EP2041023A1 - Reformeur et procédé pour transformer un combustible et un agent d'oxydation en reformat gazeux - Google Patents

Reformeur et procédé pour transformer un combustible et un agent d'oxydation en reformat gazeux

Info

Publication number
EP2041023A1
EP2041023A1 EP07764358A EP07764358A EP2041023A1 EP 2041023 A1 EP2041023 A1 EP 2041023A1 EP 07764358 A EP07764358 A EP 07764358A EP 07764358 A EP07764358 A EP 07764358A EP 2041023 A1 EP2041023 A1 EP 2041023A1
Authority
EP
European Patent Office
Prior art keywords
zone
fuel
catalytic
reformate
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07764358A
Other languages
German (de)
English (en)
Inventor
Stefan Kah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enerday GmbH
Original Assignee
Enerday GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enerday GmbH filed Critical Enerday GmbH
Publication of EP2041023A1 publication Critical patent/EP2041023A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas

Definitions

  • the invention relates to reformers for converting fuel and oxidant into gaseous reformate, comprising an oxidation zone, an evaporation zone and a zone for catalytic H 2 generation, wherein the oxidation zone comprises a gaseous mixture of fuel and oxidant.
  • the evaporation zone fuel and an evaporator gas for producing a fuel-containing evaporator gas mixture can be fed and wherein the zone for the catalytic H 2 generation an ignitable
  • the invention further relates to a process for converting fuel and oxidant to gaseous reformate wherein, in an oxidation zone, a fuel mixed with a gaseous oxidant is oxidized to produce an oxidation-containing exhaust gas, wherein in an evaporation zone, fuel with a vaporizing gas is added a fuel-containing evaporator gas mixture is evaporated and wherein in a zone for the catalytic H 2 generation a vaporized fuel and oxidant-containing exhaust gas containing reforming gas mixture is reformed to produce the gaseous reformate.
  • Generic reformer and generic method as they are known from DE 103 59 205 Al, have numerous applications, in particular they serve a Fuel cell to supply a hydrogen-rich gas mixture from which then based on electrochemical processes electrical energy can be generated.
  • Such fuel cells are used, for example, in the automotive sector as additional energy sources, so-called APUs ("Auxiliary Power Units").
  • the known method represents an essentially three-stage process.
  • an oxidation zone is fed with hydrocarbon-containing fuel, eg diesel, and oxidized in an exothermic reaction, ie burned.
  • hydrocarbon-containing fuel eg diesel
  • oxidized in an exothermic reaction ie burned.
  • the hot, oxygen-containing exhaust gas is then introduced into an evaporation zone, in which further fuel is added. In the typical use of liquid fuel, this evaporates due to the high temperature, forming an ignitable fuel / exhaust gas mixture.
  • This is then reacted in a zone for catalytic H 2 generation, typically using a partial oxidation catalyst, to a hydrogen-containing gas, the synthesis gas or reformate.
  • This process is known as CPOX (catalytic partial oxidation).
  • the reformate is subsequently fed to a fuel cell, where it is used together with oxygen to form water according to known principles for generating electrical energy.
  • a disadvantage of the known method is that in the evaporation zone an ignitable mixture is formed, which carries the risk of spontaneous auto-ignition, resulting in soot deposits in the downstream catalyst and the Need to interrupt the process.
  • the spontaneous auto-ignition is currently counteracted with a very precise control of the ratio of burned and vaporized fuel, which leads to a significant limitation of the parameter range in which the reformer can work stably.
  • the invention has for its object to provide a reformer and a method for converting fuel and Oxidati- onsstoff to Refortnat available, in which the problems mentioned are at least partially overcome and in particular the variation of the operating parameters, the stable Allow operation, is extended.
  • the invention is based on the generic reformer in that for generating the reforming gas mixture and for feeding it into the catalytic H 2 generation zone upstream of an inlet of the catalytic H 2 generation zone, mixing and feed means are arranged, on the one hand oxidant-containing offgas from the oxidation zone and, on the other hand, fuel-containing evaporator gas mixture can be supplied from the evaporation zone, with recirculation means being provided for returning the reformate produced in the zone for the catalytic production of H 2 as evaporator gas into the evaporation zone.
  • the invention is based on the generic method characterized in that mixed to produce the reformation gas mixture oxidant-containing exhaust gas with a fuel-containing evaporator gas mixture and see in the zone for the catalytic H 2 production is fed, wherein in the zone for the catalytic H 2 production produced reformate as an evaporator Gas is returned to the evaporation zone.
  • the hot exhaust gas from the oxidation zone is not used as evaporator gas in the evaporation zone, but rather that reformate generated in the reforming zone is recycled as evaporator gas into the evaporation zone, where it Fuel, which is evaporated due to the high reformate temperature, enriched.
  • the hydrogen-containing reformate together with the vaporized fuel does not form an ignitable mixture due to the absence of an oxidizing agent, so that there is no risk of spontaneous autoignition in the evaporation zone.
