EP2038380A2 - Mischung aus polaren öllöslichen stickstoffverbindungen und säureamiden als paraffindispergator für kraftstoffe - Google Patents

Mischung aus polaren öllöslichen stickstoffverbindungen und säureamiden als paraffindispergator für kraftstoffe

Info

Publication number
EP2038380A2
EP2038380A2 EP07730085A EP07730085A EP2038380A2 EP 2038380 A2 EP2038380 A2 EP 2038380A2 EP 07730085 A EP07730085 A EP 07730085A EP 07730085 A EP07730085 A EP 07730085A EP 2038380 A2 EP2038380 A2 EP 2038380A2
Authority
EP
European Patent Office
Prior art keywords
oil
acid
fuels
mixture according
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07730085A
Other languages
English (en)
French (fr)
Other versions
EP2038380B1 (de
Inventor
Ansgar Eisenbeis
Irene Trötsch-Schaller
Ulrich Annen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to PL07730085T priority Critical patent/PL2038380T3/pl
Priority to EP07730085A priority patent/EP2038380B1/de
Publication of EP2038380A2 publication Critical patent/EP2038380A2/de
Application granted granted Critical
Publication of EP2038380B1 publication Critical patent/EP2038380B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/1955Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by an alcohol, ether, aldehyde, ketonic, ketal, acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring

