EP2049017A2 - Vorrichtung und verfahren zur bestimmung der optimalen bildrekonstruktionsphase für sich quasiperiodisch bewegende objekte - Google Patents

Vorrichtung und verfahren zur bestimmung der optimalen bildrekonstruktionsphase für sich quasiperiodisch bewegende objekte

Info

Publication number
EP2049017A2
EP2049017A2 EP07801594A EP07801594A EP2049017A2 EP 2049017 A2 EP2049017 A2 EP 2049017A2 EP 07801594 A EP07801594 A EP 07801594A EP 07801594 A EP07801594 A EP 07801594A EP 2049017 A2 EP2049017 A2 EP 2049017A2
Authority
EP
European Patent Office
Prior art keywords
phase
reconstruction
image reconstruction
image
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07801594A
Other languages
English (en)
French (fr)
Inventor
Dirk Ertel
Marc Kachelriess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CT Imaging GmbH
Original Assignee
VAMP Verfahren und Apparate der Medizinischen Physik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VAMP Verfahren und Apparate der Medizinischen Physik GmbH filed Critical VAMP Verfahren und Apparate der Medizinischen Physik GmbH
Publication of EP2049017A2 publication Critical patent/EP2049017A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • A61B6/527Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion using data from a motion artifact sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/412Dynamic