  • An ignitable mixture is first produced by downstream mixing and feed means, in which an ignitable reforming gas mixture is formed by mixing the fuel-enriched reformate from the evaporation zone and the oxidant-containing offgas from the oxidation zone and fed into the zone for catalytic H 2 production.
  • Soot formation during the evaporation of the enrichment fuel is reduced.
  • the fuel evaporation is typically carrier gas controlled, so that even low evaporator temperatures - well below the boiling point of the components contained in the fuel - sufficient to evaporate the fuel. This temperature reduction also leads to a gentle low-carbon fuel evaporation.
  • the mixing and feeding means are designed as injector nozzle.
  • this has the advantage that no large-volume, ignitable mixture-containing area is formed which could harbor the risk of spontaneous autoignition. Rather, feeding the ignitable mixture into the zone for catalytic H 2 production at high speed ensures that flashback is ruled out.
  • the injector nozzle is exhaust gas driven, i.
  • the kinetic energy of the oxidant-containing exhaust gas from the oxidation zone is used as the energy source for the mixing and feeding of the ignitable reforming gas mixture.
  • the optimal mixing ratio of oxidizing exhaust gas and enriched evaporator gas can be permanently adjusted without a constant, active control of the components would be required.
  • the injector nozzle can operate on the principle of the Venturi nozzle.
  • the invention leads inter alia to the advantage that the evaporation of the enrichment fuel in the evaporation zone can be carried out at comparatively low temperatures.
  • the reformate produced in the catalytic H 2 generation zone typically has one very high temperature.
  • heat is withdrawn from the recycled reformate during the recirculation.
  • the return means have heat exchanger means for cooling the recirculated reformate.
  • the heat exchanger means are switched on and off as needed.
  • the heat recovered in this way can be used, for example, for preheating a process air in a downstream fuel line system.
  • a use for preheating of fuel, as a heat source in the zone for the catalytic H 2 generation, in an afterburner or in other components of the system is conceivable.
  • the reformate generated in the zone for the catalytic H 2 production can be branched off in the region of the zone for the catalytic H 2 production directly, ie the return means set in the region of the zone for the catalytic H 2 - Generation.
  • a gas sampling probe can be used in the zone for catalytic H 2 production, which ensures a high recirculation rate of the gas stream to be recirculated.
  • soot formation decreases with increasing O / C ratio, so that in this respect the return According to the fuel cell leadership may be advantageous over that after the reformer, if kinetic effects play a minor role in the formation of soot.
  • the hydrogen supplied to a fuel cell is not completely reacted with oxygen to form water.
  • the exhaust gas of the fuel cell anode therefore usually still contains a usable concentration of hydrogen.
  • the evaporator gas mixture is cleaned of contaminants before it is mixed with the oxidant-containing exhaust gas.
  • This may be a basically known catalyst protection device containing catalyst poisons contained in the evaporator gas, e.g. Absorbs metals and soot precursors and can make harmless partially by reaction with the hydrogen contained in the reformate.
  • the present invention relates to a reformer and a method for producing a Re- formats. It should be noted, however, that the present invention also has advantages in an operating mode of the reformer does not directly produce a reformate.
  • this mode here referred to as regeneration mode
  • the fuel enrichment in the evaporation zone is switched off.
  • no reformate is formed in the zone for catalytic H 2 production.
  • combustion exhaust gas from the oxidation zone flows through the zone for catalytic H 2 production.
  • this gas is fed via the recirculation means to the evaporation zone and mixed with "fresh" combustion gas via the mixing and feed means and introduced again into the zone for the catalytic production of H 2 .
  • soot deposits which may have formed in the evaporation zone and / or a gas purification unit connected downstream of the evaporation zone, may be burned and the corresponding elements thereby regenerated.
  • Figure 1 is a schematic representation of the structure of a reformer according to the prior art
  • Figure 2 is a schematic representation of the construction of a reformer according to the invention with several optional additional elements;
  • Figure 3 is a schematic representation of the structure of an alternative embodiment of the reformer according to the invention.
  • Figure 1 shows a schematic representation of the structure of a reformer according to the prior art.
  • the burner 10 which comprises the oxidation zone, is supplied via a first feed line 12 and air via a second supply line 14 liquid fuel, such as diesel.
  • the burner 10 typically has a mixing zone (not separately shown) for forming an ignitable gas mixture from the combustion air and the fuel. This mixing zone is upstream of the actual oxidation zone.
  • the resulting during combustion in the burner 10 exhaust gas which also contains unreacted oxygen during combustion, is fed into an evaporator 16 and serves as the evaporator gas there.