Definitions

  • the present invention relates to a mixture containing
  • the present invention relates to the use of this mixture as an additive to fuels, especially in the function as a paraffin dispersant, such fuels themselves and fuel additive concentrates containing this mixture dissolved in a hydrocarbon solvent.
  • the fuels mentioned have in particular a biodiesel component.
  • Middle distillate fuels of fossil origin especially gas oils, diesel oils or light fuel oils derived from petroleum, have different levels of paraffins depending on the source of the crude oil.
  • cloudy point or Cloud Point (“CP") precipitates solid paraffins.
  • the platy n-paraffin crystals form a kind of "house of cards structure" and the middle distillate fuel stagnates, although its predominant part is still liquid.
  • the precipitated n-paraffins in the temperature range between cloud point and pour point significantly affect the flowability of middle distillate fuels;
  • the paraffins clog filters and cause uneven or completely interrupted fuel supply to the combustion units. Similar disturbances occur with light fuel oils.
  • CFPP CoId Filter Plugging Point
  • ethylene-vinyl carboxylate copolymers have long been used as cold flow improvers or Middle Distillate Flow Improvers ("MDFI").
  • MDFI Middle Distillate Flow Improvers
  • a disadvantage of these additives is that the precipitated paraffin crystals tend due to their relative to the liquid part higher density tend to settle more and more at the bottom of the container during storage. As a result, a homogeneous low-paraffin phase forms in the upper container part and a two-phase paraffin-rich layer at the bottom. Since the deduction of the fuel usually takes place only slightly above the container bottom in the vehicle tanks as well as in storage or delivery tanks of the mineral oil dealers, there is a risk that the high concentration of solid paraffins leads to blockages of filters and metering devices. This danger is greater the further the storage temperature falls below the excretion temperature of the paraffins, since the amount of paraffin precipitated increases with decreasing temperature. In particular, levels of biodiesel also increase this undesirable tendency of middle distillate fuel to paraffin sedimentation.
  • WO 00/23541 (1) is the use of a mixture of 5 to 95 wt .-% of at least one reaction product of a poly (C2 to C2o carboxylic acid having at least one tertiary amino group) with secondary amines and 5 to 95
  • WO 94/10267 (3) describes flow improvers and paraffin dispersants, for example comb polymers, for mixtures of fuel oils of vegetable origin and petroleum-based fuel oils.
  • the object was to provide products which ensure improved fluidity behavior of fuels, in particular those fuels which have a proportion of biofuel (biodiesel) which is based on fatty acid esters, at low temperature, by exhibiting such a dispersing action in that settling of excreted paraffins is delayed or prevented.
  • biofuel biodiesel
  • the object is achieved by the above-mentioned mixture of components (a) to (c), which is all the more surprising, since the components (a) and (b) alone respectively no or only a small, not sufficient flow improving Effect in a mixture of a conventional middle distillate of fossil origin and a biofuel based on fatty acid esters have.
  • the component (c) is not necessarily necessary for achieving the intended flowability improvement, but usually significantly enhances this effect.
  • the polar, oil-soluble nitrogen compounds of component (a) which are capable of sufficiently dispersing paraffin crystals precipitated in fuels in the cold can be both ionic and non-ionic in nature and preferably have at least one, especially at least 2, substituents general formula> NR 22 , wherein R 22 is a C 8 to C 40 hydrocarbon residue.
  • the nitrogen substituents can also be quaternized, ie in cationic form. Examples of such nitrogen compounds are ammonium salts and / or amides which are obtainable by reacting at least one amine substituted with at least one hydrocarbon radical with a carboxylic acid having 1 to 4 carboxyl groups or with a suitable derivative thereof.
  • the amines contain at least one linear Cs to C4o-alkyl radical.
  • suitable primary amines are octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tetradecylamine and the higher linear homologues.
  • Suitable secondary amines are, for example, dioctadecylamine and methylbehenylamine.
  • amine mix especially industrially accessible amine mixtures such as fatty amines or hydrogenated tallamines, as described for example in Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, in the chapter "Amines, aliphatic".
  • Suitable acids for the reaction are, for example, cyclohexane-1, 2-dicarboxylic acid, cyclohexene-1, 2-dicarboxylic acid, cyclopentane-1, 2-dicarboxylic acid, naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid and succinic acids substituted by long-chain hydrocarbon radicals.
  • suitable polar, oil-soluble nitrogen compounds are ring systems bearing at least two substituents of the formula -A'-NR 23 R 24 , wherein A 'is a linear or branched aliphatic hydrocarbon group, optionally substituted by one or more moieties are selected from O, S, NR 35 and CO, is interrupted, and R 23 and R 24 are a Cg to C4o hydrocarbon radical, optionally substituted by one or more moieties selected from O, S, NR 35 and CO, interrupted and / or substituted by one or more substituents selected from OH, SH and NR 35 R 36 , wherein R 35 is C 1 to C 40 alkyl optionally substituted by one or more moieties selected from CO, NR 35 , O and S, interrupted, and / or by one or more radicals selected from NR 37 R 38 , OR 37 , SR 37 , COR 37 , COOR 37 , CONR 37 R 38 , aryl or heterocyclyl, substitui wherein R 37 and
  • the mixture according to the invention contains as component (a) at least one oil-soluble reaction product of at least one tertiary amino group-containing poly (C 2 - to C 20 -carboxylic acids) with primary or secondary amines.
  • the preferred component (a) underlying at least one tertiary amino group-containing poly (C2 to C2o carboxylic acids) preferably contain at least 3 carboxyl groups, especially 3 to 12, especially 3 to 5 carboxyl groups.
  • the carboxylic acid units in the polycarboxylic acids preferably have 2 to 10 carbon atoms, in particular they are acetic acid units.
  • the carboxylic acid units are suitably linked to the polycarboxylic acids, for example via one or more carbon and / or nitrogen atoms. Preferably, they are attached to tertiary nitrogen atoms, which are connected in the case of several nitrogen atoms via hydrocarbon chains.
  • the mixture according to the invention contains as component (a) at least one oil-soluble reaction product based on poly (C 2 - to C 20 -carboxylic acids) of general formula I or II containing at least one tertiary amino group HOOC ⁇ XOOH
  • variable A is a straight-chain or branched C 2 - to C 6 -alkylene group or the grouping of the formula III
  • variable B denotes a C 1 to C 1 alkylene group.
  • the preferred oil-soluble reaction product of component (a), in particular that of general formula I or II, is an amide, an amide ammonium salt or an ammonium salt in which none, one or more carboxylic acid groups are converted into amide groups.
  • Straight-chain or branched C 2 - to C 6 -alkylene groups of the variable A are, for example, 1, 1-ethylene, 1, 2-propylene, 1, 3-propylene, 1, 2-butylene, 1, 3-butylene, 1, 4-butylene ethylene, 2-methyl-1, 3-propylene, 1, 5-pentylene, 2-methyl-1,4-butylene, 2,2-dimethyl-1,3-propylene, 1,6-hexylene (hexamethylene) and especially 1, 2-ethylene.
  • the variable A preferably comprises 2 to 4, in particular 2 or 3, carbon atoms.
  • C 1 to C 1 alkylene groups of the variables B are 1, 2-ethylene, 1, 3-propylene, 1, 4-butylene, hexamethylene, octamethylene, decamethylene, dodecamethylene, tetradecamethylene, hexadecamethylene, octadecamethylene, nonadecamethylene and especially methylene.
  • the variable B comprises 1 to 10, in particular 1 to 4, carbon atoms.
  • the primary and secondary amines as reaction partners for the polycarboxylic acids for the formation of component (a) are usually monoamines, in particular aliphatic monoamines. These primary and secondary amines may be selected from a variety of amines bearing hydrocarbon radicals, optionally linked together.
  • these amines which are the oil-soluble reaction products of component (a) are secondary amines and have the general formula HNR2 in which the two variables R are each independently straight or branched C10 to C3o-alkyl radicals, in particular C 4 - to C24-alkyl radicals.
  • These longer-chain alkyl radicals are preferably straight-chain or only slightly branched.
  • the abovementioned secondary amines are derived from naturally occurring fatty acids or their derivatives with regard to their longer-chain alkyl radicals.
  • the two radicals R are the same.
  • the abovementioned secondary amines can be bound to the polycarboxylic acids by means of amide structures or in the form of the ammonium salts, and only one part can be present as amide structures and another part as ammonium salts. Preferably, only a few or no free acid groups are present.
  • the oil-soluble reaction products of component (a) are completely in the form of the amide structures.
  • components (a) are reaction products of nitrilotriacetic acid, ethylenediaminetetraacetic acid or propylene-1,2-diaminetetraacetic acid with in each case 0.5 to 1.5 moles per carboxyl group, in particular 0.8 to 1.2 moles per car- boxyl group, dioleylamine, dipalmitinamine, dicoco fatty amine, distearylamine, dibehenylamine or especially ditallow fatty amine.
  • a particularly preferred component (a) is the reaction product of 1 mole of ethylenediaminetetraacetic acid and 4 moles of hydrogenated ditallow fatty amine.
  • component (a) are the N, N-dialkylammonium salts of 2-N ', N'-dialkylamidobenzoates, for example the reaction product of 1 mole of phthalic anhydride and 2 moles of ditallow fatty amine, the latter being hydrogenated or unhydrogenated , and the reaction product of 1 mole of an alkenyl spiro-bis-lactone with 2 moles of a dialkylamine, for example, ditallow fatty amine and / or tallow fatty amine, the latter two of which may be hydrogenated or unhydrogenated.
  • the polyamines on which the oil-soluble acid amides of component (b) are based can either be structurally clearly defined low molecular weight "oligo" amines or polymers having up to 1000, in particular up to 500, especially up to 100, nitrogen atoms in the macromolecule.
  • oligo low molecular weight
  • the latter are then usually polyalkyleneimines, for example polyethyleneimines, or polyvinylamines.
  • the polyamines mentioned are reacted with Cs to C3o-fatty acids, in particular C16 to C20 fatty acids, or fatty acid-analogous compounds containing free carboxyl groups, to give the oil-soluble acid amides.
  • Cs to C3o-fatty acids in particular C16 to C20 fatty acids, or fatty acid-analogous compounds containing free carboxyl groups
  • reactive fatty acid derivatives such as the corresponding esters, halides or anhydrides
  • the reaction of the polyamines with the fatty acid to the oil-soluble acid amides of component (b) takes place completely or partially. In the latter case, subordinate fractions of the product are usually present in the form of corresponding ammonium salts.
  • the completeness of the conversion to the acid amides can generally be controlled by the reaction parameters.
  • the preparation of the acid amides of component (b) is described in document (2).
  • Suitable polyamines for the conversion to the acid amides of component (b) are, for example: ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, dipropylenetriamine, tripropylenetetramine, tetrapropylenepentamine, pentapropylenhexamine, polyethyleneimines of average degree of polymerization (corresponding to the number of nitrogen atoms) of e.g. , B. 10, 35, 50 or 100 and polyamines, which were obtained by reaction of oligoamines (with chain extension) with acrylonitrile and subsequent hydrogenation, for. N, N'-bis (3-aminopropyl) ethylenediamine.
  • Suitable fatty acids for the conversion to the acid amides of component (b) are pure fatty acids and technically customary fatty acid mixtures which comprise, for example, stearic acid, palmitic acid, lauric acid, oleic acid, linoleic acid and / or linolenic acid.
  • fatty acid mixtures for example tallow fatty acid, coconut oil fatty acid, trans fatty acid, coconut oil fatty acid, soybean oil fatty acid, rapeseed oil fatty acid, peanut oil fatty acid or palm oil fatty acid, which contain oleic acid and palmitic acid as main components.
  • fatty acid-analogous compounds containing carboxyl groups which are likewise suitable for reaction with the stated polyamines to form the acid amides of component (b) are monoesters of long-chain alcohols of dicarboxylic acids such as tallow fatty alcohol maleic acid half ester or tallow fatty alcohol succinic acid halide or corresponding glutaric or adipic acid monoesters.
  • the mixture according to the invention contains as component (b) at least one oil-soluble acid amide of aliphatic polyamines having 2 to 6 nitrogen atoms and C 16- to C 20 -fatty acids, all primary and secondary amino functions of the polyamines being converted into acid amide functions.
  • a typical example of an oil-soluble acid amide of component (b) is the reaction product of 3 moles of oleic acid with 1 mole of diethylenetriamine.
  • the oil-soluble reaction products of component (c) underlying ⁇ , ß-dicarboxylic acids having 4 to 300, especially 4 to 75, especially 4 to 12 carbon atoms are usually succinic acid, maleic acid, fumaric acid or derivatives thereof, which at the bridging ethylene or Ethylene group shorter or longer may have gerkettige hydrocarbyl substituents which contain or can carry heteroatoms and / or functional groups.
  • succinic acid maleic acid, fumaric acid or derivatives thereof, which at the bridging ethylene or Ethylene group shorter or longer may have gerkettige hydrocarbyl substituents which contain or can carry heteroatoms and / or functional groups.
  • succinic acid maleic acid, fumaric acid or derivatives thereof, which at the bridging ethylene or Ethylene group shorter or longer may have gerkettige hydrocarbyl substituents which contain or can carry heteroatoms and / or functional groups.
  • these are generally used in the form of the free dicarboxylic acid
  • the mixture according to the invention contains as component (c) at least one oil-soluble reaction product of maleic anhydride and primary alkylamines.
  • the primary alkylamines on which the oil-soluble reaction products of component (c) are based are usually medium-chain or long-chain alkyl monoamines having preferably 8 to 30, in particular 12 to 22 carbon atoms, and linear or branched, saturated or unsaturated alkyl chain, for example octyl, nyl-, iso Nonyl, decyl, undecyl, tridecyl, iso-tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecylamine and mixtures of such amines.
  • component (c) is especially cocoamine, tallow fatty amine, oleylamine, arachidylamine or behe- nylamine and mixtures thereof.
  • the reaction products of component (c) are usually - depending on the stoichiometry and reaction regime - as half or bisamides of maleic acid before; they may also contain minor amount of corresponding ammonium salts.
  • the preparation of the oil-soluble reaction products of component (c) from maleic anhydride and primary alkylamines is described in document (1).
  • a typical example of an oil-soluble reaction product of component (c) is the reaction product of 1 mol of maleic anhydride with 1 mol of iso-tridecylamine, which is present predominantly as a half-amide of maleic acid.
  • the mixture according to the invention can be prepared by simple mixing, optionally in a suitable solvent, of components (a) and (b) or (a) to (c) without heat input.
  • the mixture according to the invention preferably contains components (a) and (b) in the following ratios, the sum of these two components in each case giving 100% by weight:
  • the mixture according to the invention preferably contains components (a) to (c) in the following ratios, the sum of all three components in each case giving 100% by weight:
  • the mixture according to the invention is suitable as an additive to fuels, especially middle distillate fuels.
  • Middle distillate fuels which are used in particular as gas oils, petroleum, diesel oils (diesel fuels) or light fuel oils, are often referred to as fuel oils.
  • Such middle distillate fuels generally have boiling temperatures of 150 to 400 ° C.
  • the mixture according to the invention can be injected directly into the fuels, i. undiluted, but preferably as 10 to 70 wt .-%, in particular as 30 to 65 wt .-%, especially as 45 to 60 wt .-% solution (concentrate) in a suitable solvent, usually a hydrocarbon Solvents are added.
  • a suitable solvent usually a hydrocarbon Solvents are added.
  • Such a concentrate containing 10 to 70 wt .-%, in particular 30 to 65 wt .-%, especially 45 to 60 wt .-%, based on the total amount of the concentrate, the mixture according to the invention, dissolved in a hydrocarbon solvent, is therefore also the subject of the present invention.
  • Common solvents in this context are aliphatic or aromatic hydrocarbons, for example xylenes or mixtures of high-boiling aromatics such as solvent naphtha. Even middle distillate fuels themselves can be used as solvents for such concentrates.
  • the metering rate of the mixture in the fuels is generally 10 to 10,000 ppm by weight, in particular 50 to 5000 ppm by weight, especially 50 to 1000 ppm by weight, e.g. 150 to 400 ppm by weight, based in each case on the total amount of middle distillate fuel.
  • the mixture according to the invention is used as an additive to fuels which (A) to 0.1 to 75 wt .-%, preferably to 0.5 to 50 wt .-%, in particular to 1 to 25 wt .-%, especially to 3 to 12 wt .-%, of at least one Biofuel oil based on fatty acid esters, and
  • (B) from 25 to 99.9% by weight, preferably from 50 to 99.5% by weight, in particular from 75 to 99% by weight, in particular from 88 to 97% by weight, of middle distillates of fossil origin and / or of vegetable and / or animal origin, which are essentially hydrocarbon mixtures and are free of fatty acid esters,
  • the fuel component (A) is usually referred to as "biodiesel".
  • the middle distillates of the fuel component (A) are preferably substantially alkyl esters of fatty acids derived from vegetable and / or animal oils and / or fats.
