EP2036402B1 - Procédé et dispositif de commande des diodes électroluminescentes d'un dispositif d'éclairage - Google Patents

Procédé et dispositif de commande des diodes électroluminescentes d'un dispositif d'éclairage Download PDF

Info

Publication number
EP2036402B1
EP2036402B1 EP07764741A EP07764741A EP2036402B1 EP 2036402 B1 EP2036402 B1 EP 2036402B1 EP 07764741 A EP07764741 A EP 07764741A EP 07764741 A EP07764741 A EP 07764741A EP 2036402 B1 EP2036402 B1 EP 2036402B1
Authority
EP
European Patent Office
Prior art keywords
current
light
pwm
value
emitting diodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07764741A
Other languages
German (de)
English (en)
Other versions
EP2036402A1 (fr
Inventor
Michael Haubmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arnold and Richter KG
Arnold and Richter Cine Technik GmbH and Co KG
Original Assignee
Arnold and Richter KG
Arnold and Richter Cine Technik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arnold and Richter KG, Arnold and Richter Cine Technik GmbH and Co KG filed Critical Arnold and Richter KG
Publication of EP2036402A1 publication Critical patent/EP2036402A1/fr
Application granted granted Critical
Publication of EP2036402B1 publication Critical patent/EP2036402B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]

