EP2043800A2 - Method of making sputtering target and target produced - Google Patents

Method of making sputtering target and target produced

Info

Publication number
EP2043800A2
EP2043800A2 EP07796745A EP07796745A EP2043800A2 EP 2043800 A2 EP2043800 A2 EP 2043800A2 EP 07796745 A EP07796745 A EP 07796745A EP 07796745 A EP07796745 A EP 07796745A EP 2043800 A2 EP2043800 A2 EP 2043800A2
Authority
EP
European Patent Office
Prior art keywords
target
target material
mold
melted
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07796745A
Other languages
German (de)
English (en)
French (fr)
Inventor
Michael G. Launsbach
Tyrus W. Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Corp
Original Assignee
Howmet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Howmet Corp filed Critical Howmet Corp
Publication of EP2043800A2 publication Critical patent/EP2043800A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to a method of making a sputtering target and, in particular, to a method of casting a metallic sputtering target to have an equiaxed, cellular, non-dendritic microstructure.
  • a current process employed to make metallic sputtering targets comprises crushing a slab of the metallic material, screening and sorting the crushed particles to appropriate particle sizes, hot isostatic pressing (HIP' ing) particles of certain sizes in an evacuated, sealed can to from a target body, and then machining the HIP'ed body to produce the desired target shape.
  • HIP' ing hot isostatic pressing
  • CIP cold isostatic press
  • the present invention provides a method for making a fine grain, cast sputtering target.
  • the present invention provides in an embodiment a method of making a sputtering target by melting a metallic target material, controlling the temperature of the melted target material in a manner that the melted target material has almost no superheat, introducing the melted target material into a mold having interior walls forming a mold cavity in the shape of the desired target, and solidifying the melted target material in the mold by extracting heat therefrom at a rate to solidify it to form a sputtering target having substantially equiaxed, cellular nondendritic microstructure uniformly throughout the target.
  • the mold optionally can be heated to a high enough elevated mold temperature that prevents substantial columnar grain formation directly adjacent interior walls of the mold
  • the present invention also provides in another embodiment a metallic sputtering target having a substantially equiaxed, cellular nondendritic microstructure uniformly throughout the target.
  • the sputtering target can be used in the as-cast condition without further post-cast treatments other than finish machining or after the as-cast target is hot isostatically pressed to densify the as-cast target .
  • the invention is advantageous to provide a cast sputtering target without the need for numerous processing steps employed in the art and to provide a sputtering target with beneficial microstructural properties for sputtering.
  • the invention also provides grain size control of the target, reduces manufacturing lead times from material selection to target manufacture, and increased material selection flexibility such as more alloying options.
  • Figure 1 is a schematic perspective view of a melted target material in a crucible ready for casting into a steel or ceramic mold. DESCRIPTION OF THE INVENTION
  • the present invention provides a method of making a sputtering target comprising a metallic target material.
  • the metallic target material can comprise a metal or an alloy of two or more metals-
  • the target material can comprise molybdenum, tungsten, and other metals and high temperature melting alloys such as nickel based, chromium based, cobalt based, iron based, tantalum based, molybdenum based, tungsten based, and other alloys materials.
  • a target alloy can comprise a cobalt based alloy including an alloying element selected from the group consisting of boron, chromium, platinum, tantalum, ruthenium, niobium, copper, vanadium, silicon, silver, gold, iron, aluminum, zirconium, and nickel.
  • the target can comprise cobalt based alloys including, but not limited to, a Co-Ta-Zr alloy, Co-Ta-B alloy, Co-Cr-Pt-B alloy, Co-Cr-Pt-B-Cu alloy and others.
  • Such target metals or alloys can be obtained commercially from .raw materials suppliers with the appropriate purity for particular sputtering target applications.
  • the target metals or alloys are supplied in the form of briquets, powder, chunks, etc. (shown as INPUT: ALLOY CONTROL in Figure 1) .
  • an embodiment of the invention involves melting the selected metallic (metal or alloy) target material TM in a crucible C or other appropriate melting vessel using an appropriate melting process such as vacuum induction melting (VIM) or electron beam (EB) melting.
  • VIM vacuum induction melting
  • EB electron beam
  • the crucible or melting vessel can be selected in dependence on the particular metal or alloy to be melted. Melting can be conducted in an inert atmosphere or in vacuum (shown as FURNACE ENVIRONMENT VACUUM) in the event the particular metal or alloy to be melted requires such melting conditions. Where the metal or alloy requires an inert atmosphere or vacuum during melting, conventional vacuum induction melting equipment (shown as VIM MELTING SYSTEM) can be employed.
  • a particular conventional vacuum induction melting furnace used in the Example employs a melting crucible that pours directly into an underlying mold M.
  • the invention envisions use of a pouring vessel, such as a pouring crucible, optionally as an intermediate vessel between the melting vessel and the mold to be cast.
  • the melted target material in the melting vessel or in the pouring vessel is held in a substantially quiescent state to allow any low density non-metallic inclusions to float to the surface where they can be disposed of or eliminated from the melt.
  • a susceptor such as graphite can be placed between the induction coil IC and the melting vessel such that the susceptor is heated and in turn heats the charge and such that the melted target material is not stirred.