  • Alkyl esters are usually lower alkyl esters, especially C 1 to C 4 alkyl esters, understood by transesterification of occurring in vegetable and / or animal oils and / or fats glycerides, in particular triglycerides, by means of lower alcohols, such as ethanol, n-propanol, iso Propanol, n-butanol, isobutanol, sec-butanol, tert-butanol or especially methanol ("FAME”) are available.
  • FAME methanol
  • Examples of vegetable oils which are converted into corresponding alkyl esters and thus can serve as a basis for biodiesel are castor oil, olive oil, peanut oil, pear kernel oil, coconut oil, mustard oil, cottonseed oil, and in particular sunflower oil, palm oil, soybean oil and rapeseed oil.
  • Other examples include oils that can be extracted from wheat, jute, sesame and the shea nut; furthermore, arachis oil, jatropha oil and linseed oil are also usable. The recovery of these oils and their conversion to the alkyl esters are known in the art or may be derived therefrom.
  • Vegetable fats are also useful in principle as a source of biodiesel, but play a minor role.
  • animal fats and oils that are converted into corresponding alkyl esters and thus can serve as a basis for biodiesel are fish oil, beef tallow, Pig tallow and similar fats and oils derived from the slaughtering or recycling of farmed or wild animals.
  • saturated or unsaturated fatty acids which usually have from 12 to 22 carbon atoms and may carry additional functional group such as hydroxyl groups, occur in the alkyl esters in particular lauric acid, myristic acid, palmitic acid , Stearic acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, erucic acid and ricinoleic acid, especially in the form of mixtures of such fatty acids.
  • Typical lower alkyl esters based on vegetable and / or animal oils and / or fats which are used as biodiesel or biodiesel components are, for example, sunflower methyl ester, palm oil methyl ester ("PME”), soybean oil methyl ester (“SME”) and especially rapeseed oil methyl ester (“RME”). ).
  • fuel component (B) is to be understood to mean boiling middle distillate fuels in the range from 120 to 450 ° C.
  • middle distillate fuels are used in particular as diesel fuel, heating oil or kerosene, with diesel fuel and heating oil being particularly preferred.
  • Middle distillate fuels are fuels obtained by distillation of crude oil and boiling in the range of 120 to 450 ° C.
  • low sulfur middle distillates are used, i. those containing less than 350 ppm of sulfur, in particular less than 200 ppm of sulfur, especially less than 50 ppm of sulfur. In special cases they contain less than 10 ppm sulfur, these middle distillates are also called "sulfur-free".
  • These are generally crude oil distillates, which have been subjected to a hydrogenating refining, and therefore contain only small amounts of polyaromatic and polar compounds.
  • middle distillates which have 95% distillation points below 370 ° C., in particular below 350 ° C. and in special cases below 330 ° C.
  • Low-sulfur and sulfur-free middle distillates can also be obtained from heavier petroleum fractions, which can no longer be distilled under atmospheric pressure.
  • Hydrocarbon cracking, thermal cracking, catalytic cracking, coker processes and / or visbreaking may be mentioned as typical conversion processes for the preparation of middle distillates from heavy petroleum fractions. Depending on the process implementation, these middle distillates fall to low sulfur or sulfur-free or are subjected to a hydrogenating refining.
  • the middle distillates preferably have aromatics contents of less than 28% by weight, in particular less than 20% by weight.
  • the content of normal paraffins is between 5% and 50% by weight, preferably between 10 and 35% by weight.
  • middle distillates should also be understood here, which can be derived either indirectly from fossil sources such as crude oil or natural gas or else produced from biomass via gasification and subsequent hydrogenation.
  • a typical example of a middle distillate fuel derived indirectly from fossil sources is GTL (gas-to-liquid) diesel fuel produced by Fischer-Tropsch synthesis.
  • GTL gas-to-liquid diesel fuel produced by Fischer-Tropsch synthesis.
  • a middle distillate is produced via the BTL (“bio-to-liquid”) process, which can be used either alone or in admixture with other middle distillates as fuel component (B).
  • the middle distillates also include hydrocarbons obtained by hydrogenation of fats and fatty oils. They contain mostly n-paraffins.
  • the said middle distillate fuels have in common that they are essentially hydrocarbon mixtures and are free from fatty acid esters.
  • the mixture according to the invention is preferably used in the said fuels as a paraffin dispersant ("WASA").
  • WASA paraffin dispersant
  • the mixture according to the invention often unfolds its action as paraffin dispersant only particularly well together with the customary flow improvers.
  • flow improvers are to be understood as meaning all additives which improve the cold properties of middle distillate fuels.
  • MDFI actual cold flow improvers
  • nucleators see also Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A16, page 719 ff.).
  • the middle distillate fuels according to the invention contain, in addition to the mixture according to the invention in the presence of cold flow improvers, in an amount of usually 1 to 2000 ppm by weight, preferably from 5 to 1000 ppm by weight, in particular from 10 to 750 ppm by weight and especially from 50 to 500 ppm by weight, for example from 150 to 400 ppm by weight.
  • cold flow improvers in particular for the combination with the mixture according to the invention, one or more of the following may be considered, which are typical representatives for use in middle distillate fuels:
  • the monomer is preferably selected from alkenylcarboxylic esters, (meth) acrylic esters and olefins.
  • Suitable olefins are, for example, those having 3 to 10 carbon atoms and having 1 to 3, preferably 1 or 2, in particular having a carbon-carbon double bond.
  • the carbon-carbon double bond can be arranged both terminally ( ⁇ -olefins) and internally.
  • ⁇ -olefins particularly preferably ⁇ -olefins having 3 to 6 carbon atoms, for example propene, 1-butene, 1-pentene and 1-hexene.
  • Suitable (meth) acrylic esters are, for example, esters of (meth) acrylic acid with C 1 -C 10 -alkanols, in particular with methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, pentanol, hexanol , Heptanol, octanol, 2-ethylhexanol, nonanol and decanol.
  • Suitable alkenylcarboxylic esters are, for example, the vinyl and propenyl esters of carboxylic acids having 2 to 20 carbon atoms, the hydrocarbon radical of which may be linear or branched. Preferred among these are the vinyl esters.
  • carboxylic acids having a branched hydrocarbon radical preferred are those whose branch is in the ⁇ -position to the carboxyl group, the ⁇ -carbon atom being particularly preferably tertiary, ie. H. the carboxylic acid is a so-called neocarboxylic acid.
  • the hydrocarbon radical of the carboxylic acid is linear.
  • alkenylcarboxylic esters examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl neopentanoate, vinyl hexanoate, vinyl neononanoate, vinyl neodecanoate and the corresponding propenyl esters, the vinyl esters being preferred.
  • a particularly preferred alkenylcarboxylic acid ester is vinyl acetate; typical copolymers of group (d) resulting therefrom are ethylene-vinyl acetate copolymers ("EVA”), which are widely used in diesel fuels.
  • EVA ethylene-vinyl acetate copolymers
  • the ethylenically unsaturated monomer is selected from among alkenylcarboxylic acid esters.
  • copolymers which contain two or more mutually different alkenylcarboxylic acid esters in copolymerized form, these differing in the alkenyl function and / or in the carboxylic acid group. Also suitable are copolymers which, in addition to the alkenylcarboxylic ester (s), contain at least one olefin and / or at least one (meth) acrylic acid ester in copolymerized form.
  • the ethylenically unsaturated monomer is in the copolymer of group (d) in an amount of preferably 1 to 50 mol .-%, in particular from 10 to 50 mol .-% and especially from 5 to 20 mol .-%, based on the total copolymer , copolymerized.
  • the copolymer of group (d) preferably has a number average molecular weight M n of from 1000 to 20,000, particularly preferably from 1000 to 10,000 and in particular from 1000 to 6000.
  • Comb polymers of group (e) are, for example, those described in Comb-Like Polymers, Structure and Properties, N.A. Plate and V.P. Shibaev, J. Poly. Be. Macromolecular Revs. 8, pages 1 17 to 253 (1974). "Of the compounds described there, comb polymers of the formula IV are suitable, for example
  • D is R 17 , COOR 17 , OCOR 17 , R 18 , OCOR 17 or OR 17 ,
  • E is H, CH 3 , D or R 18 ,
  • G is H or D
  • J is H, R 18 , R 18 COOR 17 'is aryl or heterocyclyl
  • K is H, COOR 18 , OCOR 18 , OR 18 or COOH
  • L is H, R 18 COOR 18 , OCOR 18 , COOH or aryl, in which
  • R 17 is a hydrocarbon radical having at least 10 carbon atoms, preferably having 10 to 30 carbon atoms
  • R 18 is a hydrocarbon radical having at least one carbon atom, preferably having 1 to 30 carbon atoms
  • m is a molar fraction in the range of 1, 0 to 0.4
  • n is a mole fraction in the range of 0 to 0.6.
  • Preferred comb polymers are, for example, by the copolymerization of maleic anhydride or fumaric acid with another ethylenically unsaturated monomer, for example with an ⁇ -olefin or an unsaturated ester, such as vinyl acetate, and subsequent esterification of the anhydride or acid function with an alcohol having at least 10 Carbon atoms available.
  • Other preferred comb polymers are copolymers of ⁇ -olefins and esterified comonomers, for example, esterified copolymers of styrene and maleic anhydride or esterified copolymers of styrene and fumaric acid.
  • mixtures of comb polymers are suitable.
  • Comb polymers may also be polyfumarates or polymaleinates.
  • homopolymers and copolymers of vinyl ethers are suitable comb polymers.
  • Suitable polyoxyalkylenes of group (f) are, for example, polyoxyalkylene esters, ethers, esters / ethers and mixtures thereof.
  • the polyoxyalkylene compounds preferably comprise at least one, more preferably at least two linear alkyl groups each having from 10 to 30 carbon atoms and a polyoxyalkylene group having a molecular weight of up to 5,000.
  • the alkyl group of the polyoxyalkylene radical preferably contains from 1 to 4 carbon atoms.
  • Preferred polyoxyalkylene esters, ethers and ester / ethers have the general formula V
  • R 19 and R 20 are each independently R 21 , R 21 OO, R 21 is -O-CO (CH 2 ) Z - or R 21 is -O-CO (CH 2 ) Z -CO-, wherein R 21 is is linear Ci-C 3 o-alkyl, y is a number from 1 to 4, x is a number from 2 to 200, and z is a number from 1 to 4.
  • Preferred polyoxyalkylene compounds of the formula V in which both R 19 and R 20 are R 21 are polyethylene glycols and polypropylene glycols having a number average molecular weight of 100 to 5,000.
  • Preferred polyoxyalkylenes of the formula V in which one of the radicals R 19 is R 21 and the other is R 21 -CO- are polyoxyalkylene esters of fatty acids having 10 to 30 carbon atoms such as stearic acid or behenic acid.
  • Preferred polyoxyalkylene compounds in which both R 19 and R 20 are R 21 -CO- are diesters of fatty acids having 10 to 30 carbon atoms, preferably stearic or behenic acid.
  • Suitable sulfocarboxylic acids / sulfonic acids or their derivatives of group (g) are, for example, those of the general formula VI
  • R 25 is a hydrocarbon radical
  • R 26 and R 27 are alkyl, alkoxyalkyl or polyalkoxyalkyl having at least 10 carbon atoms in the main chain, R 28 is C 2 -C 5 -alkylene,
  • Suitable poly (meth) acrylic esters of group (h) are both homopolymers and copolymers of acrylic and methacrylic acid esters. Preferred are copolymers of at least two mutually different (meth) acrylic acid esters, which differ with respect to the fused alcohol. Optionally, the copolymer contains another, einpolyme- rinstrument different olefinically unsaturated monomer. The weight-average molecular weight of the polymer is preferably 50,000 to 500,000.
  • a particularly preferred polymer is a copolymer of methacrylic acid and methacrylic acid esters of saturated C 4 - and Cis-alcohols, wherein the acid groups are neutralized with hydrogenated tallamine.
  • Suitable poly (meth) acrylates are described, for example, in WO 00/44857, to which reference is hereby fully made.
  • the mixture according to the invention is an efficient one in its function as paraffin dispersant and versatile cold stabilization system for middle distillate fuels, especially those with a share of biodiesel.
  • the use of the mixture according to the invention in particular in combination with flow improvers, can contribute to an improvement in the lubricating effect.
  • the lubricating effect is determined, for example, in the so-called HFRR test according to ISO 12156.
  • the mixture according to the invention can be added both middle distillate fuels, which are completely fossil origin, that is, derived from petroleum, as well as fuels containing a proportion of biodiesel in addition to the petroleum-based portion, to improve their properties.
  • middle distillate fuels which are completely fossil origin, that is, derived from petroleum, as well as fuels containing a proportion of biodiesel in addition to the petroleum-based portion, to improve their properties.
  • a significant improvement in the cold flow behavior of the middle distillate fuel i. a reduction in CP values and / or CFPP values, regardless of the origin or composition of the fuel observed.
  • the precipitated paraffin crystals are effectively kept in suspension, so that there is no clogging of filters and lines by sedimented paraffin.
  • the mixture according to the invention has a good broad effect and thus has the effect that the excreted paraffin crystals are very well dispersed in the most varied middle distillate fuels.
  • the present invention also fuels, in particular those with a biodiesel content, which contain the mixture according to the invention.
  • the fuels mentioned or the fuel additive concentrates mentioned contain further additives in customary amounts of flow improver (as described above), further paraffin dispersants, conductivity improvers, anti-corrosion additives, lubricity additives, antioxidants, metal deactivators, anti-foaming agents, Demulsifiers, detergents, cetane improvers, solvents or diluents, dyes or fragrances, or mixtures thereof.
  • Component (b) diethylenetriamine reacted with 3 moles of oleic acid, prepared as in
  • Component (c) maleic anhydride reacted with 1 mol of tridecylamine, prepared in solvent naphtha as described in Example 2 of document (1).
  • German winter diesel fuels (DK1 to DK7) are characterized by the following parameters:
  • DK1 CP (according to ISO 3015): -5.9 ° C, CFPP (according to EN 116): -9 ° C;
  • Density dis (DIN 51577): 837.5 kg / m 3 ; Initial boiling point (DIN 51751): 178 ° C, boiling end: 364 ° C; Paraffin content (according to GC): 16.6% by weight
  • DK2 CP (according to ISO 3015): -5.9 ° C, CFPP (according to EN 116): -7 ° C;
  • Density dis (DIN 51577): 831, 6 kg / m 3 ;
  • Paraffin content (according to GC): 22.1% by weight
  • DK4 CP (according to ISO 3015): -7.0 0 C, CFPP (according to EN 116): -9 ° C;
  • DK5 CP (according to ISO 3015): -7.0 0 C, CFPP (according to EN 116): -9 ° C;
  • Density dis (DIN 51577): 828.9 kg / m 3 ; Initial boiling point (DIN 51751): 176 ° C, boiling end: 356 ° C; Paraffin content (according to GC): 22.1% by weight
  • DK6 CP (according to ISO 3015): -7,4 ° C, CFPP (according to EN 116): -7 ° C;
  • Density dis (DIN 51577): 827.8 kg / m 3 ; Initial boiling point (DIN 51751): 169 ° C, boiling end: 349 ° C; Paraffin content (according to GC): 21, 8% by weight
  • DK7 CP (according to ISO 3015): -6.5 ° C, CFPP (according to EN 116): -8 ° C;
  • Density dis (DIN 51577): 824.1 kg / m 3 ; Siede rotating (DIN 51751): 182 ° C Final boiling point: 350 0 C; Paraffin content (according to GC): 23.3% by weight
  • RME rapeseed oil methyl ester
  • SME soybean oil methyl ester
  • PME palm oil methyl ester
  • MDFI cold flow improvers
  • FB1 commercial ethylene-vinyl acetate copolymer having a vinyl acetate content of 30% by weight according to document (4);
  • FB2 Mixture according to document (5) of a commercial ethylene-vinyl acetate copolymer and a hydrocarbyl vinyl ether homopolymer having a comb structure;
  • FB1 and FB2 were selected for their CFPP performance in the diesel fuels used. It is very likely that other diesel fuels require other MDFI. In this respect, the mixtures according to the invention are not restricted to use in conjunction with FB1 and FB2.
  • the additives K1 to K3 and FB1 or FB2 were each added separately to the diesel fuels. It is also possible to increase the concentra- First mix K1, K2 and K3 with the MDFI FB1 or FB2 and then mix them together in the diesel fuels DK1 to DK7.
  • the fuels DK1 to DK7 were admixed with the amounts of biodiesel additive specified in the table below, the concentrate K1, K2 or K3 and the flow improver FB1 or FB2, mixed with stirring at 40.degree. C. and then cooled to room temperature.
  • the CP was determined according to ISO 3015 and the CFPP according to EN 116. Thereafter, the additized fuel samples were cooled in 500 ml glass cylinders in a cold bath from room temperature at a cooling rate of about 14 ° C per hour to -13 ° C and stored for 16 hours at this temperature.
  • CP * (column 8) and CFPP * (column 11) indicate the values of the additized fuel samples before cooling.
  • CP # (column 9) and CFPP # (column 12) indicate the corresponding values of the 20% by volume soil phase each separated after cooling.
  • Column 10 is the absolute value of the difference from CP # to CP * .
  • Column 13 indicates the vol .-% sediment of paraffin after storage in a cold bath at -13 ° C. If the specified value moves in the lower range (in the case of the examples listed below 40% by volume), the lower the value given here, the better the paraffin dispersing behavior. However, very high values in column 13 (in the case of the examples listed above 60% by volume) are also an indication of good paraffin dispersing behavior. Paraffin sedimentation is usually critical of about 10 to 30% by volume, since then most of the precipitated paraffin crystals are in the 20% by volume bottom phase which is used to characterize the effectiveness of the additives as described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