Definitions

  • the invention relates to a method for controlling light-emitting diodes of a lighting device, in particular a lighting device for film, video and still images with a pulse width modulation of the light-emitting diode current and a device for driving light-emitting diodes of a lighting device, in particular a lighting device for film, video and photos, with an electronic switch for pulse width modulation of the light-emitting diode current flowing through the LEDs.
  • LEDs light emitting diodes
  • HMI lamps high-density incandescent or HMI lamps
  • Another significant advantage of light-emitting diodes as light sources in illumination headlights is that the color reproduction and / or the color temperature can be adjusted by the use of light emitting diodes of different colors.
  • This advantage is particularly important in film and photo shoots with photosensitive film material, as typical film materials for film recordings such as "Cinema Color Negative Film” are optimized for daylight with a color temperature of 5600 K or for incandescent light with a color temperature of 3200 K and with these light sources to achieve excellent color rendering properties for lighting a set.
  • an LED-based light source for the production of white light that makes use of the principle of three-color mixing.
  • a mixture of the three primary colors red-green-blue (RGB) wherein in a housing at least one blue light-emitting LED, which is referred to as a transmission LED and emits directly used light primarily in the wavelength range of 470 to 490 nm, and another, working with conversion and therefore as a conversion LED LED, which emits light primarily in the wavelength range of at most 465 nm.
  • One way to keep the color rendition and color temperature constant is to regulate a color correction current-dependent.
  • such a scheme can only be realized with great effort, since it would have to be connected to an additional, temperature-dependent compensation.
  • the brightness of the light emitted by the light emitting diodes is controlled via a pulse width modulation and the current flowing through the light emitting diodes is kept constant.
  • a microprocessor is provided as a pulse width modulator, which allows a pulsed operation of the series-connected LEDs, so that the light emitting diodes are operated within a very short time with a multiple of the otherwise permitted current can be increased and thereby both the luminosity and the life of the LEDs.
  • the output of the microprocessor is connected to a power driver, which amplifies the output signals of the microprocessor and outputs the required electrical power to the series-connected LEDs.
  • the microprocessor On the input side, the microprocessor is connected to an analog / digital converter, which is connected via a connecting lead to an electrode terminal of the light emitting diodes and detects a falling across the LEDs, proportional to the ambient brightness voltage, which is converted into a digital signal and evaluated by the microprocessor.
  • the frequency of the pulse-width-modulated current output by the microprocessor is in the range of 25 Hz, so that the pulses of the light emitting diodes for the human eye as such is no longer perceptible and is detected as continuous brightness.
  • a pulse width modulation with such a low frequency which is also increased in other applications, up to 100 Hz or a few kHz, is insufficient especially for film and video recordings, since motion picture or video cameras with relatively short exposure times for each image to be exposed, for example 1/48 second at a film speed of 24 frames per second, which reduces to a few 1/10000 seconds at higher film transport speeds and lower sector angles of a rotating, sector variable mirror shutter of a motion picture camera.
  • a constant current drive type PWM circuit having a constant voltage source with output voltage regulator which adjusts the output voltage in response to an external signal, a circuit connected to the cathode side of the LEDs, whose ON and OFF times are pulse width modulated, a current detection unit comprising the detects current flowing in the circuit and contains a sample-and-hold circuit which holds the input value of the current detection unit for a constant period and outputs as an input signal to the output voltage regulator.
  • Object of the present invention is to provide a method and apparatus for driving serially connected light emitting diodes of a lighting device that adheres to a predetermined color or color temperature even with strong temperature fluctuations, a pulse width modulation with within wide limits up to the megahertz range freely selectable frequency and reliable Control even the smallest pulse widths using inexpensive standard components allows and ensures high efficiency in the control of the LEDs.
  • the method according to the invention makes it possible to operate a pulse-width-modulated lighting device composed of series-connected light-emitting diodes with freely selectable frequency and reliable control of even the smallest pulse widths using cost-effective standard components within wide limits up to the megahertz range and ensures high efficiency in driving the light-emitting diodes Lighting device and the exact compliance with a set or predetermined color or color temperature of the LEDs even with strong temperature fluctuations.
  • the brightness that is, the intensity emitted by the lighting device, controlled by pulse width modulation and simultaneously set the color reproduction and color temperature at constant held light emitting diode fixed exposure and exposure fluctuations even at high recording frequencies of a motion picture or video camera or very short exposure times be excluded from a still camera.
  • the solution according to the invention is based on the realization, by the application of a pulse width modulation in the control of the LEDs of a lighting device, the loss heat generated in the LEDs low and thus to keep the efficiency high while the frequency of the pulse width modulation regardless of the light emitting diode flowing through the light emitting diode or the Adjusting the LED current for a desired color reproduction and color temperature independently of a freely selectable within wide limits frequency of the pulse width modulation.
  • the current increase also enters the detected current actual value, particularly at high switching frequencies or very short pulses, and allows a very exact current regulation and thus maintenance of a desired current value Color rendering and color temperature independent of temperature fluctuations and a freely selectable within wide limits frequency of the pulse width modulation.
  • the frequency of the pulse-width modulated LED current can be arbitrarily set within wide limits, without any repercussions on the LED current flowing through the LEDs so that the color reproduction and color temperature of the lighting device has.
  • the digitized control including a microprocessor thereby enables switching frequencies in the pulse width modulation of the light emitting diodes up to the megahertz range, so that exposure fluctuations even at extremely short exposure times for individual film or video images, that is, even at very high film or video transport speeds, are excluded.
  • the detected pulse width modulated light emitting diode current is digitized continuously and delivered numerically integrated to the microprocessor.
  • an electronic switch designed, for example, as an N-channel MOSFET enables highest switching frequencies and, in conjunction with a current measuring resistor as a current sensor, a measurement of the luminous diode current with simple means using standard components, the calculation of the luminous diode current flowing at the switch-on time with respect to of the over the gate-source path of the MOSFETs through the current measuring resistor to ground draining charge current of the MOSFET is compensated.
  • the detection of the current time surface to account for the current increase, especially at high switching frequencies or very short pulses for accurate current control and thus compliance with a desired color reproduction and color temperature regardless of temperature fluctuations and within wide limits freely selectable frequency of the pulse width modulation can alternatively by forming the current sensor signal from the effective value of the measured current value or from a low-pass filtering of the measured current value.
