EP2041023A1 - Reformer und verfahren zum umsetzen von brennstoff und oxidationsmittel zu gasförmigem reformat - Google Patents

Reformer und verfahren zum umsetzen von brennstoff und oxidationsmittel zu gasförmigem reformat

Info

Publication number
EP2041023A1
EP2041023A1 EP07764358A EP07764358A EP2041023A1 EP 2041023 A1 EP2041023 A1 EP 2041023A1 EP 07764358 A EP07764358 A EP 07764358A EP 07764358 A EP07764358 A EP 07764358A EP 2041023 A1 EP2041023 A1 EP 2041023A1
Authority
EP
European Patent Office
Prior art keywords
zone
fuel
catalytic
reformate
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07764358A
Other languages
English (en)
French (fr)
Inventor
Stefan Kah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enerday GmbH
Original Assignee
Enerday GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerday GmbH filed Critical Enerday GmbH
Publication of EP2041023A1 publication Critical patent/EP2041023A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas

Definitions

  • the invention relates to reformers for converting fuel and oxidant into gaseous reformate, comprising an oxidation zone, an evaporation zone and a zone for catalytic H 2 generation, wherein the oxidation zone comprises a gaseous mixture of fuel and oxidant.
  • the evaporation zone fuel and an evaporator gas for producing a fuel-containing evaporator gas mixture can be fed and wherein the zone for the catalytic H 2 generation an ignitable
  • the invention further relates to a process for converting fuel and oxidant to gaseous reformate wherein, in an oxidation zone, a fuel mixed with a gaseous oxidant is oxidized to produce an oxidation-containing exhaust gas, wherein in an evaporation zone, fuel with a vaporizing gas is added a fuel-containing evaporator gas mixture is evaporated and wherein in a zone for the catalytic H 2 generation a vaporized fuel and oxidant-containing exhaust gas containing reforming gas mixture is reformed to produce the gaseous reformate.
  • Generic reformer and generic method as they are known from DE 103 59 205 Al, have numerous applications, in particular they serve a Fuel cell to supply a hydrogen-rich gas mixture from which then based on electrochemical processes electrical energy can be generated.
  • Such fuel cells are used, for example, in the automotive sector as additional energy sources, so-called APUs ("Auxiliary Power Units").
  • the known method represents an essentially three-stage process.
  • an oxidation zone is fed with hydrocarbon-containing fuel, eg diesel, and oxidized in an exothermic reaction, ie burned.
  • hydrocarbon-containing fuel eg diesel
  • oxidized in an exothermic reaction ie burned.
  • the hot, oxygen-containing exhaust gas is then introduced into an evaporation zone, in which further fuel is added. In the typical use of liquid fuel, this evaporates due to the high temperature, forming an ignitable fuel / exhaust gas mixture.
  • This is then reacted in a zone for catalytic H 2 generation, typically using a partial oxidation catalyst, to a hydrogen-containing gas, the synthesis gas or reformate.
  • This process is known as CPOX (catalytic partial oxidation).
  • the reformate is subsequently fed to a fuel cell, where it is used together with oxygen to form water according to known principles for generating electrical energy.
  • a disadvantage of the known method is that in the evaporation zone an ignitable mixture is formed, which carries the risk of spontaneous auto-ignition, resulting in soot deposits in the downstream catalyst and the Need to interrupt the process.
  • the spontaneous auto-ignition is currently counteracted with a very precise control of the ratio of burned and vaporized fuel, which leads to a significant limitation of the parameter range in which the reformer can work stably.
  • the invention has for its object to provide a reformer and a method for converting fuel and Oxidati- onsstoff to Refortnat available, in which the problems mentioned are at least partially overcome and in particular the variation of the operating parameters, the stable Allow operation, is extended.
  • the invention is based on the generic reformer in that for generating the reforming gas mixture and for feeding it into the catalytic H 2 generation zone upstream of an inlet of the catalytic H 2 generation zone, mixing and feed means are arranged, on the one hand oxidant-containing offgas from the oxidation zone and, on the other hand, fuel-containing evaporator gas mixture can be supplied from the evaporation zone, with recirculation means being provided for returning the reformate produced in the zone for the catalytic production of H 2 as evaporator gas into the evaporation zone.
  • the invention is based on the generic method characterized in that mixed to produce the reformation gas mixture oxidant-containing exhaust gas with a fuel-containing evaporator gas mixture and see in the zone for the catalytic H 2 production is fed, wherein in the zone for the catalytic H 2 production produced reformate as an evaporator Gas is returned to the evaporation zone.
  • the hot exhaust gas from the oxidation zone is not used as evaporator gas in the evaporation zone, but rather that reformate generated in the reforming zone is recycled as evaporator gas into the evaporation zone, where it Fuel, which is evaporated due to the high reformate temperature, enriched.
  • the hydrogen-containing reformate together with the vaporized fuel does not form an ignitable mixture due to the absence of an oxidizing agent, so that there is no risk of spontaneous autoignition in the evaporation zone.
  • An ignitable mixture is first produced by downstream mixing and feed means, in which an ignitable reforming gas mixture is formed by mixing the fuel-enriched reformate from the evaporation zone and the oxidant-containing offgas from the oxidation zone and fed into the zone for catalytic H 2 production.
  • Soot formation during the evaporation of the enrichment fuel is reduced.
  • the fuel evaporation is typically carrier gas controlled, so that even low evaporator temperatures - well below the boiling point of the components contained in the fuel - sufficient to evaporate the fuel. This temperature reduction also leads to a gentle low-carbon fuel evaporation.
  • the mixing and feeding means are designed as injector nozzle.
  • this has the advantage that no large-volume, ignitable mixture-containing area is formed which could harbor the risk of spontaneous autoignition. Rather, feeding the ignitable mixture into the zone for catalytic H 2 production at high speed ensures that flashback is ruled out.
  • the injector nozzle is exhaust gas driven, i.
  • the kinetic energy of the oxidant-containing exhaust gas from the oxidation zone is used as the energy source for the mixing and feeding of the ignitable reforming gas mixture.
  • the optimal mixing ratio of oxidizing exhaust gas and enriched evaporator gas can be permanently adjusted without a constant, active control of the components would be required.
  • the injector nozzle can operate on the principle of the Venturi nozzle.
  • the invention leads inter alia to the advantage that the evaporation of the enrichment fuel in the evaporation zone can be carried out at comparatively low temperatures.
  • the reformate produced in the catalytic H 2 generation zone typically has one very high temperature.
  • heat is withdrawn from the recycled reformate during the recirculation.
  • the return means have heat exchanger means for cooling the recirculated reformate.
  • the heat exchanger means are switched on and off as needed.
  • the heat recovered in this way can be used, for example, for preheating a process air in a downstream fuel line system.
  • a use for preheating of fuel, as a heat source in the zone for the catalytic H 2 generation, in an afterburner or in other components of the system is conceivable.
