeit eines Signals von der Detektionseinheit, eines Empfängers, eingerichtet zum Empfang von externen Daten, enthaltend Informationen über die Detektion der auf die Oberfläche auftreffenden elektromagnetischen Strahlung, von Steuerbefehlen einer übergeordneten Sende- und/oder Steuerelementes, und/oder Informationen von wenigstens einem weiteren konventionellen Sensors, einer Antenne und/oder eines Steuer- oder Regelsystems.
  • 2 zeigt ein Modularray 200 aufweisend eine Mehrzahl von mikroelektronischen Modulen 201. Jedes der mikroelektronischen Module 201 weist einen Spannungswandler 202 und einen Aktuator 203, aufweisend einen Generator 204 auf einem dünnschichtigen flächigen Substrat 205 auf. Obwohl jedes der dargestellten Module 201 ein eigenes Schaltelement 204 aufweisen, kann gemäß einer alternativen Ausführungsform (nicht dargestellt) ein Schaltelement 204 auch für zwei oder mehrere Module 201 vorgesehen sein. Die mikroelektronischen Module 201 des Modularrays 200 sind untereinander elektrisch verbunden (nicht dargestellt).
  • 3 zeigt die Anordnung 300 einer Mehrzahl mikroelektronischer Module 301 auf der Unterseite eines Flugzeugs 302 zeigt. Auf der Unterseite der Tragflächen 303, 304 des Flugzeugs 302 sind in der dargestellten Ausführungsform nahezu vollflächig mehrere mikroelektronische Module 301 angeordnet, um die elektromagnetischen Signatur der Flugzeugoberfläche zu verändern.
  • In einer weiteren nicht dargestellten Ausführungsform können mikroelektronische Module 301 auch auf der gesamten Flugzeugoberfläche, sowohl auf der Unterseite als auch auf der Oberseite vorgesehen sein.
  • 4 zeigt ein Flussdiagramm 400 eines Verfahrens zur Veränderung der elektromagnetischen Signatur einer Oberfläche unter Verwendung wenigstens eines Mikroelektronischen-Moduls oder wenigstens eines Modularrays. In Schritt 401 wird eine bereitgestellte erste Spannung in eine höhere, niedrigere oder identische zweite Spannung umgewandelt. In Schritt 402 wird eine elektromagnetische Strahlung detektiert. In Schritt 403 wird ein elektrisches Plasma aus der zweiten Spannung erzeugt. Weiter wird in Schritt 404 die elektromagnetische Signatur der Oberfläche durch Interaktion des erzeugten elektrischen Plasmas mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung verändert.
  • Obwohl die Erfindung vor allem unter Bezugnahme auf bestimmte Ausführungsformen gezeigt und beschrieben worden ist, sollte von denjenigen, die mit dem Fachgebiet vertraut sind, verstanden werden, dass zahlreiche Änderungen bezüglich Ausgestaltung und Details daran vorgenommen werden können, ohne vom Wesen und Bereich der Erfindung, wie durch die angefügten Ansprüche definiert, abzuweichen. Der Bereich der Erfindung wird somit durch die angefügten Ansprüche bestimmt, und es ist daher beabsichtigt, dass sämtliche Änderungen, welche unter den Wortsinn oder den Äquivalenzbereich der Ansprüche fallen, umfasst werden.
  • Bezugszeichenliste
  • 100, 201, 301
    Modul
    101, 202
    Spannungswandler
    102, 203
    Aktuator
    103, 204
    Generator
    104, 205
    Substrat
    200
    Modularray
    300
    Flugzeug
    303, 304
    Tragfläche
    400
    Flussdiagramm
    401–404
    Verfahrensschritte
    V1
    erste Spannung
    V2
    zweite Spannung

Claims (14)