  • the rms value or low-pass filtering of the current measurement value is not performed before the digitization and delivery of the digitized current sensor signal to the microprocessor, but programmatically after digitization preferably in the microprocessor itself, so that they account for appropriate preparation of the current measurement and conversion into a digitized current sensor signal and thus the circuit structure, ie the hardware of the control of the lighting device can be simplified and thus cheapened.
  • a device for controlling serially connected light-emitting diodes of a lighting device in particular a lighting device for film, video and photographic recordings, with an electronic switch for pulse width modulation of the light-emitting diode current flowing through the light emitting diodes, which is detected by a current sensor and output as a current reading to a signal conditioning , which outputs a current sensor signal to a microprocessor, the output side is connected to the electronic switch and a controllable voltage source ur setting the applied to the series-connected LEDs of the lighting device LED voltage
  • a series connection of the light-emitting diodes with at least partially different color reproduction and color temperature is simpler and more efficient than a parallel connection of a plurality of light-emitting diodes with corresponding symmetry resistors.
  • the microprocessor may make a constant from the digitized value of the current sensor signal, the rms value of the digitized current reading, or the value of the digitized current reading after low-pass filtering subtract, which takes into account a flowing over the current measuring resistor control or charging current of the electronic switch.
  • the LEDs connected in series radiate at least partially light of different color and / or color temperature, so that the total light is composed of a mixture of the different colors or color temperatures and thus adjustable with respect to the desired color or color temperature.
  • a current sensor for deriving the measured current value in particular a standardized current measuring resistor is used.
  • a current transformer for example a current transformer based on a Hall element, can be used to measure the current.
  • the electronic switch can be arranged either between the LEDs and the current sensor and preferably formed as an N-channel MOSFET or arranged between the DC-DC converter and the light emitting diodes and formed as a P-channel MOSFET with higher on-resistance, the control of which is more expensive as the control of an electronic switch arranged in the form of an N-channel MOSFET at the base of the preferably series-connected light-emitting diodes.
  • Fig. 1 shows a block diagram for controlling a lighting device 10 having a plurality of series-connected LEDs 11, which may be to set a desired color reproduction and color temperature to LEDs of different colors.
  • the series-connected LEDs 11 of the lighting device 10 are fed from a controllable voltage source, which consists of a DC voltage source 1, for example a battery or an accumulator, and a DC voltage converter 2 connected to the DC voltage source 1.
  • a controllable voltage source which consists of a DC voltage source 1, for example a battery or an accumulator, and a DC voltage converter 2 connected to the DC voltage source 1.
  • the DC voltage source 1 and the DC-DC converter 2 can be provided as a controllable voltage source, an AC power source with downstream, controllable rectifier.
  • an electronic switch 5 is arranged, which is preferably formed in the embodiment as an N-channel MOSFET and has a drain, source and gate terminal, and the flowing through the LEDs 11
  • pulse width modulated LED current I PWM outputs a current reading I M to a downstream amplifier 7 whose output is connected to an RMS converter 8.
  • the output of the RMS converter 8, which outputs a current sensor signal I S, is connected to the input of an analog / digital converter 9, which outputs values ADval for the digitized current sensor signals I S to an input of a microprocessor 3.
  • the function of the amplifier 7 and the RMS converter 8 can be combined in a combined amplifier and RMS converter 12.
  • the microprocessor 3 is connected via a first output via a digital / analog converter 4 to a control input of the controllable DC-DC converter 2 and via a second output to a control terminal of the electronic switch 5, for example to the gate terminal of an N-channel MOSFET.
  • the light-emitting diode current I PWM flowing through the light emitting diodes 11 is pulse-width modulated by means of the electronic switch 5, wherein the pulse width can be varied from 0 to 100% and the frequency of the pulse width modulation can be freely selected within the widest limits.
  • the luminosity of the LEDs 11 can be varied as desired and minimal heat loss maximum luminosity and maximum life of the LEDs 11 can be achieved, with a multiple of the otherwise permitted light-emitting current I PWM operation is permissible as a result of the pulse.
  • the frequency of the pulse width modulation which is possible up to the megahertz range can in particular be set or regulated such that no fluctuations in the light intensity on a motion picture or video film occur even with very short exposure times.
  • the light-emitting diode current I PWM flowing through the light-emitting diodes 11 is detected at the shunt resistor 6 and fed via the amplifier 7 to the rms converter 8, the output of which the analog current sensor signal I S in the analog / digital converter 9 is digitized at the input of the microprocessor 3.
  • the microprocessor 3 calculates from the supplied digital, amplified and integrated current measurement value ADval, the gain GN of the detected current measurement value I M and the PWM modulation of the pulse width modulation from 0% to 100% according to the relationship ADval * GN * 100 % / PWM
  • the switching frequency of the electronic switch 5 controlled by the second output of the microprocessor 3 and thus the frequency of the pulse-width-modulated light-emitting diode current I PWM can be freely selected within wide limits, with frequencies up to the megahertz range being circuitry-dependent are easy to implement.
  • the switching frequency of the electronic switch 5 is changed to change the luminous intensity of the lighting device 10 or to change the frequency of the pulse width modulated LED current I PWM at high recording speeds of a film or video camera or short film exposure times, so is the control of the LED current I PWM the required for a particular color rendering and / or color temperature light-emitting diode current I PWM tracked by a corresponding change in the output voltage of the DC-DC converter 2.
  • the actual flowing through the series-connected LEDs 11 pulse width modulated LED current I PWM can be determined very accurately and adjusted by a corresponding control of the controllable DC-DC converter 2, the output voltage at the output of the DC-DC converter 2 so that a required for a specific color reproduction and color temperature light emitting current I. PWM is adhered to.
  • the electronic switch on the supply side that is, between the output of the controllable DC-DC converter 2 and the anode side of the lighting device 10 can be arranged
  • this requires a more sophisticated drive of the electronic switch or the use of a P-channel MOSFET with a higher on-resistance.
  • FIG. 2 Block diagram shown for driving a lighting device 10 with a plurality of series-connected LEDs 11 is correct in its circuit construction with the Fig. 1 with the proviso that, instead of a RMS converter 8, a low-pass filter 13 is provided, with which a low-pass filtering of the amplified current measurement value I M is performed, so far as the above description of the structure and the function of the circuit according to Fig. 1 Reference is made.
  • the function of the amplifier 7 and of the low-pass filter 13 can be combined in a combined amplifier and low-pass filter 14.
  • the microprocessor 3 may subtract a constant GC from the digitized value of the current sensor signal I S , the effective value of the digitized current value I M or the value of the digitized current measurement value I M after the low-pass filtering, which has a control or charging current flowing through the current measuring resistor considered electronic switch.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Claims (15)