Definitions

  • the invention relates to a device and a method for determining the optimal image reconstruction phase for quasi-periodically moving objects, in particular with regard to X-ray computed tomography (CT) of the heart.
  • CT computed tomography
  • the representation of the heart can lead to characteristic movement artifacts in the reconstructed images.
  • the reconstruction algorithm can be synchronized with the object movement. In this case, only projection data from the same movement phases (preferably those with minimal movements of the object to be examined) for a
  • Image reconstruction is used and the remaining data is not taken into account or with reduced weight. This can increase the temporal resolution of the imaging system and the objects are displayed in a quasi-static state.
  • Synchronization signal most widely used for image reconstruction. Moreover, it is known to use the kymogram function, which is e.g. represents the time-dependent centroid movement of a slice under study to use as a synchronization signal.
  • tube current modulation can reduce the dose burden on a cardiac CT scan, with CT's tube current in the high-motion cardiac phases providing low image contributions
  • TCM tube current modulation
  • the heart movement is a non-uniform quasiperiodic motion
  • the heart has a high rate of movement.
  • the diastolic phase on the other hand, after relaxation, the heart is in a short, sedentary resting phase.
  • the diastolic phase which is between 60% and 80% of an RR cycle of an ECG signal
  • the systolic phase which is between 20% and 40% of a RR cycle, for artifact-free reconstruction.
  • An object of the present invention is to enable automatic determination of this optimal reconstruction phase in view of reduction of motion artifacts.
  • This object is achieved by a method for displaying a quasi-periodically moving object with the aid of an image recording system, in particular a computer tomograph, using a phase-correlated reconstruction technique in which an optimal image reconstruction phase is determined using a motion function of the object.
  • Determining the optimal image reconstruction phase using a motion function of the object is characterized.
  • the invention is also achieved by using the motion function of an object to determine an optimal image reconstruction phase in a method of displaying a quasi-periodically moving object using a phase-correlated reconstruction technique and a computer program for solves an above-mentioned image pickup system comprising computer program instructions for carrying out the above-mentioned method when the computer program is executed on a computer.
  • a quasi-periodic signal is understood as meaning a signal with a recurring signal profile, the period of which, however, being variable and not necessarily constant. In this sense, however, a quasi-periodic signal can also be strictly periodic.
  • the present invention modifies the current standard reconstruction technique for computed tomography (CT) -based imaging of moving objects. To obtain images free of motion artifacts, a phase-correlated reconstruction technique is used.
  • the present invention describes a computer tomograph with a fully automatic, computer-aided determination of the optimal reconstruction phase to minimize the
  • the phase section of the quasi-periodic motion function of the moving object is determined from a movement function of the object, in particular the kymogram function, in which a minimal movement takes place.
  • the size of the considered phase section is determined by the system parameters of the imaging modality used.
  • the method described relies on the direct analysis of the actual movement function of the object, ie for example, the actual heart movement function, not a similarity calculation or third-party data.
  • the determination of the optimal reconstruction phase is not based on data describing the object movement only indirectly or indirectly, but on the basis of direct and immediate motion data.
  • the determination of the optimal reconstruction phase takes place exclusively in the raw data space, ie in particular using CT raw data.
  • the image quality is thus improved without the need for steps beyond the already performed image reconstruction.
  • no calculations in the image space, ie based on already reconstructed CT images, are required. This significantly reduces the total time required for the actual CT scan, resulting in a noticeably improved CT scan.
  • the core of the invention is a method that allows to individually calculate the optimal phase for an image reconstruction, in real time for each individual period of the movement, in real time. As a result, the time required for the image reconstruction or the image quality can be improved.
  • the kymogram signal is calculated from the raw data at fixed time intervals, which reflects the time course of the center of mass, from which in turn its speed and finally the optimal reconstruction phase, namely that with minimal movements, can be calculated. In one embodiment of the invention, that of the
  • kymogram kymogram function
  • kymogram signal kymogram signal
  • Fig. 2 shows the ECG signal and the corresponding
  • FIG. 4 shows a cardio-CT image created using a conventional reconstruction technique and a cardio-CT image created using a phase-correlated reconstruction technique.
  • the present invention describes the detection of the optimal motion phase for phase-correlated image reconstruction using the calculated cardiac motion function, the kymogram. This allows a motion artifact-free image reconstruction in the optimal reconstruction phase. A patient-specific adaptation of the reconstruction phase is no longer necessary.
  • the invention will be described below using the example of a cardio-CT system 1. This consists essentially of imaging elements 2 (X-ray tube, detectors, etc.) and an associated control component 3 and a Schmrekoristrukomponente 4, which creates CT images using the raw data obtained from the imaging elements 2, see. FIG. 1. The steps essential to the invention described below are predominantly realized by the control component 3.
  • control component 3 comprises at least one data processing unit with a number of function modules explained in greater detail below, wherein each function module is designed to perform a specific function or a number of specific functions according to the described method.
  • the function modules can be hardware modules or software modules.
  • the invention can be implemented either in the form of computer hardware or in the form of computer software or in a combination of hardware and software.
  • the functions described below are realized by computer program instructions when the computer program is executed on a computer.
  • the computer may be, for example, a standard personal computer or a dedicated medical workstation.
  • the computer program instructions are implemented in a manner known per se in any programming language and can be provided to the data processing unit in any form, for example in the form of data packets which are transmitted via a computer network or in the form of a diskette, a CD-ROM or the like. ROM or a computer program product stored on a different medium.
  • the image reconstruction component 4 also comprises at least one data processing unit and a computer software designed correspondingly for image reconstruction.
  • Such an image reconstruction component is known in the art. In particular, it may be a computer unit installed remotely from the imaging elements 2.
  • the control component 3 comprises a first functional module 5, which is designed to provide the kymogram function of the examined heart.
  • the first functional module 5 with the imaging elements 2 of the CT
  • the kymogram is calculated by the first function module 5 directly from the CT raw data. In contrast to an ECG 7 in which this is only indirectly the case, with the kymogram the actual movements of the heart are detected. On the known structure and the operation of this first functional module 5 of the control component 3 will not be discussed further below.
  • the kymogram signal is provided by the first functional module 5 to a second functional module 6 of the control component 3 or transmitted to it via a data line 103. This second functional module 6 then performs the individual steps described in detail below.
  • FIG. 2 shows an ECG signal 7 and the corresponding kymogram function 8.
  • the movement phase p represents the relative time within the period, ie the time within a period tp € [0, T [normalized to the period T:
  • Phase motion function is preferably obtained by averaging the motion function r c (t) over the recording duration for a selected motion phase p:
  • a motion function of the COM points is generated which is representative of a motion cycle of the COM
  • the modular phase refers to an arbitrary synchronization signal, which reflects the quasi-periodic object movement.
  • the kymogram function itself can be used as the synchronization signal.
  • an additional ECG 10 is used, which is connected via a data line 102 to the control component 3 of the CT system 1.
  • the RR cycle 11 of such an ECG signal is shown in Fig. 2 (below).
  • a phase motion function 12 of an example patient r c (p) for p ⁇ t) e [0, 1 [with 100 samples is shown in FIG.
  • the gray scale coding allows an assignment to the corresponding ECG signal in FIG. 2 (bottom).
  • the velocity of the heart with respect to the motion phase can be determined with the aid of the distance of two adjacent phase-based COM points r c ⁇ p) and r c (p + ⁇ p) to one another.
  • two adjacent COM points at higher speeds have a greater distance ⁇ r c (p + ⁇ p) -r c (p)
  • the optimal reconstruction phase p opt is determined by solving a minimization problem in the second functional module 6 of the control component 3.
  • the distance of the phase COM point r c (p) with respect. of the phase point p to the neighboring phase points r c (p + pi) is minimized by a relevant range 2 -p w :
  • the relevant region 2 -p w width of the time window for the phase-correlated image reconstruction
  • the relevant region 2 -p w is defined by the relative time resolution in the specific example of a phase-correlated image reconstruction in the cardio-CT. This is from the patient's heart rate used
  • the window width would increase at higher heart rates and approximately halve when using a multi-segment reconstruction algorithm with, for example, two windows.
  • Image reconstruction component 4 transmit control signals that enable the selection element to select only those CT raw data for image reconstruction, which include a minimum possible object movement.
  • the necessary measurement data for image reconstruction receives the corresponding component 4 via the data line 107 from the imaging element 2.
  • Reconstructed cardiac CT image 13 and an image 14 made with a phase-correlated reconstruction technique, as shown in FIG. 4, illustrates the improved image quality.
  • Tube current modulation performed.
  • the kymogram function r c (fc) is already calculated during the CT scan.
  • the phase motion function r c (p) can then not be calculated by averaging over the entire recording duration of the kymogram function r c (t), but instead results in a phase movement function dependent on the time of recording:
  • the optimal reconstruction phase P o p t (t) is a time dependency. From this time dependence, the timing of the optimal reconstruction phase within the next cycle of motion can be predicted. This is done using appropriately adapted calculation algorithms in the second functional module 6 of the control component. In other words, from already determined values, the optimum reconstruction phase for the next heart movement cycle can be predicted. Depending on this, then an activation of the imaging elements 2 of the CT system 1 via a
  • Data line 104 in particular the X-ray tube, by the second functional module 6 such that in motion-rich phases that provide low image contributions, the tube current as a function of the cardiac phase p (fc) designed and thus the dose burden is reduced.
  • a correlation calculation is carried out with a template curve (sample movement pattern). For this purpose, previously determined patient-specific
  • the template curve is then stored in the second functional module 6 or provided to the second functional module 6 for use, for example, from an external database via a data line 105, which also for data transport of result or control data of the control component 3 to an external receiving station (not shown) can be.
  • the second functional module uses the minimization method described above to make the optimal reconstruction phases global, within one Movement cycle, or locally, for example, within the systolic or diastolic phase, determined in the Tetnplatekurve.
  • the optimal reconstruction phase and characteristic movement phases such as the midsystolic and diastolic phases, can be determined become. In other words, a comparison of measured data with pattern data takes place so that an optimal reconstruction phase already determined in advance can be found very quickly.
  • This correlation calculation is applicable to both online (ie, real-time) and standard off-line calculation.
  • Template curves can be provided in particular for different heart rate ranges.
  • the heart rate dependency of the optimal reconstruction phase can be met in a simple manner.

Abstract

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Bestimmung der optimalen Bildrekonstruktionsphase für sich quasiperiodisch bewegende Objekte, insbesondere hinsichtlich der Computertomographie (CT) des Herzens. Eine Aufgabe der vorliegenden Erfindung ist es, im Hinblick auf Reduktion der Bewegungsartefakte eine automatische Bestimmung der optimalen Bildrekonstruktionsphase zu ermöglichen. Diese Aufgabe wird durch ein Verfahren zur Darstellung eines sich quasiperiodisch bewegenden Objektes mit Hilfe eines Bildauf nahmesyεtems (1), insbesondere eines Computertomographen, unter Verwendung einer phasenkorrelierten Rekonstruktionstechnik gelöst, bei dem eine optimale Bildrekonstruktionsphase unter Verwendung einer Bewegungsfunktion (8) des Objektes bestimmt wird.