  • the reformate generated in the zone for the catalytic H 2 production can be branched off in the region of the zone for the catalytic H 2 production directly, ie the return means set in the region of the zone for the catalytic H 2 - Generation.
  • a gas sampling probe can be used in the zone for catalytic H 2 production, which ensures a high recirculation rate of the gas stream to be recirculated.
  • soot formation decreases with increasing O / C ratio, so that in this respect the return According to the fuel cell leadership may be advantageous over that after the reformer, if kinetic effects play a minor role in the formation of soot.
  • the hydrogen supplied to a fuel cell is not completely reacted with oxygen to form water.
  • the exhaust gas of the fuel cell anode therefore usually still contains a usable concentration of hydrogen.
  • the evaporator gas mixture is cleaned of contaminants before it is mixed with the oxidant-containing exhaust gas.
  • This may be a basically known catalyst protection device containing catalyst poisons contained in the evaporator gas, e.g. Absorbs metals and soot precursors and can make harmless partially by reaction with the hydrogen contained in the reformate.
  • the present invention relates to a reformer and a method for producing a Re- formats. It should be noted, however, that the present invention also has advantages in an operating mode of the reformer does not directly produce a reformate.
  • this mode here referred to as regeneration mode
  • the fuel enrichment in the evaporation zone is switched off.
  • no reformate is formed in the zone for catalytic H 2 production.
  • combustion exhaust gas from the oxidation zone flows through the zone for catalytic H 2 production.
  • this gas is fed via the recirculation means to the evaporation zone and mixed with "fresh" combustion gas via the mixing and feed means and introduced again into the zone for the catalytic production of H 2 .
  • soot deposits which may have formed in the evaporation zone and / or a gas purification unit connected downstream of the evaporation zone, may be burned and the corresponding elements thereby regenerated.
  • Figure 1 is a schematic representation of the structure of a reformer according to the prior art
  • Figure 2 is a schematic representation of the construction of a reformer according to the invention with several optional additional elements;
  • Figure 3 is a schematic representation of the structure of an alternative embodiment of the reformer according to the invention.
  • Figure 1 shows a schematic representation of the structure of a reformer according to the prior art.
  • the burner 10 which comprises the oxidation zone, is supplied via a first feed line 12 and air via a second supply line 14 liquid fuel, such as diesel.
  • the burner 10 typically has a mixing zone (not separately shown) for forming an ignitable gas mixture from the combustion air and the fuel. This mixing zone is upstream of the actual oxidation zone.
  • the resulting during combustion in the burner 10 exhaust gas which also contains unreacted oxygen during combustion, is fed into an evaporator 16 and serves as the evaporator gas there.
  • the evaporator 16 has a supply line 18 for further liquid fuel, with which the evaporator gas is enriched. Due to the high temperatures of the supplied via the supply line 18 liquid fuel is evaporated.
  • the enriched gas ie the mixture of the evaporator gas and vaporized fuel forms an ignitable Reformation gas mixture which is fed into the downstream zone 20 for the catalytic H 2 production, which in particular comprises a CPOX catalyst.
  • the zone 20 for the catalytic production of H 2 hydrogen-containing reformate is generated by catalytic means, which can be supplied to a downstream fuel cell 22.
  • the exhaust gases of the fuel cell are suitably treated depending on the structure of the system, which is indicated in Fig. 1 as a derivative "to the system".
  • FIG. 2 shows a schematic representation of a reformer according to the invention.
  • a gas extraction unit 24 is arranged upstream of the fuel cell.
  • the schematic representation of Figure 2 does not necessarily show the objective, but essentially the functional elements. So can the gas extraction unit 24 may also be integrated into the zone 20 for the catalytic production of H 2 .
  • the function of the gas extraction unit 24 is to recycle a portion of the hydrogen-containing reformate generated in the zone 20 for the catalytic production of H 2 via the return line 26 into the evaporator 16. As the evaporator gas in the evaporator 16 is thus not used in contrast to the prior art, the exhaust gas from the burner 10 but via the return line 26 recycled reformate.
  • the exhaust gas from the burner 10 and the enriched evaporator gas from the evaporator 16 are supplied together to an injector 28, which is preferably designed as a driven by the exhaust gas from the combustor 10 nozzle.
  • the injector 28 the two gas streams are mixed and the resultant ignitable mixture is fed into the zone 20 for the catalytic production of H 2 .
  • an optional heat exchanger 30 is integrated into the return line 26. This is shown in dashed lines in Figure 2 to indicate its optional character.
  • the heat exchanger 30 can preferably be switched on and off as required and in particular serves to cool the reformate recirculated via the return line 26.
  • a gas cleaning unit 32 is provided, which is arranged between the evaporator 16 and the injector 28. This gas cleaning unit 32 is used to remove so-called catalyst poisons from the gas stream or the conversion of harmful compounds (soot precursors) to harmless compounds. The conversion can be done for example by the recirculated hydrogen, z. B. by hydrogenation of acetylene, ethylene, polycyclic aromatic compounds.
  • FIG. 3 shows essentially the same structure as FIG. 2, with the same reference numbers again designating corresponding elements.
  • FIG. 3 shows that the gas extraction unit 24 is functionally arranged behind the fuel cell 22.
  • anode exhaust gas of the fuel cell 22 can be recycled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft einen Reformer zum Umsetzen von Brennstoff und Oxidationsmittel zu gasförmigem Reformat, umfassend eine Oxidationszone (10), eine Verdampf ungszone (16) und eine Zone (20) zur katalytischen H<SUB>2</SUB>-Erzeugung, wobei der Oxidationszone (10) ein gasförmiges Gemisch aus Brennstoff und Oxidationsmittel zur Oxidation unter Erzeugung oxidationsmittelhaltigen Abgases zuführbar ist, wobei der Verdampf ungszone (16) Brennstoff und ein Verdampfergas zur Erzeugung eines brennstoff halt igen Verdampfergasgemischs zuführbar ist und wobei der Zone (20) zur katalytisehen H<SUB>2</SUB>-Erzeugung ein zündfähiges, verdampften Brennstoff und oxidationsmittelhaltiges Abgas enthaltendes Reformationsgasgemisch zur Erzeugung des gasförmigen Reformats zuführbar ist. Um die Gefahr der Selbstzündung in der Verdampf er zone (16) zu reduzieren, wird vorgeschlagen, dass zur Erzeugung des Reformationsgasgemischs und zu dessen Einspeisung in die Zone (20) zur katalytischen H<SUB>2</SUB>-Erzeugung vor einem Eingang der Zone (20) zur katalytischen H<SUB>2</SUB>-Erzeugung Misch- und Einspeisemittel (28) angeordnet sind, denen einerseits oxidationsmittelhaltiges Abgas aus der Oxidationszone (10) und andererseits brennstof fhaltiges Verdampfergasgemisch aus der Verdampf ungszone (16) zuführbar ist, wobei Rückführmittel (26) zur Rückführung von in der Zone (20) zur katalytisehen H<SUB>2</SUB> -Erzeugung erzeugtem Reformat als Verdampfergas in die Verdampf ungszone (16) vorgesehen sind. Durch die erfindungsgemäße Ausgestaltung wird erreicht, dass in der Verdampf er zone (16) kein zündfähiges Gasgemisch gebildet wird. Die Erfindung betrifft weiter ein entsprechendes Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu gasförmigen Reformat.