  1. Mikroelektronisches-Modul (100) zur Veränderung der elektromagnetischen Signatur einer Oberfläche, aufweisend: wenigstens einen Spannungswandler (101) zur Umwandlung einer bereitgestellten ersten Spannung (V1) in eine höhere, niedrigere oder identische zweite Spannung (V2); wenigstens einen Aktuator (102), aufweisend wenigstens einen Generator (103) zur Erzeugung eines elektrischen Plasmas aus der von dem Spannungswandler (101) bereitgestellten zweiten Spannung (V2); wobei wenigstens der Spannungswandler (101) und der Aktuator (102) auf einem dünnschichtigen flächigem Substrat (104) angeordnet sind; und wobei durch eine Interaktion des durch den Aktuator (102) erzeugten elektrischen Plasmas mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung eine Veränderung der elektromagnetischen Signatur erfolgt.
  2. Mikroelektronisches-Modul nach Anspruch 1, weiter aufweisend wenigstens eine Detektionseinheit, die wenigstens einen Sensor zur Detektion einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung aufweist; und/oder eine Steuereinheit, eingerichtet zur Steuerung der Erzeugung des elektrischen Plasmas in Abhängigkeit eines Signals von der Detektionseinheit, eines Empfängers, eingerichtet zum Empfang von externen Daten, enthaltend Informationen über die Detektion der auf die Oberfläche auftreffenden elektromagnetischen Strahlung, von Steuerbefehlen einer übergeordneten Sende- und/oder Steuerelementes, und/oder Informationen von wenigstens einem weiteren konventionellen Sensors, einer Antenne und/oder eines Steuer- oder Regelsystems.
  3. Mikroelektronisches-Modul nach Anspruch 1, wobei der Aktuator (102) weiter eingerichtet ist, die auf die Oberfläche auftreffende elektromagnetische Strahlung zu detektieren.
  4. Mikroelektronisches-Modul nach Anspruch 1 oder 2, weiter aufweisend einen Empfänger, eingerichtet zum Empfang von Daten, enthaltend Informationen über die Detektion der auf die Oberfläche auftreffende elektromagnetische Strahlung.
  5. Mikroelektronisches-Modul nach Anspruch 3 oder 4, wobei die Erzeugung des elektrischen Plasmas in Abhängigkeit von der detektierten elektromagnetischen Strahlung und/oder den empfangenen Daten über die auf die Oberfläche auftreffende elektromagnetische Strahlung erfolgt.
  6. Mikroelektronisches-Modul nach einem der vorherstehenden Ansprüche, wobei die Veränderung der elektromagnetischen Signatur der Oberfläche durch Absorption und/oder Reflektion einer äußeren Welle der elektromagnetischen Strahlung, durch Verringerung der Rückstreuung der elektromagnetischen Strahlung und/oder durch Dämpfung der Oberflächenwelle der elektromagnetischen Strahlung erfolgt, oder in einer Kombination mit einer konventionellen RAM-Beschichtung erfolgt.
  7. Mikroelektronisches-Modul nach einem der vorherstehenden Ansprüche, wobei mithilfe des wenigstens einen Aktuators (102) eine frequenzselektive Oberfläche erzeugt wird, wobei durch Ansteuerung des wenigstens einen Aktuators (102) verteilte oder periodisch leitfähig Plasmastrukturen auf, in oder unter der Oberfläche generierbar sind, wobei das erzeugte Plasma ein spezifisches Frequenzband aufweist, wobei die Breite des Frequenzbandes und/oder die Mittelfrequenz durch ein angelegtes magnetisches Feld steuerbar sind, wobei durch die Beeinflussung des generierten Plasmas ein aktives Metamaterial gebildet wird, das als Bandpass, Bandstopp, Hochpass, Tiefpass oder einer Kombinationen dieser zur Veränderung der elektromagnetische Wellen einsetzbar ist.
  8. Mikroelektronisches-Modul nach einem der vorherstehenden Ansprüche, wobei das dünnschichtige flächige Substrat (104) eine flexible und/oder mehrdimensional verformbare Folie oder Gitter ist.
