EP2010690B1 - Hot dip coating process for a steel plate product made of high strengthheavy-duty steel - Google Patents
Hot dip coating process for a steel plate product made of high strengthheavy-duty steel Download PDFInfo
- Publication number
- EP2010690B1 EP2010690B1 EP06754869A EP06754869A EP2010690B1 EP 2010690 B1 EP2010690 B1 EP 2010690B1 EP 06754869 A EP06754869 A EP 06754869A EP 06754869 A EP06754869 A EP 06754869A EP 2010690 B1 EP2010690 B1 EP 2010690B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel product
- flat steel
- oxide layer
- heat treatment
- iron oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 67
- 239000010959 steel Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000003618 dip coating Methods 0.000 title description 13
- 239000012298 atmosphere Substances 0.000 claims abstract description 45
- 238000010438 heat treatment Methods 0.000 claims abstract description 38
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 36
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000011248 coating agent Substances 0.000 claims abstract description 22
- 238000000576 coating method Methods 0.000 claims abstract description 22
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 18
- 239000011701 zinc Substances 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 238000002844 melting Methods 0.000 claims abstract 4
- 230000008018 melting Effects 0.000 claims abstract 4
- 230000002045 lasting effect Effects 0.000 claims abstract 2
- 239000000470 constituent Substances 0.000 claims description 15
- 230000003647 oxidation Effects 0.000 claims description 11
- 238000007254 oxidation reaction Methods 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 238000005246 galvanizing Methods 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 abstract description 12
- 238000000137 annealing Methods 0.000 abstract description 11
- 238000005275 alloying Methods 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000011651 chromium Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000794 TRIP steel Inorganic materials 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
- C23C2/004—Snouts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
Definitions
- the invention relates to a method for coating a flat steel product made of high-strength, different alloying constituents, in particular Mn, Al, Si and / or Cr, containing steel, such as steel strip or sheet, with a metallic coating, in which the flat steel product is subjected to a heat treatment, to then be provided in the heated state in a total of at least 85% zinc and / or aluminum melt bath by hot dip coating with the metallic coating.
- hot-rolled or cold-rolled sheets made of steel are used, which are surface-finished for reasons of corrosion protection.
- the demands placed on such sheets are many. They should on the one hand be well deformable and on the other hand have a high strength.
- the high strength is achieved by adding certain alloying constituents, such as Mn, Si, Al and Cr, to the iron.
- RTF Radiant Tube Furnace
- a two-stage hot dip coating method of a chromium-containing steel alloy strip is known.
- the strip is annealed in a first stage to be at the Band surface to obtain an iron enrichment.
- the tape is heated in a non-oxidizing atmosphere to the temperature of the coating metal.
- the document JP 02 285057 discloses a method of hot dip coating a steel strip that includes a preheat treatment.
- the heat treatment includes heating the tape in a reducing atmosphere, a second step of heating in an oxidizing atmosphere, and further heating up to 800 ° C in a reducing atmosphere.
- the document US 2004/177903 discloses a process for hot dip coating a high strength steel strip with various oxidizable alloying constituents.
- the method includes heating in a reducing atmosphere, and further, the heat treatment furnace comprises a region consisting of an oxidizing atmosphere.
- the invention had the object of specifying a method for hot dip coating of a high-strength steel produced flat steel product with zinc and / or aluminum, with which a steel strip can be produced with an optimally finished surface in a RTF plant.
- the temperature control according to the invention in step a) prevents that during the heating essential alloying constituents diffuse to the surface of the flat steel product.
- the diffusion of alloy constituents to the surface is particularly effectively suppressed so that an effective iron oxide layer can be formed in the following step , This prevents further alloying constituents from diffusing to the surface during the subsequently increased annealing temperature.
- a pure iron layer can be formed which is suitable for a full-surface and firmly adhering coating of zinc and / or aluminum is very suitable.
- the work result can be optimized by completely reducing the iron oxide layer produced in the oxidizing atmosphere to pure iron. In this state, the coating also has optimum properties with regard to its deformability and strength.
- the thickness of the forming oxide layer is measured and adjusted depending on this thickness and dependent on the flow rate of the flat steel product treatment time of O 2 content such that the Oxide layer can then be completely reduced.
- the change in the flow rate of the flat steel product z. B. as a result of disturbances can be considered in this way without detriment to the surface quality of the hot dip coated flat steel product.
- a diffusion of alloy constituents to the surface of the flat steel product can also be counteracted by the heating in step a) of the process according to the invention taking place as rapidly as possible.