Description

REFORMER UND VERFAHREN ZUM UMSETZEN VON BRENNSTOFF UND OXIDATIONSMITTEL ZU
GASFÖRMIGEM REFORMAT
5 Die Erfindung bezieht sich auf Reformer zum Umsetzen von Brennstoff und Oxidationsmittel zu gasförmigem Reformat, umfassend eine Oxidationszone, eine Verdampfungszone und eine Zone zur katalytischen H2-Erzeugung, wobei der Oxida- tionszone ein gasförmiges Gemisch aus Brennstoff und Oxida-
10 tionsmittel zur Oxidation unter Erzeugung oxidationsmittel- haltigen Abgases zuführbar ist, wobei der Verdampfungszone Brennstoff und ein Verdampfergas zur Erzeugung eines brenn- stoffhaltigen Verdampfergasgemischs zuführbar ist und wobei der Zone zur katalytischen H2-Erzeugung ein zündfähiges,
15 verdampften Brennstoff und oxidationsmittelhaltiges Abgas enthaltendes Reformationsgasgemisch zur Erzeugung des gasförmigen Reformats zuführbar ist .
Die Erfindung bezieht sich weiter auf ein Verfahren zum Um- 20 setzen von Brennstoff und Oxidationsmittel zu gasförmigem Reformat, wobei in einer Oxidationszone ein mit einem gasförmigen Oxidationsmittel gemischter Brennstoff unter Erzeugung eines oxidationstnittelhaltigen Abgases oxidiert wird, wobei in einer Verdampfungszone Brennstoff mit einem 25 Verdampfergas zu einem brennstoffhaltigen Verdampfergasgemisch verdampft wird und wobei in einer Zone zur katalytischen H2-Ξrzeugung ein verdampften Brennstoff und oxidationsmittelhaltiges Abgas enthaltendes Reformationsgasgemisch zur Erzeugung des gasförmigen Reformats reformiert wird. 30
Gattungsgemäße Reformer und gattungsgemäße Verfahren, wie sie bekannt sind aus der DE 103 59 205 Al, haben zahlreiche Anwendungsbereiche, insbesondere dienen sie dazu, einer Brennstoffzelle ein wasserstoffreiches Gasgemisch zuzuführen, aus dem dann auf der Grundlage elektrochemischer Vorgänge elektrische Energie erzeugt werden kann. Derartige Brennstoffzellen kommen beispielsweise im Kraftfahrzeugbe- reich als Zusatzenergiequellen, so genannte APUs ("Auxilia- ry Power Units") zum Einsatz.
Das bekannte Verfahren stellt einen im Wesentlichen dreistufigen Prozess dar. In einer ersten Stufe wird einer Oxi- dationszone kohlenwasserstoffhaltiger Brennstoff, z.B. Diesel, zugeführt und in einer exothermen Reaktion oxidiert, d.h. verbrannt. Dabei entsteht ein typischerweise 800 bis 10000C heißes Abgas, das bei hinreichender anfänglicher Sauerstoffkonzentration der Verbrennungsluft noch immer 0- xidationsmittel, d.h. typischerweise Sauerstoff enthält.
Das heiße, sauerstoffhaltige Abgas wird anschließend in eine Verdampfungszone eingeleitet, in der weiterer Brennstoff zudosiert wird. Bei der typischen Verwendung von flüssigem Brennstoff verdampft dieser aufgrund der hohen Temperatur, wobei sich ein zündfähiges Brennstoff/Abgasgemisch bildet. Dieses wird anschließend in einer Zone zur katalytischen H2-Erzeugung, typischerweise unter Verwendung eines partiellen Oxidationskatalysators, zu einem Wasserstoffhaltigen Gas, dem Synthesegas oder Reformat, umgesetzt. Dieses Verfahren ist als CPOX-Verfahren (catalytic partial oxida- tion) bekannt. Das Reformat wird nachfolgend einer Brennstoffzelle zugeleitet, wo es zusammen mit Sauerstoff unter Bildung von Wasser nach bekannten Prinzipien zur Erzeugung elektrischer Energie eingesetzt wird.
Nachteilig bei dem bekannten Verfahren ist, dass in der Verdampfungszone ein zündfähiges Gemisch gebildet wird, welches die Gefahr der spontanen Selbstzündung birgt, was zu Rußablagerungen im nachgeschalteten Katalysator und zur Notwendigkeit der Unterbrechung des Prozesses führen kann. Der spontanen Selbstzün&ung wird derzeit mit einer sehr exakten Steuerung des Verhältnisses von verbranntem und verdampftem Kraftstoff entgegengewirkt, was zu einer deutli- chen Einschränkung des Parameterbereichs, in dem der Reformer stabil arbeiten kann, führt.
Der Erfindung liegt die Aufgabe zugrunde, einen Reformer und ein Verfahren zum Umsetzen von Brennstoff und Oxidati- onsmittel zu Refortnat zur Verfügung zu stellen, bei dem die genannten Probleme zumindest teilweise überwunden werden und bei dem insbesondere die Variationsbreite der Betriebs- Parameter, die einen stabilen Betrieb gestatten, erweitert wird.
Diese Aufgabe wird mit den Merkmalen der unabhängigen Ansprüche gelöst .
Vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen angegeben.