  • the evaporator 16 has a supply line 18 for further liquid fuel, with which the evaporator gas is enriched. Due to the high temperatures of the supplied via the supply line 18 liquid fuel is evaporated.
  • the enriched gas ie the mixture of the evaporator gas and vaporized fuel forms an ignitable Reformation gas mixture which is fed into the downstream zone 20 for the catalytic H 2 production, which in particular comprises a CPOX catalyst.
  • the zone 20 for the catalytic production of H 2 hydrogen-containing reformate is generated by catalytic means, which can be supplied to a downstream fuel cell 22.
  • the exhaust gases of the fuel cell are suitably treated depending on the structure of the system, which is indicated in Fig. 1 as a derivative "to the system".
  • FIG. 2 shows a schematic representation of a reformer according to the invention.
  • a gas extraction unit 24 is arranged upstream of the fuel cell.
  • the schematic representation of Figure 2 does not necessarily show the objective, but essentially the functional elements. So can the gas extraction unit 24 may also be integrated into the zone 20 for the catalytic production of H 2 .
  • the function of the gas extraction unit 24 is to recycle a portion of the hydrogen-containing reformate generated in the zone 20 for the catalytic production of H 2 via the return line 26 into the evaporator 16. As the evaporator gas in the evaporator 16 is thus not used in contrast to the prior art, the exhaust gas from the burner 10 but via the return line 26 recycled reformate.
  • the exhaust gas from the burner 10 and the enriched evaporator gas from the evaporator 16 are supplied together to an injector 28, which is preferably designed as a driven by the exhaust gas from the combustor 10 nozzle.
  • the injector 28 the two gas streams are mixed and the resultant ignitable mixture is fed into the zone 20 for the catalytic production of H 2 .
  • an optional heat exchanger 30 is integrated into the return line 26. This is shown in dashed lines in Figure 2 to indicate its optional character.
  • the heat exchanger 30 can preferably be switched on and off as required and in particular serves to cool the reformate recirculated via the return line 26.
  • a gas cleaning unit 32 is provided, which is arranged between the evaporator 16 and the injector 28. This gas cleaning unit 32 is used to remove so-called catalyst poisons from the gas stream or the conversion of harmful compounds (soot precursors) to harmless compounds. The conversion can be done for example by the recirculated hydrogen, z. B. by hydrogenation of acetylene, ethylene, polycyclic aromatic compounds.
  • FIG. 3 shows essentially the same structure as FIG. 2, with the same reference numbers again designating corresponding elements.
  • FIG. 3 shows that the gas extraction unit 24 is functionally arranged behind the fuel cell 22.
  • anode exhaust gas of the fuel cell 22 can be recycled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un reformeur servant à transformer un combustible et un agent d'oxydation en un reformat gazeux. Ce reformat comprend une zone d'oxydation (10), une zone d'évaporation (16) et une zone de génération catalytique de H2 (20). Selon l'invention, un mélange gazeux de combustible et d'agent d'oxydation peut être introduit dans la zone d'oxydation (10) pour être oxydé, un gaz d'échappement contenant l'agent l'oxydation étant généré. Un combustible et un gaz d'évaporation peuvent être introduits dans la zone d'évaporation (16) pour générer un mélange de gaz d'évaporation contenant du combustible. Un mélange de gaz de reformation inflammable comportant le combustible évaporé et le gaz d'échappement qui contient l'agent d'oxydation est introduit dans la zone de génération catalytique de H2 (20), pour générer le reformat gazeux. L'objectif de cette invention est de réduire le risque de combustion spontanée dans la zone d'évaporation (16). A cet effet, des moyens de mélange et d'alimentation (28) dans lesquels le gaz d'échappement contenant l'agent d'oxydation peut être introduit à partir de la zone d'oxydation (10) et le mélange de gaz d'évaporation contenant du combustible peut être introduit à partir de la zone d'évaporation (16) sont disposés en amont d'une entrée de la zone de génération catalytique de H2 (20) pour générer le mélange gazeux de reformation et l'introduire dans la zone de génération catalytique de H2 (20). Des moyens de recirculation (26) sont prévus pour faire recirculer le reformat produit dans la zone de production catalytique de H2 (20) en tant que gaz d'évaporation dans la zone d'évaporation (16). Le reformeur selon l'invention est configuré de manière à empêcher la formation d'un mélange gazeux inflammable dans la zone d'évaporation (16). Cette invention se rapporte en outre à un procédé correspondant pour transformer un combustible et un agent d'oxydation en reformat gazeux.
EP07764358A 2006-07-17 2007-06-12 Reformeur et procédé pour transformer un combustible et un agent d'oxydation en reformat gazeux Withdrawn EP2041023A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006032956A DE102006032956B4 (de) 2006-07-17 2006-07-17 Reformer und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu gasförmigem Reformat
PCT/DE2007/001038 WO2008009250A1 (fr) 2006-07-17 2007-06-12 Reformeur et procédé pour transformer un combustible et un agent d'oxydation en reformat gazeux