Mischung aus polaren öllöslichen Stickstoffverbindungen und Säureamiden als Paraf- findispergator für Kraftstoffe
Beschreibung
Die vorliegende Erfindung betrifft eine Mischung, enthaltend
(a) 5 bis 95 Gew.-% mindestens einer von den Komponenten (b) und (c) verschiedenen polaren öllöslichen Stickstoffverbindung, welche in der Lage ist, in Kraft- Stoffen in der Kälte ausgefallene Paraffinkristalle ausreichend zu dispergieren,
(b) 1 bis 50 Gew.-% mindestens eines öllöslichen Säureamids aus Polyaminen mit 2 bis 1000 Stickstoffatomen und Cs- bis C3o-Fettsäuren oder freie Carboxylgruppen enthaltenden fettsäureanalogen Verbindungen und
(c) 0 bis 50 Gew.-% mindestens eines öllöslichen Umsetzungsproduktes aus α,ß-Di- carbonsäuren mit 4 bis 300 Kohlenstoffatomen oder deren Derivaten und primären Alkylaminen,
wobei die Summe aller Komponenten der Mischung (a) bis (c) 100 Gew.-% ergibt.
Weiterhin betrifft die vorliegende Erfindung die Verwendung dieser Mischung als Zusatz zu Kraftstoffen, insbesondere in der Funktion als Paraffindispergator, derartige Kraftstoffe selbst sowie Kraftstoffadditiv-Konzentrate, die diese Mischung gelöst in ei- nem Kohlenwasserstoff-Lösungsmittel enthalten. Die genannten Kraftstoffe weisen insbesondere einen Biodiesel-Anteil auf.
Mitteldestillat-Kraftstoffe aus fossilem Ursprung, insbesondere Gasöle, Dieselöle oder leichte Heizöle, die aus Erdöl gewonnen werden, haben je nach Herkunft des Rohöls unterschiedliche Gehalte an Paraffinen. Bei tiefen Temperaturen kommt es am Trübungspunkt oder Cloud Point ("CP") zur Ausscheidung fester Paraffine. Bei weiterer Abkühlung bilden die plättchenförmigen n-Paraffinkristalle eine Art von "Kartenhausstruktur" und der Mitteldestillat-Kraftstoff stockt, obwohl sein überwiegender Teil noch flüssig ist. Durch die ausgefallenen n-Paraffine im Temperaturbereich zwischen Trü- bungspunkt (Cloud Point) und Stockpunkt (Pour Point) wird die Fließfähigkeit der Mitteldestillat-Kraftstoffe erheblich beeinträchtigt; die Paraffine verstopfen Filter und verursachen eine ungleichmäßige oder völlig unterbrochene Kraftstoffzufuhr zu den Verbrennungsaggregaten. Ähnliche Störungen treten bei leichten Heizölen auf.
Es ist seit langem bekannt, dass durch geeignete Zusätze das Kristallwachstum der n- Paraffine in Mitteldestillat-Kraftstoffen modifiziert werden kann. Gut wirksame Additive verhindern, dass Mitteldestillat-Kraftstoffe bei Temperaturen wenige Grade Celsius unterhalb der Temperatur, bei welcher die ersten Paraffinkristalle auskristallisieren, bereits fest werden. Statt dessen werden feine, gut kristallisierende, separate Paraffinkristalle gebildet, welche Filter in Kraftfahrzeugen und Heizungsanlagen passieren oder zumindest einen für den flüssigen Teil der Mitteldestillate durchlässigen Filterkuchen bilden, so dass ein störungsfreier Betrieb sichergestellt ist. Die Wirksamkeit der Fließ- verbesserer wird nach der europäischen Norm EN 1 16 indirekt durch Messung des CoId Filter Plugging Point ("CFPP") ausgedrückt.
Als Kaltfließverbesserer oder Middle Distillate Flow Improvers ("MDFI") werden seit langem beispielsweise Ethylen-Vinylcarboxylat-Copolymere eingesetzt. Ein Nachteil dieser Additive liegt darin, dass die ausgefallenen Paraffinkristalle aufgrund ihrer gegenüber dem flüssigen Teil höheren Dichte dazu neigen, sich beim Lagern mehr und mehr am Boden des Behälters abzusetzen. Dadurch bildet sich im oberen Behälterteil eine homogene paraffinarme Phase und am Boden eine zweiphasige paraffinreiche Schicht. Da sowohl in den Fahrzeugtanks als auch in Lager- oder Liefertanks der Mine- ralölhändler der Abzug des Kraftstoffes meist wenig oberhalb des Behälterbodens erfolgt, besteht die Gefahr, dass die hohe Konzentration an festen Paraffinen zu Verstopfungen von Filtern und Dosiereinrichtungen führt. Diese Gefahr wird um so größer, je weiter die Lagertemperatur die Ausscheidungstemperatur der Paraffine unterschreitet, da die ausgeschiedene Paraffinmenge mit sinkender Temperatur zunimmt. Insbeson- dere verstärken auch Anteile an Biodiesel diese unerwünschte Neigung des Mitteldestillat-Kraftstoffes zur Paraffinsedimentation.
Durch den zusätzlichen Einsatz von Paraffindispergatoren oder Wax Anti-Settling Additiven ("WASA") können diese Probleme verringert werden.
Im Zuge abnehmender Welterdölreserven und der Diskussion um die die Umwelt beeinträchtigenden Konsequenzen des Verbrauchs fossiler und mineralischer Brennstoffe steigt das Interesse an alternativen, auf nachwachsenden Rohstoffen basierenden E- nergiequellen. Dazu gehören insbesondere native Öle und Fette pflanzlichen oder tieri- sehen Ursprungs. Dies sind insbesondere Triglyceride von Fettsäuren mit 10 bis 24 Kohlenstoffatomen, die zu Niedrigalkylestern wie Methylestern umgesetzt werden. Diese Ester werden allgemein auch als "FAME" (Fatty Acid Methyl Ester) bezeichnet.
Mischungen dieser FAME mit Mitteldestillaten besitzen ein schlechteres Kälteverhalten als diese Mitteldestillate alleine. Insbesondere erhöht die Zugabe der FAME die Tendenz zur Bildung von Paraffinsedimenten.
In der WO 00/23541 (1) wird die Verwendung einer Mischung aus 5 bis 95 Gew.-% mindestens eines Umsetzungsproduktes einer mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbonsäure) mit sekundären Aminen und 5 bis 95
Gew.-% mindestens eines Umsetzungsproduktes aus Maleinsäureanhydrid und einem primären Alkylamin als Zusatz für Erdölmitteldestillate, insbesondere als Paraffin- dispergator und Lubricity-Additiv, beschrieben.
Aus der EP-A 055 355 (2) ist bekannt, dass ein öllösliches Säureamid eines Polyamins mit einer wenigstens 8 C-Atome aufweisenden Fettsäure oder einer freie Carboxyl- gruppen enthaltenden fettsäureanalogen Verbindung auch ein verbessertes Kälteverhalten eines Erdöldestillates bewirkt. Eine Kombination solcher Säureamide mit weiteren das Kälteverhalten von Erdöldestillaten verbessernden Additiven wird in (2) nicht beschrieben.
In der WO 94/10267 (3) werden Fließverbesserer und Paraffindispergatoren, beispielsweise Kammpolymere, für Mischungen aus Brennstoffölen pflanzlichen Ursprungs und Brennstoffölen auf Erdölbasis beschrieben.
Es bestand die Aufgabe, Produkte zur Verfügung zu stellen, welche ein verbessertes Fließfähigkeitsverhalten von Kraftstoffen, insbesondere bei solchen Kraftstoffen, die einen Anteil an Biobrennstofföl (Biodiesel), welches auf Fettsäureestern basiert, aufweisen, bei tiefer Temperatur gewährleisten, indem sie eine solche Dispergierwirkung zeigen, dass ein Absetzen ausgeschiedener Paraffine verzögert oder verhindert wird.
Die Aufgabe wird erfindungsgemäß durch die eingangs genannte Mischung aus den Komponenten (a) bis (c) gelöst, was um so erstaunlicher ist, da die Komponenten (a) und (b) für sich alleine jeweils keine oder nur eine geringe, nicht ausreichende fließverbessernde Wirkung in einer Mischung aus einem üblichen Mitteldestillat fossilen Ur- sprungs und einem Biobrennstofföl, welches auf Fettsäureestern basiert, aufweisen. Die Komponente (c) ist nicht unbedingt zur Erzielung der beabsichtigen Fließfähigkeitsverbesserung notwendig, verstärkt diese Wirkung jedoch meist noch erheblich.
Die polaren, öllöslichen Stickstoffverbindungen der Komponente (a), welche in der La- ge sind, in Kraftstoffen in der Kälte ausgefallene Paraffinkristalle ausreichend zu dispergieren, können sowohl ionischer als auch nicht ionischer Natur sein und besitzen vorzugsweise wenigstens einen, insbesondere wenigstens 2 Substituenten der allgemeinen Formel >NR22, worin R22 für einen Cs- bis C4o-Kohlenwasserstoffrest steht. Die Stickstoffsubstituenten können auch quaternisiert, das heißt in kationischer Form, vor- liegen. Beispiele für solche Stickstoffverbindungen sind Ammoniumsalze und/oder A- mide, die durch die Umsetzung wenigstens eines mit wenigstens einem Kohlenwasserstoffrest substituierten Amins mit einer Carbonsäure mit 1 bis 4 Carboxylgruppen bzw. mit einem geeignetem Derivat davon erhältlich sind. Vorzugsweise enthalten die Amine wenigstens einen linearen Cs- bis C4o-Alkylrest. Geeignete primäre Amine sind beispielsweise Octylamin, Nonylamin, Decylamin, Undecylamin, Dodecylamin, Tetra- decylamin und die höheren linearen Homologen. Geeignete sekundäre Amine sind beispielsweise Dioctadecylamin und Methylbehenylamin. Geeignet sind auch Aminge- mische, insbesondere großtechnisch zugängliche Amingemische wie Fettamine oder hydrierte Tallamine, wie sie beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 6. Auflage, im Kapitel "Amines, aliphatic" beschrieben werden. Für die Umsetzung geeignete Säuren sind beispielsweise Cyclohexan-1 ,2-dicarbonsäure, Cyclo- hexen-1 ,2-dicarbonsäure, Cyclopentan-1 ,2-dicarbonsäure, Naphthalindicarbonsäure, Phthalsäure, Isophthalsäure, Terephthalsäure und mit langkettigen Kohlenwasserstoffresten substituierte Bernsteinsäuren.
Weitere Beispiele für geeignete polare, öllösliche Stickstoffverbindungen sind Ringsys- teme, die wenigstens zwei Substituenten der Formel -A'-NR23R24 tragen, worin A' für eine lineare oder verzweigte aliphatische Kohlenwasserstoffgruppe steht, die gegebenenfalls durch eine oder mehrere Gruppierungen, die ausgewählt sind unter O, S, NR35 und CO, unterbrochen ist, und R23 und R24 für einen Cg- bis C4o-Kohlenwasserstoffrest stehen, der gegebenenfalls durch eine oder mehrere Gruppierungen, die ausgewählt sind unter O, S, NR35 und CO, unterbrochen und/oder durch einen oder mehrere Substituenten, die ausgewählt sind unter OH, SH und NR35R36, substituiert ist, wobei R35 für Cr bis C4o-Alkyl, das gegebenenfalls durch eine oder mehrere Gruppierungen, die ausgewählt sind unter CO, NR35, O und S, unterbrochen, und/oder durch einen oder mehrere Reste, die ausgewählt sind unter NR37R38, OR37, SR37, COR37, COOR37, CONR37R38, Aryl oder Heterocyclyl, substituiert ist, wobei R37 und R38 jeweils unabhängig voneinander ausgewählt sind unter H oder d- bis C4-AIkVl und wobei R36 für H oder R35 steht.
In einer bevorzugten Ausführungsform enthält die erfindungsgemäße Mischung als Komponente (a) mindestens ein öllösliches Umsetzungsprodukt aus mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbonsäuren) mit primären oder sekundären Aminen.
Die der bevorzugten Komponente (a) zugrundeliegenden mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbonsäuren) enthalten vorzugsweise mindestens 3 Carboxylgruppen, insbesondere 3 bis 12, vor allem 3 bis 5 Carboxyl- gruppen. Die Carbonsäure-Einheiten in den Polycarbonsäuren weisen vorzugsweise 2 bis 10 Kohlenstoffatome auf, insbesondere sind es Essigsäure-Einheiten. Die Carbonsäure-Einheiten sind in geeigneter Weise zu den Polycarbonsäuren verknüpft, bei- spielsweise über ein oder mehrere Kohlenstoff- und/oder Stickstoffatome. Vorzugsweise sind sie an tertiäre Stickstoffatome angebunden, die im Falle mehrerer Stickstoffatome über Kohlenwasserstoffketten verbunden sind.
In einer noch stärker bevorzugten Ausführungsform enthält die erfindungsgemäße Mi- schung als Komponente (a) mindestens ein öllösliches Umsetzungsprodukt auf Basis von mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20- Carbonsäuren) der allgemeinen Formel I oder Il HOOC^ XOOH
B B
HOOC_.I\L . N._XOOH
B A B (|j
HOOC"B"N i "B"COOH
^COOH (| |)
in denen die Variable A eine geradkettige oder verzweigte C2- bis Cβ-Alkylengruppe oder die Gruppierung der Formel IM
HoocByCH*-CH*-
CH2-CH2-
darstellt und die Variable B eine d- bis Cig-Alkylengruppe bezeichnet.
Weiterhin ist das bevorzugte öllösliche Umsetzungsprodukt der Komponente (a), insbesondere das der allgemeinen Formel I oder II, ein Amid, ein Amidammoniumsalz oder ein Ammoniumsalz, in dem keine, eine oder mehrere Carbonsäuregruppen in Amidgruppen übergeführt sind.
Geradkettige oder verzweigte C2- bis Cβ-Alkylengruppen der Variablen A sind beispielsweise 1 ,1-Ethylen, 1 ,2-Propylen, 1 ,3-Propylen, 1 ,2-Butylen, 1 ,3-Butylen, 1 ,4-Bu- tylen, 2-Methyl-1 ,3-propylen, 1 ,5-Pentylen, 2-Methyl-1 ,4-butylen, 2,2-Dimethyl-1 ,3-pro- pylen, 1 ,6-Hexylen (Hexamethylen) und insbesondere 1 ,2-Ethylen. Vorzugsweise um- fasst die Variable A 2 bis 4, insbesondere 2 oder 3 Kohlenstoffatome.
d- bis Cig-Alkylengruppen der Variablen B sind beispielsweise 1 ,2-Ethylen, 1 ,3-Pro- pylen, 1 ,4-Butylen, Hexamethylen, Octamethylen, Decamethylen, Dodecamethylen, Tetradecamethylen, Hexadecamethylen, Octadecamethylen, Nonadecamethylen und insbesondere Methylen. Vorzugsweise umfasst die Variable B 1 bis 10, insbesondere 1 bis 4 Kohlenstoffatome.