  1. Procédé pour piloter des diodes électroluminescentes (11) branchées en série dans un dispositif d'éclairage (10) pour des prises de vues de film, de vidéo et de photo avec une source à tension constante (1, 2) susceptible d'être commandée, avec laquelle on établit la tension appliquée aux diodes électroluminescentes (11), comprenant un commutateur électronique (5) au moyen duquel le courant (IPWM) traversant les diodes électroluminescentes (11) est réglé au moyen d'une modulation en largeur d'impulsion, et comprenant un détecteur de courant (6) qui détecte le courant (IPWM) traversant les diodes électroluminescentes (11) et qui délivre une valeur de mesure (IM) du courant, valeur qui est amplifiée et à partir de laquelle on forme un signal de détection de courant (IS), proportionnel au courant, qui est numérisé et envoyé à un microprocesseur (3) sous forme de valeur numérisée (ADval) du signal de détection de courant (IS), ledit processeur calculant, à partir de l'équation I PWM = ADval * GN * 100 % / PWM ,
    Figure imgb0023

    le courant de diode (IPWM) modulé en largeur d'impulsion traversant les diodes électroluminescentes (11) en fonction de la fréquence de commutation du commutateur électronique (5), dans laquelle ADval est la valeur numérisée du signal de détection de courant (IS), GN est l'amplification de la valeur de mesure (IM) du courant, et PWM est le coefficient de modulation en largeur d'impulsion de 0 % à 100 %, et établit la tension de sortie de la source de tension continue (1, 2) susceptible d'être commandée de telle manière que le courant de diode (IPWM) modulé en largeur d'impulsion de la façon requise pour une certaine restitution en couleurs et une certaine température de couleur de la lumière émise par les diodes électroluminescentes (11) traversant les diodes électroluminescentes (11) branchées en série du dispositif d'éclairage (10).
  2. Procédé selon la revendication précédente, caractérisé en ce que le courant de diode (IPWM) est modulé en largeur d'impulsion au moyen du commutateur électronique (5) branché en série avec les diodes électroluminescentes (11) et piloté par le microprocesseur (3), et le courant de diode (IPWM) modulé en largeur d'impulsion est détecté avec une résistance de mesure de courant (6) agencée en série par rapport au commutateur électronique (5), la valeur mesurée et détectée (IM) du courant est amplifiée et un signal de détection de courant (IS) proportionnel au courant est formé à partir de la valeur de mesure de courant (IM) amplifiée, ce signal étant numérisé et fourni au microprocesseur (3) sous forme de valeur numérisée (ADval) du signal de détection de courant (IS), le processeur calculant, à partir de l'équation I PWM = ADval - GC * GN * 100 % / PWM ,
    Figure imgb0024