Die Erfindung baut auf dem gattungsgemäßen Reformer dadurch auf, dass zur Erzeugung des Reformationsgasgemischs und zu dessen Einspeisung in die Zone zur katalytischen H2- Erzeugung vor einem Eingang der Zone zur katalytischen H2- Erzeugung Misch- und Einspeisemittel angeordnet sind, denen einerseits oxidationsmittelhaltiges Abgas aus der Oxidati- onszone und andererseits brennstoffhaltiges Verdampfergasgemisch aus der Verdampfungszone zuführbar ist, wobei Rück- führmittel zur Rückführung von in der Zone zur katalytischen H2-Erzeugung erzeugtem Reformat als Verdampfergas in die Verdampfungszone vorgesehen sind. Die Erfindung baut auf dem gattungsgemäßen Verfahren dadurch auf, dass zur Erzeugung des Reformationsgasgemischs oxidationsmittelhaltiges Abgas mit brennstoffhaltigem Verdampfergasgemisch gemischt und in die Zone zur katalyti- sehen H2-Erzeugung eingespeist wird, wobei in der Zone zur katalytischen H2-Erzeugung erzeugtes Reformat als Verdampfergas in die Verdampfungszone rückgeführt wird.
Die Wirkungen und Vorteile des erfindungsgemäßen Reformers und des erfindungsgemäßen Verfahrens sollen nachfolgend gemeinsam diskutiert werden.
Im Gegensatz zum Stand der Technik ist im Rahmen der Erfindung vorgesehen, dass das heiße Abgas aus der Oxidationszo- ne nicht als Verdampfergas in der Verdampfungszone verwendet wird, sondern dass vielmehr in der Reformierungszone erzeugtes Reformat als Verdampfergas in die Verdampfungszone rückgeführt wird, wo es mit Kraftstoff, der aufgrund der hohen Reformattemperatur verdampft, angereichert wird.
Das wasserstoffhaltige Reformat bildet zusammen mit dem verdampften Kraftstoff aufgrund des Fehlens eines Oxidati- onsmittels kein zündfähiges Gemisch, so dass keine Gefahr einer spontanen Selbstzündung in der Verdampfungszone be- steht. Ein zündfähiges Gemisch wird erst durch nachgeschaltete Misch- und Einspeisemittel erzeugt, in denen durch Mischung des brennstoffangereicherten Reformats aus der Verdampfungszone und des oxidationsmittelhaltigen Abgases aus der Oxidationszone ein zündfähiges Reformationsgasgemisch gebildet und in die Zone zur katalytischen H2-Erzeugung eingespeist wird.
Ein weiterer Vorteil der Erfindung ist, dass der in dem als Verdampfergas genutzten Reformat enthaltene Wasserstoff die - S -
Rußbildung bei der Verdampfung des Anreicherungsbrennstoffs reduziert. Die BrennstoffVerdampfung ist typischerweise trägergasgesteuert, so dass schon geringe Verdampfertemperaturen - deutlich unterhalb der Siedetemperaturen der im Brennstoff enthaltenen Komponenten - ausreichen, um den Brennstoff zu verdampfen. Auch diese Temperaturreduktion führt zu einer schonenden rußarmen BrennstoffVerdampfung.
Günstigerweise sind die Misch- und Einspeisungsmittel als Injektordüse ausgebildet. Dies hat zum einen den Vorteil, dass kein großvolumiger, zündfähiges Gemisch enthaltendes Bereich, die die Gefahr einer spontanen Selbstzündung bergen könnte, gebildet wird. Vielmehr wird durch die Einspei- sung des zündfähigen Gemischs in die Zone zur katalytischen H2-Erzeugung mit hoher Geschwindigkeit sichergestellt, dass ein Flammrückschlag ausgeschlossen ist.
Vorteilhafterweise ist die Injektordüse abgasgetrieben, d.h. als Energiequelle für die Mischung und Einspeisung des zündfähigen Reformationsgasgemischs wird die kinetische E- nergie des oxidationsmittelhaltigen Abgases aus der Oxida- tionszone genutzt. Durch korrekte Einstellung der mechanischen Düseneigenschaften, kann auch das optimale Mischungsverhältnis von oxidationshaltigem Abgas und angereichertem Verdampfergas dauerhaft eingestellt werden, ohne dass eine beständige, aktive Steuerung der Komponenten erforderlich wäre. Die Injektordüse kann beispielsweise nach dem Prinzip der Venturi-Düse arbeiten.
Wie erwähnt, führt die Erfindung u.a. zu dem Vorteil, dass die Verdampfung des Anreicherungsbrennstoffs in der Verdampfungszone bei vergleichsweise niedrigen Temperaturen erfolgen kann. Andererseits hat das in der Zone zur katalytischen H2-Erzeugung erzeugte Reformat typischerweise eine sehr hohe Temperatur. Bei einer vorteilhaften Weiterbildung der Erfindung ist daher vorgesehen, dass dem rückgeführten Reformat während der Rückführung Wärme entzogen wird. Dies kann beispielsweise dadurch realisiert werden, dass die Rückführmittel Wärmetauschermittel zur Abkühlung des rückgeführten Reformats aufweisen. Vorzugsweise sind die Wärmetauschermittel bedarfsgemäß zu- und abschaltbar. Die hierdurch rückgewonnene Wärme kann beispielsweise zur Vorwärmung einer Prozessluft in einem nachgeschalteten Brenn- stoffZeilensystem eingesetzt werden. Auch eine Verwendung zur Vorwärmung von Kraftstoff, als Wärmequelle in der Zone zur katalytischen H2-Erzeugung, in einem Nachbrenner oder in anderen Komponenten des Systems ist denkbar.