Die primären und sekundären Amine als Umsetzungspartner für die Polycarbonsäuren zur Bildung der Komponente (a) sind üblicherweise Monoamine, insbesondere aliphati- sche Monoamine. Diese primären und sekundären Amine können aus einer Vielzahl von Aminen ausgewählt sein, die - gegebenenfalls miteinander verbundene - Kohlenwasserstoffreste tragen.
In einer bevorzugten Ausführungsform sind diese den öllöslichen Umsetzungsprodukten der Komponente (a) zugrundeliegenden Amine sekundären Amine und weisen die allgemeine Formel HNR2 auf, in der die beiden Variablen R unabhängig voneinander jeweils geradkettige oder verzweigte C10- bis C3o-Alkylreste, insbesondere Ci4- bis C24-Alkylreste bedeuten. Diese längerkettigen Alkylreste sind vorzugsweise geradkettig oder nur in geringem Grade verzweigt. In der Regel leiten sich die genannten sekundä- ren Amine hinsichtlich ihrer längerkettigen Alkylreste von natürlich vorkommenden Fettsäure bzw. von deren Derivaten ab. Vorzugsweise sind die beiden Reste R gleich.
Die genannten sekundären Amine können mittels Amidstrukturen oder in Form der Ammoniumsalze an die Polycarbonsäuren gebunden sein, auch kann nur ein Teil als Amidstrukturen und ein anderer Teil als Ammoniumsalze vorliegen. Vorzugsweise liegen nur wenige oder keine freien Säuregruppen vor. In einer bevorzugten Ausführungsform liegen die öllöslichen Umsetzungsprodukte der Komponente (a) vollständig in Form der Amidstrukturen vor.
Typische Beispiele für Komponenten (a) sind Umsetzungsprodukte der Nitrilotriessig- säure, der Ethylendiamintetraessigsäure oder der Propylen-1 ,2-diamintetraessigsäure mit jeweils 0,5 bis 1 ,5 Mol pro Carboxylgruppe, insbesondere 0,8 bis 1 ,2 Mol pro Car- boxylgruppe, Dioleylamin, Dipalmitinamin, Dikokosfettamin, Distearylamin, Dibehenyl- amin oder insbesondere Ditalgfettamin. Eine besonders bevorzugte Komponente (a) ist das Umsetzungsprodukt aus 1 Mol Ethylendiamintetraessigsäure und 4 Mol hydriertem Ditalgfettamin.
Als weitere typische Beispiele für die Komponente (a) seien die N,N-Dialkylammonium- salze von 2-N',N'-Dialkylamidobenzoaten, beispielsweise das Reaktionsprodukt aus 1 Mol Phthalsäureanhydrid und 2 Mol Ditalgfettamin, wobei letzteres hydriert oder nicht hydriert sein kann, und das Reaktionsprodukt von 1 Mol eines Alkenylspirobislactons mit 2 Mol eines Dialkylamins, beispielsweise Ditalgfettamin und/oder Talgfettamin, wobei die beiden letzteren hydriert oder nicht hydriert sein können, genannt.
Die den öllöslichen Säureamiden der Komponente (b) zugrundeliegenden Polyamine können entweder strukturell eindeutig definierte niedermolekulare "Oligo"amine oder Polymere mit bis zu 1000, insbesondere bis zu 500, vor allem bis zu 100 Stickstoffatomen im Makromolekül sein. Bei letzteren handelt es sich dann üblicherweise um PoIy- alkylenimine, beispielsweise Polyethylenimine, oder Polyvinylamine.
Die genannten Polyamine werden mit Cs- bis C3o-Fettsäuren, insbesondere C16- bis C2o-Fettsäuren, oder freie Carboxylgruppen enthaltenden fettsäureanalogen Verbindungen zu den öllöslichen Säureamiden umgesetzt. Anstelle der freien Fettsäuren können zur Umsetzung prinzipiell auch reaktive Fettsäurederivate wie die entspre- chenden Ester, Halogenide oder Anhydride verwendet werden. Die Umsetzung der Polyamine mit den Fettsäure zu den öllöslichen Säureamiden der Komponente (b) erfolgt vollständig oder partiell. Im letzteren Fall liegen meist untergeordnete Anteile des Produktes üblicherweise in Form von entsprechenden Ammoniumsalzen vor. Die Vollständigkeit der Umsetzung zu den Säureamiden lässt sich in der Regel jedoch durch die Umsetzungsparameter steuern. Die Herstellung der Säureami- de der Komponente (b) ist in Dokument (2) beschrieben.
Als für die Umsetzung zu den Säureamiden der Komponente (b) geeignete Polyamine sind beispielsweise zu nennen: Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin, Dipropylentriamin, Tripropylentetramin, Tetrapropylenpentamin, Pentapropylenhexamin, Polyethylenimine eines mittleren Polymerisationsgrades (entsprechend der Anzahl der Stickstoffatome) von z. B. 10, 35, 50 oder 100 sowie Polyamine, die durch Umsetzung von Oligoaminen (unter Kettenverlängerung) mit Acrylnitril und anschließende Hydrierung gewonnen wurden, z. B. N,N'-Bis-(3-aminopropyl)-ethylenediamin.
Als für die Umsetzung zu den Säureamiden der Komponente (b) geeignete Fettsäuren kommen reine Fettsäuren sowie technisch übliche Fettsäuregemische in Betracht, die beispielsweise Stearinsäure, Palmitinsäure, Laurinsäure, Ölsäure, Linolsäure und/oder Linolensäure enthalten. Von besonderem Interesse sind hierbei natürlich vorkommende Fettsäuregemische, beispielsweise Taigfettsäure, Kokosölfettsäure, Tranfettsäure, Kokospalmkernölfettsäure, Sojaölfettsäure, Rübölfettsäure, Erdnussölfettsäure oder Palmölfettsäure, welche als Hauptkomponenten Ölsäure und Palmitinsäure enthalten.
Beispiele für freie Carboxylgruppen enthaltenden fettsäureanalogen Verbindungen, die ebenfalls zur Umsetzung mit den genannten Polyaminen zu den Säureamiden der Komponente (b) geeignet sind, sind Monoester langkettiger Alkohole von Dicarbonsäu- ren wie Talgfettalkoholmaleinsäurehalbester oder Talgfettalkoholbernsteinsäurehalbes- ter oder entsprechende Glutar- oder Adipinsäurehalbester.
In einer bevorzugten Ausführungsform enthält die erfindungsgemäße Mischung als Komponente (b) mindestens ein öllösliches Säureamid aus aliphatischen Polyaminen mit 2 bis 6 Stickstoffatomen und Ciβ- bis C2o-Fettsäuren, wobei alle primären und sekundären Aminofunktionen der Polyamine in Säureamidfunktionen übergeführt sind.
Ein typisches Beispiel für ein öllösliches Säureamid der Komponente (b) ist das Umsetzungsprodukt von 3 Mol Ölsäure mit 1 Mol Diethylentriamin.
Die den öllöslichen Umsetzungsprodukten der Komponente (c) zugrundeliegenden α,ß- Dicarbonsäuren mit 4 bis 300, insbesondere 4 bis 75, vor allem 4 bis 12 Kohlenstoffatomen, sind üblicherweise Bernsteinsäure, Maleinsäure, Fumarsäure oder Derivate hiervon, die an der verbrückenden Ethylen- bzw. Ethenylen-Gruppe kürzer- oder län- gerkettige Hydrocarbyl-Substitutenten aufweisen können, welche Heteroatome und/oder funktionelle Gruppen enthalten bzw. tragen können. Für die Umsetzung mit den primären Alkylaminen werden diese in der Regel in Form der freien Dicarbonsäure oder deren reaktiver Derivate eingesetzt. Als reaktive Derivate können hier Carbonsäu- rehalogenide, Carbonsäureester oder insbesondere Carbonsäureanhydride eingesetzt werden.
In einer bevorzugten Ausführungsform enthält die erfindungsgemäße Mischung als Komponente (c) mindestens ein öllösliches Umsetzungsprodukt aus Maleinsäurean- hydrid und primären Alkylaminen.
Die den öllöslichen Umsetzungsprodukten der Komponente (c) zugrundeliegenden primären Alkylamine sind üblicherweise mittelkettige oder langkettige Alkylmonoamine mit vorzugsweise 8 bis 30, insbesondere 12 bis 22 Kohlenstoffatomen, und linearer oder verzweigter, gesättigter oder ungesättigter Alkylkette, beispielsweise Octyl-, No- nyl-, iso-Nonyl-, Decyl-, Undecyl-, Tridecyl-, iso-Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecylamin sowie Gemische solcher Amine. Sollen als derartige primäre Alkylamine natürlich vorkommende Fettamine eingesetzt werden, eignen sich vor allem Kokosamin, Talgfettamin, Oleylamin, Arachidylamin oder Behe- nylamin sowie Gemische hieraus. Die Umsetzungsprodukte der Komponente (c) liegen üblicherweise - je nach Stöchiometrie und Reaktionsführung - als Halb- oder Bisamide der Maleinsäure vor; sie können auch untergeordnete Menge an entsprechenden Ammoniumsalzen enthalten. Die Herstellung der öllöslichen Umsetzungsprodukte der Komponente (c) aus Maleinsäureanhydrid und primären Alkylaminen wird in Dokument (1 ) beschrieben.
Ein typisches Beispiel für ein öllösliches Umsetzungsprodukt der Komponente (c) ist das Umsetzungsprodukt von 1 Mol Maleinsäureanhydrid mit 1 Mol iso-Tridecylamin, welches überwiegend als Halbamid der Maleinsäure vorliegt.
Die erfindungsgemäße Mischung kann durch einfaches Vermischen, gegebenenfalls in einem geeigneten Lösungsmittel, der Komponenten (a) und (b) bzw. (a) bis (c) ohne Wärmezufuhr hergestellt werden.
Wird die Komponente (c) nicht mitverwendet, enthält die erfindungsgemäße Mischung die Komponenten (a) und (b) vorzugsweise in folgenden Verhältnissen, wobei die Summe dieser beiden Komponenten jeweils 100 Gew.-% ergibt:
(a) 50 bis 95 Gew.-%, insbesondere 55 bis 85 Gew.-%, vor allem 60 bis 70 Gew.-%;
(b) 5 bis 50 Gew.-%, insbesondere 15 bis 45 Gew.-%, vor allem 30 bis 40 Gew.-%. Wird die Komponente (c) mitverwendet, enthält die erfindungsgemäße Mischung die Komponenten (a) bis (c) vorzugsweise in folgenden Verhältnissen, wobei die Summe aller drei Komponenten jeweils 100 Gew.-% ergibt:
(a) 50 bis 85 Gew.-%, insbesondere 55 bis 75 Gew.-%, vor allem 60 bis 70 Gew.-%;
(b) 10 bis 40 Gew.-%, insbesondere 15 bis 35 Gew.-%, vor allem 20 bis 30 Gew.-%;
(c) 1 bis 25 Gew.-%, insbesondere 5 bis 20 Gew.-%, vor allem 10 bis 20 Gew.-%.
Die erfindungsgemäße Mischung eignet sich als Zusatz zu Kraftstoffen, speziell Mitteldestillat-Kraftstoffen. Mitteldestillat-Kraftstoffe, die insbesondere als Gasöle, Petroleum, Dieselöle (Dieselkraftstoffe) oder leichte Heizöle Verwendung finden, werden oft auch als Brennstofföle bezeichnet. Derartige Mitteldestillat-Kraftstoffe weisen in der Regel Siedetemperaturen von 150 bis 400°C auf.
Die erfindungsgemäße Mischung kann den Kraftstoffen direkt, d.h. unverdünnt, bevorzugt jedoch als 10 bis 70 gew.-%ige, insbesondere als 30 bis 65 gew.-%ige, vor allem als 45 bis 60 gew.-%ige Lösung (Konzentrat) in einem geeigneten Lösungsmittel, übli- cherweise einem Kohlenwasserstoff-Lösungsmittel, zugesetzt werden. Ein solches Konzentrat, enthaltend 10 bis 70 Gew.-%, insbesondere 30 bis 65 Gew.-%, vor allem 45 bis 60 Gew.-%, bezogen auf die Gesamtmenge des Konzentrates, der erfindungsgemäßen Mischung, gelöst in einem Kohlenwasserstoff-Lösungsmittel, ist daher auch Gegenstand der vorliegenden Erfindung. Gängige Lösungsmittel sind in diesem Zu- sammenhang aliphatischen oder aromatische Kohlenwasserstoffe, beispielsweise Xy- lole oder Gemische hochsiedender Aromaten wie Solvent Naphtha. Auch Mitteldestillat-Kraftstoffe selbst können als Lösungsmittel für derartige Konzentrate verwendet werden.
Die Dosierrate der Mischung in den Kraftstoffen beträgt in der Regel 10 bis 10.000 Gew.-ppm, insbesondere 50 bis 5000 Gew.-ppm, vor allem 50 bis 1000 Gew.-ppm, z.B. 150 bis 400 Gew.-ppm, jeweils bezogen auf die Gesamtmenge an Mitteldestillat- Kraftstoff.
In einer bevorzugten Ausführungsform wird die erfindungsgemäße Mischung als Zusatz zu Kraftstoffen verwendet, welche (A) zu 0,1 bis 75 Gew.-%, vorzugsweise zu 0,5 bis 50 Gew.-%, insbesondere zu 1 bis 25 Gew.-%, vor allem zu 3 bis 12 Gew.-%, aus mindestens einem Biobrenn- stofföl, welches auf Fettsäureestern basiert, und
(B) zu 25 bis 99,9 Gew.-%, vorzugsweise zu 50 bis 99,5 Gew.-%, insbesondere zu 75 bis 99 Gew.-%, vor allem zu 88 bis 97 Gew.-%, aus Mitteldestillaten aus fossilem Ursprung und/oder aus pflanzlichem und/oder tierischem Ursprung, welche im wesentlichen Kohlenwasserstoffmischungen darstellen und frei von Fettsäure- estern sind,
bestehen.
Die Kraftstoff-Komponente (A) wird meist auch als "Biodiesel" bezeichnet. Bei den Mit- teldestillaten der Kraftstoff-Komponente (A) handelt es sich vorzugsweise im wesentlichen um Alkylester von Fettsäuren, die sich von pflanzlichen und/oder tierischen Ölen und/oder Fetten ableiten. Unter Alkylestern werden üblicherweise Niedrigalkylester, insbesondere d- bis C4-Alkylester, verstanden, die durch Umesterung der in pflanzlichen und/oder tierischen Ölen und/oder Fetten vorkommenden Glyceride, insbesonde- re Triglyceride, mittels Niedrigalkoholen, beispielsweise Ethanol, n-Propanol, iso- Propanol, n-Butanol, iso-Butanol, sec.-Butanol, tert.-Butanol oder insbesondere Methanol ("FAME"), erhältlich sind.
Beispiele für pflanzliche Öle, die in entsprechende Alkylester umgewandelt werden und somit als Basis für Biodiesel dienen können, sind Rizinusöl, Olivenöl, Erdnussöl, PaIm- kernöl, Kokosöl, Senföl, Baumwollsamenöl sowie insbesondere Sonnenblumenöl, Palmöl, Sojaöl und Rapsöl. Weitere Beispiele schließen Öle ein, die sich aus Weizen, Jute, Sesam und der Scheabaumnuß gewinnen lassen; weiterhin sind auch Arachisöl, Jatrophaöl und Leinöl verwendbar. Die Gewinnung dieser Öle und deren Umwandlung in die Alkylester sind aus dem Stand der Technik bekannt oder können daraus abgeleitet werden.