    le courant de diode (IPWM) modulé en largeur d'impulsion traversant l'instant de commutation les diodes électroluminescentes (11), dans laquelle ADval est la valeur numérisée du signal de détection de courant (IS), GN est l'amplification de la valeur de mesure de courant détecté (IM), PWM est le coefficient de modulation en largeur d'impulsion de 0 % à 100 %, et GC est une constante du commutateur électronique (5), qui tient compte d'un courant de commande ou courant de charge (IL) du commutateur électronique (5) traversant la résistance de mesure de courant (6).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le signal de détection de courant (IS) est formé par la valeur efficace de la valeur de mesure de courant (IM).
  4. Procédé selon la revendication 1 ou 2, caractérisé en ce que le signal de détection de courant (IS) est formé par filtrage en passe-bas de la valeur de mesure de courant (IM).
  5. Procédé selon la revendication 1, caractérisé en ce que le courant de diode (IPWM) modulé en largeur d'impulsion est détecté par un détecteur de courant (6), la valeur de mesure de courant détectée (IM) est amplifiée et envoyée au microprocesseur (3) en étant numérisée, ledit processeur formant, sous la commande d'un programme, la valeur efficace (ADRMS) de la valeur numérisée de la valeur de mesure de courant (IM) et calculant à partir de l'équation I PWM = AD RMS * GN * 100 % / PWM ,
    Figure imgb0025

    le courant de diode (IPWM) modulé en largeur d'impulsion traversant les diodes électroluminescentes (11), dans laquelle ADRMS est la valeur efficace de la valeur de mesure de courant numérisé (IM), GM est l'amplification de la valeur de mesure de courant (IM) et PWM est le coefficient de modulation en largeur d'impulsion de 0 % à 100 %.
  6. Procédé selon la revendication 1, caractérisé en ce que le courant de diode (IPWM) modulé en phase d'impulsion est détecté par un détecteur de courant (6), la valeur de mesure de courant (IM) est amplifiée et envoyée sous forme numérisée au microprocesseur (3) qui exécute, sous la commande d'un programme, un filtrage en passe-bas de la valeur numérisée de la valeur de mesure de courant (IM) et qui calcule, à partir de l'équation I PWM = = AD TP * GN * 100 % / PWM ,
    Figure imgb0026

    le courant de diode (IPWM) modulé en largeur d'impulsion traversant les diodes électroluminescentes (11), dans laquelle ADTP est la valeur de mesure de courant numérisée (IM) après le filtrage passe-bas, GN est l'amplification de la valeur de mesure de courant (IM) et PWM est le coefficient de modulation en largeur d'impulsion de la modulation en largeur d'impulsion de 0 % à 100 %.
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce que le microprocesseur (3) soustrait à partir de la valeur efficace (ADRMS) ou de la valeur (ADTP) de la valeur de mesure de courant numérisé (IM) et après le filtrage passe-bas du commutateur électronique (5), sous la commande d'un programme, une constante (GC) qui tient compte d'un courant de commande ou de charge (IM) du commutateur électronique (5) qui s'écoule via le détecteur de courant réalisé sous forme de résistance de mesure de courant (6).
  8. Appareil pour la mise en oeuvre du procédé pour le pilotage de diodes électroluminescentes (11) branchées en série dans un dispositif d'éclairage (10) pour des prises de vues de films, de vidéos et de photos selon l'une au moins des revendications précédentes,
    caractérisé par
    - un commutateur électronique (5) branché en série par rapport aux diodes électroluminescentes (11) pour la modulation en largeur d'impulsion du courant de diode (IPWM) traversant les diodes électroluminescentes (11),
    - un détecteur de courant (6) pour détecter le courant de diode (IPWM) et pour fournir une valeur de mesure de courant (IM),
    - un dispositif de préparation de signaux (7, 8, 9, 12, 13) avec un amplificateur (7) et un convertisseur analogique/numérique (9) dont l'entrée est attaquée par la valeur de mesure de courant (IM), et à la sortie duquel on prélève la valeur numérisée (ADval) d'un signal de détection de courant (IS),
    - un microprocesseur (3) dont l'entrée est attaquée par le signal de détection de courant (IS) et dont la sortie est reliée au commutateur électronique (5) et à une source de tension (1, 2) susceptible d'être commandée pour régler la tension de diode appliquée aux diodes électroluminescentes (11) branchées en série du dispositif d'éclairage (10), et qui calcule, à partir de l'équation I PWM = ADval * GN * 100 % / PWM ,
    Figure imgb0027
    le courant de diode (IPWM) à modulation en largeur d'impulsion traversant à l'instant de commutation à travers les diodes électroluminescentes (11), dans laquelle la valeur ADval est la valeur numérisée du signal de détection de courant (IS) ou la valeur efficace de la valeur de mesure de courant (IM) amplifiée, GN est l'amplification de la valeur de mesure de courant (IM) et PWM est le coefficient de modulation en largeur d'impulsion de 0 % à 100 %.
  9. Appareil selon la revendication 8, caractérisé en ce que le détecteur de courant est constitué par une résistance de mesure de courant (6) agencée en série par rapport au commutateur électronique (5), et en ce que le microprocesseur (3) calcule, à partir de l'équation I PWM = ADval - GC * GN * 100 % / PWM ,
    Figure imgb0028