Publications (1)

Publication Number Publication Date
EP2041023A1 true EP2041023A1 (fr) 2009-04-01

Family

ID=38662805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07764358A Withdrawn EP2041023A1 (fr) 2006-07-17 2007-06-12 Reformeur et procédé pour transformer un combustible et un agent d'oxydation en reformat gazeux

Country Status (11)

Country Link
US (1) US20100189639A1 (fr)
EP (1) EP2041023A1 (fr)
JP (1) JP2009543753A (fr)
KR (1) KR20090020690A (fr)
CN (1) CN101573289A (fr)
AU (1) AU2007276585A1 (fr)
BR (1) BRPI0714340A2 (fr)
CA (1) CA2657534A1 (fr)
DE (1) DE102006032956B4 (fr)
EA (1) EA200970037A1 (fr)
WO (1) WO2008009250A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007054768A1 (de) * 2007-11-16 2009-05-20 J. Eberspächer GmbH & Co. KG Reformer, Brennstoffzelle und zugehörige Betriebsverfahren
CN105517701B (zh) * 2013-07-18 2018-11-02 瓦特燃料电池公司 用于混合可重整燃料和含氧气体和/或蒸汽的装置和方法
WO2018077969A1 (fr) * 2016-10-25 2018-05-03 Technip France Tube catalytique pour le reformage
US20190263659A1 (en) * 2018-02-26 2019-08-29 Minish Mahendra Shah Integration of a hot oxygen burner with an auto thermal reformer
AT520719B1 (de) * 2018-05-03 2019-07-15 Avl List Gmbh Reversibel betreibbarer Energiewandler und Verfahren zum Betreiben desselben

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005468A1 (de) * 1990-02-21 1991-08-22 Linde Ag Verfahren zum betrieb von hochtemperatur-brennstoffzellen
US6472092B1 (en) * 1998-08-12 2002-10-29 Honda Giken Kogyo Kabushiki Kaisha Fuel-reforming apparatus comprising a plate-shaped reforming catalyst
US6045772A (en) * 1998-08-19 2000-04-04 International Fuel Cells, Llc Method and apparatus for injecting a liquid hydrocarbon fuel into a fuel cell power plant reformer
DE19934649A1 (de) * 1999-07-23 2001-01-25 Daimler Chrysler Ag Verfahren zur Erzeugung von Wasserstoff, insbesondere zum Einsatz in Brennstoffzellen, mittels Reformierung von Kohlenwasserstoffen
DE10101098A1 (de) * 2001-01-12 2002-07-25 Emitec Emissionstechnologie Verfahren zum Betrieb einer Reformeranlage zur Bereitstellung von wasserstoffangereichertem Gas sowie Reformeranlage
JP4140253B2 (ja) * 2002-03-15 2008-08-27 日産自動車株式会社 燃料改質システム
US6936238B2 (en) * 2002-09-06 2005-08-30 General Motors Corporation Compact partial oxidation/steam reactor with integrated air preheater, fuel and water vaporizer
DE10355494B4 (de) * 2003-11-27 2009-12-03 Enerday Gmbh System und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu Reformat
DE10359205B4 (de) * 2003-12-17 2007-09-06 Webasto Ag Reformer und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu Reformat
US20050229491A1 (en) * 2004-02-03 2005-10-20 Nu Element, Inc. Systems and methods for generating hydrogen from hycrocarbon fuels
DE102004055425B4 (de) * 2004-11-17 2007-06-14 Forschungszentrum Jülich GmbH Mischkammer für einen Reformer sowie Verfahren zum Betreiben derselben
DE102005038733A1 (de) * 2005-08-16 2007-02-22 Webasto Ag Brennstoffzellensystem und Verfahren zum Betreiben eines Reformers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008009250A1 *