Es können auch schon verwendete pflanzliche Öle, beispielsweise gebrauchtes Frit- tieröl, gegebenenfalls nach einer entsprechenden Reinigung, in Alkylester umgewan- delt werden und somit als Basis für Biodiesel dienen.
Pflanzliche Fette sind ebenfalls im Prinzip als Quelle für Biodiesel verwendbar, spielen jedoch eine untergeordnete Rolle.
Beispiele für tierische Fette und Öle, die in entsprechende Alkylester umgewandelt werden und somit als Basis für Biodiesel dienen können, sind Fischöl, Rindertalg, Schweinetalg und ähnliche beim Schlachten oder Verwerten von Nutz- oder Wildtieren als Abfälle anfallende Fette und Öle.
Als den genannten pflanzlichen und/oder tierischen Ölen und/oder Fetten zugrundelie- genden gesättigte oder ungesättigte Fettsäuren, die meist von 12 bis 22 Kohlenstoffatome aufweisen und zusätzliche funktionelle Gruppe wie Hydroxylgruppen tragen können, treten in den Alkylestern insbesondere Laurinsäure, Myristinsäure, Palmitin- säure, Stearinsäure, Ölsäure, Linolsäure, Linolensäure, Elaidinsäure, Erucasäure und Ricinolsäure, insbesondere in Form von Mischungen solcher Fettsäuren, auf.
Typische Niedrigalkylester auf Basis von pflanzlichen und/oder tierischen Ölen und/oder Fetten, die als Biodiesel oder Biodiesel-Komponenten Verwendung finden, sind beispielsweise Sonnenblumenmethylester, Palmölmethylester ("PME"), Sojaölmethylester ("SME") und insbesondere Rapsölmethylester ("RME").
Es können jedoch auch die Monoglyceride, Diglyceride und insbesondere Triglyceride selbst, beispielsweise Rizinusöl, oder Mischungen aus solchen Glyceriden als Biodiesel oder Komponenten für Biodiesel eingesetzt werden.
Unter der Kraftstoff-Komponente (B) sollen im Rahmen der vorliegenden Erfindung im Bereich von 120 bis 450°C siedende Mitteldestillat-Kraftstoffe verstanden werden. Solche Mitteldestillat-Kraftstoffe werden insbesondere als Dieselkraftstoff, Heizöl oder Kerosin verwendet, wobei Dieselkraftstoff und Heizöl besonders bevorzugt sind.
Mit Mitteldestillat-Kraftstoffen werden Kraft- und Brennstoffe bezeichnet, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 450°C sieden. Vorzugsweise werden schwefelarme Mitteldestillate verwendet, d.h. solche, die weniger als 350 ppm Schwefel, insbesondere weniger als 200 ppm Schwefel, vor allem weniger als 50 ppm Schwefel enthalten. In speziellen Fällen enthalten sie weniger als 10 ppm Schwefel, diese Mitteldestillate werden auch als "schwefelfrei" bezeichnet. Es handelt sich dabei im allgemeinen um Rohöldestillate, die einer hydrierenden Raffination unterworfen wurden, und die daher nur geringe Anteile an polyaromatischen und polaren Verbindungen enthalten. Vorzugsweise handelt es sich um solche Mitteldestillate, die 95%-Destillationspunkte unter 370°C, insbesondere unter 350°C und in Spezialfällen unter 330°C aufweisen.
Schwefelarme und schwefelfreie Mitteldestillate können auch aus schwereren Erdölfraktionen gewonnen werden, die nicht mehr unter Atmosphärendruck destilliert werden können. Als typische Konversionsverfahren zur Herstellung von Mitteldestillaten aus schweren Erdölfraktionen seien genannt: Hydrocracken, thermisches Cracken, katalytisches Cracken, Cokerprozesse und/oder Visbreaking. Je nach Verfahrens- durchführung fallen diese Mitteldestillate schwefelarm oder schwefelfrei an oder werden einer hydrierenden Raffination unterworfen.
Vorzugsweise haben die Mitteldestillate Aromatengehalte von unter 28 Gew.-%, insbe- sondere unter 20 Gew.-%. Der Gehalt an Normalparaffinen beträgt zwischen 5% und 50 Gew.-%, vorzugsweise liegt er zwischen 10 und 35 Gew.%.
Unter den als Kraftstoff-Komponente (B) bezeichneten Mitteldestillaten sollen hier auch Mitteldestillate verstanden werden, welche sich entweder indirekt von fossilen Quellen wie Erdöl oder Erdgas ableiten lassen oder aber aus Biomasse über Vergasung und anschließende Hydrierung hergestellt werden. Ein typisches Beispiel für einen sich indirekt von fossilen Quellen ableitenden Mitteldestillat-Kraftstoff ist der mittels Fischer- Tropsch-Synthese erzeugte GTL("gas-to-liquid")-Dieselkraftstoff. Aus Biomasse wird beispielweise über den BTL("bio-to-liquid")-Prozeß ein Mitteldestillat hergestellt, das entweder allein oder in Mischung mit anderen Mitteldestillaten als Kraftstoffkomponente (B) verwendet werden kann. Zu den Mitteldestillaten gehören auch Kohlenwasserstoffe, die durch Hydrierung von Fetten und Fettölen gewonnen werden. Sie enthalten überwiegend n-Paraffine. Den genannten Mitteldestillat-Kraftstoffen ist gemeinsam, dass sie im wesentlichen Kohlenwasserstoffmischungen darstellen und frei von Fett- säureestern sind.
Die Qualitäten der Heizöle und Dieselkraftstoffe sind beispielsweise in DIN 51603 und EN 590 näher festgelegt (vgl. auch Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A12, S. 617 ff., worauf hiermit ausdrücklich Bezug genommen wird).
Die erfindungsgemäße Mischung wird in den genannten Kraftstoffen vorrzugsweise in der Funktion als Paraffindispergator ("WASA") verwendet. Die erfindungsgemäße Mischung entfaltet ihre Wirkung als Paraffindispergator oft besonders gut erst zusammen mit den üblichen Fließverbesserern.
Unter Fließverbesserern sollen im Rahmen der vorliegenden Erfindung alle Additive verstanden werden, die die Kälteeigenschaften von Mitteldestillat-Kraftstoffen verbessern. Neben den eigentlichen Kaltfließverbesserern ("MDFI") sind dies auch Nukleato- ren (vgl. auch Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A16, S. 719 ff.).
Die erfindungsgemäßen Mitteldestillat-Kraftstoffe enthalten neben der erfindungsgemäßen Mischung beim Vorliegen von Kaltfließverbesserern diese in einer Menge von üblicherweise 1 bis 2000 Gew.-ppm, vorzugsweise von 5 bis 1000 Gew.-ppm, insbe- sondere von 10 bis 750 Gew.-ppm und vor allem von 50 bis 500 Gew.-ppm, z.B. von 150 bis 400 Gew.-ppm. Als derartige Kaltfließverbesserer kommen insbesondere für die Kombination mit der erfindungsgemäßen Mischung einer oder mehrere der nachfolgend genannten in Betracht, die übliche Vertreter für den Einsatz in Mitteldestillat-Kraftstoffen darstellen:
(d) Copolymere von Ethylen mit wenigstens einem weiteren ethylenisch ungesättigten Monomer;
(e) Kammpolymere;
(f) Polyoxyalkylene;
(g) Sulfocarbonsäuren oder Sulfonsäuren oder deren Derivaten; (h) Poly(meth)acrylsäureester
Bei den Copolymeren von Ethylen mit wenigstens einem weiteren ethylenisch ungesättigten Monomer der Gruppe (d) ist das Monomer vorzugsweise ausgewählt unter Alke- nylcarbonsäureestern, (Meth)Acrylsäureestern und Olefinen.
Geeignete Olefine sind beispielsweise solche mit 3 bis 10 Kohlenstoffatomen sowie mit 1 bis 3, vorzugsweise mit 1 oder 2, insbesondere mit einer Kohlenstoff-Kohlenstoff- Doppelbindung. Im zuletzt genannten Fall kann die Kohlenstoff-Kohlenstoff- Doppelbindung sowohl terminal (α-Olefine) als auch intern angeordnet sein kann. Be- vorzugt sind jedoch α-Olefine, besonders bevorzugt α-Olefine mit 3 bis 6 Kohlenstoffatomen, beispielsweise Propen, 1 -Buten, 1-Penten und 1 -Hexen.
Geeignete (Meth)Acrylsäureester sind beispielsweise Ester der (Meth)Acrylsäure mit d- bis Cio-Alkanolen, insbesondere mit Methanol, Ethanol, Propanol, Isopropanol, n- Butanol, sec.-Butanol, Isobutanol, tert.-Butanol, Pentanol, Hexanol, Heptanol, Octanol, 2-Ethylhexanol, Nonanol und Decanol.
Geeignete Alkenylcarbonsäureester sind beispielsweise die Vinyl- und Propenylester von Carbonsäuren mit 2 bis 20 Kohlenstoffatomen, deren Kohlenwasserstoffrest linear oder verzweigt sein kann. Bevorzugt sind hierunter die Vinylester. Unter den Carbonsäuren mit verzweigtem Kohlenwasserstoffrest sind solche bevorzugt, deren Verzweigung sich in der α-Position zur Carboxylgruppe befindet, wobei das α-Kohlenstoffatom besonders bevorzugt tertiär ist, d. h. die Carbonsäure eine sogenannte Neocarbonsäu- re ist. Vorzugsweise ist der Kohlenwasserstoffrest der Carbonsäure jedoch linear.
Beispiele für geeignete Alkenylcarbonsäureester sind Vinylacetat, Vinylpropionat, Vi- nylbutyrat, Vinyl-2-ethylhexanoat, Neopentansäurevinylester, Hexansäurevinylester, Neononansäurevinylester, Neodecansäurevinylester und die entsprechenden Propenylester, wobei die Vinylester bevorzugt sind. Ein besonders bevorzugter Alkenylcarbon- säureester ist Vinylacetat; typische hieraus resultierende Copolymere der Gruppe (d) sind Ethylen-Vinylacetat-Copolymere ("EVA"), welche in großem Umfang in Dieselkraftstoffen eingesetzt werden. Besonders bevorzugt ist das ethylenisch ungesättigte Monomer ausgewählt unter Al- kenylcarbonsäureestern.
Geeignet sind auch Copolymere, die zwei oder mehrere voneinander verschiedene Alkenylcarbonsäureester einpolymerisiert enthalten, wobei diese sich in der Alkenyl- funktion und/oder in der Carbonsäuregruppe unterscheiden. Ebenfalls geeignet sind Copolymere, die neben dem/den Alkenylcarbonsäureester(n) wenigstens ein Olefin und/oder wenigstens ein (Meth)Acrylsäureester einpolymerisiert enthalten.
Das ethylenisch ungesättigte Monomer ist im Copolymer der Gruppe (d) in einer Menge von vorzugsweise 1 bis 50 Mol.-%, insbesondere von 10 bis 50 Mol.-% und vor allem von 5 bis 20 Mol.-%, bezogen auf das Gesamtcopolymer, einpolymerisiert.
Das Copolymer der Gruppe (d) weist vorzugsweise ein zahlenmittleres Molekulargewicht Mn von 1000 bis 20.000, besonders bevorzugt von 1000 bis 10.000 und insbesondere von 1000 bis 6000 auf.
Kammpolymere der Gruppe (e) sind beispielsweise solche, die in "Comb-Like Polymers. Structure and Properties", N. A. Plate und V. P. Shibaev, J. PoIy. Sei. Macromo- lecular Revs. 8, Seiten 1 17 bis 253 (1974)" beschrieben sind. Von den dort beschriebenen sind beispielsweise Kammpolymere der Formel IV geeignet
worin
D für R17, COOR17, OCOR17, R18, OCOR17 oder OR17 steht,
E für H, CH3, D oder R18 steht,
G für H oder D steht,
J für H, R18, R18COOR17' Aryl oder Heterocyclyl steht, K für H, COOR18, OCOR18, OR18 oder COOH steht, L für H, R18 COOR18, OCOR18, COOH oder Aryl steht, wobei
R17 für einen Kohlenwasserstoffrest mit wenigstens 10 Kohlenstoffatomen, vorzugsweise mit 10 bis 30 Kohlenstoffatomen, steht, R18 für einen Kohlenwasserstoffrest mit wenigstens einem Kohlenstoffatom, vorzugsweise mit 1 bis 30 Kohlenstoffatomen, steht, m für einen Molenbruch im Bereich von 1 ,0 bis 0,4 steht und n für einen Molenbruch im Bereich von 0 bis 0,6 steht.
Bevorzugte Kammpolymere sind beispielsweise durch die Copolymerisation von Ma- leinsäureanhydrid oder Fumarsäure mit einem anderen ethylenisch ungesättigten Monomer, beispielsweise mit einem α-Olefin oder einem ungesättigten Ester wie Vinylace- tat, und anschließende Veresterung der Anhydrid- bzw. Säurefunktion mit einem Alkohol mit wenigstens 10 Kohlenstoffatomen erhältlich. Weitere bevorzugte Kammpolymere sind Copolymere von α-Olefinen und veresterten Comonomeren, beispielsweise veresterte Copolymere von Styrol und Maleinsäureanhydrid oder veresterte Copolymere von Styrol und Fumarsäure. Auch Gemische von Kammpolymeren sind geeignet. Kammpolymere können auch Polyfumarate oder Polymaleinate sein. Außerdem sind Homo- und Copolymere von Vinylethern geeignete Kammpolymere.
Geeignete Polyoxyalkylene der Gruppe (f) sind beispielsweise Polyoxyalkylenester, -ether, -ester/ether und Gemische davon. Bevorzugt enthalten die Polyoxyalkylenver- bindungen wenigstens eine, besonders bevorzugt wenigstens zwei lineare Alkylgrup- pen mit jeweils 10 bis 30 Kohlenstoffatomen und eine Polyoxyalkylengruppe mit einem Molekulargewicht von bis zu 5000. Die Alkylgruppe des Polyoxyalkylenrestes enthält dabei vorzugsweise 1 bis 4 Kohlenstoffatome. Derartige Polyoxyalkylenverbindungen sind beispielsweise in der EP-A 061 895 sowie in der US 4 491 455 beschrieben, worauf hiermit im vollem Umfang Bezug genommen wird. Bevorzugte Polyoxyalkylenester, -ether und ester/ether besitzen die allgemeine Formel V
R19fO-(CH2)y}χO-R20 (V)
worin
R19 und R20 jeweils unabhängig voneinander für R21, R21OO-, R21-O-CO(CH2)Z- oder R21-O-CO(CH2)Z-CO- stehen, wobei R21 für lineares Ci-C3o-Alkyl steht, y für eine Zahl von 1 bis 4 steht, x für eine Zahl von 2 bis 200 steht, und z für eine Zahl von 1 bis 4 steht.