Description

Beschreibung
Vorrichtung und Verfahren zur Bestimmung der optimalen Bildrekonstruktionsphase für sich quasiperiodisch bewegende Objekte
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Bestimmung der optimalen Bildrekonstruktionsphase für sich quasiperiodisch bewegende Objekte, insbesondere hinsichtlich der Röntgen-Computertomographie (CT) des Herzens.
Die Möglichkeit, bewegte Objekte in einem Quasi-Momentzustand bewegungsfrei darzustellen, ist sehr stark von der zeitlichen Auflösung des Aufnahmesystems abhängig. Im Rahmen dieser Beschreibung ist die Aufnahme durch Computertomographen (CT, Mikro-CT, C-Bogen-CT) erläutert, wobei die vorgestellte Technik für jedes andere Aufnahmesystem mit mehrdimensionalen Daten anwendbar ist. Insbesondere in der hochauflösenden klinischen CT besteht die Schwierigkeit, daß sich durch Bewegungen von Organen, wie z.B. Herz, Lunge, Bildunschärfen ergeben.
Speziell in der klinischen CT kann die Darstellung des Herzens zu charakteristischen Bewegungsartefakten in den rekonstruierten Bildern führen. Unter der Vorraussetzung einer quasiperiodischen Objektbewegung läßt sich jedoch der Rekonstruktionsalgorithmus mit der Objektbewegung synchronisieren. Dabei werden lediglich Projektionsdaten aus gleichen Bewegungsphasen (vorzugsweise solchen mit minimalen Bewegungen des zu untersuchenden Objektes) für eine
Bildrekonstruktion verwendet und die restlichen Daten werden nicht oder mit reduziertem Gewicht berücksichtigt. Hierdurch kann die zeitliche Auflösung des bildgebenden Systems erhöht werden und die Objekte werden in einem quasistatischen Zustand dargestellt.
In der humanen Kardio-CT ist die Verwendung eines simultan aufgezeichneten Elektrokardiogramms (EKG) als
Synchronisationssignal für die Bildrekonstruktion am weitesten verbreitet. Darüber hinaus ist es bekannt, die Kymogrammfunktion, welche z.B. die zeitabhängige Schwerpunktsbewegung einer untersuchten Schicht wiedergibt, als Synchronisationssignal zu verwenden.
Unabhängig von dem verwendeten Synchronisationssignal werden für die Bildrekonstruktion periodisch wiederkehrende Objektzustände detektiert. Lediglich die Projektionsdaten innerhalb eines zeitlichen Fensters um den definierten Objektzustand werden für eine phasenkorrelierte Bildrekonstruktion verwendet und liefern somit einen Bildbeitrag, die restlichen Projektionsdaten bleiben unberücksichtigt. Diese Vorgehensweise ist bei allen gängigen Rekonstruktionsverfahren, wie der analytischen „Filtered Back Protection" (PBP) oder der statistischen „Algebraic Reconstruction Technique" (ART) , identisch.
Da einige der Projektionsdaten bei der Bildrekonstruktion unbeachtet bleiben, kann man durch eine Röhrenstrommodulation („tube current modulation" TCM) die Dosisbelastung bei einem Kardio-CT-Scan reduzieren. Hierbei wird in den bewegungsreichen Herzphasen, die geringe Bildbeiträge liefern, der Röhrenstrom des CT-Gerätes reduziert. Hierzu sind aber eine Verfügbarkeit des Synchronisationssignals und eine Kenntnis der gewünschten Rekonstruktionsphase bereits während des CT-Scan erforderlich. Eine Abweichung der später tatsächlich verwendeten von der vorher geplanten Rekonstruktionsphase würde zu einem starken Verlust an Bildqualität führen.
Da es sich besonders bei der Herzbewegung um eine ungleichförmige quasiperiodische Bewegung handelt, sind nicht alle Phasenabschnitte gleichwertig im Sinne der phasenkorrelierten Bildrekonstruktion. In der systolischen Phase beispielsweise, in der das Herz die Auswurfbewegung ausführt, weist das Herz eine hohe Bewegungsgeschwindigkeit auf. In der diastolischen Phase dagegen befindet sich das Herz nach der Relaxation in einer kurzen bewegungsarmen Ruhephase. Somit ist in den meisten Fällen die diastolische Phase, die zwischen 60% und 80% eines RR-Zyklus eines EKG- Signals liegt, die optimale Rekonstruktionsphase. Mit steigender Herzrate gewinnt, im Hinblick auf eine artefaktfreie Rekonstruktion jedoch auch die systolische Phase, die zwischen 20% und 40% eines RR-Zyklus liegt, an Bedeutung. Sowohl die Ungewißheit über eine Rekonstruktion in der systolischen oder in der diastolischen Phase als auch eine leichte patientenspezifische Abweichung innerhalb der typischen Phasenbezüge (Systole, Diastole) ermöglicht keine klare Aussage über eine generelle optimale Rekonstruktionsphase .
Deshalb versuchte man bisher zum einen, durch wiederholte Rekonstruktionen zu unterschiedlichen Phasenpunkten sich iterativ einer optimalen Bildqualität anzunähern. Zum anderen existieren bildbasierte Ansätze, sowohl global (über die gesamte Aufnahmezeit) als auch lokal (zu bestimmten Zeitpunkten) die optimale Rekonstruktionsphase zu bestimmen. Beide Möglichkeiten sind aber durch die vielen notwendigen Bildrekonstruktionen sehr zeit- und ressourcenaufwendig. Darüber hinaus ist es nicht möglich, die optimale Rekonstruktionsphase bereits während des CT-Scans zu bestimmen, da für die bisher bekannten Lösungen die rekonstruierten Bilder und somit die kompletten Rohdaten benötigt werden.
Eine Aufgabe der vorliegenden Erfindung ist es, im Hinblick auf Reduktion der Bewegungsartefakte eine automatische Bestimmung dieser optimalen Rekonstruktionsphase zu ermöglichen.
Diese Aufgabe wird durch ein Verfahren zur Darstellung eines sich quasiperiodisch bewegenden Objektes mit Hilfe eines Bildaufnahmesystems, insbesondere eines Computertomographen, unter Verwendung einer phasenkorrelierten Rekonstruktionstechnik gelöst, bei dem eine optimale Bildrekonstruktionsphase unter Verwendung einer Bewegungsfunktion des Objektes bestimmt wird.
Darüber hinaus wird diese Aufgabe durch ein Bildaufnahmesystem, insbesondere Computertomograph, zur
Darstellung eines sich quasiperiodisch bewegenden Objektes unter Verwendung einer phasenkorrelierten
Rekonstruktionstechnik gelöst, der durch eine Vorrichtung zur
Bestimmung der optimalen Bildrekonstruktionsphase unter Verwendung einer Bewegungsfunktion des Objektes gekennzeichnet ist.