  • very high frequencies or resistance heating may be employed to achieve the same results.
  • a bottom pouring crucible allows melted target material to be introduced into a mold without entraining the floating non-metallic inclusions on the melt surface.
  • a teapot crucible can be used to block non-metallic inclusions floating on the melt from entering the mold.
  • Other techniques for minimizing the amount of non- metallic inclusions entering the mold are described in US Patent 4,832,112 which is incorporated in its entirety herein by reference.
  • the invention further involves controlling the temperature of the melted target material TM in the melting or pouring vessel in a manner that the melted target material has almost no superheat prior to introduction into the mold.
  • the temperature of the melted target material is reduced to remove up to substantially all of the superheat in the melted target material.
  • This reduced temperature should be substantially uniform throughout the melted target material and, for most target materials, is controlled to be within 0 degree to 20 degrees F above the measured melting point of the particular metal or alloy target material, although the range may be adjusted in dependence on the particular target metal or alloy.
  • the measured melting point can be determined as described in US Patent 4,832,112.
  • the temperature of the melted target material in the melting vessel can be reduced by gradually reducing the power or energy supplied to the melting furnace in which the melting vessel is located.
  • the electrical power supplied to the induction coil IC can be gradually reduced to reduce the temperature of the melted target material so that substantially all of the superheat is removed prior to introduction of the melted target material into the mold.
  • the temperature of the melted material can be measured (shown as TEMPERATURE MEASUREMENT) using the infrared pyrometer shown or other temperature measuring device.
  • the mold M can include a metal or ceramic mold that includes interior walls defining a mold cavity having the shape of the desired sputtering target.
  • Typical shapes of sputtering targets that can be made include, but are not limited to, plates of rectangular, square or other polygonal shape and circular discs.
  • the invention envisions optionally generating turbulence in the melted target material after it is introduced into the mold. For most target materials, it is sufficient to pour the melted target material directly into the mold.
  • the turbulence alternately can be imparted to the melted target material in the mold by electromagnetic stirring, mechanical stirring, and comminuting the melt as it is poured in to the mold such as by breaking the melt into multiple streams or droplets as it enters the mold as described in US Patent 4,832,112.
  • the melted target material is solidified in the mold by extracting heat therefrom at a rate to obtain a substantially equiaxed, cellular, nondendritic grain structure throughout the sputtering target.
  • the as-solidified (as-cast) sputtering target preferably has an equiaxed, cellular ASTM grain size of 3 or less throughout the sputtering target.
  • the rate of heat extraction is controlled to achieve such equiaxed, cellular grain structure.
  • the initial temperature gradient between the melted target material and the relatively cold mold is sufficiently high to produce a zone of dendritic columnar grains at the interface.
  • the invention envisions optionally heating the mold to a high enough elevated mold temperature (shown as Controlled Preheat Process and PREHEATED MOLD) that prevents substantial columnar grain formation directly adjacent interior walls of the mold.
  • the solidified target has a net or near net shape of the desired target and requires only minimal machining prior to use as a target.
  • this porosity can be removed by various techniques including by hot isostatic pressing (HIP' ing) the as-cast sputtering target using conventional hot isostatic gas pressing processes whose parameters of gas pressure, temperature and time will depend on the particular target metal or alloy employed. Control and removal of as-cast porosity of the sputtering target is described in US Patent 4,832,112.
  • a rectangular sputtering target having dimensions of 27 inches length by 4.25 inches width by 0.2 inches thickness can be cast in a conventional preheated ceramic investment mold, which is positioned in a lower chamber of a conventional vacuum induction furnace.
  • the preheated investment mold will include a mold cavity that closely replicates the desired shape of the sputtering target.
  • the target metal or alloy comprising for example a cobalt based alloy of the type described above can be heated in an upper chamber of the furnace under vacuum conditions below 10 microns to a temperature about 20-50 degrees F above its melting point to melt it in a zirconia crucible.
  • Power to the induction coil of the furnace can be gradually reduced until the melted target material is within 0 to 20 degrees F of the melting point.
  • the melted target material then can be poured into the mold which can contain a constriction at the top of the mold that forces rapid local solidification at the center line of the mold cavity. This can prevent the formation of interconnected porosity at the center line and allowed densification of the as-cast sputtering target, when necessary, by HIP' ing the target at 2100 degrees F at 29 KSI gas pressure for 1 hour.
  • the resultant HIP' ed sputtering target exhibits a fine grain, equiaxed cellular grain structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
EP07796745A 2006-07-17 2007-07-09 Method of making sputtering target and target produced Withdrawn EP2043800A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US83152106P 2006-07-17 2006-07-17
PCT/US2007/015654 WO2008018967A2 (en) 2006-07-17 2007-07-09 Method of making sputtering target and target produced

