EP2010690B1 - Hot dip coating process for a steel plate product made of high strengthheavy-duty steel - Google Patents

Hot dip coating process for a steel plate product made of high strengthheavy-duty steel Download PDF

Info

Publication number
EP2010690B1
EP2010690B1 EP06754869A EP06754869A EP2010690B1 EP 2010690 B1 EP2010690 B1 EP 2010690B1 EP 06754869 A EP06754869 A EP 06754869A EP 06754869 A EP06754869 A EP 06754869A EP 2010690 B1 EP2010690 B1 EP 2010690B1
Authority
EP
European Patent Office
Prior art keywords
steel product
flat steel
oxide layer
heat treatment
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06754869A
Other languages
German (de)
French (fr)
Other versions
EP2010690A1 (en
Inventor
Ronny Leuschner
Manfred Meurer
Wilhelm Warnecke
Sabine Zeizinger
Gernot Nothacker
Michael Ullmann
Norbert Schaffrath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Priority to PL06754869T priority Critical patent/PL2010690T3/en
Publication of EP2010690A1 publication Critical patent/EP2010690A1/en
Application granted granted Critical
Publication of EP2010690B1 publication Critical patent/EP2010690B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Definitions

  • the invention relates to a method for coating a flat steel product made of high-strength, different alloying constituents, in particular Mn, Al, Si and / or Cr, containing steel, such as steel strip or sheet, with a metallic coating, in which the flat steel product is subjected to a heat treatment, to then be provided in the heated state in a total of at least 85% zinc and / or aluminum melt bath by hot dip coating with the metallic coating.
  • hot-rolled or cold-rolled sheets made of steel are used, which are surface-finished for reasons of corrosion protection.
  • the demands placed on such sheets are many. They should on the one hand be well deformable and on the other hand have a high strength.
  • the high strength is achieved by adding certain alloying constituents, such as Mn, Si, Al and Cr, to the iron.
  • RTF Radiant Tube Furnace
  • a two-stage hot dip coating method of a chromium-containing steel alloy strip is known.
  • the strip is annealed in a first stage to be at the Band surface to obtain an iron enrichment.
  • the tape is heated in a non-oxidizing atmosphere to the temperature of the coating metal.
  • the document JP 02 285057 discloses a method of hot dip coating a steel strip that includes a preheat treatment.
  • the heat treatment includes heating the tape in a reducing atmosphere, a second step of heating in an oxidizing atmosphere, and further heating up to 800 ° C in a reducing atmosphere.
  • the document US 2004/177903 discloses a process for hot dip coating a high strength steel strip with various oxidizable alloying constituents.
  • the method includes heating in a reducing atmosphere, and further, the heat treatment furnace comprises a region consisting of an oxidizing atmosphere.
  • the invention had the object of specifying a method for hot dip coating of a high-strength steel produced flat steel product with zinc and / or aluminum, with which a steel strip can be produced with an optimally finished surface in a RTF plant.
  • the temperature control according to the invention in step a) prevents that during the heating essential alloying constituents diffuse to the surface of the flat steel product.
  • the diffusion of alloy constituents to the surface is particularly effectively suppressed so that an effective iron oxide layer can be formed in the following step , This prevents further alloying constituents from diffusing to the surface during the subsequently increased annealing temperature.
  • a pure iron layer can be formed which is suitable for a full-surface and firmly adhering coating of zinc and / or aluminum is very suitable.
  • the work result can be optimized by completely reducing the iron oxide layer produced in the oxidizing atmosphere to pure iron. In this state, the coating also has optimum properties with regard to its deformability and strength.
  • the thickness of the forming oxide layer is measured and adjusted depending on this thickness and dependent on the flow rate of the flat steel product treatment time of O 2 content such that the Oxide layer can then be completely reduced.
  • the change in the flow rate of the flat steel product z. B. as a result of disturbances can be considered in this way without detriment to the surface quality of the hot dip coated flat steel product.
  • a diffusion of alloy constituents to the surface of the flat steel product can also be counteracted by the heating in step a) of the process according to the invention taking place as rapidly as possible.
  • Good work results are in particular then if the duration of the heating upstream of the oxidation of the flat steel product to more than 750 ° C to 850 ° C to max. 300 s, in particular max. 250 s, is limited.
  • the heating rate in the case of the heating of the flat steel product preceding the oxidation according to the invention is at least 2.4 ° C./s, in particular in the range from 2.4 to 4.0 ° C./s.
  • the heat treatment followed by oxidation followed by cooling of the flat steel product should take more than 30 seconds, in particular more than 50 seconds, in order to ensure a sufficiently sufficient reduction of the previously formed iron oxide layer to pure iron.
  • the high-strength steel may contain at least one of the following constituents: Mn> 0.5%, A1> 0.2%, Si> 0.1%, Cr> 0.3%. Other ingredients such. Mo, Ni, V, Ti, Nb and P can be added.
  • the heat treatment of the flat steel product in the reducing atmosphere both during warm-up and later annealing, lasts many times longer than the heat treatment in the oxidizing atmosphere.
  • the volume of the oxidizing atmosphere is very small compared to the remaining volume of the reducing atmosphere.
  • the inventive heat treatment of the flat steel product in the reducing atmosphere can be carried out in a continuous furnace, which is equipped with a chamber containing the oxidizing atmosphere, wherein the volume of the chamber can be many times smaller than the remaining volume of the continuous furnace.
  • the single figure shows schematically a galvanizing plant with a continuous furnace 5 and a melt bath 7.
  • the temperature profile over the cycle time is plotted in the figure for the continuous furnace.
  • the galvanizing plant is intended for continuous coating of a flat steel product in the form of hot rolled or cold rolled steel strip 1, which is made of higher strength steel containing at least one alloying element of the Mn, Al, Si and Cr group and optionally further alloying elements containing certain alloying elements.
  • the steel may in particular be a TRIP steel.
  • the steel strip 1 is withdrawn from a coil 2 and passed through a pickling 3 and / or another system 4 for surface cleaning.
  • the cleaned belt 1 then passes through a continuous furnace 5 in a continuous operation and is passed from there via a sealed relative to the surrounding atmosphere trunk 6 in a hot dip bath 7.
  • the hot-dip bath 7 is presently formed by a molten zinc.
  • the emerging from the hot dip 7, provided with the zinc coating steel strip 1 passes through a Cooling section 8 or a device for heat treatment to a winding station 9, in which it is wound into a coil.
  • the steel strip 1 is meander-shaped passed through the continuous furnace 5 in order to achieve sufficiently long treatment times with practical length of the continuous furnace 5 can.
  • the middle zone 5b forms a reaction chamber and is atmospherically closed with respect to the first and last zones 5a, 5c.
  • Their length is only about 1/100 of the total length of the continuous furnace 5. For better illustration, the drawing is not to scale extent.
  • a typical composition of this atmosphere consists of 2% to 8% H 2 , typically 5% H 2 , and balance N 2 .
  • the strip is heated to more than 750 to 850 ° C, typically 800 ° C.
  • the heating takes place at a heating rate of at least 3.5 ° C / s. At this temperature and heating rate diffuse in the steel strip. 1 containing alloying ingredients in only small amounts at the surface.
  • the steel strip 1 is kept substantially only at the temperature reached in the first zone 5a.
  • the atmosphere of the zone 5b is oxygen-containing, so that oxidation of the surface of the steel strip 1 occurs.
  • the O 2 content of the atmosphere prevailing in zone 5b is between 0.01% to 1%, typically 0.5%.
  • the oxygen content of the atmosphere prevailing in the zone 5b can be adjusted, for example, as a function of the treatment time and the thickness of the oxide layer to be produced on the steel bath 1. If the treatment time is short, for example, a high O 2 content is set, while with a long treatment time, for example, a lower oxygen content can be selected in order to produce an oxide layer of the same thickness.
  • the desired iron oxide layer forms on the surface of the strip.
  • the thickness of this iron oxide layer can be detected optically, the result of the measurement being used to set the respective oxygen content of the zone 5b.
  • the chamber volume is correspondingly small. Therefore, the reaction time for a change in the composition of the atmosphere is small, so that on a Changing the belt speed or to a different thickness of the target thickness of the oxide layer by a corresponding adjustment of the oxygen content of the prevailing atmosphere in the zone 5b can be reacted quickly.
  • the small volume of Zone 5b allows for short control times.
  • the steel strip 1 is heated to an annealing temperature of about 900 ° C.
  • the annealing carried out in zone 5c takes place in a reducing nitrogen atmosphere which has an H 2 content of 5%.
  • the iron oxide layer prevents alloying constituents from diffusing to the strip surface.
  • the iron oxide layer is converted into a pure iron layer.
  • the steel strip 1 is further cooled on its further way in the direction of the hot dip bath 7, so that it has a temperature when leaving the continuous furnace 5, which is higher by up to 10% than the temperature of the hot dip bath 7 of about 480 ° C. Since the strip 1 is made of pure iron after leaving the continuous furnace 5 on its surface, it provides an optimum basis for a firmly adhering connection of the zinc coating applied in the hot dip bath 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