  9. Mikroelektronisches-Modul nach einem der vorherstehenden Ansprüche, wobei das Modul (100) eine Mehrzahl von Aktuatoren (102) aufweist; und/oder, wobei das Modul (100) wenigstens ein Schaltelement zur Aktivierung und/oder Deaktivierung des Moduls und/oder wenigstens eines der Mehrzahl von Aktuatoren (102) aufweist; und/oder wobei durch die Aktuatoren (102) eine auf der Oberfläche frei definierbare Antenne oder ein Antennenarray zur Anpassung von Antennengewinn, Polarisation und Empfangsrichtung ausbildbar ist, wobei die Antenne oder das Antennenarray als Sende- und/oder Empfangsantenne für elektromagnetische Strahlung einsetzbar ist; und/oder wobei die Sende- und/oder Empfangsantenne über eine Ein- und/oder Auskopplungseinrichtung an einen externen Sender und/oder Empfänger ankoppelbar ist.
  10. Mikroelektronisches-Modul nach einem der vorherstehenden Ansprüche, wobei der Spannungswandler (101), das Schaltelement, der Aktuator (102), die Detektionseinheit, der Sensor, der Empfänger, der Sender und/oder das Steuerelement als MEMS-Struktur ausgeführt sind.
  11. Modularray (200), aufweisend eine Mehrzahl von Mikroelektronischen-Modulen (201) nach einem der vorherstehenden Ansprüche.
  12. Modularray nach Anspruch 11, wobei die Aktuatoren (204) der Mehrzahl der Module (201) zeitversetzt und/oder phasenverschoben ansteuerbar sind; wobei die Intensität durch Ausnutzung von Interferenzerscheinungen beeinflussbar ist.
  13. Anordnung (300) wenigstens eines Mikroelektronischen-Moduls (301) oder wenigstens eines Modularrays nach einem der vorherstehenden Ansprüche auf und/oder in einer Oberfläche eines Fahrzeugs (302), wobei die Oberfläche eine Beschichtung aufweist, die eine auf die Oberfläche auftreffende elektromagnetische Strahlung wenigstens Teilweise absorbiert, und/oder wobei das Fahrzeug ein Luftfahrzeug, ein Wasserfahrzeug oder ein Landfahrzeug ist.
  14. Verfahren (400) zur Veränderung der elektromagnetischen Signatur einer Oberfläche unter Verwendung wenigstens eines Mikroelektronischen-Moduls oder wenigstens eines Modularrays nach einem der vorherstehenden Ansprüche, aufweisend die Schritte: Umwandeln einer bereitgestellten ersten Spannung in eine höhere, niedrigere oder identische zweite Spannung (401); Detektion einer elektromagnetischen Strahlung (402); Erzeugen eines elektrischen Plasmas aus der zweiten Spannung (403); Verändern der elektromagnetischen Signatur der Oberfläche durch Interaktion des erzeugten elektrischen Plasmas mit einer auf die Oberfläche auftreffenden elektromagnetischen Strahlung (404).
DE102016008945.8A 2016-07-26 2016-07-26 Mikroelektrisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, Modularray und Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche Ceased DE102016008945A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102016008945.8A DE102016008945A1 (de) 2016-07-26 2016-07-26 Mikroelektrisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, Modularray und Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche
EP17001095.3A EP3277060B1 (de) 2016-07-26 2017-06-28 Mikroelektronisches modul zur veränderung der elektromagnetischen signatur einer oberfläche, modularray und verfahren zur veränderung der elektromagnetischen signatur einer oberfläche
US15/656,333 US10426021B2 (en) 2016-07-26 2017-07-21 Microelectronic module for altering the electromagnetic signature of a surface, module array and method for altering the electromagnetic signature of a surface
RU2017126625A RU2668956C1 (ru) 2016-07-26 2017-07-25 Микроэлектронный модуль, матрица модулей и способ изменения электромагнитной сигнатуры поверхности
CN201710617898.0A CN107655364A (zh) 2016-07-26 2017-07-26 改变表面电磁特征的微电子模块、模块阵列和其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016008945.8A DE102016008945A1 (de) 2016-07-26 2016-07-26 Mikroelektrisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, Modularray und Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche

Publications (1)

Publication Number Publication Date
DE102016008945A1 true DE102016008945A1 (de) 2018-02-01

Family

ID=59284965

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016008945.8A Ceased DE102016008945A1 (de) 2016-07-26 2016-07-26 Mikroelektrisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, Modularray und Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche

Country Status (5)

Country Link
US (1) US10426021B2 (de)
EP (1) EP3277060B1 (de)
CN (1) CN107655364A (de)
DE (1) DE102016008945A1 (de)
RU (1) RU2668956C1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015014256B4 (de) 2015-11-05 2020-06-18 Airbus Defence and Space GmbH Mikroelektronisches Modul zur Reinigung einer Oberfläche, Modularray und Verfahren zur Reinigung einer Oberfläche

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255062B1 (en) * 2004-05-07 2007-08-14 Higman Kumiko I Pseudo surface microwave produced plasma shielding system
DE102007051243B3 (de) * 2007-10-26 2009-04-09 Eads Deutschland Gmbh Radom mit darin integriertem Plasmaverschluss
WO2015024601A1 (en) * 2013-08-23 2015-02-26 Correale Giuseppe Boundary layer control via nanosecond dielectric/resistive barrier discharge

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3228939C1 (de) 1982-08-03 1983-11-24 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Verfahren und Einrichtung zur Beeinflussung der Grenzschicht von umstroemten Koerpern
US4732351A (en) 1985-03-21 1988-03-22 Larry Bird Anti-icing and deicing device
GB2212974B (en) * 1987-11-25 1992-02-12 Fuji Electric Co Ltd Plasma processing apparatus
DE3865202D1 (de) 1988-10-14 1991-10-31 Panares Tech Entwicklungen Gmb Einrichtung zur funktionspruefung der otolithen.
FR2667256A1 (fr) 1990-10-02 1992-04-03 Thomson Csf Dispositif pour eliminer le givre forme en surface d'une paroi, notamment d'une fenetre optique ou radioelectrique.
JP2607088Y2 (ja) 1993-08-23 2001-03-19 ワールドオートプレート株式会社 字光性ナンバープレート
US5535906A (en) * 1995-01-30 1996-07-16 Advanced Energy Industries, Inc. Multi-phase DC plasma processing system
TW369674B (en) * 1996-05-15 1999-09-11 Daihen Corp Plasma processing apparatus
US6774885B1 (en) 1999-01-20 2004-08-10 Motek B.V. System for dynamic registration, evaluation, and correction of functional human behavior
DE19931366A1 (de) 1999-07-07 2001-02-01 T E M Gmbh Flache Baugruppe zur elektrischen Erzeugung eines Plasmas in Luft
DE19933842A1 (de) * 1999-07-20 2001-02-01 Bosch Gmbh Robert Vorrichtung und Verfahren zum Ätzen eines Substrates mittels eines induktiv gekoppelten Plasmas
DE10129041A1 (de) 2001-06-15 2002-12-19 T E M Techn Entwicklungen Und Elektrischer Entladungsapparat zum Zwecke der Erzeugung aktiver Sauerstoffionen und von Ozon mit geregelter piezoelektrischer Hochspannungserzeugung
DE10261875A1 (de) 2002-12-20 2004-07-01 Carl Zeiss Smt Ag Verfahren zur Reinigung von Oberflächen
DE10320467B4 (de) 2003-05-08 2006-02-16 Bayerische Motoren Werke Ag Beleuchtbares Bauteil mit Leuchtfolie und integriertem Spannungswandler
US8087297B2 (en) 2004-03-04 2012-01-03 Ludwiczak Damian R Vibrating debris remover
US7142075B1 (en) * 2004-04-01 2006-11-28 Sandia Corporation Microelectromechanical power generator and vibration sensor
CN1596060B (zh) * 2004-06-18 2011-03-02 大连海事大学 一种强电离放电非平衡等离子体源
DE102004060675B4 (de) 2004-12-15 2024-06-20 Eurocopter Deutschland Gmbh Enteisung von Fluggeräten
KR101101791B1 (ko) 2004-12-30 2012-01-05 엘지디스플레이 주식회사 인버터 구동회로
US7703479B2 (en) 2005-10-17 2010-04-27 The University Of Kentucky Research Foundation Plasma actuator