    le courant de diode à modulation en largeur d'impulsion (IPWM) traversant à l'instant de communication à travers les diodes électroluminescentes (11), dans laquelle ADval est la valeur numérisée du signal de détection de courant (IS), GN est l'amplification de la valeur de mesure de courant détecté (IM), PWM est le coefficient de modulation en largeur d'impulsion de 0 % à 100 %, et GC est une constante du commutateur électronique (5) qui tient compte d'un courant de commande ou d'un courant de charge (IL) du commutateur électronique (5).
  10. Appareil selon la revendication 8, caractérisé en ce que le détecteur de courant (6) est formé par un convertisseur de tension, de préférence basé sur un élément de Hall.
  11. Appareil selon l'une des revendication 8 à 10, caractérisé en ce que le système de préparation de signaux comprend l'amplificateur (7), un convertisseur de valeur efficace (8) et le convertisseur analogique/numérique (9) attaqué à son entrée avec la valeur efficace de la valeur de mesure de courant (IM) et à la sortie duquel la valeur numérisée (ADval) du signal de détection de courant (IS) est envoyée à l'entrée du microprocesseur (3).
  12. Appareil selon l'une des revendications 8 à 10, caractérisé en ce que le système de préparation de signal comprend l'amplificateur (7), un filtre passe-bas (13) et le convertisseur analogique/numérique (9) attaqué à son entrée avec le signal de sortie du filtre passe-bas (13), et à la sortie duquel la valeur numérisée (ADval) du signal de détection de courant (IS) est envoyée à l'entrée du microprocesseur (3).
  13. Appareil selon l'une des revendications 8 à 10, caractérisé en ce que le microprocesseur (3) forme, sous la commande d'un programme, la valeur efficace (ADRMS) de la valeur numérisée de la valeur de mesure de courant (IM), ou bien exécute, sous la commande d'un programme, un filtrage passe-bas de la valeur numérisée de la valeur de mesure de courant (IM).
  14. Appareil selon l'une au moins des revendications 8 à 13, caractérisé en ce qu'une première sortie du microprocesseur (3) est reliée via un convertisseur numérique/analogique (4) à une borne de commande de la source de tension (1, 2) susceptible d'être commandée, qui applique aux diodes électroluminescentes (11) une tension de sortie qui dépend du signal de commande envoyé par le microprocesseur (3) à la borne de commande de la source de tension (1, 2) susceptible d'être commandée.
  15. Appareil selon l'une au moins des revendications 8 à 14, caractérisé en ce que la source de tension (1, 2) susceptible d'être commandée est composée d'une source de tension continue (1) et d'un convertisseur de tension continue (2) raccordé à la source de tension continue (1).
EP07764741A 2006-06-20 2007-06-20 Procédé et dispositif de commande des diodes électroluminescentes d'un dispositif d'éclairage Active EP2036402B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006029438.6A DE102006029438B4 (de) 2006-06-20 2006-06-20 Verfahren und Vorrichtung zur Ansteuerung von Leuchtdioden einer Beleuchtungsvorrichtung
PCT/EP2007/005418 WO2007147573A1 (fr) 2006-06-20 2007-06-20 Procédé et dispositif de commande des diodes électroluminescentes d'un dispositif d'éclairage

Publications (2)

Publication Number Publication Date
EP2036402A1 EP2036402A1 (fr) 2009-03-18
EP2036402B1 true EP2036402B1 (fr) 2010-06-30

Family

ID=38603659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07764741A Active EP2036402B1 (fr) 2006-06-20 2007-06-20 Procédé et dispositif de commande des diodes électroluminescentes d'un dispositif d'éclairage

Country Status (5)