A method for coating a flat steel product manufactured from a high strength steel with a metallic coating, wherein the flat steel product is initially subjected to a heat treatment, in order then, in the heated state, to be hot-dip galvanized with the metallic coating in a melting bath containing overall at least 85% zinc and/or aluminum. The heat treatment includes heating the steel product in a reducing atmosphere, followed by converting a surface of the flat product to an iron oxide layer by a heat treatment lasting 1 to 10 secs in an oxidizing atmosphere, followed by annealing in a reducing atmosphere over a period of time which is longer than the duration of the formation of the iron oxide layer such that the iron oxide layer is reduced at least on its surface to pure iron, followed by cooling the product to a melting bath temperature.

Description

Die Erfindung betrifft ein Verfahren zum Beschichten eines aus höherfestem, verschiedene Legierungsbestandteile, insbesondere Mn, A1, Si und/oder Cr, enthaltenden Stahl hergestellten Stahlflachproduktes, wie Stahlband oder -blech, mit einem metallischen Überzug, bei dem das Stahlflachprodukt einer Wärmebehandlung unterzogen wird, um dann im erwärmten Zustand in einem insgesamt mindestens 85 % Zink und/oder Aluminium enthaltenden Schmelzenbad durch Schmelztauchbeschichten mit dem metallischen Überzug versehen zu werden.The invention relates to a method for coating a flat steel product made of high-strength, different alloying constituents, in particular Mn, Al, Si and / or Cr, containing steel, such as steel strip or sheet, with a metallic coating, in which the flat steel product is subjected to a heat treatment, to then be provided in the heated state in a total of at least 85% zinc and / or aluminum melt bath by hot dip coating with the metallic coating.

Im Automobilkarosseriebau werden warm- oder kaltgewalzte Bleche aus Stahl eingesetzt, die aus Gründen des Korrosionsschutzes oberflächenveredelt sind. Die an solche Bleche gestellten Anforderungen sind vielfältig. Sie sollen einerseits gut verformbar sein und andererseits eine hohe Festigkeit haben. Die hohe Festigkeit erreicht man durch Zusatz von bestimmten Legierungsbestandteilen, wie Mn, Si, A1 und Cr, zum Eisen.In automotive body construction, hot-rolled or cold-rolled sheets made of steel are used, which are surface-finished for reasons of corrosion protection. The demands placed on such sheets are many. They should on the one hand be well deformable and on the other hand have a high strength. The high strength is achieved by adding certain alloying constituents, such as Mn, Si, Al and Cr, to the iron.

Um das Eigenschaftsprofil hochfester Stähle zu optimieren, ist es üblich, die Bleche unmittelbar vor dem Beschichten mit Zink und/oder Aluminium im Schmelzbad zu glühen. Während das Schmelztauchbeschichten von Stahlbändern, die nur geringe Anteile an den genannten Legierungsbestandteilen enthalten, unproblematisch ist, gibt es beim Schmelztauchbeschichten von Stahlblech mit höheren Legierungsanteilen bei konventioneller Vorgehensweise Schwierigkeiten. So ergeben sich Bereiche, in denen der Überzug nur unzureichend auf dem jeweiligen Stahlblech haftet oder die vollständig unbeschichtet bleiben.In order to optimize the property profile of high-strength steels, it is customary to anneal the sheets in the molten bath immediately before coating with zinc and / or aluminum. During the hot dip coating of steel strips containing only small amounts of the mentioned Alloy constituents contained, is problematic, there are in the hot dip coating of steel sheet with higher alloy levels in conventional approach difficulties. This results in areas in which the coating adheres insufficiently to the respective steel sheet or remain completely uncoated.

Im Stand der Technik gibt es eine Vielzahl von Versuchen, diese Schwierigkeiten zu vermeiden. Eine optimale Lösung des Problems scheint es allerdings noch nicht zu geben.There are many attempts in the prior art to avoid these difficulties. However, an optimal solution of the problem does not seem to exist yet.

Bei einem bekannten Verfahren zum Schmelztauchbeschichten eines Bandes aus Stahl mit Zink durchläuft das zu beschichtende Band einen direkt beheizten Vorwärmer (DFF = Direct Fired Furnace). An den eingesetzten Gasbrennern kann durch Veränderung des Gas-Luft-Gemisches eine Erhöhung des Oxidationspotentials in der das Band umgebenden Atmosphäre erzeugt werden. Das erhöhte Sauerstoffpotential führt zu einer Oxidation des Eisens an der Bandoberfläche. In einer anschließenden Ofenstrecke wird die so gebildete Eisenoxidschicht reduziert. Eine gezielte Einstellung der Oxidschichtdicke an der Bandoberfläche ist sehr schwierig. Bei großer Bandgeschwindigkeit ist sie dünner als bei kleiner Bandgeschwindigkeit. Folglich lässt sich in der reduzierenden Atmosphäre keine eindeutig definierte Beschaffenheit der Bandoberfläche erzeugen. Das kann wiederum zu Haftungsproblemen des Überzugs an der Bandoberfläche führen.In a known process for hot dip coating a steel strip with zinc, the strip to be coated passes through a directly heated pre-heater (DFF = Direct Fired Furnace). By changing the gas-air mixture, an increase in the oxidation potential in the atmosphere surrounding the band can be produced at the gas burners used. The increased oxygen potential leads to oxidation of the iron at the strip surface. In a subsequent furnace section, the iron oxide layer thus formed is reduced. A targeted adjustment of the oxide layer thickness at the strip surface is very difficult. At high belt speed, it is thinner than at low belt speed. Consequently, in the reducing atmosphere, no clearly defined condition of the tape surface can be produced. This in turn can lead to adhesion problems of the coating on the strip surface.