FR2896398B1 (fr) 2006-01-20 2008-10-31 Eric Labat Dispositif de stimulation oculaire et de detection de reactions corporelles
US7794063B2 (en) 2006-03-15 2010-09-14 Brother Kogyo Kabushiki Kaisha Liquid-droplet jetting head and liquid-droplet jetting apparatus
US7624941B1 (en) 2006-05-02 2009-12-01 Orbital Research Inc. Method of controlling aircraft, missiles, munitions and ground vehicles with plasma actuators
RU2311707C1 (ru) * 2006-06-07 2007-11-27 Сергей Николаевич Чувашев Способ снижения радиовидимости летательного аппарата
US8091836B2 (en) 2007-12-19 2012-01-10 Pratt & Whitney Rocketdyne, Inc. Rotary wing system with ion field flow control
DE102008017963B4 (de) 2008-04-08 2016-10-06 Airbus Defence and Space GmbH Strömungssteuerungsbauelement
US8181910B2 (en) 2008-10-31 2012-05-22 Lewis Blair J Method, apparatus, and system for deflecting air approaching a wing
US9975625B2 (en) 2010-04-19 2018-05-22 The Boeing Company Laminated plasma actuator
US8174354B2 (en) * 2010-07-23 2012-05-08 Sensata Technologies Massachusetts, Inc. Method and apparatus for control of failed thermistor devices
US9072481B2 (en) 2010-09-09 2015-07-07 The Johns Hopkins University Apparatus and method for assessing vestibulo-ocular function
WO2012036602A1 (en) 2010-09-15 2012-03-22 Saab Ab Plasma-enhanced active laminar flow actuator system
RU2469447C2 (ru) * 2010-12-09 2012-12-10 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский центр имени М.В. Келдыша" (ГНЦ ФГУП "Центр Келдыша") Способ снижения радиолокационной заметности объекта, оборудованного, по меньшей мере, одной антенной
US8523115B2 (en) * 2011-01-28 2013-09-03 Lockheed Martin Corporation System, apparatus, program product, and related methods for providing boundary layer flow control
US9327839B2 (en) 2011-08-05 2016-05-03 General Atomics Method and apparatus for inhibiting formation of and/or removing ice from aircraft components
DE102012001981B4 (de) 2012-02-03 2021-07-29 Chronos Vision Gmbh Vorrichtung und Verfahren zur Bestimmung der Subjektiven Visuellen Vertikalen, insbesondere zur Prüfung der Otolithenfunktion
DE102012204925A1 (de) 2012-03-27 2013-10-02 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Fluidisches System, Verwendung und Verfahren zum Betreiben desselben
US20130299637A1 (en) 2012-05-08 2013-11-14 The Boeing Company Ice protection for aircraft using electroactive polymer surfaces
EP2816200B1 (de) 2013-06-18 2017-02-01 General Electric Technology GmbH Verfahren und Vorrichtung zur Unterdrückung der Bildung von Eis auf Einlassluftstrukturen einer Turbomaschine
TWI690968B (zh) * 2014-03-07 2020-04-11 美商應用材料股份有限公司 用於修改基板表面的掠射角電漿處理
DE102014110405A1 (de) 2014-07-23 2016-01-28 Epcos Ag Piezoelektrischer Transformator
DE102015010233A1 (de) 2015-08-12 2017-02-16 Airbus Defence and Space GmbH Mikroelektronisches Modul, Modularray und Verfahren zur Strömungsbeeinflussung
DE102015014256B4 (de) 2015-11-05 2020-06-18 Airbus Defence and Space GmbH Mikroelektronisches Modul zur Reinigung einer Oberfläche, Modularray und Verfahren zur Reinigung einer Oberfläche

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255062B1 (en) * 2004-05-07 2007-08-14 Higman Kumiko I Pseudo surface microwave produced plasma shielding system
DE102007051243B3 (de) * 2007-10-26 2009-04-09 Eads Deutschland Gmbh Radom mit darin integriertem Plasmaverschluss
WO2015024601A1 (en) * 2013-08-23 2015-02-26 Correale Giuseppe Boundary layer control via nanosecond dielectric/resistive barrier discharge