Country Link
US (1) US8115418B2 (fr)
EP (1) EP2036402B1 (fr)
AT (1) ATE472926T1 (fr)
DE (2) DE102006029438B4 (fr)
WO (1) WO2007147573A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041265A2 (fr) * 2008-06-26 2010-04-15 Ledtrics Lighting Private Limited Pilote de led et système d’éclairage utilisant ledit pilote
US9668306B2 (en) 2009-11-17 2017-05-30 Terralux, Inc. LED thermal management
US9326346B2 (en) 2009-01-13 2016-04-26 Terralux, Inc. Method and device for remote sensing and control of LED lights
US8358085B2 (en) * 2009-01-13 2013-01-22 Terralux, Inc. Method and device for remote sensing and control of LED lights
US8629660B2 (en) * 2009-03-06 2014-01-14 Maxim Integrated Products, Inc. Critical conduction resonant transition boost power circuit
US7994730B2 (en) 2009-06-04 2011-08-09 Apple Inc. Pulse width modulation (PWM) closed loop LED current driver in an embedded system
US8193741B2 (en) * 2009-12-24 2012-06-05 Nxp B.V. Boosting driver circuit for light-emitting diodes
CN102404901A (zh) * 2010-09-14 2012-04-04 扬光绿能股份有限公司 照明装置及其控制方法
US8698404B2 (en) * 2011-03-24 2014-04-15 Microsemi Corporation Brightness control for LED lighting
JP6217957B2 (ja) * 2011-09-29 2017-10-25 東芝ライテック株式会社 照明装置
US8896231B2 (en) 2011-12-16 2014-11-25 Terralux, Inc. Systems and methods of applying bleed circuits in LED lamps
TW201334625A (zh) * 2012-02-06 2013-08-16 Luxul Technology Inc 用於高壓交流電源之交流led驅動電路
US9204504B2 (en) 2012-09-17 2015-12-01 Energy Focus, Inc. LED lamp system
US9265119B2 (en) 2013-06-17 2016-02-16 Terralux, Inc. Systems and methods for providing thermal fold-back to LED lights
US9572212B2 (en) * 2014-05-21 2017-02-14 Lumens Co., Ltd. LED lighting device using AC power supply
US10516294B2 (en) * 2015-02-09 2019-12-24 Eaton Intelligent Power Limited Uninterruptible constant current regulator
KR20190091929A (ko) * 2018-01-30 2019-08-07 엘에스산전 주식회사 Uart 통신속도 자동 전환 방법
US20190289693A1 (en) * 2018-03-14 2019-09-19 Honeywell International Inc. Automatic handling of lamp load on do channel
US11212892B1 (en) * 2020-06-18 2021-12-28 Streamlight, Inc. Variable frequency PWM LED control circuit and method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767286B2 (ja) * 1999-11-02 2006-04-19 セイコーエプソン株式会社 発光素子用電源装置、照明装置および液晶装置
US6636003B2 (en) * 2000-09-06 2003-10-21 Spectrum Kinetics Apparatus and method for adjusting the color temperature of white semiconduct or light emitters
CA2336497A1 (fr) * 2000-12-20 2002-06-20 Daniel Chevalier Dispositif d'eclairage
GB2369730B (en) 2001-08-30 2002-11-13 Integrated Syst Tech Ltd Illumination control system
DE10147504A1 (de) * 2001-09-26 2003-04-10 Siemens Ag Beleuchtungssteuerung
JP4040358B2 (ja) * 2002-03-15 2008-01-30 シャープ株式会社 撮影機能を有した携帯電話機
DE10227487B4 (de) 2002-06-19 2013-11-21 Wilo Se Beleuchtungsvorrichtung
DE10233050B4 (de) 2002-07-19 2012-06-14 Osram Opto Semiconductors Gmbh Lichtquelle auf LED-Basis für die Erzeugung von Licht unter Ausnutzung des Farbmischprinzips
DE10236872B4 (de) * 2002-08-12 2008-08-28 Hella Kgaa Hueck & Co. Schaltungsanordnung zur steuerbaren Stromversorgung, insbesondere Schaltungsanordnung zum Dimmen von Leuchtdiodenanordnungen
JP4017960B2 (ja) * 2002-10-24 2007-12-05 日本テキサス・インスツルメンツ株式会社 駆動回路
EP1579736B1 (fr) * 2002-12-26 2009-02-25 Koninklijke Philips Electronics N.V. Regulateur de diode electroluminescente mid a circuit d'echantillonnage et de maintien
JP2005006444A (ja) * 2003-06-13 2005-01-06 Japan Aviation Electronics Industry Ltd 照明灯電源装置
JP2005073227A (ja) * 2003-08-04 2005-03-17 Sharp Corp 撮像装置
US7443113B2 (en) * 2003-12-02 2008-10-28 Universal Lighting Technologies, Inc. Software controlled electronic dimming ballast
CA2576099C (fr) * 2004-08-06 2015-02-10 Tir Systems Ltd. Systeme d'eclairage comprenant une emission et une detection photonique utilisant des elements electroluminescents
JP2006059927A (ja) * 2004-08-18 2006-03-02 Radiant Opt-Electronics Corp Ledを用いる面状発光装置
JP4306657B2 (ja) 2004-10-14 2009-08-05 ソニー株式会社 発光素子駆動装置および表示装置
KR100638723B1 (ko) * 2005-02-04 2006-10-30 삼성전기주식회사 Led 어레이 구동 장치 및 이를 이용한 백라이트 구동 장치
US7372883B2 (en) * 2005-02-28 2008-05-13 Infocus Corporation Light emitting device driver circuit
US20060220571A1 (en) * 2005-03-31 2006-10-05 Super Vision International, Inc. Light emitting diode current control method and system
US7675487B2 (en) * 2005-07-15 2010-03-09 Honeywell International, Inc. Simplified light-emitting diode (LED) hysteretic current controller
US20070229416A1 (en) * 2006-04-03 2007-10-04 Leonard De Oto High voltage hysteretic led controller
US20080018261A1 (en) * 2006-05-01 2008-01-24 Kastner Mark A LED power supply with options for dimming