Also Published As

Publication number Publication date
CN101573289A (zh) 2009-11-04
AU2007276585A1 (en) 2008-01-24
BRPI0714340A2 (pt) 2012-12-25
KR20090020690A (ko) 2009-02-26
DE102006032956A1 (de) 2008-02-07
CA2657534A1 (fr) 2008-01-24
WO2008009250A1 (fr) 2008-01-24
DE102006032956B4 (de) 2010-07-01
US20100189639A1 (en) 2010-07-29
JP2009543753A (ja) 2009-12-10
EA200970037A1 (ru) 2009-04-28

Similar Documents

Publication Publication Date Title
EP1203750B1 (fr) Procédé et dispositif de démarrage d'un réacteur dans un système de génération de gaz
EP1082774B1 (fr) Systeme de pile a combustible et procede pour produire de l'energie electrique au moyen d'un tel systeme
DE102012100468A1 (de) Brennkammer für die emissionsarme Verbrennung von mehreren vorgemischten reformierten Brennstoffen und verwandtes Verfahren
EP1679757A2 (fr) Système de pile à combustible
DE102008018152B4 (de) Brennstoffzellensystem und zugehöriges Betriebsverfahren
EP2153485B1 (fr) Système de pile à combustible fonctionnant avec du gaz liquide
DE102006032956B4 (de) Reformer und Verfahren zum Umsetzen von Brennstoff und Oxidationsmittel zu gasförmigem Reformat
DE10142578A1 (de) System zum Erzeugen elektrischer Energie und Verfahren zum Betreiben eines Systems zum Erzeugen elektrischer Energie
DE102017001564B4 (de) Verfahren zum Starten einer Brennstoffzellenanordnung und Brennstoffzellenanordnung
DE102008045147B4 (de) Effizientes Brennstoffzellensystem mit integrierter Gaserzeugung und zugehöriges Verfahren zur Regelung und Steuerung des Betriebes
DE102006019409B4 (de) Reformer-Reaktor, seine Verwendung und Verfahren zum Betrieb des Reformers
DE10136970A1 (de) Vorrichtung zur Erzeugung von wasserstoffhaltigem Gas für eine Brennstoffzellenanlage
DE10231126A1 (de) Verfahren zum Starten eines Gaserzeugungssystems
DE102007018311B4 (de) Zweistufiger Reformer und Verfahren zum Betreiben eines Reformers
EP1228999A2 (fr) Système de génération de gaz pour un système de pile à combustible et procédé de fonctionnement d'un système de génération de gaz
WO2008006334A1 (fr) Système de cellules électrochimiques comportant un reformeur et un brûleur de postcombustion
DE10041712A1 (de) Autotherme Brenngaserzeugungseinheit für Brennstoffzellen
DE102007033151B4 (de) Betriebsverfahren für ein Brennstoffzellensystem
DE10350039A1 (de) Brenner für einen Reformer in einem Brennstoffzellensystem
DE10359231A1 (de) System und Verfahren zur Erzeugung eines Reformats
DE10296673T5 (de) Brennstoffzellen-Stromerzeugungsanlage
DE102008037028B4 (de) Brennstoffzellensystem für gasförmige Kohlenwassserstoffe und dazugehöriges Betriebsverfahren
WO2009103554A1 (fr) Système de pile à combustible à haute température, et procédé de production de courant et de chaleur à l’aide d’un système de pile à combustible à haute température
DE102007026923A1 (de) Zweistufiger Gasreformer
DE102006032469B4 (de) Reformer für ein Brennstoffzellensystem und Verfahren zum Betreiben eines Reformers sowie deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAH, STEFAN

17Q First examination report despatched

Effective date: 20090617

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110104