In modernen Schmelztauchbeschichtungslinien mit einem RTF-Vorwärmer (RTF = Radiant Tube Furnace) werden im Gegensatz zur vorbeschriebenen bekannten Anlage keine gasbeheizten Brenner verwendet. Eine Voroxidation des Eisens über eine Veränderung des Gas-Luft-Gemisches kann daher nicht erfolgen. In diesen Anlagen erfolgt vielmehr die komplette Glühbehandlung des Bandes in einer Schutzgasatmosphäre. Bei einer solchen Glühbehandlung eines Bandes aus Stahl mit höheren Legierungsbestandteilen können jedoch diese Legierungsbestandteile an die Bandoberfläche diffundieren und hier nicht reduzierbare Oxide bilden. Diese Oxide behindern eine einwandfreie Beschichtung mit Zink und/oder Aluminium im Schmelzbad.In modern hot-dip coating lines with a RTF (RTF = Radiant Tube Furnace) are in contrast used for the above known system no gas-fired burner. A pre-oxidation of the iron via a change in the gas-air mixture can therefore not take place. In these systems, rather, the complete annealing of the strip takes place in a protective gas atmosphere. In such an annealing of a strip of steel with higher alloying constituents, however, these alloying constituents can diffuse to the strip surface and form non-reducible oxides here. These oxides hinder proper coating with zinc and / or aluminum in the molten bath.

Auch in der Patentliteratur sind verschiedene Verfahren zum Schmelztauchbeschichten eines Stahlbandes mit verschiedenen Beschichtungsmaterialien beschrieben.The patent literature also describes various processes for hot dip coating a steel strip with various coating materials.

So ist aus der DE 689 12 243 T2 ein Verfahren zur kontinuierlichen Heißtauchbeschichtung eines Stahlbandes mit Aluminium bekannt, bei dem das Band in einem Durchlaufofen erwärmt wird. In einer ersten Zone werden Oberflächenverunreinigungen entfernt. Dafür hat die Ofenatmosphäre eine sehr hohe Temperatur. Da das Band diese Zone aber mit hoher Geschwindigkeit durchläuft, wird es nur etwa auf die halbe Temperatur der Atmosphäre erwärmt. In der anschließenden zweiten Zone, die unter Schutzgas steht, wird das Band auf die Temperatur des Beschichtungsmaterials Aluminium erwärmt.So is out of the DE 689 12 243 T2 a method for continuous hot dip coating of a steel strip with aluminum, in which the strip is heated in a continuous furnace. In a first zone, surface contaminants are removed. But the furnace atmosphere has a very high temperature. However, as the belt passes through this zone at high speed, it is only heated to about half the temperature of the atmosphere. In the subsequent second zone, which is under protective gas, the strip is heated to the temperature of the coating material aluminum.

Des Weiteren ist aus der DE 695.07 977 T2 ein zweistufiges Heißtauchbeschichtungsverfahren eines Chrom enthaltenden Stahllegierungsbandes bekannt. Gemäß diesem Verfahren wird das Band in einer ersten Stufe geglüht, um an der Bandoberfläche eine Eisenanreicherung zu erhalten. Anschließend wird das Band in einer nicht oxydierenden Atmosphäre auf die Temperatur des Beschichtungsmetalls erhitzt.Furthermore, from the DE 695.07 977 T2 a two-stage hot dip coating method of a chromium-containing steel alloy strip is known. According to this method, the strip is annealed in a first stage to be at the Band surface to obtain an iron enrichment. Subsequently, the tape is heated in a non-oxidizing atmosphere to the temperature of the coating metal.

Aus der JP 02285057 A ist es zudem bekannt, ein Stahlband in einem mehrstufigen Verfahren zu verzinken. Dafür wird das zuvor gereinigte Band in einer nicht oxydierenden Atmosphäre bei einer Temperatur von etwa 820 °C behandelt. Dann wird das Band bei etwa 400 °C bis 700 °C in einer schwach oxydierenden Atmosphäre behandelt, bevor es an seiner Oberfläche in einer reduzierenden Atmosphäre reduziert wird. Abschließend wird das auf etwa 420 °C bis 500 °C abgekühlte Band in üblicher Weise verzinkt.From the JP 02285057 A It is also known to galvanize a steel strip in a multi-stage process. For this, the previously cleaned band is treated in a non-oxidizing atmosphere at a temperature of about 820 ° C. Then, the tape is treated at about 400 ° C to 700 ° C in a weak oxidizing atmosphere before being reduced on its surface in a reducing atmosphere. Finally, the cooled to about 420 ° C to 500 ° C strip is galvanized in the usual way.

Das Dokument JP 02 285057 offenbart ein Verfahren zum Schmelztauchbeschichten eines Stahlbandes, das eine Vorwärmebehandlung umfaßt. Die Wärmebehandlung enthält eine Erwärmung des Bandes in einer reduzierenden Atmosphäre, einen zweiten Schritt der Erwärmung in einer oxidierenden Atmosphäre und eine weitere Erwärmung bis zu 800 °C in einer reduzierenden Atmosphäre.The document JP 02 285057 discloses a method of hot dip coating a steel strip that includes a preheat treatment. The heat treatment includes heating the tape in a reducing atmosphere, a second step of heating in an oxidizing atmosphere, and further heating up to 800 ° C in a reducing atmosphere.

Das Dokument US 2004/177903 offenbart ein Verfahren zum Schmelztauchbeschichten eines Bandes aus höherfestem Stahl mit verschiedenen oxidierbaren Legierungsbestandteilen. Das Verfahren enthält eine Erwärmung in einer reduzierenden Atmosphäre, und ferner umfaßt der Wärmebehandlungsofen einen Bereich, der aus einer oxidierenden Atmosphäre besteht.The document US 2004/177903 discloses a process for hot dip coating a high strength steel strip with various oxidizable alloying constituents. The method includes heating in a reducing atmosphere, and further, the heat treatment furnace comprises a region consisting of an oxidizing atmosphere.

Der Erfindung lag die Aufgabe zugrunde, ein Verfahren zum Schmelztauchbeschichten eines aus höherfestem Stahl hergestellten Stahlflachproduktes mit Zink und/oder Aluminium anzugeben, mit dem ein Stahlband mit einer optimal veredelten Oberfläche in einer RTF-Anlage produziert werden kann.The invention had the object of specifying a method for hot dip coating of a high-strength steel produced flat steel product with zinc and / or aluminum, with which a steel strip can be produced with an optimally finished surface in a RTF plant.