Schließlich wird die Erfindung auch durch die Verwendung der Bewegungsfunktion eines Objektes zur Bestimmung einer optimalen Bildrekonstruktionsphase in einem Verfahren zur Darstellung eines sich quasiperiodisch bewegenden Objektes unter Verwendung einer phasenkorrelierten Rekonstruktionstechnik sowie durch ein Computerprogramm für ein oben genanntes Bildaufnahmesystem gelöst, welches Computerprogrammanweisungen umfaßt zum Ausführen des oben genannten Verfahrens, wenn das Computerprogramm auf einem Rechner ausgeführt wird.
Unter einem quasiperiodischen Signal wird dabei ein Signal mit immer wiederkehrendem Signalverlauf verstanden, dessen Periodendauer jedoch variabel und nicht zwangsläufig konstant ist. In diesem Sinne kann ein quasiperiodisches Signal aber auch streng periodisch sein.
Mit Hilfe der vorliegenden Erfindung wird die derzeit vorhandene standardmäßige Rekonstruktionstechnik für die Computertomographie (CT) -basierte Darstellung von sich bewegenden Objekten modifiziert. Um Bilder zu erhalten, die frei von Bewegungsartefakten sind, wird eine phasenkorrelierte Rekonstruktionstechnik verwendet. Die vorliegende Erfindung beschreibt einen Computertomographen mit einer vollautomatischen, rechnergestützten Bestimmung der optimalen Rekonstruktionsphase zur Minimierung der
Bewegungsartefakte. Hierzu wird aus einer Bewegungsfunktion des Objektes, insbesondere der Kymogrammfunktion, der Phasenabschnitt der quasiperiodischen Bewegungsfunktion des bewegten Objektes ermittelt, in dem eine minimale Bewegung stattfindet. Die Größe des betrachteten Phasenabschnittes wird durch die Systemparameter der verwendeten bildgebenden Modalität bestimmt. Mit der Erfindung wird die erzielbare Bildqualität deutlich erhöht und damit der diagnostische Wert der Aufnahmen vergrößert .
Im Gegensatz zu den bereits bestehenden Lösungsansätzen stützt sich die beschriebene Methode auf die direkte Analyse der tatsächlichen Bewegungsfunktion des Objektes, also beispielsweise der tatsächlichen Herzbewegungsfunktion, und nicht auf eine Ähnlichkeitsberechnung oder auf Drittdaten. Mit anderen Worten erfolgt die Bestimmung der optimalen Rekonstruktionsphase nicht auf Daten, welche die Objektbewegung lediglich mittelbar oder indirekt beschreiben, sondern auf der Grundlage direkter und unmittelbarer Bewegungsdaten. Die Bestimmung der optimalen Rekonstruktionsphase erfolgt dabei ausschließlich im Rohdatenraum, also im speziellen unter Verwendung von CT- Rohdaten. Die Bildqualität wird somit verbessert, ohne daß dafür über die ohnehin durchgeführte Bildrekonstruktion hinausgehende Schritte notwendig sind. Insbesondere sind keine Berechnungen im Bildraum, also basierend auf bereits rekonstruierten CT-Bildern, erforderlich. Damit wird die für den eigentlichen CT-Scan benötigte Gesamtzeit deutlich verringert, was einen spürbar verbesserten Ablauf der CT- Untersuchung zur Folge hat.
Kern der Erfindung ist ein Verfahren, das es erlaubt, individuell auf den Patienten und auch in Echtzeit auf jede einzelne Periode der Bewegung abgestimmt, die optimale Phase für eine Bildrekonstruktion zu berechnen. Dadurch können die für die Bildrekonstruktion notwendige Zeit bzw. die Bildqualität verbessert werden. Hierzu wird aus den Rohdaten in festen zeitlichen Abständen das Kymogrammsignal berechnet, das den zeitlichen Verlauf des Massenschwerpunkts widerspiegelt, aus dem wiederum dessen Geschwindigkeit und schließlich die optimale Rekonstruktionsphase, nämlich die mit minimalen Bewegungen, berechnet werden kann. In einer Ausführungsform der Erfindung wird die aus dem
Kymogrammsignal resultierende minimale Objektgeschwindigkeit detektiert und somit die optimale Rekonstruktionsphase bestimmt. In einer weiteren Ausführungsform der Erfindung werden diese individuellen und periodenabhängigen Ergebnisse mit gemittelten Kurven (Templates) verglichen, um den Einfluß des Rauschens ∑:u verringern.
Darüber hinaus wird eine Implementierung für eine Berechnung in Echtzeit beschrieben, welches die Voraussetzung für eine optimale Röhrenstrommodulation ist. Hierdurch ergibt sich, verglichen mit bildbasierten Methoden, eine schnelle rohdatenbasierte Methode zur Bestimmung der patientenspezifischen optimalen Rekonstruktionsphase bei gleichzeitiger Verringerung der Strahlungsbelastung für den Patienten.
Die Begriffe Kymogramm, Kymogrammfunktion und Kymogrammsignal werden in dieser Beschreibung synonym verwendet. Unter einem Kymogramm wird eine Bewegungsinformation verstanden, wie sie in den folgenden Veröffentlichungen beschrieben ist:
Marc Kachelrieß, Dirk-Alexander Sennst, Wolfgang Maximoser, und Willi A. Kalender: "Kymogram detection and kymogram- correlated image reconstruction from subsecond spiral computed tomography scans of the heart" . Medical Physics, 29(7) :1489-1503,
W.A. Kalender und M. Kachelrieß: „Computertomograph mit objektbezogener Bewegungsartefaktreduktion und Extraktion der ObjektbewegungsInformation Kymogramm". European Patent Application Nr. 99111708.6.
Der Inhalt dieser beiden Veröffentlichungen wird hiermit vollumfänglich in die vorliegende Beschreibung aufgenommen. Einzelheiten zu der Kymogrammfunktion und deren Erfassung sind aus den oben genannten Veröffentlichungen bekannt, so daß im Rahmen dieser Beschreibung nicht näher darauf eingegangen werden braucht.
Weitere vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen angegeben und werden nachfolgend im
Zusammenhang mit einem Ausführungsbeispiel der Erfindung beschrieben, das anhand der folgenden Zeichnungen näher erläutert wird. Diese zeigen:
Fig. 1 ein schematisches CT-System mit seinen für die vorliegende Erfindung wesentlichen Bestandteilen,
Fig. 2 das EKG-Signal und die korrespondierende
Kymogrammfunktion (oben) sowie den RR-Zyklus des EKG-Signals und die korrespondierende (nodulare
Phase p(t) (unten),
Fig. 3 Bewegungsfunktion eines Beispielpatienten,
Fig. 4 ein mit einer herkömmlicher Rekonstruktionstechnik erstelltes Kardio-CT-Bild und ein mit einer phasenkorrelierten Rekonstruktionstechnik erstelltes Kardio-CT-Bild.