Zu der erfindungsgemäß vorgesehenen Rückführung von Reformat in die Verdampfungszone kann das in der Zone zur katalytischen H2-Erzeugung erzeugte Reformat unmittelbar im Bereich der Zone zur katalytischen H2-Erzeugung abgezweigt werden, d.h. die Rückführmittel setzen im Bereich der Zone zur katalytischen H2-Erzeugung an. Hierzu kann eine Gasentnahmesonde in der Zone zur katalytischen H2-Erzeugung eingesetzt werden, die eine hohe Rückführrate des zu rezyklie- renden Gasstroms gewährleistet. Andererseits ist es auch möglich, die Rückführmittel in einem der Zone zur katalyti- sehen H2-Erzeugung nachgelagerten Bereich ansetzen zu lassen. Dies kann unmittelbar hinter der Zone zur katalytischen H2-Erzeugung erfolgen oder aber auch hinter einer der Zone zur katalytischen H2-Erzeugung nachgelagerten Brennstoffzelle. Durch die elektrochemische Oxidation in der Brennstoffzelle steigt der Sauerstoffgehalt und damit das Verhältnis 0/C im rückgeführten Gasstrom und damit auch im Katalysator, welches maßgeblich die Rußbildung beeinflusst. Aus thermodynamischer Sicht nimmt die Rußbildung mit steigendem O/C-Verhältnis ab, so dass diesbezüglich die Rück- führung nach der Brennstoffzelle vorteilhaft gegenüber derjenigen nach dem Reformer sein kann, wenn kinetische Effekte eine untergeordnete Rolle bei der Rußbildung spielen.
Typischerweise wird der einer Brennstoffzelle zugeführte Wasserstoff nicht vollständig mit Sauerstoff zu Wasser umgesetzt. Das Abgas der Brennstoffzellenanode enthält daher in der Regel noch eine nutzbare Konzentration von Wasserstoff.
Bei einer besonderen Ausführungsform der Erfindung ist daher vorgesehen, dieses Anodenabgas als Verdampfergas in die Verdampfungszone rückzuführen. Selbstverständlich sind auch Kombinationen der vorgenannten Rückführmöglichkeiten reali- sierbar.
Bei einer besonders günstigen Weiterbildung der Erfindung ist vorgesehen, dass das Verdampfergasgemisch vor der Mischung mit dem oxidationsmittelhaltigen Abgas von Kontami- nanten gereinigt wird. Hierzu sind bevorzugt zwischen den Misch- und Einspeisemitteln, d.h. insbesondere der Injektordüse, und der Verdampfungszone Gasreinigungsmittel zur Entfernung der Kontaminanten aus dem Verdampfergasgemisch vorgesehen. Hierbei kann es sich um eine im Grunde bekannte Katalysatorschutzvorrichtung handeln, die in dem Verdampfergas enthaltene Katalysatorgifte wie z.B. Metalle oder Rußvorläufer absorbiert und partiell durch Reaktion mit dem im Reformat enthaltenen Wasserstoff unschädlich machen kann.
Wie erläutert, bezieht sich die vorliegende Erfindung auf einen Reformator und ein Verfahren zur Erzeugung eines Re- formats. Es sei jedoch erwähnt, dass die vorliegende Erfindung auch Vorteile in einem Betriebsmodus des Reformators zeitigt, in dem nicht unmittelbar ein Reformat erzeugt wird. In diesem, hier als Regenerationsbetrieb bezeichneten Modus ist die Brennstoffanreicherung in der Verdampfungszo- ne ausgeschaltet. Somit wird in der Zone zur katalytischen H2-Erzeugung kein Reformat gebildet. Vielmehr durchströmt Verbrennungsabgas aus der Oxidationszone die Zone zur katalytischen H2-Erzeugung. Dieses Gas wird im Regenerationsbetrieb über die Rückführmittel der Verdampfungszone zugeführt und über die Misch- und Einspeisemittel mit "fri- schem" Verbrennungsgas gemischt und wieder in die Zone zur katalytischen H2-Erzeugung eingeführt. Durch diese Abgas- Rezyklierung können Rußablagerungen, die sich eventuell in der Verdampfungszone und/oder einer gegebenenfalls der Verdampfungszone nachgeschalteten Gasreinigungseinheit gebil- det haben, verbrannt und die entsprechenden Elemente hierdurch regeneriert werden.
Die Erfindung wird nun unter Bezugnahme auf die beigefügten Zeichnungen anhand bevorzugter Ausführungsformen beispiel- haft erläutert. Es zeigen:
Figur 1 eine schematische Darstellung des Aufbaus eines Reformers nach dem Stand der Technik;
Figur 2 eine schematische Darstellung des Aufbaus eines erfindungsgemäßen Reformers mit mehreren optionalen Zusatzelementen; und
Figur 3 eine schematische Darstellung des Aufbaus einer alternativen Ausführungsform des erfindungsgemäßen Reformers .
Figur 1 zeigt eine schematische Darstellung des Aufbaus eines Reformers nach dem Stand der Technik. In einen Brenner - S -