- Good work results are in particular then if the duration of the heating upstream of the oxidation of the flat steel product to more than 750 ° C to 850 ° C to max. 300 s, in particular max. 250 s, is limited.
- the heating rate in the case of the heating of the flat steel product preceding the oxidation according to the invention is at least 2.4 ° C./s, in particular in the range from 2.4 to 4.0 ° C./s.
- the heat treatment followed by oxidation followed by cooling of the flat steel product should take more than 30 seconds, in particular more than 50 seconds, in order to ensure a sufficiently sufficient reduction of the previously formed iron oxide layer to pure iron.
- the high-strength steel may contain at least one of the following constituents: Mn> 0.5%, A1> 0.2%, Si> 0.1%, Cr> 0.3%. Other ingredients such. Mo, Ni, V, Ti, Nb and P can be added.
- the heat treatment of the flat steel product in the reducing atmosphere both during warm-up and later annealing, lasts many times longer than the heat treatment in the oxidizing atmosphere.
- the volume of the oxidizing atmosphere is very small compared to the remaining volume of the reducing atmosphere.
- the inventive heat treatment of the flat steel product in the reducing atmosphere can be carried out in a continuous furnace, which is equipped with a chamber containing the oxidizing atmosphere, wherein the volume of the chamber can be many times smaller than the remaining volume of the continuous furnace.
- the single figure shows schematically a galvanizing plant with a continuous furnace 5 and a melt bath 7.
- the temperature profile over the cycle time is plotted in the figure for the continuous furnace.
- the galvanizing plant is intended for continuous coating of a flat steel product in the form of hot rolled or cold rolled steel strip 1, which is made of higher strength steel containing at least one alloying element of the Mn, Al, Si and Cr group and optionally further alloying elements containing certain alloying elements.
- the steel may in particular be a TRIP steel.
- the steel strip 1 is withdrawn from a coil 2 and passed through a pickling 3 and / or another system 4 for surface cleaning.
- the cleaned belt 1 then passes through a continuous furnace 5 in a continuous operation and is passed from there via a sealed relative to the surrounding atmosphere trunk 6 in a hot dip bath 7.
- the hot-dip bath 7 is presently formed by a molten zinc.
- the emerging from the hot dip 7, provided with the zinc coating steel strip 1 passes through a Cooling section 8 or a device for heat treatment to a winding station 9, in which it is wound into a coil.
- the steel strip 1 is meander-shaped passed through the continuous furnace 5 in order to achieve sufficiently long treatment times with practical length of the continuous furnace 5 can.
- the middle zone 5b forms a reaction chamber and is atmospherically closed with respect to the first and last zones 5a, 5c.
- Their length is only about 1/100 of the total length of the continuous furnace 5. For better illustration, the drawing is not to scale extent.
- a typical composition of this atmosphere consists of 2% to 8% H 2 , typically 5% H 2 , and balance N 2 .
- the strip is heated to more than 750 to 850 ° C, typically 800 ° C.
- the heating takes place at a heating rate of at least 3.5 ° C / s. At this temperature and heating rate diffuse in the steel strip. 1 containing alloying ingredients in only small amounts at the surface.
- the steel strip 1 is kept substantially only at the temperature reached in the first zone 5a.
- the atmosphere of the zone 5b is oxygen-containing, so that oxidation of the surface of the steel strip 1 occurs.
- the O 2 content of the atmosphere prevailing in zone 5b is between 0.01% to 1%, typically 0.5%.
- the oxygen content of the atmosphere prevailing in the zone 5b can be adjusted, for example, as a function of the treatment time and the thickness of the oxide layer to be produced on the steel bath 1. If the treatment time is short, for example, a high O 2 content is set, while with a long treatment time, for example, a lower oxygen content can be selected in order to produce an oxide layer of the same thickness.
- the desired iron oxide layer forms on the surface of the strip.
- the thickness of this iron oxide layer can be detected optically, the result of the measurement being used to set the respective oxygen content of the zone 5b.
- the chamber volume is correspondingly small. Therefore, the reaction time for a change in the composition of the atmosphere is small, so that on a Changing the belt speed or to a different thickness of the target thickness of the oxide layer by a corresponding adjustment of the oxygen content of the prevailing atmosphere in the zone 5b can be reacted quickly.
- the small volume of Zone 5b allows for short control times.
- the steel strip 1 is heated to an annealing temperature of about 900 ° C.
- the annealing carried out in zone 5c takes place in a reducing nitrogen atmosphere which has an H 2 content of 5%.
- the iron oxide layer prevents alloying constituents from diffusing to the strip surface.
- the iron oxide layer is converted into a pure iron layer.