Bevorzugte Polyoxyalkylenverbindungen der Formel V, in denen sowohl R19 als auch R20 für R21 stehen, sind Polyethylenglykole und Polypropylenglykole mit einem zahlenmittleren Molekulargewicht von 100 bis 5000. Bevorzugte Polyoxyalkylene der Formel V, in denen einer der Reste R19 für R21 und der andere für R21-CO- steht, sind Polyoxyalkylenester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen wie Stearinsäure oder Behensäure. Bevorzugte Polyoxyalkylenverbindungen, in denen sowohl R19 als auch R20 für einen Rest R21-CO- stehen, sind Diester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen, bevorzugt von Stearin- oder Behensäure. Geeignete Sulfocarbonsäuren/Sulfonsäuren bzw. deren Derivate der Gruppe (g) sind beispielsweise solche der allgemeinen Formel VI
worin
Y' für SO3-(NR25 3R26)+, SO3-(NHR25 2R26)+, SO3-(NH2R25R26), SO3-(NH3R26) oder
SO2NR25R26 steht,
X' für Y', CONR25R27, CO2-(NR25 3R27)+, CO2-(NHR25 2R27)+, R28-COOR27, NR25COR27, R28OR27, R28OCOR27, R28R27, N(COR25)R27 oder Z-(NR25 3R27)+ steht, wobei
R25 für einen Kohlenwasserstoffrest steht,
R26 und R27 für Alkyl, Alkoxyalkyl oder Polyalkoxyalkyl mit wenigstens 10 Kohlenstoffatomen in der Hauptkette stehen, R28 für C2-C5-Alkylen steht,
Z" für ein Anionenäquivalent steht und
A" und B' für Alkyl, Alkenyl oder zwei substituierte Kohlenwasserstoffreste stehen oder gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, ein aromatisches oder cycloaliphatisches Ringsystem bilden.
Derartige Sulfocarbonsäuren bzw. Sulfonsäuren und ihre Derivate sind in der EP-A-O
261 957 beschrieben, worauf hiermit im vollem Umfang Bezug genommen wird.
Geeignete Poly(meth)acrylsäureester der Gruppe (h) sind sowohl Homo- als auch Co- polymere von Acryl- und Methacrylsäureestern. Bevorzugt sind Copolymere von wenigstens zwei voneinander verschiedenen (Meth)Acrylsäureestern, die sich bezüglich des einkondensierten Alkohols unterscheiden. Gegebenenfalls enthält das Copolymer noch ein weiteres, davon verschiedenes olefinisch ungesättigtes Monomer einpolyme- risiert. Das gewichtsmittlere Molekulargewicht des Polymers beträgt vorzugsweise 50.000 bis 500.000. Ein besonders bevorzugtes Polymer ist ein Copolymer von Me- thacrylsäure und Methacrylsäureestern von gesättigten Ci4- und Cis-Alkoholen, wobei die Säuregruppen mit hydriertem Tallamin neutralisiert sind. Geeignete Po- ly(meth)acrylsäureester sind beispielsweise in der WO 00/44857 beschrieben, worauf hiermit in vollem Umfang Bezug genommen wird.
Mit üblichen Fließverbesserern - beispielsweise Ethylen-Vinylacetat-Copolymeren aus der Gruppe (d), wie sie in der WO 99/29748 (4) beschrieben sind, oder Kammpolymeren aus der Gruppe (e), wie sie in der WO 2004/035715 (5) beschrieben sind, bildet die erfindungsgemäße Mischung in ihrer Funktion als Paraffindispergator ein effizientes und vielseitig einsetzbares Kältestabiliserungssystem für Mitteldestillat-Kraftstoffe, insbesondere für solche mit einem Anteil an Biodiesel.
Ebenso können durch die Verwendung der erfindungsgemäßen Mischung eine Reihe weitere Kraftstoffeigenschaften verbessert werden. Exemplarisch sollen hier nur die zusätzliche Wirkung als Korrosionsschutz oder die Verbesserung der Oxidationsstabili- tät genannt werden.
Bei Einsatz in schwefelarmen Kraftstoffen, die überwiegend oder allein die Komponen- te (B) enthalten, kann der Einsatz der erfindungsgemäßen Mischung, insbesondere in Kombination mit Fließverbesserern, zu einer Verbesserung der Schmierwirkung beitragen. Die Schmierwirkung wird dabei beispielsweise im sog. HFRR-Test gemäß ISO 12156 bestimmt.
Die erfindungsgemäße Mischung kann sowohl Mitteldestillat-Kraftstoffen, die vollständig fossilen Ursprungs sind, also aus Erdöl gewonnen wurden, als auch Kraftstoffen, die neben dem auf Erdöl basierenden Anteil einen Anteil an Biodiesel enthalten, zur Verbesserung deren Eigenschaften zugesetzt werden. In beiden Fällen wird eine deutliche Verbesserung des Kaltfließverhaltens des Mitteldestillat-Kraftstoffes, d.h. eine Absenkung der CP-Werte und/oder CFPP-Werte, unabhängig von der Herkunft oder der Zusammensetzung des Kraftstoffes beobachtet. Die ausgeschiedenen Paraffinkristalle werden wirksam in der Schwebe gehalten, so dass es nicht zu Verstopfungen von Filtern und Leitungen durch sedimentiertes Paraffin kommt. Die erfindungsgemäße Mischung weist eine gute Breitenwirkung auf und bewirkt so, dass die ausgeschiede- nen Paraffinkristalle in den unterschiedlichsten Mitteldestillat-Kraftstoffen sehr gut dispergiert werden.
Gegenstand der vorliegenden Erfindung sind auch Kraftstoffe, insbesondere solche mit einem Biodiesel-Anteil, die die erfindungsgemäße Mischung enthalten.
In der Regel enthalten die genannten Kraftstoffe bzw. die genannten Kraftstoffadditiv- Konzentrate noch als weitere Zusätze in hierfür üblichen Mengen Fließverbesserer (wie oben beschrieben), weitere Paraffindispergatoren, Leitfähigkeitsverbesserer, Korrosionsschutzadditive, Lubricity-Additive, Antioxidantien, Metall-Deaktivatoren, Anti- schaummittel, Demulgatoren, Detergentien, Cetanzahl-Verbesserer, Lösungs- oder Verdünnungsmittel, Farbstoffe oder Duftstoffe oder Gemische davon. Die vorstehend genannten weiteren Zusätze, die oben noch nicht angesprochen worden sind, sind dem Fachmann geläufig und brauchen deshalb hier nicht weiter erläutert zu werden.
Die nachfolgenden Beispiele sollen die vorliegende Erfindung erläutern, ohne sie zu beschränken. Beispiele
Verwendete Additiv-Komponenten:
Komponente (a): mit 4 Mol hydriertem Ditalgfettamin umgesetzte Ethylendiamintetra- essigsäure, hergestellt in Solvent Naphtha wie in Beispiel 1 des Dokumentes (1 ) beschrieben;
Komponente (b): mit 3 Mol Ölsäure umgesetztes Diethylentriamin, hergestellt wie in
Beispiel A 69 der Tabelle 1 des Dokumentes (2) beschrieben;
Komponente (c): mit 1 Mol Tridecylamim umgesetztes Maleinsäureanhydrid, hergestellt in Solvent Naphtha wie in Beispiel 2 des Dokumentes (1) be- schrieben.
Aus den oben genannten Komponenten (a) bis (c) wurden die folgenden Konzentrate K1 (erfindungsgemäß), K2 (zum Vergleich) und K3 (zum Vergleich) erstellt:
Tabelle 1
Die in Tabelle 1 angegebenen Mischungsverhältnisse sind Gew.-%; der Lösemittelgehalt dieser Mischungen betrug 40 Gew.-%, zusätzlich enthielten diese Mischungen noch 5% nicht die kaltfließverbessernde Wirkung beeinflussende übliche Zusätze.
Die genannten deutschen Winter-Dieselkraftstoffe (DK1 bis DK7) sind durch folgende Parameter charakterisiert:
DK1 : CP (nach ISO 3015): -5,9°C, CFPP (nach EN 116): -9°C;
Dichte dis (DIN 51577): 837,5 kg/m3; Siedeanfang (DIN 51751): 178°C, Siedeende: 364°C; Paraffingehalt (gemäß GC): 16,6 Gew.-%
DK2: CP (nach ISO 3015): -5,9°C, CFPP (nach EN 116): -7°C;
Siedeanfang (DIN 51751): 1800C, Siedeende: 362°C; Paraffingehalt (gemäß GC): 16,6 Gew.-% DK3: CP (nach ISO 3015): -7,00C, CFPP (nach EN 116): -8°C;
Dichte dis (DIN 51577): 831 ,6 kg/m3;
Siedeanfang (DIN 51751): 1700C, Siedeende: 357°C;
Paraffingehalt (gemäß GC): 22,1 Gew.-%
DK4: CP (nach ISO 3015): -7,00C, CFPP (nach EN 116): -9°C;
Siedeanfang (DIN 51751): 172°C, Siedeende: 355°C;
Paraffingehalt (gemäß GC): 22,2 Gew.-%
DK5: CP (nach ISO 3015): -7,00C, CFPP (nach EN 116): -9°C;
Dichte dis (DIN 51577): 828,9 kg/m3; Siedeanfang (DIN 51751): 176°C, Siedeende: 356°C; Paraffingehalt (gemäß GC): 22,1 Gew.-%
DK6: CP (nach ISO 3015): -7,4°C, CFPP (nach EN 116): -7°C;
Dichte dis (DIN 51577): 827,8 kg/m3; Siedeanfang (DIN 51751): 169°C, Siedeende: 349°C; Paraffingehalt (gemäß GC): 21 ,8 Gew.-%
DK7: CP (nach ISO 3015): -6,5°C, CFPP (nach EN 116): -8°C;
Dichte dis (DIN 51577): 824,1 kg/m3; Siedeanfang (DIN 51751): 182°C, Siedeende: 3500C; Paraffingehalt (gemäß GC): 23,3 Gew.-%
Als Biodiesel-Zusätze wurden verwendet: Rapsölmethylester ("RME"), Sojaölmethylester ("SME") oder Palmölmethylester ("PME").
Als Kaltfließverbesserer ("MDFI") wurden mitverwendet:
FB1 : handelsübliches Ethylen-Vinylacetat-Copolymer mit einem Vinylacetat-Gehalt von 30 Gew.-% gemäß Dokument (4);
FB2: Mischung gemäß Dokument (5) aus einem handelsüblichen Ethylen-Vinylacetat- Copolymer und einem Hydrocarbylvinylether-Homopolymer mit Kammstruktur;
FB1 und FB2 wurden aufgrund ihrer CFPP-Performance in den verwendeten Dieselkraftstoffen ausgewählt. Es ist sehr wahrscheinlich, dass andere Dieselkraftstoffe andere MDFI erfordern. Insofern sind die erfindungsgemäßen Mischungen nicht auf die Verwendung in Verbindung mit FB1 und FB2 beschränkt. In der im folgenden be- schriebenen Versuchsdurchführung wurden die Additive K1 bis K3 und FB1 bzw. FB2 jeweils getrennt den Dieselkraftstoffen zugegeben. Es ist auch möglich, die Konzentra- te K1 , K2 und K3 zunächst mit den MDFI FB1 bzw. FB2 zu mischen und dann gemeinsam in die Dieselkraftstoffe DK1 bis DK 7 einzumischen.
Beschreibung der Testmethode:
Die Kraftstoffe DK1 bis DK7 wurden mit den in der nachfolgenden Tabelle angegebenen Mengen an Biodiesel-Zusatz, dem Konzentrat K1 , K2 oder K3 und dem Fließverbesserer FB1 oder FB2 versetzt, bei 40°C unter Rühren vermischt und anschließend auf Raumtemperatur abgekühlt. Von diesen additivierten Kraftstoffproben wurden der CP nach ISO 3015 und der CFPP nach EN 116 bestimmt. Danach wurden die additivierten Kraftstoffproben in 500 ml-Glaszylindern in einem Kältebad von Raumtemperatur mit einer Abkühlungsrate von ca. 14°C pro Stunde auf -13°C abgekühlt und 16 Stunden bei dieser Temperatur gelagert. Von der bei -13°C abgetrennten 20 Vol.-%- Bodenphase wurde von jeder Probe wiederum der CP nach ISO 3015 und der CFPP nach EN 116 ermittelt. Je geringer die Abweichung des CP der 20 Vol.-%-Bodenphase vom ursprünglichen CP der jeweiligen Kraftstoffprobe, desto besser sind die Paraffine dispergiert.
Die erhaltenen Ergebnisse sind in der nachfolgenden Tabelle 2 aufgeführt:
Tabelle 2:
Legende zu Tabelle 2:
Die Spalte 3 gibt Menge (in Gew.-%) und Typ des verwendeten Biodiesel-Zusatzes an.
Die Spalte 5 gibt die Dosiermenge des in der 4. Spalte genannten Fließverbesserers FB1 oder FB2 ("MDFI") in Gew.-ppm an.
Die Spalte 7 gibt die Dosiermenge des in der 6. Spalte genannten Paraffindispergators ("WASA") K1 (erfindungsgemäß) oder K2 (zum Vergleich) oder K3 (zum Vergleich) in Gew.-ppm an.
CP* (Spalte 8) und CFPP* (Spalte 11 ) geben die Werte der additivierten Kraftstoffproben vor dem Abkühlen an. CP# (Spalte 9) und CFPP# (Spalte 12) geben die entspre- chenden Werte der nach dem Abkühlen jeweils abgetrennten 20 Vol.-%-Bodenphase an. Spalte 10 ist der Absolutwert der Differenz von CP# zu CP*.
Spalte 13 gibt die Vol.-% Sediment an Paraffin nach Lagerung im Kältebad bei -13°C an. Bewegt sich der angegebene Wert im unteren Bereich (im Falle der aufgeführten Beispiele unter 40 Vol.-%), gilt: je geringer der hier angegebene Wert ist, desto besser ist das Paraffin-Dispergierverhalten. Sehr hohe Werte in Spalte 13 (im Falle der aufgeführten Beispiele über 60 Vol.-%) sind allerdings ebenfalls ein Indiz für gutes Paraffin- Dispergierverhalten. Kritisch ist eine Paraffinsedimentation meist von ca. 10 bis 30 Vol.-%, da sich dann der größte Teil der ausgefallenen Paraffinkristalle in der 20 VoI.- %-Bodenphase befindet, die zur Charakterisierung der Wirksamkeit der Additive - wie beschrieben - verwendet wird.
Aus Tabelle 2 ist aus den Delta-CP-Werten (Spalte 10) ersichtlich, dass bei den Kraftstoffproben mit Biodiesel-Anteil in allen Fällen mit K1 eine eindeutige Verbesserung des Dispergierverhaltens im Vergleich zu K2 oder K3 erzielt wird. Die Versuche der Serien 8 und 9 in Tabelle 2 zeigen den überraschenden Effekt der erfindungsgemäßen Mischung auf die Paraffinsedimentation von Dieselkraftstoff-Biodiesel-Mischungen. In reinem Dieselkraftstoff (reiner Kraftstoff DK3) werden mit K1 und K2 etwa gleich gute Wirkungen erzielt, während K3 in neueren, schwefelarmen Dieselkraftstoffen keine ausreichende Performance mehr besitzt (Versuch 9-2). Durch Zugabe von 5 Gew.-% RME - wie z.B. in den Versuchen 8-3/4 und 9-4/6 - verschlechtert sich die Wirkung bei Verwendung der Vergleichsbeispiele K2 drastisch, während die Kälteeigenschaften bei Einsatz der erfindungsgemäßen Mischung nahezu unverändert bleiben.
Jedoch auch bei den Proben 9-1 bis 9-3 mit Mitteldestillat-Kraftstoff ohne Biodiesel- Zusatz (also einer Kraftstoffprobe rein auf Erdölbasis) ist eine leichte Verbesserung im Dispergierverhalten mit K1 gegenüber K2 und K3 zu beobachten, erkenntlich an dem geringeren Sediment-Wert bei annähernd gleichen CP- und CFPP-Werten.