Die vorliegende Erfindung beschreibt die Detektion der optimalen Bewegungsphase für eine phasenkorrelierte Bildrekonstruktion unter Verwendung der errechneten Herzbewegungsfunktion, dem Kymogramm. Hierdurch wird eine bewegungsartefaktfreie Bildrekonstruktion in der optimalen Rekonstruktionsphase ermöglicht. Eine patientenspezifische Adaption der Rekonstruktionsphase ist nicht mehr notwendig. Die Erfindung wird nachfolgend am Beispiel eines Kardio-CT- Systems 1 beschrieben. Dieses besteht im wesentlichen aus bildgebenden Elementen 2 (Röntgenröhre, Detektoren, etc.) sowie einer damit verbundenen Steuerungskomponente 3 sowie einer Bildrekoristruktionskomponente 4, die unter Verwendung der von den bildgebenden Elementen 2 erhaltenen Rohdaten CT- Bilder erstellt, vgl. Fig. 1. Die nachfolgend beschriebenen erfindungswesentlichen Schritte werden überwiegend von der Steuerungskomponente 3 verwirklicht.
Die Steuerungskomponente 3 umfaßt dabei wenigstens eine Datenverarbeitungseinheit mit einer Anzahl von weiter unten näher erläuterten Funktionsmodulen, wobei jedes Funktionsmodul ausgebildet ist zur Durchführung einer bestimmten Funktion oder einer Anzahl bestimmter Funktionen gemäß dem beschriebenen Verfahren. Bei den Funktionsmodulen kann es sich um Hardwaremodule oder Softwaremodule handeln. Mit anderen Worten kann die Erfindung, soweit es die Datenverarbeitungseinheit betrifft, entweder in Form von Computerhardware oder in Form von Computersoftware oder in einer Kombination aus Hardware und Software verwirklicht werden. Soweit die Erfindung in Form von Software verwirklicht ist, werden die nachfolgend beschriebenen Funktionen durch Computerprogrammanweisungen realisiert, wenn das Computerprogramm auf einem Rechner ausgeführt wird. Der Rechner kann beispielsweise ein Standard-Personalcomputer oder eine dedi zierte medizinische Workstation sein. Die Computerprogrammanweisungen sind dabei auf an sich bekannte Art und Weise in einer beliebigen Programmiersprache verwirklicht und können der Datenverarbeitungseinheit in beliebiger Form bereitgestellt werden, beispielsweise in Form von Datenpaketen, die über ein Rechnernetz übertragen werden, oder in Form eines auf einer Diskette, einer CD-ROM oder einem anderen Datenträger gespeicherten Computerprogrammprodukts .
Auch die Bildrekonstruktionskomponente 4 umfaßt wenigstens eine Datenverarbeitungseinheit sowie eine entsprechend zur Bildrekonstruktion ausgebildete Computersoftware. Eine derartige Bildrekonstruktionskomponente ist aus dem Stand der Technik bekannt. Es kann sich dabei insbesondere um eine entfernt von den bildgebenden Elementen 2 installierte Rechnereinheit handeln.
Die Steuerungskomponente 3 umfaßt ein erstes Funktionsmodul 5, das zur Bereitstellung der Kymogrammfunktion des untersuchten Herzens ausgebildet ist. Hierzu ist das erste Funktionsmodul 5 mit den bildgebenden Elementen 2 des CT-
Systems 1 über eine Datenleitung 101 verbunden. Das Kymogramm wird dabei von dem ersten Funktionsmodul 5 direkt aus den CT- Rohdaten berechnet. Im Gegensatz zu einem EKG7 bei dem dies nur indirekt der Fall ist, werden mit dem Kymogramm die tatsächlichen Bewegungen des Herzens erfaßt. Auf den an sich bekannten Aufbau und die Arbeitsweise dieses ersten Funktionsmoduls 5 der Steuerungskomponente 3 wird nachfolgend nicht weiter eingegangen. Das Kymogrammsignal wird von dem ersten Funktionsmodul 5 einem zweiten Funktionsmodul 6 der Steuerungskomponente 3 bereitgestellt bzw. zu diesem über eine Datenleitung 103 übertragen. Dieses zweite Funktionsmodul 6 führt dann die nachfolgend im Detail beschriebenen Einzelschritte durch.
Das zweidimensionale Kymogrammsignal
spiegelt die Bewegung des Massenschwerpunkts (center-of-mass, COM-Punkt) der durchleuchteten Schicht des Herzens in x- und y-Richtung wiecder. Durch die Pumpbewegung des Herzens variiert der COM-Punkt mit der Zeit und gibt daher die Herzbewegung wieder. In Fig. 2 (oben) ist ein EKG-Signal 7 und die korrespondierende Kymogrammfunktion 8 dargestellt.
Da es sich bei dem Kymogrammsignal um ein quasiperiodisches Signal handelt, ist für die Erfindung lediglich die Phasenbewegungsfunktion rc(p) eines Bewegungszyklus
(Bewegungsperiode) bezüglich der Bewegungsphase p von Interesse. Dazu werden innerhalb des kontinuierlichen Zeitsignals rc(t) mit t e [tStart# tEnd] die einzelnen Bewegungszyklen mit der Periodenlänge T betrachtet. Dabei stellt die Bewegungsphase p den relativen Zeitpunkt innerhalb der Periode dar, d.h. den Zeitpunkt innerhalb einer Periode tp € [0, T[ normiert auf die Periodendauer T:
P
Eine repräsentative, patientenspezifische
Phasenbewegungsfunktion wird vorzugsweise dadurch erhalten, indem die Bewegungsfunktion rc(t) über die Aufnahmedauer für eine gewählte Bewegungsphase p gemittelt wird:
Mit anderen Worten wird eine Bewegungsfunktion der COM-Punkte erzeugt, die repräsentativ ist für einen Bewegungszyklus des
Herzens. Dabei stellt p(fc) € [0, 1 [die modulare Phase 9 des Signals dar, welche der Bewegungsphase p zum Zeitpunkt t e [tstart, tEnd] entspricht und beispielhaft in Fig. 2 (unten) abgebildet ist :
Die variable Herzrate wird hierbei durch 1/Tn=I/ ( tn+i- tn) und die Synchronisationspunkte durch tn+i, tn mit tn+1>tn angegeben. Die modulare Phase bezieht sich dabei auf ein beliebiges Synchronisationssignal, welches die quasiperiodische Objektbewegung widerspiegelt.
Als Synchronisationssignal kann beispielsweise die Kymogrammfunktion selbst verwendet werden. Insbesondere in der Kardio-CT wird ein zusätzliches EKG 10 eingesetzt, das über eine Datenleitung 102 an die Steuerungskomponente 3 des CT-Systems 1 angeschlossen wird. Der RR-Zyklus 11 eines solchen EKG-Signals ist in Fig. 2 (unten) abgebildet.