Publications (1)

Publication Number Publication Date
EP2043800A2 true EP2043800A2 (en) 2009-04-08

Family

ID=39033456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07796745A Withdrawn EP2043800A2 (en) 2006-07-17 2007-07-09 Method of making sputtering target and target produced

Country Status (6)

Country Link
US (1) US20080011392A1 (zh)
EP (1) EP2043800A2 (zh)
JP (1) JP2009543954A (zh)
CN (1) CN101490290A (zh)
TW (1) TW200811304A (zh)
WO (1) WO2008018967A2 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130277007A1 (en) * 2012-04-20 2013-10-24 Fs Precision Tech Single piece casting of reactive alloys
CN103924122B (zh) * 2014-04-30 2016-01-20 厦门建霖工业有限公司 一种锆银合金靶材及其制备方法与应用
JP2018178251A (ja) * 2017-04-07 2018-11-15 三菱マテリアル株式会社 円筒型スパッタリングターゲット及びその製造方法
CN112962070B (zh) * 2021-02-02 2023-02-07 邱从章 一种溅射靶材的制备装备及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832112A (en) * 1985-10-03 1989-05-23 Howmet Corporation Method of forming a fine-grained equiaxed casting
US5590389A (en) * 1994-12-23 1996-12-31 Johnson Matthey Electronics, Inc. Sputtering target with ultra-fine, oriented grains and method of making same
US5866067A (en) * 1997-03-24 1999-02-02 Sony Corporation And Materials Research Corporation High purity chromium metal by casting with controlled oxygen content
CN100370059C (zh) * 2001-07-19 2008-02-20 霍尼韦尔国际公司 形成铸锭的方法
US6799627B2 (en) * 2002-06-10 2004-10-05 Santoku America, Inc. Castings of metallic alloys with improved surface quality, structural integrity and mechanical properties fabricated in titanium carbide coated graphite molds under vacuum
US7235143B2 (en) * 2002-08-08 2007-06-26 Praxair S.T. Technology, Inc. Controlled-grain-precious metal sputter targets
US6805189B2 (en) * 2002-10-30 2004-10-19 Howmet Research Corporation Die casting
US20050183797A1 (en) * 2004-02-23 2005-08-25 Ranjan Ray Fine grained sputtering targets of cobalt and nickel base alloys made via casting in metal molds followed by hot forging and annealing and methods of making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008018967A2 *

Also Published As

Publication number Publication date
JP2009543954A (ja) 2009-12-10
US20080011392A1 (en) 2008-01-17
CN101490290A (zh) 2009-07-22
WO2008018967A3 (en) 2008-11-27
TW200811304A (en) 2008-03-01
WO2008018967A2 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
EP0218536B1 (en) A method of forming a fine-grained equiaxed casting
CN106636702B (zh) 一种低氧含量高合金化镍基母合金及粉末的制备方法
US20070051623A1 (en) Method of making sputtering target and target
SE541903C2 (en) High hardness 3d printed steel product
US20080011392A1 (en) Method of making sputtering target and target produced
CN103526038B (zh) 一种高强度高塑性twip钢电渣重熔生产方法
TWI387661B (zh) Manufacturing method of nickel alloy target
Jin et al. Grain refinement of superalloy IN100 under the action of rotary magnetic fields and inoculants
Higashi et al. Powder property, microstructure, and creep behavior of a P/M Mo-Si-B based alloy
EP0233828B1 (en) A method of forming dense ingots having a fine equiaxed grain structure
WO2014060047A1 (en) Nano-dendrites reinforced metal
CN106957986A (zh) 一种高塑性磁致伸缩材料及其制备方法
US9598747B2 (en) System and method of melting raw materials
JP2003530485A (ja) 金属または金属合金ベースのスパッタターゲット、およびその製造のためのプロセス
US20130195709A1 (en) Metal-base alloy product and methods for producing the same
JPS62500293A (ja) 連続鋳造方法およびそれによつて製造したインゴツト
JPH02311394A (ja) Wターゲット材
Heidloff et al. Advancements in Ti alloy powder production by close-coupled gas atomization
Igharo et al. Properties of equiatomic TiNi alloy produced by rapid solidification
Eatesami et al. Melting of γ-TiAl in the alumina crucible
Li et al. Spray forming of Zircaloy-4
JP2599729B2 (ja) 合金物品の造塊法
JPH02250964A (ja) センダスト合金ターゲットおよびその製造方法
Sheng Hard materials and tool steels
CN117187724A (zh) 同时消除β凝固高铌TiAl合金中脆性βo相与细化组织的方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090102

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20100915