Diese Aufgabe ist ausgehend von einem Verfahren der eingangs angegebenen Art dadurch gelöst worden, dass im Zuge der dem Schmelztauchbeschichten vorangehenden Wärmebehandlung erfindungsgemäß folgende Verfahrensschritte durchlaufen werden:

  1. a) Das Band wird in einer reduzierenden Atmosphäre mit einem H2-Gehalt von mindestens 2 % bis 8 % auf eine Temperatur von > 750 °C bis 850 °C erwärmt.
  2. b) Die überwiegend aus Reineisen bestehende Oberfläche wird durch eine 1 bis 10 sec dauernde Wärmebehandlung des Bandes bei einer Temperatur von > 750 °C bis 850 °C in einer im Durchlaufofen integrierten Reaktionskammer mit einer oxidierenden Atmosphäre mit einem O2-Gehalt von 0,01 % bis 1 % in eine Eisenoxidschicht umgewandelt.
  3. c) Das Stahlflachprodukt wird anschließend in einer reduzierenden Atmosphäre mit einem H2-Gehalt von 2 % bis 8 % durch Erwärmung bis auf maximal 900 °C über einen Zeitraum geglüht, der um so viel länger ist als die Dauer der zur Bildung der Eisenoxidschicht durchgeführten Wärmebehandlung (Verfahrensschritt b), dass die zuvor gebildete Eisenoxidschicht mindestens an ihrer Oberfläche in Reineisen reduziert wird.
  4. d) Das Stahlflachprodukt wird anschließend bis auf Schmelzbadtemperatur abgekühlt.
This object has been achieved on the basis of a method of the type specified at the outset by following the following method steps in the course of the heat treatment preceding the hot-dip coating:
  1. a) The strip is heated in a reducing atmosphere with an H 2 content of at least 2% to 8% to a temperature of> 750 ° C to 850 ° C.
  2. b) The predominantly made of pure iron surface is characterized by a 1 to 10 sec continuous heat treatment of the strip at a temperature of> 750 ° C to 850 ° C in a continuous furnace integrated reaction chamber with an oxidizing atmosphere with an O 2 content of 0, 01% to 1% converted into an iron oxide layer.
  3. c) The flat steel product is then annealed in a reducing atmosphere with an H 2 content of 2% to 8% by heating up to a maximum of 900 ° C for a period of time much longer than the duration of the iron oxide layer formation Heat treatment (process step b) that the previously formed iron oxide layer is reduced at least on its surface in pure iron.
  4. d) The flat steel product is then cooled down to the molten bath temperature.

Durch die erfindungsgemäße Temperaturführung im Schritt a) wird verhindert, dass bei der Erwärmung wesentliche Legierungsbestandteile an die Oberfläche des Stahlflachproduktes diffundieren. Überraschend hat sich hierbei gezeigt, dass durch Einstellung von relativ hohen, oberhalb von 750 °C und bis maximal 850 °C reichenden Temperaturen die Diffusion von Legierungsbestandteilen an die Oberfläche besonders wirksam so weit unterdrückt wird, dass im folgenden Schritt eine wirksame Eisenoxidschicht gebildet werden kann. Diese verhindert, dass bei der anschließend weiter erhöhten Glühtemperatur weitere Legierungsbestandteile an die Oberfläche diffundieren. So kann bei der Glühbehandlung in der reduzierenden Atmosphäre eine Reineisenschicht entstehen, die für eine vollflächige und fest haftende Beschichtung aus Zink und/oder Aluminium sehr gut geeignet ist.The temperature control according to the invention in step a) prevents that during the heating essential alloying constituents diffuse to the surface of the flat steel product. Surprisingly, it has been found here that by adjusting relatively high temperatures above 750.degree. C. and up to a maximum of 850.degree. C., the diffusion of alloy constituents to the surface is particularly effectively suppressed so that an effective iron oxide layer can be formed in the following step , This prevents further alloying constituents from diffusing to the surface during the subsequently increased annealing temperature. Thus, during the annealing treatment in the reducing atmosphere, a pure iron layer can be formed which is suitable for a full-surface and firmly adhering coating of zinc and / or aluminum is very suitable.

Optimiert werden kann das Arbeitsergebnis dadurch, dass die in der oxidierenden Atmosphäre erzeugte Eisenoxidschicht vollständig in Reineisen reduziert wird. In diesem Zustand weist der Überzug auch bezüglich seiner Verformbarkeit und Festigkeit optimale Eigenschaften auf.The work result can be optimized by completely reducing the iron oxide layer produced in the oxidizing atmosphere to pure iron. In this state, the coating also has optimum properties with regard to its deformability and strength.

Nach einer Ausgestaltung der Erfindung wird bei der Behandlung des Stahlflachproduktes auf der Strecke mit der oxidierenden Atmosphäre die Dicke der sich bildenden Oxidschicht gemessen und in Abhängigkeit von dieser Dicke und der von der Durchlaufgeschwindigkeit des Stahlflachproduktes abhängigen Behandlungszeit der O2-Gehalt derart eingestellt, dass die Oxidschicht anschließend vollständig reduziert werden kann. Die Änderung der Durchlaufgeschwindigkeit des Stahlflachproduktes z. B. infolge von Störungen lässt sich auf diese Art und Weise ohne Nachteil für die Oberflächenqualität des schmelztauchbeschichteten Stahlflachproduktes berücksichtigen.According to one embodiment of the invention, in the treatment of the flat steel product on the route with the oxidizing atmosphere, the thickness of the forming oxide layer is measured and adjusted depending on this thickness and dependent on the flow rate of the flat steel product treatment time of O 2 content such that the Oxide layer can then be completely reduced. The change in the flow rate of the flat steel product z. B. as a result of disturbances can be considered in this way without detriment to the surface quality of the hot dip coated flat steel product.

Gute Ergebnisse bei der Durchführung des Verfahrens wurden erzielt, wenn eine Oxidschicht mit einer Dicke von maximal 300 Nanometer erzeugt wird.Good results have been achieved in carrying out the method when an oxide layer with a maximum thickness of 300 nanometers is produced.

Einer Diffusion von Legierungsbestandteilen an die Oberfläche des Stahlflachprodukts kann auch dadurch entgegengewirkt werden, dass die Aufheizung im Schritt a) des erfindungsgemäßen Verfahrens möglichst schnell erfolgt. Gute Arbeitsergebnisse stellen sich dabei insbesondere dann ein, wenn die Dauer der der Oxidation vorgeschalteten Erwärmung des Stahlflachproduktes auf mehr als 750 °C bis 850 °C auf max. 300 s, insbesondere max. 250 s, beschränkt wird.A diffusion of alloy constituents to the surface of the flat steel product can also be counteracted by the heating in step a) of the process according to the invention taking place as rapidly as possible. Good work results are in particular then if the duration of the heating upstream of the oxidation of the flat steel product to more than 750 ° C to 850 ° C to max. 300 s, in particular max. 250 s, is limited.

Dementsprechend ist es günstig, wenn die Aufheizgeschwindigkeit bei der erfindungsgemäß der Oxidation vorgeschalteten Erwärmung des Stahlflachproduktes mindestens 2,4 °C/s beträgt, insbesondere im Bereich von 2,4 - 4,0 °C/s liegt.Accordingly, it is favorable if the heating rate in the case of the heating of the flat steel product preceding the oxidation according to the invention is at least 2.4 ° C./s, in particular in the range from 2.4 to 4.0 ° C./s.

Die der Oxidation nachgeschaltete Wärmebehandlung mit anschließender Abkühlung des Stahlflachproduktes sollte demgegenüber länger als 30 sec, insbesondere länger als 50 sec., dauern, um eine sicher ausreichende Reduktion der zuvor gebildeten Eisenoxidschicht zu Reineisen zu gewährleisten.By contrast, the heat treatment followed by oxidation followed by cooling of the flat steel product should take more than 30 seconds, in particular more than 50 seconds, in order to ensure a sufficiently sufficient reduction of the previously formed iron oxide layer to pure iron.

Als Legierungsbestandteile kann der höherfeste Stahl mindestens eine Auswahl folgender Bestandteile enthalten: Mn > 0,5 %, A1 > 0,2 %, Si > 0,1 %, Cr > 0,3 %. Weitere Bestandteile wie z. B. Mo, Ni, V, Ti, Nb und P können beigefügt werden.As alloy constituents, the high-strength steel may contain at least one of the following constituents: Mn> 0.5%, A1> 0.2%, Si> 0.1%, Cr> 0.3%. Other ingredients such. Mo, Ni, V, Ti, Nb and P can be added.