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANDERSON, T. u.a.: Plasma Frequency Selective Surfaces. In: IEEE Transactions on Plasma Science, Vol 35, No. 2, April 2007, S. 407-415 *
KIM, Y. u.a.: Numerical Investigation of 3-D Radar Cross Section of Dielectric Barrier Discharge Plasma. In: Asia-Pacific Microwave Conference APMC, Dec 2015 *
LEE, S.-M. u.a.: Scattering Characteristics of Atmospheric Pressure Dielectric Barrier Discharge Plasma. In: Proceedings of the 10th European Radar Conference, Oct 2013, S. 555-558 *
YUAN, C.-X. u.a.: Properties of Propagation of Electromagnetic Wave in a Multilayer Radar-Absorbing Structure With Plasma- and Radar-Absorbing Material. In: IEEE Transactions on Plasma Science, Vol. 39, No. 9, Sept 2011, S. 1768-1775 *

Also Published As

Publication number Publication date
EP3277060B1 (de) 2022-08-03
EP3277060A1 (de) 2018-01-31
US20180035527A1 (en) 2018-02-01
US10426021B2 (en) 2019-09-24
RU2668956C1 (ru) 2018-10-05
CN107655364A (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
DE102014014860B3 (de) Radarsensoranordnung und Kraftfahrzeug
DE102007061912B4 (de) Pulsradar, fahrzeugmontiertes Radar und Ladungsunterstützungsradar
DE102011101216A1 (de) Integriertes Radarsystem und Fahrzeugregelungssystem
EP3165468B1 (de) Mikroelektronisches modul zur reinigung einer oberfläche, modulanordnung und verfahren zur reinigung einer oberfläche
DE102005056800A1 (de) Verfahren zum Betreiben eines Radarsystems und Radarsystem
DE112014005387T5 (de) Radarvorrichtung und Steuerverfahren derselben
EP2965382B1 (de) Antennenanordnung mit veränderlicher richtcharakteristik
DE112020003906T5 (de) Mehrzielradaremulatorsystem
DE2350332A1 (de) Schutzvorrichtung fuer fahrzeuge
DE3112112C1 (de) Pruefvorrichtung fuer ein Radargeraet mit synthetischer Apertur
DE102014222837A1 (de) Radarsystem
DE102017128507A1 (de) Erzeugung einer Radarwellenform mit mehreren Modulationselementen
DE102016008945A1 (de) Mikroelektrisches Modul zur Veränderung der elektromagnetischen Signatur einer Oberfläche, Modularray und Verfahren zur Veränderung der elektromagnetischen Signatur einer Oberfläche
DE102013010309A1 (de) Antennenabdeckung und Verfahren zu deren Herstellung
DE102012224062B4 (de) Streifenleiterantenne, Gruppenantenne und Radarvorrichtung
DE102007027975A1 (de) Sensorvorrichtung für ein Kraftfahrzeug
EP3133014B1 (de) Mikroelektronisches modul, modularray und verfahren zur strömumgsbeeinflussung
DE2157880A1 (de) Hinderniserkennungsradarsystem mit gekreuzten, fächerförmigen Strahlen
EP2761245A1 (de) Aktives schutzsystem
WO2001045203A1 (de) Funk-sende-/funk-empfangseinrichtung mit abstimmbarer antenne
DE102011084592A1 (de) Kombination eines Radar- und Antennenkopfes
WO2020225314A1 (de) Kohärentes, multistatisches radarsystem, insbesondere zur verwendung in einem fahrzeug
DE102010056526A1 (de) Verfahren zum Bestimmen einer oder mehrerer relativer Richtungen als Zielpeilung oder Zielpeilungen sowie Vorrichtung zur Ausführung des Verfahrens
EP2223154B1 (de) Radarsensoranordnung
EP2656528A1 (de) Verfahren zum betreiben eines elektronischen aufklärungssystems in einer durch einen störsender geschützten umgebung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: LKGLOBAL LORENZ UND KOPF PATENTANWALT, ATTORNE, DE

Representative=s name: LKGLOBAL | LORENZ & KOPF PARTG MBB PATENTANWAE, DE

Representative=s name: LKGLOBAL ] LORENZ & KOPF PARTG MBB PATENTANWAE, DE

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final