- the steel strip 1 is further cooled on its further way in the direction of the hot dip bath 7, so that it has a temperature when leaving the continuous furnace 5, which is higher by up to 10% than the temperature of the hot dip bath 7 of about 480 ° C. Since the strip 1 is made of pure iron after leaving the continuous furnace 5 on its surface, it provides an optimum basis for a firmly adhering connection of the zinc coating applied in the hot dip bath 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Beschichten eines aus höherfestem, verschiedene Legierungsbestandteile, insbesondere Mn, A1, Si und/oder Cr, enthaltenden Stahl hergestellten Stahlflachproduktes, wie Stahlband oder -blech, mit einem metallischen Überzug, bei dem das Stahlflachprodukt einer Wärmebehandlung unterzogen wird, um dann im erwärmten Zustand in einem insgesamt mindestens 85 % Zink und/oder Aluminium enthaltenden Schmelzenbad durch Schmelztauchbeschichten mit dem metallischen Überzug versehen zu werden.The invention relates to a method for coating a flat steel product made of high-strength, different alloying constituents, in particular Mn, Al, Si and / or Cr, containing steel, such as steel strip or sheet, with a metallic coating, in which the flat steel product is subjected to a heat treatment, to then be provided in the heated state in a total of at least 85% zinc and / or aluminum melt bath by hot dip coating with the metallic coating.
Im Automobilkarosseriebau werden warm- oder kaltgewalzte Bleche aus Stahl eingesetzt, die aus Gründen des Korrosionsschutzes oberflächenveredelt sind. Die an solche Bleche gestellten Anforderungen sind vielfältig. Sie sollen einerseits gut verformbar sein und andererseits eine hohe Festigkeit haben. Die hohe Festigkeit erreicht man durch Zusatz von bestimmten Legierungsbestandteilen, wie Mn, Si, A1 und Cr, zum Eisen.In automotive body construction, hot-rolled or cold-rolled sheets made of steel are used, which are surface-finished for reasons of corrosion protection. The demands placed on such sheets are many. They should on the one hand be well deformable and on the other hand have a high strength. The high strength is achieved by adding certain alloying constituents, such as Mn, Si, Al and Cr, to the iron.
Um das Eigenschaftsprofil hochfester Stähle zu optimieren, ist es üblich, die Bleche unmittelbar vor dem Beschichten mit Zink und/oder Aluminium im Schmelzbad zu glühen. Während das Schmelztauchbeschichten von Stahlbändern, die nur geringe Anteile an den genannten Legierungsbestandteilen enthalten, unproblematisch ist, gibt es beim Schmelztauchbeschichten von Stahlblech mit höheren Legierungsanteilen bei konventioneller Vorgehensweise Schwierigkeiten. So ergeben sich Bereiche, in denen der Überzug nur unzureichend auf dem jeweiligen Stahlblech haftet oder die vollständig unbeschichtet bleiben.In order to optimize the property profile of high-strength steels, it is customary to anneal the sheets in the molten bath immediately before coating with zinc and / or aluminum. During the hot dip coating of steel strips containing only small amounts of the mentioned Alloy constituents contained, is problematic, there are in the hot dip coating of steel sheet with higher alloy levels in conventional approach difficulties. This results in areas in which the coating adheres insufficiently to the respective steel sheet or remain completely uncoated.
Im Stand der Technik gibt es eine Vielzahl von Versuchen, diese Schwierigkeiten zu vermeiden. Eine optimale Lösung des Problems scheint es allerdings noch nicht zu geben.There are many attempts in the prior art to avoid these difficulties. However, an optimal solution of the problem does not seem to exist yet.
Bei einem bekannten Verfahren zum Schmelztauchbeschichten eines Bandes aus Stahl mit Zink durchläuft das zu beschichtende Band einen direkt beheizten Vorwärmer (DFF = Direct Fired Furnace). An den eingesetzten Gasbrennern kann durch Veränderung des Gas-Luft-Gemisches eine Erhöhung des Oxidationspotentials in der das Band umgebenden Atmosphäre erzeugt werden. Das erhöhte Sauerstoffpotential führt zu einer Oxidation des Eisens an der Bandoberfläche. In einer anschließenden Ofenstrecke wird die so gebildete Eisenoxidschicht reduziert. Eine gezielte Einstellung der Oxidschichtdicke an der Bandoberfläche ist sehr schwierig. Bei großer Bandgeschwindigkeit ist sie dünner als bei kleiner Bandgeschwindigkeit. Folglich lässt sich in der reduzierenden Atmosphäre keine eindeutig definierte Beschaffenheit der Bandoberfläche erzeugen. Das kann wiederum zu Haftungsproblemen des Überzugs an der Bandoberfläche führen.In a known process for hot dip coating a steel strip with zinc, the strip to be coated passes through a directly heated pre-heater (DFF = Direct Fired Furnace). By changing the gas-air mixture, an increase in the oxidation potential in the atmosphere surrounding the band can be produced at the gas burners used. The increased oxygen potential leads to oxidation of the iron at the strip surface. In a subsequent furnace section, the iron oxide layer thus formed is reduced. A targeted adjustment of the oxide layer thickness at the strip surface is very difficult. At high belt speed, it is thinner than at low belt speed. Consequently, in the reducing atmosphere, no clearly defined condition of the tape surface can be produced. This in turn can lead to adhesion problems of the coating on the strip surface.