Claims

Patentansprüche
1. Mischung, enthaltend
(a) 5 bis 95 Gew.-% mindestens einer von den Komponenten (b) und (c) verschiedenen polaren öllöslichen Stickstoffverbindung, welche in der Lage ist, in Kraftstoffen in der Kälte ausgefallene Paraffinkristalle ausreichend zu dispergieren,
(b) 1 bis 50 Gew.-% mindestens eines öllöslichen Säureamids aus Polyaminen mit 2 bis 1000 Stickstoffatomen und Cs- bis C3o-Fettsäuren oder freie Car- boxylgruppen enthaltenden fettsäureanalogen Verbindungen und
(c) 0 bis 50 Gew.-% mindestens eines öllöslichen Umsetzungsproduktes aus α,ß-Dicarbonsäuren mit 4 bis 300 Kohlenstoffatomen oder deren Derivaten und primären Alkylaminen,
wobei die Summe aller Komponenten der Mischung (a) bis (c) 100 Gew.-% ergibt.
2. Mischung nach Anspruch 1 , enthaltend als Komponente (a) mindestens ein öllösliches Umsetzungsprodukt aus mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbonsäuren) mit primären oder sekundären Aminen.
3. Mischung nach Anspruch 2, enthaltend als Komponente (a) mindestens ein öllösliches Umsetzungsprodukt auf Basis von mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C2o-Carbonsäuren) der allgemeinen Formel I oder Il
HOOCn XOOH
B B
HOOC. M^ M^ XOOH
B A B (|)
HOOC'B "I\TB XOOH
I
B ΌOOH (ll)
in denen die Variable A eine geradkettige oder verzweigte C2- bis Ce- Alkylengruppe oder die Gruppierung der Formel IM
HoocByCH*-CH*-
CH2-CH2- darstellt und die Variable B eine d- bis Cig-Alkylengruppe bezeichnet.
4. Mischung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das öllösliche Umsetzungsprodukt der Komponente (a) ein Amid, ein Amidammoniumsalz oder ein Ammoniumsalz ist, in dem keine, eine oder mehrere Carbonsäuregruppen in
Amidgruppen übergeführt sind.
5. Mischung nach den Ansprüchen 2 bis 4, dadurch gekennzeichnet, dass die den öllöslichen Umsetzungsprodukten der Komponente (a) zugrundeliegenden Amine sekundäre Amine sind und die allgemeine Formel HNR2 aufweisen, in der die beiden Variablen R unabhängig voneinander jeweils geradkettige oder verzweigte C10- bis C3o-Alkylreste bedeuten.
6. Mischung nach den Ansprüchen 1 bis 5, enthaltend als Komponente (b) mindes- tens ein öllösliches Säureamid aus aliphatischen Polyaminen mit 2 bis 6 Stickstoffatomen und C16- bis C2o-Fettsäuren, wobei alle primären und sekundären Aminofunktionen der Polyamine in Säureamidfunktionen übergeführt sind.
7. Mischung nach den Ansprüchen 1 bis 6, enthaltend als Komponente (c) mindes- tens ein öllösliches Umsetzungsprodukt aus Maleinsäureanhydrid und primären
Alkylaminen.
8. Verwendung der Mischung gemäß den Ansprüchen 1 bis 7 als Zusatz zu Kraftstoffen.
9. Verwendung der Mischung nach Anspruch 8 als Zusatz zu Kraftstoffen, welche
(A) zu 0,1 bis 75 Gew.-% aus mindestens einem Biobrennstofföl, welches auf
Fettsäureestern basiert, und
(B) zu 25 bis 99,9 Gew.-% aus Mitteldestillaten aus fossilem Ursprung und/oder aus pflanzlichem und/oder tierischem Ursprung, welche im wesentlichen Kohlenwasserstoffmischungen darstellen und frei von Fett- säureestern sind,
bestehen.
10. Verwendung nach Anspruch 9, wobei es sich bei der Kraftstoff-Komponente (A) im wesentlichen um Alkylester von Fettsäuren, die sich von pflanzlichen und/oder tierischen Ölen und/oder Fetten ableiten, handelt.
1 1. Verwendung nach den Ansprüchen 8, 9 oder 10 in der Funktion als Paraffin- dispergator.
12. Kraftstoffe gemäß Anspruch 8 bis 10, enthaltend eine Mischung gemäß den An- Sprüchen 1 bis 7.
13. Kraftstoffe nach Anspruch 12, enthaltend als weitere Zusätze in hierfür üblichen Mengen Fließverbesserer, weitere Paraffindispergatoren, Leitfähigkeitsverbesserer, Korrosionsschutzadditive, Lubricity-Additive, Antioxidantien, Metall- Deaktivatoren, Antischaummittel, Demulgatoren, Detergentien, Cetanzahl-
Verbesserer, Lösungs- oder Verdünnungsmittel, Farbstoffe oder Duftstoffe oder Gemische davon.
14. Kraftstoffadditiv-Konzentrat, enthaltend 10 bis 70 Gew.-%, bezogen auf die Ge- samtmenge des Konzentrates, einer Mischung gemäß den Ansprüchen 1 bis 7, gelöst in einem Kohlenwasserstoff-Lösungsmittel.
15. Kraftstoffadditiv-Konzentrat nach Anspruch 14, enthaltend als weitere Zusätze in hierfür üblichen Mengen Fließverbesserer, weitere Paraffindispergatoren, Leitfä- higkeitsverbesserer, Korrosionsschutzadditive, Lubricity-Additive, Antioxidantien,
Metall-Deaktivatoren, Antischaummittel, Demulgatoren, Detergentien, Cetanzahl- Verbesserer, Lösungs- oder Verdünnungsmittel, Farbstoffe oder Duftstoffe oder Gemische davon.
EP07730085A 2006-06-22 2007-06-12 Mischung aus polaren öllöslichen stickstoffverbindungen und säureamiden als paraffindispergator für kraftstoffe Active EP2038380B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL07730085T PL2038380T3 (pl) 2006-06-22 2007-06-12 Mieszanina rozpuszczalnych w oleju polarnych związków azotu i amidów kwasowych jako środek dyspergujący parafinę w paliwach
EP07730085A EP2038380B1 (de) 2006-06-22 2007-06-12 Mischung aus polaren öllöslichen stickstoffverbindungen und säureamiden als paraffindispergator für kraftstoffe

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06115866 2006-06-22
EP07730085A EP2038380B1 (de) 2006-06-22 2007-06-12 Mischung aus polaren öllöslichen stickstoffverbindungen und säureamiden als paraffindispergator für kraftstoffe
PCT/EP2007/055760 WO2007147753A2 (de) 2006-06-22 2007-06-12 Mischung aus polaren öllöslichen stickstoffverbindungen und säureamiden als paraffindispergator für kraftstoffe

Publications (2)

Publication Number Publication Date
EP2038380A2 true EP2038380A2 (de) 2009-03-25
EP2038380B1 EP2038380B1 (de) 2009-12-09

Family

ID=38833793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07730085A Active EP2038380B1 (de) 2006-06-22 2007-06-12 Mischung aus polaren öllöslichen stickstoffverbindungen und säureamiden als paraffindispergator für kraftstoffe

Country Status (15)

Country Link
US (1) US8187345B2 (de)
EP (1) EP2038380B1 (de)
JP (1) JP2009541507A (de)
KR (1) KR101317613B1 (de)
CN (1) CN101473018B (de)
AT (1) ATE451441T1 (de)
AU (1) AU2007263066B2 (de)
BR (1) BRPI0713128A2 (de)
CA (1) CA2655877C (de)
DE (1) DE502007002278D1 (de)
ES (1) ES2336962T3 (de)
MX (1) MX2008015550A (de)
NO (1) NO20085157L (de)
PL (1) PL2038380T3 (de)
WO (1) WO2007147753A2 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100005706A1 (en) 2008-07-11 2010-01-14 Innospec Fuel Specialties, LLC Fuel composition with enhanced low temperature properties
GB0902009D0 (en) * 2009-02-09 2009-03-11 Innospec Ltd Improvements in fuels
EP2230226B1 (de) * 2009-03-18 2017-01-18 Infineum International Limited Kraftstoffölzusätze
CN102369262B (zh) * 2009-04-07 2014-10-15 巴斯夫欧洲公司 用于在中间馏分燃料中降低浊点的极性油溶性氮化合物和油溶性脂族化合物的混合物
GB2486255A (en) * 2010-12-09 2012-06-13 Innospec Ltd Improvements in or relating to additives for fuels and lubricants
CA2829486C (en) 2011-03-11 2019-03-26 Arkema Inc. Improved stability of polyurethane polyol blends containing halogenated olefin blowing agent
WO2012133502A1 (ja) * 2011-03-29 2012-10-04 日油株式会社 燃料油用流動性向上剤及び燃料油組成物
RU2014147608A (ru) 2012-04-27 2016-06-20 Эвоник Ойл Эддитивс ГмбХ Применение добавки для улучшения хладотекучести композиций топлива, его смесей с биотопливом и их состав
RU2561279C1 (ru) * 2014-09-19 2015-08-27 Общество с ограниченной ответственностью "Научно-производственное предприятие КВАЛИТЕТ" (ООО "НПП КВАЛИТЕТ") Диспергатор парафинов, способ его получения и топливная композиция, его содержащая
CN104403706B (zh) * 2014-11-20 2016-06-22 中国石油大学(北京) 一种新型柴油蜡晶分散剂
RU2690940C2 (ru) 2014-11-27 2019-06-07 Басф Се Сополимер и его применение для уменьшения кристаллизации кристаллов парафина в топливах
US11060044B2 (en) 2016-05-24 2021-07-13 Basf Se Copolymer and use thereof for reducing crystallization of paraffin crystals in fuels
CN106518788B (zh) * 2016-09-28 2019-04-02 中国石油化工股份有限公司 用于高凝稠油的蜡晶、沥青质分散剂
CA3038772A1 (en) 2016-09-29 2018-04-05 Ecolab Usa Inc. Paraffin inhibitors, and paraffin suppressant compositions and methods
US10626318B2 (en) 2016-09-29 2020-04-21 Ecolab Usa Inc. Paraffin suppressant compositions and methods
EP3891260B1 (de) 2018-12-04 2024-09-11 TotalEnergies OneTech Schwefelwasserstoff- und mercaptanenabsorbierende zusammensetzungen
US11952538B2 (en) 2018-12-04 2024-04-09 Total Marketing Services Hydrogen sulphide and mercaptans scavenging compositions
WO2020115135A1 (en) 2018-12-04 2020-06-11 Total Marketing Services Hydrogen sulphide and mercaptans scavenging compositions
EP3913035A1 (de) 2020-05-20 2021-11-24 Basf Se Neue zusammensetzungen zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
EP4074810B1 (de) 2021-04-15 2023-11-15 Basf Se Neue zusammensetzungen zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
CN117881762A (zh) 2021-08-27 2024-04-12 巴斯夫欧洲公司 石蜡抑制剂的水性分散体
CA3233684A1 (en) 2021-10-04 2023-04-13 Innospec Fuel Specialties Llc Improvements in fuels
EP4166633A1 (de) 2021-10-15 2023-04-19 Innospec Fuel Specialties LLC Verbesserungen bei brennstoffen
WO2024056479A1 (en) 2022-09-12 2024-03-21 Basf Se New compositions for reducing crystallization of paraffin crystals in fuels
WO2024115211A1 (en) 2022-11-30 2024-06-06 Basf Se Homo- and copolymers of vinyl ethers for reducing crystallization of paraffin crystals in fuels

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB842991A (en) 1956-11-02 1960-08-04 Du Pont Fuel oil compositions
GB1410788A (en) * 1972-12-18 1975-10-22 Basf Ag Gasoline fuels for internal combustion engines
DE2828038A1 (de) * 1978-06-26 1980-01-10 Basf Ag Kraftstoffe fuer ottomotoren
DE3049553A1 (de) 1980-12-31 1982-07-29 Basf Ag, 6700 Ludwigshafen Erdoeldestillate mit verbessertem kaelteverhalten
GB9222458D0 (en) 1992-10-26 1992-12-09 Exxon Chemical Patents Inc Oil additives and compositions
DE19848621A1 (de) 1998-10-21 2000-04-27 Basf Ag Paraffindispergatoren mit Lubricity-Wirkung für Erdölmitteldestillate
GB0011733D0 (en) * 2000-05-16 2000-07-05 Infineum Int Ltd Additives for improved engine operation
DE10349851B4 (de) 2003-10-25 2008-06-19 Clariant Produkte (Deutschland) Gmbh Kaltfließverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
PL1801187T3 (pl) 2005-12-22 2016-04-29 Clariant Produkte Deutschland Oleje mineralne o polepszonej płynności w niskich temperaturach, zawierające dodatki detergentowe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007147753A2 *

Also Published As

Publication number Publication date
DE502007002278D1 (de) 2010-01-21
AU2007263066B2 (en) 2011-04-28
CN101473018A (zh) 2009-07-01
AU2007263066A1 (en) 2007-12-27
ES2336962T3 (es) 2010-04-19
KR20090026189A (ko) 2009-03-11
WO2007147753A3 (de) 2008-04-17
CN101473018B (zh) 2013-06-12
ATE451441T1 (de) 2009-12-15
BRPI0713128A2 (pt) 2012-04-17
PL2038380T3 (pl) 2010-05-31
EP2038380B1 (de) 2009-12-09
US8187345B2 (en) 2012-05-29
WO2007147753A2 (de) 2007-12-27
US20090188159A1 (en) 2009-07-30
CA2655877C (en) 2015-08-04
CA2655877A1 (en) 2007-12-27
NO20085157L (no) 2008-12-18
MX2008015550A (es) 2008-12-17
JP2009541507A (ja) 2009-11-26
KR101317613B1 (ko) 2013-10-10

Similar Documents

Publication Publication Date Title
EP2038380B1 (de) Mischung aus polaren öllöslichen stickstoffverbindungen und säureamiden als paraffindispergator für kraftstoffe
EP1554365B1 (de) Verwendung von hydrocarbylvinyletherhomopolymeren zur verbesserung der wirkung von kaltfliessverbesserern
EP1116781B1 (de) Mehrfunktionelles Additiv für Brennstofföle
EP2092045B2 (de) Kaltfliessverbesserer
EP1116780B1 (de) Mehrfunktionelles Additiv für Brennstofföle
WO2008113757A1 (de) Mischung aus kaltfliessverbesserern und aminen
WO2011076338A2 (de) Multifunktionelle additive mit verbesserter fliessfähigkeit
EP3464399B1 (de) Copolymerisat und seine verwendung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
EP2516605A2 (de) Multifunktionelle kälteadditive für mitteldestillate mit verbesserter fliessfähigkeit
EP1209215B1 (de) Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Festtsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv
EP2417229B1 (de) Mischung aus polaren öllöslichen stickstoffverbindungen und öllöslichen aliphatischen verbindungen zur absenkung des cloud point in mitteldestillat-brennstoffen
DE69505683T2 (de) Oelzusaetze, zusammensetzungen und polymeren zur hinein verwendung
EP4127107B1 (de) Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen
DE10324102A1 (de) Brennstoffzusammensetzungen mit verbesserten Kaltfließeingenschaften
DE10254640A1 (de) Verwendung von Homopolymeren ethylenisch ungesättigter Ester zur Vebesserung der Wirkung von Kaltfließverbesserern
DE10000650C2 (de) Mehrfunktionelles Additiv für Brennstofföle
DE10048682A1 (de) Mehrfunktionelles Additiv für Brennstofföle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090512

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007002278

Country of ref document: DE

Date of ref document: 20100121

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2336962

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E007412

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100309

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

26N No opposition filed

Effective date: 20100910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20120611

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20120521

Year of fee payment: 6

Ref country code: FI

Payment date: 20120625

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20120712

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120626

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 451441

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130612

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150630

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150722

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150625

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160612

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160613

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240627

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240625

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240625

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240625

Year of fee payment: 18