Bei erfindungsgemäßer Verfahrensführung dauert die Wärmebehandlung des Stahlflachproduktes in der reduzierenden Atmosphäre sowohl beim Aufwärmen als auch späteren Glühen um ein Vielfaches länger als die Wärmebehandlung in der oxidierenden Atmosphäre. Auf diese Weise wird erreicht, dass das Volumen der oxidierenden Atmosphäre im Vergleich zum übrigen Volumen der reduzierenden Atmosphäre sehr klein ist. Dies hat den Vorteil, dass auf Veränderungen des Behandlungsprozesses, insbesondere der Durchlaufgeschwindigkeit und der Bildung der Oxidationsschicht schnell reagiert werden kann. In der Praxis lässt sich daher die erfindungsgemäße Wärmebehandlung des Stahlflachproduktes in der reduzierenden Atmosphäre in einem Durchlaufofen durchführen, der mit einer die oxidierende Atmosphäre enthaltenden Kammer ausgestattet ist, wobei das Volumen der Kammer um ein Vielfaches kleiner sein kann als das übrige Volumen des Durchlaufofens.When carrying out the process according to the invention, the heat treatment of the flat steel product in the reducing atmosphere, both during warm-up and later annealing, lasts many times longer than the heat treatment in the oxidizing atmosphere. In this way it is achieved that the volume of the oxidizing atmosphere is very small compared to the remaining volume of the reducing atmosphere. This has the Advantage that can be reacted quickly to changes in the treatment process, in particular the flow rate and the formation of the oxidation layer. In practice, therefore, the inventive heat treatment of the flat steel product in the reducing atmosphere can be carried out in a continuous furnace, which is equipped with a chamber containing the oxidizing atmosphere, wherein the volume of the chamber can be many times smaller than the remaining volume of the continuous furnace.

Das erfindungsgemäße Verfahren ist besonders gut für das Feuerverzinken geeignet. Das Schmelzbad kann aber auch aus Zink-Aluminium oder Aluminium mit Silizium-Zusätzen bestehen. Unabhängig davon, welche Schmelzenzusammensetzung gewählt wird, sollte der in der Schmelze jeweils vorhandene Zink- und/oder Aluminium-Gehalt in Summe mindestens 85 % betragen. Derart zusammengesetzte Schmelzen sind z. B.:

  • Z: 99 % Zn
  • ZA: 95 % Zn + 5 % A1
  • AZ: 55 % A1 + 43,4 % Zn + 1,6 % Si
  • AS: 89 - 92 % A1 + 8 - 11 % Si
The inventive method is particularly well suited for hot dip galvanizing. The molten bath may also consist of zinc-aluminum or aluminum with silicon additives. Regardless of which melt composition is selected, the total present in the melt zinc and / or aluminum content should be at least 85% in total. Such composite melts are z. B .:
  • Z: 99% Zn
  • ZA: 95% Zn + 5% A1
  • AZ: 55% A1 + 43.4% Zn + 1.6% Si
  • AS: 89 - 92% A1 + 8 - 11% Si

Im Falle eines reinen Zinküberzügs (Z) kann dieser durch Wärmebehandlung (Diffusionsglühen) in eine verformungsfähige Zink-Eisenschicht (galvanealed Überzug) umgewandelt werden.In the case of a pure Zinküberzügs (Z) this can be converted by heat treatment (diffusion annealing) in a ductile zinc-iron layer (galvanized coating).

Nachfolgend wird die Erfindung anhand einer ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert.The invention will be explained in more detail with reference to a drawing illustrating an exemplary embodiment.

Die einzige Figur zeigt schematisch eine Verzinkungsanlage mit einem Durchlaufofen 5 und einem Schmelzenbad 7. Zusätzlich ist in der Figur für den Durchlaufofen der Temperaturverlauf über der Durchlaufzeit aufgetragen.The single figure shows schematically a galvanizing plant with a continuous furnace 5 and a melt bath 7. In addition, the temperature profile over the cycle time is plotted in the figure for the continuous furnace.

Die Verzinkungsanlage ist zum im Durchlauf erfolgenden Beschichten eines in Form eines warmgewalzten oder kaltgewalzten Stahlbands 1 vorliegenden Stahlflachprodukts bestimmt, das aus höherfestem, mindestens ein Legierungselement der Gruppe Mn, Al, Si und Cr sowie wahlweise zur Einstellung bestimmter Eigenschaften weitere Legierungselemente enthaltendem Stahl hergestellt ist. Bei dem Stahl kann es sich insbesondere um einen TRIP-Stahl handeln.The galvanizing plant is intended for continuous coating of a flat steel product in the form of hot rolled or cold rolled steel strip 1, which is made of higher strength steel containing at least one alloying element of the Mn, Al, Si and Cr group and optionally further alloying elements containing certain alloying elements. The steel may in particular be a TRIP steel.

Das Stahlband 1 wird von einem Coil 2 abgezogen und durch eine Beize 3 und/oder eine andere Anlage 4 zur Oberflächenreinigung geleitet.The steel strip 1 is withdrawn from a coil 2 and passed through a pickling 3 and / or another system 4 for surface cleaning.

Das gereinigte Band 1 durchläuft dann in einem kontinuierlichen Arbeitsablauf einen Durchlaufofen 5 und wird von dort über einen gegenüber der Umgebungsatmosphäre abgeschlossenen Rüssel 6 in ein Schmelztauchbad 7 geleitet. Das Schmelztauchbad 7 ist vorliegend durch eine Zinkschmelze gebildet.The cleaned belt 1 then passes through a continuous furnace 5 in a continuous operation and is passed from there via a sealed relative to the surrounding atmosphere trunk 6 in a hot dip bath 7. The hot-dip bath 7 is presently formed by a molten zinc.

Das aus dem Schmelztauchbad 7 austretende, mit dem Zinküberzug versehene Stahlband 1 gelangt über eine Kühlstrecke 8 oder eine Einrichtung zur Wärmebehandlung zu einer Aufwickelstation 9, in der es zu einem Coil gewickelt wird.The emerging from the hot dip 7, provided with the zinc coating steel strip 1 passes through a Cooling section 8 or a device for heat treatment to a winding station 9, in which it is wound into a coil.

Erforderlichenfalls wird das Stahlband 1 mäanderförmig durch den Durchlaufofen 5 geleitet, um bei praktikabler Länge des Durchlaufofens 5 ausreichend lange Behandlungszeiten erreichen zu können.If necessary, the steel strip 1 is meander-shaped passed through the continuous furnace 5 in order to achieve sufficiently long treatment times with practical length of the continuous furnace 5 can.

Der Durchlaufofen 5 vom RTF-Typ (RTF = Radiant Tube Furnace) ist in drei Zonen 5a, 5b, 5c aufgeteilt. Die mittlere Zone 5b bildet eine Reaktionskammer und ist gegenüber der ersten und letzten Zone 5a, 5c atmosphärisch abgeschlossen. Ihre Länge beträgt nur etwa 1/100 der gesamten Länge des Durchlaufofens 5. Aus Gründen der besseren Darstellung ist die Zeichnung insoweit nicht maßstabgerecht.The RTF (RTF = Radiant Tube Furnace) continuous furnace 5 is divided into three zones 5a, 5b, 5c. The middle zone 5b forms a reaction chamber and is atmospherically closed with respect to the first and last zones 5a, 5c. Their length is only about 1/100 of the total length of the continuous furnace 5. For better illustration, the drawing is not to scale extent.