10, der die Oxidationszone umfasst, wird über eine erste Zuführungsleitung 12 Luft und über eine zweite Zuführungs- leitung 14 flüssiger Brennstoff, z.B. Diesel zugeführt. Der Brenner 10 weist typischerweise eine nicht gesondert darge- stellte Mischzone zur Bildung eines zündfähigen Gasgemischs aus der Verbrennungsluft und dem Brennstoff auf. Diese Mischzone ist der eigentlichen Oxidationszone vorgelagert. Das bei der Verbrennung im Brenner 10 entstehende Abgas, das auch bei der Verbrennung nicht umgesetzten Sauerstoff enthält, wird in einen Verdampfer 16 eingespeist und dient dort als Verdampfergas . Der Verdampfer 16 weist eine Zuführleitung 18 für weiteren flüssigen Brennstoff auf, mit dem das Verdampfergas angereichert wird. Aufgrund der hohen Temperaturen wird der über die Zuführleitung 18 zugeführte flüssige Brennstoff verdampft. Das angereicherte Gas, d.h. das Gemisch aus Verdampfergas und verdampftem Brennstoff bildet ein zündfähiges Reformationsgasgemisch, das in die nachgeschaltete Zone 20 zur katalytischen H2-Erzeugung, die insbesondere einen CPOX-Katalysator umfasst, eingespeist wird. In der Zone 20 zur katalytischen H2-Erzeugung wird auf katalytischem Wege wasserstoffhaltiges Reformat erzeugt, das einer nachgeschalteten Brennstoffzelle 22 zugeführt werden kann. Die Abgase der Brennstoffzelle werden je nach Aufbau des Systems geeignet behandelt, was in Fig. 1 als Ableitung "zum System" angedeutet ist.
Figur 2 zeigt eine schematische Darstellung eines erfindungsgemäßen Reformers. Dabei werden die gleichen Bezugszeichen wie in Figur 1 für korrespondierende Elemente ver- wendet. Bei der Ausführungsform von Figur 2 ist der Brennstoffzelle vorgeschaltet eine Gasentnahmeeinheit 24 angeordnet. Man beachte, dass die schematische Darstellung von Figur 2 nicht notwendig die gegenständlichen, sondern im Wesentlichen die funktionellen Elemente aufzeigt. So kann die Gasentnahmeeinheit 24 auch in die Zone 20 zur katalyti- schen H2-Erzeugung integriert sein. Die Funktion der Gas- entnahmeeinheit 24 besteht darin, einen Teil des in der Zone 20 zur katalytischen H2-Erzeugung erzeugten, wasser- stoffhaltigen Reformats über die Rückführleitung 26 in den Verdampfer 16 zurückzuführen. Als Verdampfergas im Verdampfer 16 wird also im Gegensatz zum Stand der Technik nicht das Abgas aus dem Brenner 10 sondern über die Rückführleitung 26 rückgeführtes Reformat verwendet.
Das Abgas aus dem Brenner 10 sowie das angereicherte Verdampfergas aus dem Verdampfer 16 werden gemeinsam einem Injektor 28 zugeführt, der vorzugsweise als von dem Abgas aus dem Verbrenner 10 getriebene Düse ausgebildet ist. Im In- jektor 28 erfolgt eine Mischung der beiden Gasströme und eine Einspeisung des resultierenden, zündfähigen Gemischs in die Zone 20 zur katalytischen H2-Erzeugung.
Bei der in Figur 2 dargestellten Ausführungsform ist in die Rückführleitung 26 ein optionaler Wärmetauscher 30 integriert. Dieser ist in Figur 2 gestrichelt dargestellt, um auf seinen optionalen Charakter hinzuweisen. Der Wärmetauscher 30 ist vorzugsweise bedarfsgerecht zu- und abschalt- bar und dient insbesondere der Abkühlung des über die Rück- führleitung 26 rückgeführten Reformats. Der Wärmetauscher
30 kann als aktive Temperatursteuerung verwendet werden, um die Temperatur im Verdampfer 16 in einem optimalen Bereich zu halten. Weiterhin kann durch den Wärmetauscher die Temperatur im Verdampfer so eingestellt werden, daß die Zünd- temperatur des Rußes erreicht wird und die Rußoxidation gezielt einsetzt. Somit kann der Verdampfer von Ruß befreit, d.h. regeneriert werden. Als weitere Option ist bei der Ausführungsform von Figur 2 eine Gasreinigungseinheit 32 vorgesehen, die zwischen dem Verdampfer 16 und dem Injektor 28 angeordnet ist. Diese Gasreinigungseinheit 32 dient der Entfernung so genannter Katalysatorgifte aus dem Gasstrom bzw. der Umwandlung von schädlichen Verbindungen (Rußvorläufer) zu unschädlichen Verbindungen. Die Umwandlung kann z.B. durch den rückgeführten Wasserstoff erfolgen, z. B. durch Hydrierung von Acetylen, Ethylen, polyzyklische aromatische Verbindungen.
Figur 3 zeigt im Wesentlichen den gleichen Aufbau wie Figur 2, wobei wiederum gleiche Bezugszeichen korrespondierende Elemente bezeichnen. Figur 3 zeigt im Unterschied zu Figur 2 jedoch, dass die Gasentnahmeeinheit 24 funktionell hinter der Brennstoffzelle 22 angeordnet ist. Mit dieser Variante der Erfindung kann Anodenabgas der Brennstoffzelle 22 re- zykliert werden.
Natürlich stellen die in den Figuren gezeigten und in der speziellen Beschreibung diskutierten Ausführungsformen nur illustrative Ausführungsbeispiele der Erfindung dar. Dem Fachmann ist ein breites Spektrum an Variationsmöglichkeiten anhand gegeben. Insbesondere ist es denkbar, die Ausführungsformen von Figur 2 und Figur 3 dergestalt zu kombi- nieren, dass sowohl Reformat aus der Zone 20 zur katalyti- schen H2-Erzeugung als auch Brennstoffzellenabgas aus der Brennstoffzelle 22 dem Verdampfer IG als Verdampfergas zugeführt werden.
Die in der vorstehenden Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung wesentlich sein. Bezugszeichenliste :
10 Brenner 12 Luftzuleitung
14 BrennstoffZuleitung
16 Verdampfer
18 BrennstoffZuleitung
20 Zone zur katalytischen H2-Erzeugung 22 Brennstoffzelle
24 Gasentnahmesonde
26 Rückführleitung
28 Inj ektor
30 Wärmetauscher 32 Gasreinigungseinheit