Eine Phasenbewegungsfunktion 12 eines Beispielpatienten rc(p) für p{t) e [0, 1 [ mit 100 Abtastwerten ist in Fig. 3 dargestellt. Die Graustufenkodierung ermöglicht dabei eine Zuordnung zu dem korrespondierenden EKG-Signal in Fig. 2 (unten) . Die in dem linken unteren Bereich der Fig. 3 dargestellten hellgrauen Meßpunkte entsprechend dabei der systolischen Phase (p (t) =20%-40%) und die im Mittelbereiche dargestellten dunkleren Meßpunkte entsprechen der diastolischen Phase (p (t) =60%-80%) . Die Geschwindigkeit des Herzens hinsichtlich der Bewegungsphase kann dabei mit Hilfe des Abstandes zweier benachbarter phasenbasierter COM-Punkte rc{p) und rc (p+Δp) zueinander bestimmt werden. Bei einer konstanten phasenbasierten Abtastrate Δp weisen zwei benachbarte COM- Punkte bei höheren Geschwindigkeiten einen größeren Abstand \rc (p+Δp) -rc (p) | auf als bei niedrigeren Geschwindigkeiten.
Die optimale Rekonstruktionsphase popt wird durch das Lösen eines Minimierungsproblems in dem zweiten Funktionsmodul 6 der Steuerungskomponente 3 bestimmt. Hierbei wird der Abstand des Phasen-COM-Punktes rc(p) bzgl . des Phasenpunktes p zu den Nachbarphasenpunkten rc(p+pi) um einen relevanten Bereich 2 -pw minimiert:
Der relevante Bereich 2 -pw (Weite des Zeitfensters für die phasenkorrelierte Bildrekonstruktion) ist in dem speziellen Beispiel einer phasenkorrelierten Bildrekonstruktion in der Kardio-CT durch die relative Zeitauflösung definiert. Diese ist von der Herzrate des Patienten, dem verwendeten
Rekonstruktionsalgorithmus (u.a. Single-segment, multi- segment) und den Systemparametern des CT-Systems 1 abhängig. So würde sich beispielsweise die Fensterweite bei höheren Herzraten vergrößern und bei der Verwendung eines Multisegmentrekonstruktionsalgorithmus mit beispielsweise zwei Fenstern annähernd halbieren. Nachdem die optimale Rekonstruktionsphase popt in dem zweiten Funktionsmodul 6 der Steuerungskomponente 3 bestimmt ist, erfolgt eine entsprechende Ansteuerung der Komponente 4 zur Bildrekonstruktion über eine Datenleitung 106. Insbesondere werden an ein Auswahlelement der
Bildrekonstruktionskomponente 4 Steuersignale übertragen, die das Auswahlelement dazu befähigen, nur solche CT-Rohdaten zur Bildrekonstruktion auszuwählen, die eine minimal mögliche Objektbewegung beinhalten. Die notwendigen Meßdaten zur Bildrekonstruktion erhält die entsprechende Komponente 4 über die Datenleitung 107 von dem bildgebenden Element 2. Eine Gegenüberstellung eines mit herkömmlicher
Rekonstruktionstechnik erstellten Kardio-CT-Bildes 13 und eines mit einer phasenkorrelierten Rekonstruktionstechnik erstellten Bildes 14, wie in Fig. 4 dargestellt, macht die verbesserte Bildqualität deutlich.
In einer weiteren Ausgestaltung der Erfindung wird in dem zweiten Funktionsmodul eine online- (d.h. Echtzeit-) fähige Berechnung der optimalen Rekonstruktionsphase für eine
Röhrenstrommodulation (TCM) durchgeführt. Hierfür wird die Kymogrammfunktion rc(fc) bereits während des CT-Scans berechnet. Die Phasenbewegungsfunktion rc(p) kann dann jedoch nicht durch eine Mittelung über die gesamte Aufnahmedauer der Kymogrammfunktion rc(t) berechnet werden, sondern es ergibt sich eine vom Aufnahmezeitpunkt abhängige Phasenbewegungsfunktion:
'start
Unter Verwendung des oben genannten Minimierungsverfahrens ergibt sich somit für die optimale Rekonstruktionsphase Popt(t) eine Zeitabhängigkeit. Aus dieser Zeitabhängigkeit läßt sich der Zeitpunkt der optimalen Rekonstruktionsphase innerhalb des nächsten Bewegungszyklus vorhersagen. Dies erfolgt unter Verwendung entsprechend angepaßter Berechnungsalgcorithmen in dem zweiten Funktionsraodul 6 der Steuerungskompόnente . Mit anderen Worten läßt sich aus bereits ermittelten Werten die optimale Rekonstruktionsphase für den nächsten Bewegungszyklus des Herzen vorhersagen. In Abhängigkeit davon erfolgt anschließend eine Ansteuerung der bildgebenden Elemente 2 des CT-Systems 1 über eine
Datenleitung 104, insbesondere der Röntgenröhre, durch das zweite Funktionsmodul 6 derart, daß in bewegungsreichen Phasen, die geringe Bildbeiträge liefern, der Röhrenstrom als eine Funktion der Herzphase p(fc) gestaltet und somit die Dosisbelastung reduziert wird.
In einer weiteren Ausgestaltung der Erfindung erfolgt eine Korrelationsberechnung mit einer Templatekurve (Musterbeispielbewegungskurve) . Hierfür werden im Vorfeld der Anwendung zuvor ermittelte patientenspezifische
Phasenbewegungsfunktionen rc(p) über eine gewisse Anzahl an Patienten zu einer repräsentativen Templatekurve gemittelt. Die Templatekurve wird dann in dem zweiten Funktionsmodul 6 abgelegt oder dem zweiten Funktionsmodul 6 zur Nutzung bereitgestellt, beispielsweise von einer externen Datenbank über eine Datenleitung 105, die auch zum Datentransport von Ergebnis- oder Kontrolldaten der Steuerungskomponente 3 an eine externe Empfangsstation (nicht dargestellt) verwendet werden kann.
Während eines CT-Scans werden durch das zweite Funktionsmodul mit Hilfe des oben beschriebenen Minimierungsverfahrens die optimalen Rekonstruktionsphasen global, innerhalb eines Bewegungszyklus, oder auch lokal, beispielsweise innerhalb der systolischen oder diastolischen Phase, in der Tetnplatekurve bestimmt. Über eine ebenfalls durch das zweite Funktionsmodul ausgeführte Korrelationsberechnung der patientenspezifischen Phasenbewegungsfunktion rc(p) oder rc(p,t) mit der Templatekurve können dann sowohl die optimale Rekonstruktionsphase, als auch charakteristische Bewegungsphasen, wie beispielsweise die midsystolische und die diastolische Phase, bestimmt werden. Mit anderen Worten findet ein Vergleich von gemessenen Daten mit Musterdaten statt, so daß sehr schnell eine bereits im Vorfeld bestimmte optimale Rekonstruktionsphase gefunden werden kann. Diese Korrelationsberechnung ist sowohl für eine online- (d.h. Echtzeit-) als auch eine standardmäßige offline-Berechnung anwendbar.
Templatekurven können insbesondere für verschiedene Herzfrequenzbereiche bereitgestellt werden. Somit kann der Herzfrequenzabhängigkeit der optimalen Rekonstruktionsphase auf einfache Art und Weise begegnet werden.
Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein.
Bezugszeichenliste
1 CT-System 2 bildgebende Elemente
3 Steuerungskomponente
4 Bildrekonstruktionskomponente
5 erstes Funktionsmodul 6 zweites Funktionsmodul
7 EKG-Signal
8 Kymogramm
9 modulare Phase 10 EKG
11 RR-Zyklus
12 Phasenbewegungsfunktion
13 herkömmliches CT-BiId
14 verbessertes CT-BiId 101-107 Datenleitungen