Entsprechend der unterschiedlichen Längen der Zonen sind auch die Behandlungszeiten des durchlaufenden Bandes 1 in den einzelnen Zonen 5a, 5b, 5c unterschiedlich.According to the different lengths of the zones and the treatment times of the continuous belt 1 in the individual zones 5a, 5b, 5c are different.

In der ersten Zone 5a herrscht eine reduzierende Atmosphäre. Eine typische Zusammensetzung dieser Atmosphäre besteht aus 2 % bis 8 % H2, typisch 5 % H2, und Rest N2.In the first zone 5a there is a reducing atmosphere. A typical composition of this atmosphere consists of 2% to 8% H 2 , typically 5% H 2 , and balance N 2 .

In der Zone 5a des Durchlaufofens 1 erfolgt eine Erwärmung des Bandes auf mehr als 750 bis 850 °C, typisch 800 °C. Die Erwärmung erfolgt dabei mit einer Aufheizgeschwindigkeit von mindestens 3,5 °C/s. Bei dieser Temperatur und Aufheizgeschwindigkeit diffundieren die im Stahlband 1 enthaltenen Legierungsbestandteile in nur geringen Mengen an dessen Oberfläche.In the zone 5a of the continuous furnace 1, the strip is heated to more than 750 to 850 ° C, typically 800 ° C. The heating takes place at a heating rate of at least 3.5 ° C / s. At this temperature and heating rate diffuse in the steel strip. 1 containing alloying ingredients in only small amounts at the surface.

In der mittleren Zone 5b des Durchlaufofens 5 wird das Stahlband 1 im Wesentlichen nur bei der in der ersten Zone 5a erreichten Temperatur gehalten. Die Atmosphäre der Zone 5b ist jedoch aber sauerstoffhaltig, so dass es zur Oxidation der Oberfläche des Stahlbands 1 kommt. Der O2-Gehalt der in der Zone 5b herrschenden Atmosphäre liegt zwischen 0,01 % bis 1 %, typischerweise bei 0,5 %. Dabei kann der Sauerstoffgehalt der in der Zone 5b herrschenden Atmosphäre beispielsweise in Abhängigkeit von der Behandlungszeit und der Dicke der auf dem Stahlbad 1 zu erzeugenden Oxidschicht eingestellt werden. Ist die Behandlungszeit kurz, wird beispielsweise ein hoher O2-Gehalt eingestellt, während bei langer Behandlungszeit beispielsweise ein niedrigerer Sauerstoffgehalt gewählt werden kann, um eine Oxidschicht gleicher Dicke zu erzeugen.In the central zone 5b of the continuous furnace 5, the steel strip 1 is kept substantially only at the temperature reached in the first zone 5a. However, the atmosphere of the zone 5b is oxygen-containing, so that oxidation of the surface of the steel strip 1 occurs. The O 2 content of the atmosphere prevailing in zone 5b is between 0.01% to 1%, typically 0.5%. In this case, the oxygen content of the atmosphere prevailing in the zone 5b can be adjusted, for example, as a function of the treatment time and the thickness of the oxide layer to be produced on the steel bath 1. If the treatment time is short, for example, a high O 2 content is set, while with a long treatment time, for example, a lower oxygen content can be selected in order to produce an oxide layer of the same thickness.

Infolgedessen, dass die Oberfläche des Stahlbands 1 einer sauerstoffhaltigen Atmosphäre ausgesetzt ist, bildet sich an der Oberfläche des Bandes die gewünschte Eisenoxidschicht. Die Dicke dieser Eisenoxidschicht kann optisch erfasst werden, wobei das Ergebnis der Messung zur Einstellung des jeweiligen Sauerstoffgehalts der Zone 5b herangezogen wird.As a result of the surface of the steel strip 1 being exposed to an oxygen-containing atmosphere, the desired iron oxide layer forms on the surface of the strip. The thickness of this iron oxide layer can be detected optically, the result of the measurement being used to set the respective oxygen content of the zone 5b.

Da die mittlere Zone 5b im Vergleich zur gesamten Ofenlänge sehr kurz ist, ist das Kammervolumen entsprechend klein. Deshalb ist die Reaktionszeit für eine Änderung der Zusammensetzung der Atmosphäre klein, so dass auf eine Veränderung der Bandgeschwindigkeit oder auf eine von einem Sollmaß abweichende Dicke der Oxidschicht durch eine entsprechende Verstellung des Sauerstoffgehalts der in der Zone 5b herrschenden Atmosphäre schnell reagiert werden kann. Das geringe Volumen der Zone 5b ermöglicht so kurze Regelzeiten.Since the central zone 5b is very short in comparison to the entire furnace length, the chamber volume is correspondingly small. Therefore, the reaction time for a change in the composition of the atmosphere is small, so that on a Changing the belt speed or to a different thickness of the target thickness of the oxide layer by a corresponding adjustment of the oxygen content of the prevailing atmosphere in the zone 5b can be reacted quickly. The small volume of Zone 5b allows for short control times.

In der sich an die Zone 5b anschließenden Zone 5c des Durchlaufofens 5 wird das Stahlband 1 bis auf eine Glühtemperatur von ca. 900 °C erwärmt. Die in der Zone 5c vorgenommene Glühung erfolgt in einer reduzierenden Stickstoffatmosphäre, die einen H2-Gehalt von 5 %aufweist. Während dieser Glühbehandlung verhindert die Eisenoxidschicht einerseits, dass Legierungsbestandteile an die Bandoberfläche diffundieren. Da die Glühbehandlung in einer reduzierenden Atmosphäre erfolgt, wird die Eisenoxidschicht andererseits in eine Reineisenschicht umgewandelt.In the subsequent to the zone 5b zone 5c of the continuous furnace 5, the steel strip 1 is heated to an annealing temperature of about 900 ° C. The annealing carried out in zone 5c takes place in a reducing nitrogen atmosphere which has an H 2 content of 5%. On the one hand, during this annealing treatment, the iron oxide layer prevents alloying constituents from diffusing to the strip surface. On the other hand, since the annealing treatment is performed in a reducing atmosphere, the iron oxide layer is converted into a pure iron layer.

Das Stahlband 1 wird auf seinem weiteren Weg in Richtung des Schmelztauchbades 7 weiter abgekühlt, so dass es bei Verlassen des Durchlaufofens 5 eine Temperatur aufweist, die um bis zu 10 % höher ist als die Temperatur des Schmelztauchbades 7 von etwa 480 °C. Da das Band 1 nach Verlassen des Durchlaufofens 5 an seiner Oberfläche aus Reineisen besteht, bietet es eine optimale Grundlage für eine haftfeste Anbindung des im Schmelztauchbad 7 aufgetragenen Zinküberzuges.The steel strip 1 is further cooled on its further way in the direction of the hot dip bath 7, so that it has a temperature when leaving the continuous furnace 5, which is higher by up to 10% than the temperature of the hot dip bath 7 of about 480 ° C. Since the strip 1 is made of pure iron after leaving the continuous furnace 5 on its surface, it provides an optimum basis for a firmly adhering connection of the zinc coating applied in the hot dip bath 7.