Claims

ANSPRÜCHE
1. Reformer zum Umsetzen von Brennstoff und Oxidations- mittel zu gasförmigem Reformat, umfassend eine Oxidations- zone (10) , eine Verdampfungszone (16) und eine Zone (20) zur katalytischen H2-Erzeugung, wobei der Oxidationszone (10) ein gasförmiges Gemisch aus Brennstoff und Oxidations- mittel zur Oxidation unter Erzeugung oxidationsmittelhalti- gen Abgases zuführbar ist, wobei der Verdampfungszone (16) Brennstoff und ein Verdampfergas zur Erzeugung eines brenn- stoffhaltigen Verdampfergasgemischs zuführbar ist und wobei der Zone (20) zur katalytischen H2-Erzeugung ein zündfähi- ges, verdampften Brennstoff und oxidationsmittelhaltiges
Abgas enthaltendes Reformationsgasgemisch zur Erzeugung des gasförmigen Reformats zuführbar ist, dadurch gekennzeichnet, dass zur Erzeugung des Reformationsgasgemischs und zu dessen Einspeisung in die Zone (20) zur katalytischen H2- Erzeugung vor einem Eingang der Zone (20) zur katalytischen H2-Erzeugung Misch- und Einspeisemittel (28) angeordnet sind, denen einerseits oxidationsmittelhaltiges Abgas aus der Oxidationszone (10) und andererseits brennstoffhaltiges Verdampfergasgemisch aus der Verdampfungszone (16) zuführ- bar ist, wobei Rückführmittel (26) zur Rückführung von in der Zone (20) zur katalytischen H2-Erzeugung erzeugtem Reformat als Verdampfergas in die Verdampfungszone (16) vor- gesehen sind.
2. Reformer nach Anspruch 1, dadurch gekennzeichnet, dass die Misch- und Einspeisemittel als Injektordüse (28) ausgebildet sind.
3. Reformer nach Anspruch 2, dadurch gekennzeichnet, dass die Injektordüse (28) von dem zugeführten, oxidations- mittelhaltigen Abgas angetrieben ist.
4. Reformer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Rückführmittel (26) Wärmetauschermittel (30) zur Abkühlung des rückgeführten Refor- mats bzw. zur Einleitung der Rußoxidation im Verdampfer aufweisen.
5. Reformer nach Anspruch 4, dadurch gekennzeichnet, dass die Wärmetauschermittel (30) bedarfsgemäß zu- und abschaltbar sind.
6. Reformer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Rückführmittel (26) zur Abführung von Reformat aus der Zone (20) zur katalytischen H2-Erzeugung im Bereich der Zone (20) zur katalytischen H2- Erzeugung ansetzen.
7. Reformer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Rückführmittel (26) zur Abführung von Reformat in einem der Zone (20) zur katalytischen H2- Erzeugung nachgelagerten Bereich ansetzen.
8. Reformer nach Anspruch 7, dadurch gekennzeichnet, dass die Rückführmittel (26) zur Abführung von Reformat an einer Anodenabgasleitung einer der Zone (20) zur katalytischen H2-Erzeugung nachgelagerten Brennstoffzelle (22) an- setzen.
9. Reformer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen den Misch- und Einspeisemitteln (28) und der Verdampfungszone (16) Gasreinigungs- mittel (32) zur Entfernung von Kontaminanten aus dem Verdampfergasgemisch vorgesehen sind.
10. Verfahren zum Umsetzen von Brennstoff und Oxidati- onsmittel zu gasförmigem Reformat, wobei in einer Oxidati- onszone (10) ein mit einem gasförmigen Oxidationsmittel gemischter Brennstoff unter Erzeugung eines oxidationsmittel- haltigen Abgases oxidiert wird, wobei in einer Verdamp- fungszone (16) Brennstoff mit einem Verdampfergas zu einem brennstoffhaltigen Verdampfergasgemisch verdampft wird und wobei in einer Zone (20) zur katalytischen H2-Erzeugung ein verdampften Brennstoff und oxidationsmittelhaltiges Abgas enthaltendes Reformationsgasgemisch zur Erzeugung des gasförmigen Reformats reformiert wird, dadurch gekennzeichnet, dass zur Erzeugung des Reformationsgasgemischs oxidationsmittelhaltiges Abgas mit brennstoffhaltigem Verdampfergas- gemisch gemischt und in die Zone (20) zur katalytischen H2- Erzeugung eingespeist wird, wobei in der Zone (20) zur katalytischen H2-Erzeugung erzeugtes Reformat als Verdampfer- gas in die Verdampfungszone (16) rückgeführt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet/ dass dem rückgeführten Reformat während der Rückführung Wärme entzogen wird.
12. Verfahren nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass das Verdampfergasgemisch vor der Mischung mit dem oxidationsmittelhaltigen Abgas von Kontaminanten gereinigt wird.
EP07764358A 2006-07-17 2007-06-12 Reformer und verfahren zum umsetzen von brennstoff und oxidationsmittel zu gasförmigem reformat Withdrawn EP2041023A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006032956A DE102006032956B4 (de) 2006-07-17 2006-07-17 Reformer und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu gasförmigem Reformat
PCT/DE2007/001038 WO2008009250A1 (de) 2006-07-17 2007-06-12 Reformer und verfahren zum umsetzen von brennstoff und oxidationsmittel zu gasförmigem reformat

Publications (1)

Publication Number Publication Date
EP2041023A1 true EP2041023A1 (de) 2009-04-01

Family

ID=38662805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07764358A Withdrawn EP2041023A1 (de) 2006-07-17 2007-06-12 Reformer und verfahren zum umsetzen von brennstoff und oxidationsmittel zu gasförmigem reformat

Country Status (11)

Country Link
US (1) US20100189639A1 (de)
EP (1) EP2041023A1 (de)
JP (1) JP2009543753A (de)
KR (1) KR20090020690A (de)
CN (1) CN101573289A (de)
AU (1) AU2007276585A1 (de)
BR (1) BRPI0714340A2 (de)
CA (1) CA2657534A1 (de)
DE (1) DE102006032956B4 (de)
EA (1) EA200970037A1 (de)
WO (1) WO2008009250A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007054768A1 (de) * 2007-11-16 2009-05-20 J. Eberspächer GmbH & Co. KG Reformer, Brennstoffzelle und zugehörige Betriebsverfahren
AU2014290408C1 (en) * 2013-07-18 2018-08-23 Watt Fuel Cell Corp. Apparatus and methods for mixing reformable fuels and an oxygen-containing gas and/or steam
JP7010940B2 (ja) * 2016-10-25 2022-02-10 テクニップ フランス 改質のための触媒管
US20190263659A1 (en) * 2018-02-26 2019-08-29 Minish Mahendra Shah Integration of a hot oxygen burner with an auto thermal reformer
AT520719B1 (de) * 2018-05-03 2019-07-15 Avl List Gmbh Reversibel betreibbarer Energiewandler und Verfahren zum Betreiben desselben