Claims

Ansprüche
1. Verfahren zur Darstellung eines sich quasiperiodisch bewegenden Objektes mit Hilfe eines Bildaufnahmesystems (2) , insbesondere eines Computertomographen, unter Verwendung einer phasenkorrelierten Rekonstruktionstechnik, dadurch gekennzeichnet, daß eine optimale Bildrekonstruktionsphase unter Verwendung einer Bewegungsfunktion (8) des Objektes bestimmt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es sich bei der Bewegungsfunktion um ein Kymogramm handelt.
3. Verfahren mich Anspruch 1 oder 2, gekennzeichnet durch eine Ansteuerung wenigstens einzelner Elemente (2) des
Bildaufnahmesystems (1) entsprechend der bestimmten optimalen Bildrekonstruktionsphase .
4. Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet durch eine Ansteuerung wenigstens einzelner Elemente einer
Bildrekonstruktionskomponente (4) entsprechend der bestimmten optimalen Bildrekonstruktionsphase .
5. Bildaufnahmesystem (1), insbesondere Computertomograph, zur Darstellung eines sich quasiperiodisch bewegenden
Objektes unter Verwendung einer phasenkorrelierten Rekonstruktionstechnik, gekennzeichnet durch eine Vorrichtung (5) zur Bestimmung der optimalen Bildrekonstruktionsphase unter Verwendung einer Bewegungsfunktion (8) des Objektes.
6. Verwendung der Bewegungsfunktion (8) eines Objektes zur Bestimmung einer optimalen Bildrekonstruktionsphase in einem Verfahren zur Darstellung eines sich quasiperiodisch bewegenden Objeiktes unter Verwendung einer phasenkorrelierten Rekonstruktionstechnik .
7. Computerprogramm für ein Bildaufnahmesystem (1) nach Anspruch 5, mit Computerprogrammanweisungen zum Ausführen des Verfahrens nach einem der Ansprüche 1 bis 4, wenn das Computerprogramm auf einem Rechner (3) ausgeführt wird.
EP07801594A 2006-08-10 2007-08-10 Vorrichtung und verfahren zur bestimmung der optimalen bildrekonstruktionsphase für sich quasiperiodisch bewegende objekte Withdrawn EP2049017A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006037601A DE102006037601A1 (de) 2006-08-10 2006-08-10 Vorrichtung und Verfahren zur Bestimmung der optimalen Bildrekonstruktionsphase für sich quasiperiodisch bewegende Objekte
PCT/EP2007/007091 WO2008017493A2 (de) 2006-08-10 2007-08-10 Vorrichtung und verfahren zur bestimmung der optimalen bildrekonstruktionsphase für sich quasiperiodisch bewegende objekte

Publications (1)

Publication Number Publication Date
EP2049017A2 true EP2049017A2 (de) 2009-04-22

Family

ID=38922076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07801594A Withdrawn EP2049017A2 (de) 2006-08-10 2007-08-10 Vorrichtung und verfahren zur bestimmung der optimalen bildrekonstruktionsphase für sich quasiperiodisch bewegende objekte

Country Status (3)