Claims (11)

  1. Method for the coating of a flat steel product manufactured from a higher strength steel containing different alloy constituents, in particular Mn, Al, Si and/or Cr, with a metallic coating, wherein the flat steel product is initially subjected to a heat treatment, in order then, in the heated state, to be hot-dip coated with the metallic coating in a melting bath containing overall at least 85% zinc and/or aluminium, characterised in that the heat treatment comprises the following method steps:
    a) The flat steel product is heated in a reducing atmosphere with an H2 content of at least 2% to 8% to a temperature of > 750°C to 850°C.
    b) The surface, consisting predominantly of pure iron, is converted into an iron oxide layer by a heat treatment of the flat steel product lasting 1 to 10 secs. at a temperature of > 750°C to 850°C in a reaction chamber integrated into the continuous furnace, with an oxidising atmosphere with an O2 content of 0.01% to 1%.
    c) The flat steel product is then annealed in a reducing atmosphere with an H2 content of 2% to 8% by heating to a maximum of 900°C over a period of time which is that much longer than the duration of the heat treatment carried out for the formation of the iron oxide layer (method step b) such that the iron oxide layer formed previously is reduced at least on its surface to pure iron.
    d) The flat steel product is then cooled to melting bath temperature.
  2. Method according to Claim 1, characterised in that the iron oxide layer produced is completely reduced to pure iron.
  3. Method according to Claim 2, characterised in that, during the treatment of the flat steel product on the stretch with the oxidising atmosphere, the thickness of the oxide layer being formed is measured and, as a function of this thickness and of the treatment time, dependent on the run-through speed of the flat steel product, the O2 content is adjusted in such a manner that the oxide layer is then completely reduced.
  4. Method according to Claim 3, characterised in that an oxide layer is produced with a thickness of max 300 nm.
  5. Method according to any one of the preceding claims, characterised in that the heating of the flat steel product upstream of the oxidation to more than 750°C to 850°C lasts for a max. 300 secs.
  6. Method according to any one of the preceding claims, characterised in that the further heat treatment downstream of the oxidation with following cooling of the flat steel product lasts longer than 30 secs.
  7. Method according to any one of the preceding claims, characterised in that the higher strength steel contains at least a selection of the following alloy constituents: Mn > 0.5 %, Al > 0.2 %, Si > 0.1 %, Cr > 0.3 %.
  8. Method according to any one of the preceding claims, characterised in that the heat treatment of the flat steel product in the reducing atmosphere takes place in a continuous furnace with an integrated chamber with the oxidising atmosphere, wherein the volume of the chamber is many times smaller than the remaining volume of the continuous furnace.
  9. Method according to any one of the preceding claims, characterised in that the flat steel product is heat treated after the hot-dip galvanizing.
  10. Method according to any one of the preceding claims, characterised in that the heating-up speed during the heating of the flat steel product upstream of the oxidation amounts to at least 2.4°C/s.
  11. Method according to Claim 10, characterised in that the heating-up speed amounts to 2.4 - 4.0°C/s.
EP06754869A 2006-04-26 2006-04-26 Hot dip coating process for a steel plate product made of high strengthheavy-duty steel Active EP2010690B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06754869T PL2010690T3 (en) 2006-04-26 2006-04-26 Hot dip coating process for a steel plate product made of high strengthheavy-duty steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2006/061858 WO2007124781A1 (en) 2006-04-26 2006-04-26 Hot dip coating process for a steel plate product made of high strengthheavy-duty steel

Publications (2)

Publication Number Publication Date
EP2010690A1 EP2010690A1 (en) 2009-01-07
EP2010690B1 true EP2010690B1 (en) 2010-02-24

Family

ID=37492622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754869A Active EP2010690B1 (en) 2006-04-26 2006-04-26 Hot dip coating process for a steel plate product made of high strengthheavy-duty steel

Country Status (12)

Country Link
US (1) US8636854B2 (en)
EP (1) EP2010690B1 (en)
JP (1) JP5189587B2 (en)
KR (1) KR101275839B1 (en)
CN (1) CN101501235B (en)
AT (1) ATE458838T1 (en)
BR (1) BRPI0621610A2 (en)
CA (1) CA2647687C (en)
DE (1) DE502006006289D1 (en)
ES (1) ES2339804T3 (en)
PL (1) PL2010690T3 (en)
WO (1) WO2007124781A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010037254A1 (en) 2010-08-31 2012-03-01 Thyssenkrupp Steel Europe Ag Process for hot dip coating a flat steel product
DE102011051731A1 (en) 2011-07-11 2013-01-17 Thyssenkrupp Steel Europe Ag Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer
DE102011056823A1 (en) 2011-12-21 2013-06-27 Thyssen Krupp Steel Europe AG A nozzle device for a furnace for heat treating a flat steel product and equipped with such a nozzle device furnace
EP2824216A1 (en) 2013-05-24 2015-01-14 ThyssenKrupp Steel Europe AG Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system
WO2016177590A1 (en) 2015-05-07 2016-11-10 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EP3135778A1 (en) 2015-08-31 2017-03-01 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EP3173495A1 (en) 2015-11-25 2017-05-31 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EP3686534A1 (en) 2019-01-23 2020-07-29 Drever International Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber
US10801086B2 (en) 2015-04-02 2020-10-13 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
US10821706B2 (en) * 2016-05-30 2020-11-03 Jfe Steel Corporation Ferritic stainless steel sheet