Also Published As

Publication number Publication date
US8115418B2 (en) 2012-02-14
ATE472926T1 (de) 2010-07-15
DE102006029438B4 (de) 2018-05-17
DE502007004271D1 (de) 2010-08-12
DE102006029438A1 (de) 2007-12-27
WO2007147573A1 (fr) 2007-12-27
US20100176734A1 (en) 2010-07-15
EP2036402A1 (fr) 2009-03-18

Similar Documents

Publication Publication Date Title
EP2036402B1 (fr) Procédé et dispositif de commande des diodes électroluminescentes d'un dispositif d'éclairage
EP1938667B1 (fr) Source de lumiere qui emet de la lumiere a melange de couleurs, et procede pour commander la localisation chromatique d'une telle source de lumiere
EP1643227B1 (fr) Dispositif d'éclairage et procédé de régulation
AT516515B1 (de) Schaltung zum betrieb von leuchtdioden (leds)
DE102004056979B4 (de) Leuchtensteuersystem
DE102006032071B4 (de) Steuerschaltung und Verfahren zum Steuern von Leuchtdioden
DE102012100360A1 (de) Lichtquellen-Betriebseinrichtung und Leuchte
DE102007038892A1 (de) Hochgeschwindigkeits-LED-Treiber
DE102014119551A1 (de) Energieversorgungsgerät und Anzeigevorrichtung mit einem solchen Energieversorgungsgerät
DE102013226120A1 (de) Verfahren und schaltung für eine led-treiber-leuchtstärkeregelung
DE102013113053B4 (de) Treiberschaltung mit einer Halbleiterlichtquelle sowie Verfahren zum Betrieb einer Treiberschaltung
DE102008010320A1 (de) Lichtemittierende Vorrichtung
DE102013207245B4 (de) Ansteuerung von Halbleiterleuchtelementen sowie Lampe, Leuchte oder Leuchtsystem mit einer solchen Ansteuerung
WO2006042624A1 (fr) Dispositif d'eclairage pour des microscopes
EP2031940A2 (fr) Agencement de grappe DEL doté d'un commutateur à courant continu
DE102012208172A1 (de) LED-Treiber mit Farbüberwachung
DE102012224275A1 (de) Treiberschaltung mit niedrigen EMI
DE112020005769T5 (de) Led-ansteuervorrichtung, beleuchtungsvorrichtung und fahrzeugmontierte anzeigevorrichtung
DE102017108036A1 (de) Steuern einer wenigstens zwei elektrische lichtquellen aufweisenden leuchteinrichtung
WO2016156030A1 (fr) Ensemble circuit permettant de faire fonctionner au moins une première et une seule seconde cascade de del
DE112018007350T5 (de) Leuchtelement-Antriebsvorrichtung
DE10013208A1 (de) Ansteuerung von Leuchtdioden (LED`s)
EP3637959B1 (fr) Composant semi-conducteur
DE202017002443U1 (de) Schaltungsanordnung zum Betreiben eines Leuchtmittels
WO2024094420A1 (fr) Module optoélectronique et son procédé de fonctionnement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502007004271

Country of ref document: DE

Date of ref document: 20100812

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004271

Country of ref document: DE

Effective date: 20110330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007004271

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007004271

Country of ref document: DE

Representative=s name: ISARPATENT - PATENT- UND RECHTSANWAELTE BARTH , DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230616

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 17