Country Link
EP (1) EP2049017A2 (de)
DE (1) DE102006037601A1 (de)
WO (1) WO2008017493A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028805A1 (de) 2009-04-23 2010-10-28 Mir Medical Imaging Research Holding Gmbh Vorrichtung und Verfahren zur Bestimmung der Bewegungsphase sich quasiperiodisch bewegender Objekte mit dem Ziel der Steuerung von Aufnahmesystemen
DE102011078517B4 (de) * 2011-07-01 2013-09-05 Siemens Aktiengesellschaft Verfahren zum Bereitstellen einer Darstellung eines sich nahezu zyklisch bewegenden Objekts
CN109389653B (zh) * 2018-09-27 2023-01-03 上海联影医疗科技股份有限公司 心脏图像重建方法、装置、计算机设备和可读存储介质
US10950016B2 (en) 2018-06-11 2021-03-16 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for reconstructing cardiac images
US10736594B2 (en) 2018-11-26 2020-08-11 General Electric Company Data-based scan gating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6381487B1 (en) * 1998-11-27 2002-04-30 Siemens Aktiengesellschaft Method and apparatus for producing CT images
US20040116804A1 (en) * 1998-10-23 2004-06-17 Hassan Mostafavi Method and system for radiation application
WO2006067671A2 (en) * 2004-12-22 2006-06-29 Philips Intellectual Property & Standards Gmbh Method and apparatus for cardiac computed tomography

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664189B2 (ja) * 1988-03-25 1997-10-15 株式会社日立製作所 核磁気共鳴を用いた検査装置
US5271055A (en) * 1992-08-19 1993-12-14 General Electric Company Methods for reducing motion induced artifacts in a projection imaging system
EP1061474A1 (de) * 1999-06-17 2000-12-20 VAMP Verfahren und Apparate der Medizinischen Physik GmbH Computertomograph mit objektbezogener Bewegungsartefaktreduktion und Extraktion der Objektbewegungsinformation (Kymogramm)
WO2001041648A1 (en) * 1999-12-07 2001-06-14 Koninklijke Philips Electronics N.V. Ultrasonic image processing method and system for displaying a composite image sequence of an artery segment
DE10129631A1 (de) * 2001-06-20 2003-01-02 Philips Corp Intellectual Pty Verfahren zur Rekonstruktion eines hoch aufgelösten 3D-Bildes
US7542544B2 (en) * 2004-01-06 2009-06-02 The Regents Of The University Of Michigan Ultrasound gating of cardiac CT scans
ITPI20040066A1 (it) * 2004-09-21 2004-12-21 Cnr Consiglio Naz Delle Ricerche Metodo e dispositivo per la valutazione automatica di indici di funzionalita' cardiovascolare mediante elaborazione di immagini ecografiche

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116804A1 (en) * 1998-10-23 2004-06-17 Hassan Mostafavi Method and system for radiation application
US6381487B1 (en) * 1998-11-27 2002-04-30 Siemens Aktiengesellschaft Method and apparatus for producing CT images
WO2006067671A2 (en) * 2004-12-22 2006-06-29 Philips Intellectual Property & Standards Gmbh Method and apparatus for cardiac computed tomography

Also Published As

Publication number Publication date
WO2008017493A2 (de) 2008-02-14
DE102006037601A1 (de) 2008-02-14
WO2008017493A3 (de) 2008-04-10

Similar Documents

Publication Publication Date Title
DE60014001T2 (de) Verfahren und Vorrichtung zur auf Scout basierten Verkalkungsmessung
DE60034748T2 (de) Verfahren und Vorrichtung zur bewegungsfreien kardiologischen Computertomographie
DE69838533T2 (de) Verfahren und Gerät für Strahlungstomographie
DE60215964T2 (de) Verfahren zur rekonstruktion eines 3d bildes mit hoher auflösung
DE19957083B4 (de) Verfahren zur Untersuchung eines eine periodische Bewegung ausführenden Körperbereichs
DE60036033T2 (de) Herzscanner für mehrere herzphasen
DE60128496T2 (de) Computertomographie -Abbildungsgerät mit reduzierter Strahlung
DE102010019016B4 (de) Verfahren zur Rekonstruktion von Bilddaten eines bewegten Untersuchungsobjektes aus Messdaten nebst zugehöriger Gegenstände
DE10064785A1 (de) Verfahren und Vorrichtung zum Schätzen einer Herzbewegung unter Verwendung von Projektionsdaten
DE10247299A1 (de) Bildverarbeitungseinheit und Verfahren für die Zuordnung von gespeicherten zu aktuellen Aufnahmen
DE102016219887A1 (de) Verfahren und System zur Nutzung von Messdaten
DE102011079270B4 (de) Verfahren und ein CT-System zur Aufnahme und Verteilung von Ganzkörper-CT-Daten eines polytraumatisierten Patienten
DE102013201136A1 (de) Vorhersage eines voraussichtlichen Kontrastmittelverlaufs
DE102004048209B3 (de) Verfahren und Vorrichtung zur Erzeugung eines dreidimensionalen Bilddatensatzes eines bewegten Objekts mittels Röntgentomographie
DE10361553A1 (de) Kardiales Spiralscannen mit grosser Ganghöhe mittels erweiterten Rekonstruktionsfenstern
DE102013210613A1 (de) Verfahren und System zur Ermittlung eines Mess-Startzeitpunktes
DE102008010006B4 (de) Verfahren zur dreidimensionalen Darstellung einer bewegten Struktur durch ein tomographisches Verfahren
DE102010013360B4 (de) Verfahren zur Rekonstruktion von Bilddaten eines zyklisch sich bewegenden Untersuchungsobjektes
DE102009043633A1 (de) Verbesserte Abtastung eines zyklisch bewegten Untersuchungsobjektes unter Einsatz eines Kontrastmittels im Rahmen einer Voruntersuchung mittels eines CT-Gerätes
EP2049017A2 (de) Vorrichtung und verfahren zur bestimmung der optimalen bildrekonstruktionsphase für sich quasiperiodisch bewegende objekte
DE102005005919B4 (de) Verfahren und CT-Gerät zur Erstellung von Röntgen-CT-Aufnahmen von einem schlagenden Herzen eines Patienten
DE102012203980A1 (de) CT-Bildverarbeitungsvorrichtung und CT-Bildverarbeitungsverfahren
DE69933338T2 (de) Rechnergesteuertes tomographisches Mehrrahmenbildrekonstruktionsverfahren und -gerät für Spiralabtasten
DE102004017478B4 (de) Vorrichtung für die Gewinnung von Strukturdaten eines sich bewegenden Objekts
DE102011079496A1 (de) Verfahren zur Erzeugung kombinierter tomographischer Emissions- und Transmissions-Darstellungen sowie kombiniertes Emissionsstrahlungs- und Transmissionsstrahlungs-Untersuchungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090225

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KACHELRIESS, MARC

Inventor name: ERTEL, DIRK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CT IMAGING GMBH

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110301