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5555992B2 (en) * 2008-09-05 2014-07-23 Jfeスチール株式会社 Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
JP5556033B2 (en) * 2009-03-19 2014-07-23 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
KR20140128458A (en) 2009-03-31 2014-11-05 제이에프이 스틸 가부시키가이샤 High-strength hot-dip galvanized steel plate and method for producing same
EP2374910A1 (en) 2010-04-01 2011-10-12 ThyssenKrupp Steel Europe AG Steel, flat, steel product, steel component and method for producing a steel component
EP2664682A1 (en) 2012-05-16 2013-11-20 ThyssenKrupp Steel Europe AG Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same
KR101482335B1 (en) * 2012-12-21 2015-01-13 주식회사 포스코 Ultra-high strenth galvinized steel sheet having galvanizing property and adhesion and method for manufacturing the same
JP5920249B2 (en) * 2013-03-05 2016-05-18 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
WO2015001367A1 (en) 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
WO2016169918A1 (en) 2015-04-22 2016-10-27 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EP3170913A1 (en) 2015-11-20 2017-05-24 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
JP6397806B2 (en) * 2015-09-11 2018-09-26 東芝メモリ株式会社 Semiconductor device manufacturing method and semiconductor device
DE102017218704A1 (en) 2017-10-19 2019-04-25 Thyssenkrupp Ag Process for producing a steel component provided with a metallic, corrosion-protective coating
WO2020064096A1 (en) * 2018-09-26 2020-04-02 Thyssenkrupp Steel Europe Ag Method for producing a coated flat steel product and coated flat steel product
DE102019108457B4 (en) * 2019-04-01 2021-02-04 Salzgitter Flachstahl Gmbh Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings
DE102019108459B4 (en) * 2019-04-01 2021-02-18 Salzgitter Flachstahl Gmbh Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420656A (en) * 1966-09-02 1969-01-07 Lummus Co Process for forming hard oxide pellets and product thereof
GB1231478A (en) 1968-11-05 1971-05-12
US3925579A (en) 1974-05-24 1975-12-09 Armco Steel Corp Method of coating low alloy steels
US5023113A (en) 1988-08-29 1991-06-11 Armco Steel Company, L.P. Hot dip aluminum coated chromium alloy steel
JPH02285057A (en) * 1989-04-27 1990-11-22 Sumitomo Metal Ind Ltd Method for continuously annealing steel sheet to be galvanized
JPH0448062A (en) * 1990-06-18 1992-02-18 Nippon Steel Corp Production of galvannealed steel sheet
JPH04254531A (en) * 1991-02-01 1992-09-09 Nippon Steel Corp Method for annealing high si-containing high tensile strength steel before galvanizing
JPH05247614A (en) * 1992-03-06 1993-09-24 Sumitomo Metal Ind Ltd Galvanizing method for silicon-containing steel sheet
JPH06212384A (en) * 1993-01-18 1994-08-02 Sumitomo Metal Ind Ltd Hot dip galvanizing method for silicon-containing steel sheet
JPH0797670A (en) * 1993-09-30 1995-04-11 Sumitomo Metal Ind Ltd Galvanizing method for silicon-containing steel sheet
US5447754A (en) 1994-04-19 1995-09-05 Armco Inc. Aluminized steel alloys containing chromium and method for producing same
JP3444007B2 (en) * 1995-03-10 2003-09-08 Jfeスチール株式会社 Manufacturing method of high workability, high strength galvanized steel sheet
JP3016122B2 (en) * 1995-10-13 2000-03-06 住友金属工業株式会社 Galvannealed steel sheet with excellent paintability and its manufacturing method
FR2828888B1 (en) 2001-08-21 2003-12-12 Stein Heurtey METHOD FOR HOT GALVANIZATION OF HIGH STRENGTH STEEL METAL STRIPS
FR2852330B1 (en) * 2003-03-12 2007-05-11 Stein Heurtey METHOD OF CONTROLLED OXIDATION OF STRIPS BEFORE CONTINUOUS GALVANIZATION AND LINE OF GALVANIZATION
JP3907656B2 (en) * 2004-12-21 2007-04-18 株式会社神戸製鋼所 Hot dip galvanizing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010037254A1 (en) 2010-08-31 2012-03-01 Thyssenkrupp Steel Europe Ag Process for hot dip coating a flat steel product
WO2012028465A1 (en) 2010-08-31 2012-03-08 Thyssenkrupp Steel Europe Ag Method for hot-dip coating a flat steel product
DE102011051731A1 (en) 2011-07-11 2013-01-17 Thyssenkrupp Steel Europe Ag Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer
DE102011051731B4 (en) * 2011-07-11 2013-01-24 Thyssenkrupp Steel Europe Ag Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer
WO2013007578A3 (en) * 2011-07-11 2013-05-02 Thyssenkrupp Steel Europe Ag Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating
WO2013092479A1 (en) 2011-12-21 2013-06-27 Thyssenkrupp Steel Europe Ag Nozzle device for a furnace for heat-treating a flat steel product, and furnace equipped with such a nozzle device
DE102011056823A1 (en) 2011-12-21 2013-06-27 Thyssen Krupp Steel Europe AG A nozzle device for a furnace for heat treating a flat steel product and equipped with such a nozzle device furnace
EP2824216A1 (en) 2013-05-24 2015-01-14 ThyssenKrupp Steel Europe AG Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system
US10801086B2 (en) 2015-04-02 2020-10-13 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
WO2016177590A1 (en) 2015-05-07 2016-11-10 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EP3135778A1 (en) 2015-08-31 2017-03-01 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
EP3173495A1 (en) 2015-11-25 2017-05-31 Cockerill Maintenance & Ingenierie S.A. Method and device for reaction control
US10821706B2 (en) * 2016-05-30 2020-11-03 Jfe Steel Corporation Ferritic stainless steel sheet
EP3686534A1 (en) 2019-01-23 2020-07-29 Drever International Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber
BE1026986A1 (en) 2019-01-23 2020-08-17 Drever Int Sa Method and furnace for the heat treatment of a strip of high strength steel comprising a temperature homogenization chamber

Also Published As

Publication number Publication date
KR101275839B1 (en) 2013-06-18
CN101501235B (en) 2012-07-04
WO2007124781A1 (en) 2007-11-08
DE502006006289D1 (en) 2010-04-08
PL2010690T3 (en) 2010-07-30
ATE458838T1 (en) 2010-03-15
US8636854B2 (en) 2014-01-28
ES2339804T3 (en) 2010-05-25
CA2647687A1 (en) 2007-11-08
KR20080111492A (en) 2008-12-23
JP2009534537A (en) 2009-09-24
CA2647687C (en) 2012-10-02
US20090199931A1 (en) 2009-08-13
JP5189587B2 (en) 2013-04-24
BRPI0621610A2 (en) 2011-12-13
CN101501235A (en) 2009-08-05
EP2010690A1 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
EP2010690B1 (en) Hot dip coating process for a steel plate product made of high strengthheavy-duty steel
EP1819840B1 (en) Method for hot dip coating a strip of heavy-duty steel
DE102006039307B3 (en) Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer
DE69930291T2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and press formability, and process for its production
EP2732062B1 (en) Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating
EP2812458B1 (en) Process for the hot dip coating of a flat steel product
DE60116477T2 (en) WARM, COLD-ROLLED AND MELT-GALVANIZED STEEL PLATE WITH EXCELLENT RECEPTION BEHAVIOR
EP2611946B1 (en) Method for hot-dip coating a flat steel product
EP2855718B1 (en) Flat steel product and process for producing a flat steel product
EP2432910B2 (en) Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product
DE19610675C1 (en) Dual phase steel for cold rolled sheet or strip - contg. manganese@, aluminium@ and silicon
WO2009021897A1 (en) Dual-phase steel, flat product made of such dual-phase steel and method for producing a flat product
DE102007061489A1 (en) Process for producing hardened hardenable steel components and hardenable steel strip therefor
DE69014532T2 (en) Process for the production of a steel sheet.
EP2055799A1 (en) Flat steel product with an anti-corrosion metal coating and method for creating an anti-corrosion metal coating on a flat steel product
WO2008058530A1 (en) Process for producing a steel strip comprising a relatively high strength dual phase steel
EP2513346A2 (en) Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product
WO2019068560A1 (en) Ultrahigh strength multiphase steel and method for producing a steel strip from said multiphase steel
DE102019200338A1 (en) Process for continuous heat treatment of a steel strip, and plant for hot dip coating a steel strip
WO2022029033A1 (en) Method for producing coated steel strip, and method for producing a hardened steel product therefrom
EP3415646A1 (en) High-strength steel sheet having enhanced formability
DE19543804B4 (en) Process for producing hot-dip galvanized steel strip and hot-dip galvanized sheet or strip made of steel made therewith
WO2024179867A1 (en) Method of hot press forming, with improved properties
DE102018217835A1 (en) Process for producing a hot-formable steel flat product
DE102021109973A1 (en) Process for the manufacture of hot-dip coated steel flat products

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEURER, MANFRED

Inventor name: SCHAFFRATH, NORBERT

Inventor name: NOTHACKER, GERNOT

Inventor name: ULLMANN, MICHAEL

Inventor name: ZEIZINGER, SABINE

Inventor name: LEUSCHNER, RONNY

Inventor name: WARNECKE, WILHELM

17Q First examination report despatched

Effective date: 20090303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP STEEL EUROPE AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006006289

Country of ref document: DE

Date of ref document: 20100408

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2339804

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100625

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7311

Country of ref document: SK

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100524

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

26N No opposition filed

Effective date: 20101125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100426

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20160324

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20160329

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160422

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7311

Country of ref document: SK

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210319

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210421

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210520

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230418

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230419

Year of fee payment: 18

Ref country code: DE

Payment date: 20230418

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230421

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230418

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 18