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005468A1 (de) * 1990-02-21 1991-08-22 Linde Ag Verfahren zum betrieb von hochtemperatur-brennstoffzellen
US6472092B1 (en) * 1998-08-12 2002-10-29 Honda Giken Kogyo Kabushiki Kaisha Fuel-reforming apparatus comprising a plate-shaped reforming catalyst
US6045772A (en) * 1998-08-19 2000-04-04 International Fuel Cells, Llc Method and apparatus for injecting a liquid hydrocarbon fuel into a fuel cell power plant reformer
DE19934649A1 (de) * 1999-07-23 2001-01-25 Daimler Chrysler Ag Verfahren zur Erzeugung von Wasserstoff, insbesondere zum Einsatz in Brennstoffzellen, mittels Reformierung von Kohlenwasserstoffen
DE10101098A1 (de) * 2001-01-12 2002-07-25 Emitec Emissionstechnologie Verfahren zum Betrieb einer Reformeranlage zur Bereitstellung von wasserstoffangereichertem Gas sowie Reformeranlage
JP4140253B2 (ja) * 2002-03-15 2008-08-27 日産自動車株式会社 燃料改質システム
US6936238B2 (en) * 2002-09-06 2005-08-30 General Motors Corporation Compact partial oxidation/steam reactor with integrated air preheater, fuel and water vaporizer
DE10355494B4 (de) * 2003-11-27 2009-12-03 Enerday Gmbh System und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu Reformat
DE10359205B4 (de) * 2003-12-17 2007-09-06 Webasto Ag Reformer und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu Reformat
US20050229491A1 (en) * 2004-02-03 2005-10-20 Nu Element, Inc. Systems and methods for generating hydrogen from hycrocarbon fuels
DE102004055425B4 (de) * 2004-11-17 2007-06-14 Forschungszentrum Jülich GmbH Mischkammer für einen Reformer sowie Verfahren zum Betreiben derselben
DE102005038733A1 (de) * 2005-08-16 2007-02-22 Webasto Ag Brennstoffzellensystem und Verfahren zum Betreiben eines Reformers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008009250A1 *

Also Published As

Publication number Publication date
KR20090020690A (ko) 2009-02-26
US20100189639A1 (en) 2010-07-29
CA2657534A1 (en) 2008-01-24
BRPI0714340A2 (pt) 2012-12-25
AU2007276585A1 (en) 2008-01-24
DE102006032956B4 (de) 2010-07-01
CN101573289A (zh) 2009-11-04
JP2009543753A (ja) 2009-12-10
EA200970037A1 (ru) 2009-04-28
WO2008009250A1 (de) 2008-01-24
DE102006032956A1 (de) 2008-02-07

Similar Documents

Publication Publication Date Title
EP1203750B1 (de) Verfahren und Vorrichtung zum Starten eines Reaktors in einem Gaserzeugungssystem
EP1082774B1 (de) Brennstoffzellensystem und verfahren zum erzeugen elektrischer energie mittels eines brennstoffzellensystems
DE102012100468A1 (de) Brennkammer für die emissionsarme Verbrennung von mehreren vorgemischten reformierten Brennstoffen und verwandtes Verfahren
DE102008018152B4 (de) Brennstoffzellensystem und zugehöriges Betriebsverfahren
DE102005001361A1 (de) Brennstoffzellensystem
EP2153485B1 (de) Mit flüssiggas betriebenes brennstoffzellensystem
DE102006032956B4 (de) Reformer und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu gasförmigem Reformat
DE10142578A1 (de) System zum Erzeugen elektrischer Energie und Verfahren zum Betreiben eines Systems zum Erzeugen elektrischer Energie
DE102017001564B4 (de) Verfahren zum Starten einer Brennstoffzellenanordnung und Brennstoffzellenanordnung
DE102008045147B4 (de) Effizientes Brennstoffzellensystem mit integrierter Gaserzeugung und zugehöriges Verfahren zur Regelung und Steuerung des Betriebes
DE102006019409B4 (de) Reformer-Reaktor, seine Verwendung und Verfahren zum Betrieb des Reformers
DE10136970A1 (de) Vorrichtung zur Erzeugung von wasserstoffhaltigem Gas für eine Brennstoffzellenanlage
DE10231126A1 (de) Verfahren zum Starten eines Gaserzeugungssystems
DE102007018311B4 (de) Zweistufiger Reformer und Verfahren zum Betreiben eines Reformers
EP1228999A2 (de) Gaserzeugungssystem für ein Brennstoffzellensystem und Verfahren zum Betrieb eines Gaserzeugungssystem
EP2041821A1 (de) Brennstoff zellensystem mit reformer und nachbrenner
DE10041712A1 (de) Autotherme Brenngaserzeugungseinheit für Brennstoffzellen
DE102007033151B4 (de) Betriebsverfahren für ein Brennstoffzellensystem
DE10350039A1 (de) Brenner für einen Reformer in einem Brennstoffzellensystem
DE10359231A1 (de) System und Verfahren zur Erzeugung eines Reformats
DE10296673T5 (de) Brennstoffzellen-Stromerzeugungsanlage
DE102008037028B4 (de) Brennstoffzellensystem für gasförmige Kohlenwassserstoffe und dazugehöriges Betriebsverfahren
WO2009103554A1 (de) Hochtemperatur-brennstoffzellensystem und verfahren zum erzeugen von strom und wärme mit hilfe eines hochtemperatur-brennstoffzellensystems
DE102007026923A1 (de) Zweistufiger Gasreformer
DE102006032469B4 (de) Reformer für ein Brennstoffzellensystem und Verfahren zum Betreiben eines Reformers sowie deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAH, STEFAN

17Q First examination report despatched

Effective date: 20090617

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110104