In modernen Schmelztauchbeschichtungslinien mit einem RTF-Vorwärmer (RTF = Radiant Tube Furnace) werden im Gegensatz zur vorbeschriebenen bekannten Anlage keine gasbeheizten Brenner verwendet. Eine Voroxidation des Eisens über eine Veränderung des Gas-Luft-Gemisches kann daher nicht erfolgen. In diesen Anlagen erfolgt vielmehr die komplette Glühbehandlung des Bandes in einer Schutzgasatmosphäre. Bei einer solchen Glühbehandlung eines Bandes aus Stahl mit höheren Legierungsbestandteilen können jedoch diese Legierungsbestandteile an die Bandoberfläche diffundieren und hier nicht reduzierbare Oxide bilden. Diese Oxide behindern eine einwandfreie Beschichtung mit Zink und/oder Aluminium im Schmelzbad.In modern hot-dip coating lines with a RTF (RTF = Radiant Tube Furnace) are in contrast used for the above known system no gas-fired burner. A pre-oxidation of the iron via a change in the gas-air mixture can therefore not take place. In these systems, rather, the complete annealing of the strip takes place in a protective gas atmosphere. In such an annealing of a strip of steel with higher alloying constituents, however, these alloying constituents can diffuse to the strip surface and form non-reducible oxides here. These oxides hinder proper coating with zinc and / or aluminum in the molten bath.
Auch in der Patentliteratur sind verschiedene Verfahren zum Schmelztauchbeschichten eines Stahlbandes mit verschiedenen Beschichtungsmaterialien beschrieben.The patent literature also describes various processes for hot dip coating a steel strip with various coating materials.
So ist aus der
Des Weiteren ist aus der
Aus der
Das Dokument
Das Dokument
Der Erfindung lag die Aufgabe zugrunde, ein Verfahren zum Schmelztauchbeschichten eines aus höherfestem Stahl hergestellten Stahlflachproduktes mit Zink und/oder Aluminium anzugeben, mit dem ein Stahlband mit einer optimal veredelten Oberfläche in einer RTF-Anlage produziert werden kann.The invention had the object of specifying a method for hot dip coating of a high-strength steel produced flat steel product with zinc and / or aluminum, with which a steel strip can be produced with an optimally finished surface in a RTF plant.
Diese Aufgabe ist ausgehend von einem Verfahren der eingangs angegebenen Art dadurch gelöst worden, dass im Zuge der dem Schmelztauchbeschichten vorangehenden Wärmebehandlung erfindungsgemäß folgende Verfahrensschritte durchlaufen werden:
- a) Das Band wird in einer reduzierenden Atmosphäre mit einem H2-Gehalt von mindestens 2 % bis 8 % auf eine Temperatur von > 750 °C bis 850 °C erwärmt.
- b) Die überwiegend aus Reineisen bestehende Oberfläche wird durch eine 1 bis 10 sec dauernde Wärmebehandlung des Bandes bei einer Temperatur von > 750 °C bis 850 °C in einer im Durchlaufofen integrierten Reaktionskammer mit einer oxidierenden Atmosphäre mit einem O2-Gehalt von 0,01 % bis 1 % in eine Eisenoxidschicht umgewandelt.
- c) Das Stahlflachprodukt wird anschließend in einer reduzierenden Atmosphäre mit einem H2-Gehalt von 2 % bis 8 % durch Erwärmung bis auf maximal 900 °C über einen Zeitraum geglüht, der um so viel länger ist als die Dauer der zur Bildung der Eisenoxidschicht durchgeführten Wärmebehandlung (Verfahrensschritt b), dass die zuvor gebildete Eisenoxidschicht mindestens an ihrer Oberfläche in Reineisen reduziert wird.
- d) Das Stahlflachprodukt wird anschließend bis auf Schmelzbadtemperatur abgekühlt.
- a) The strip is heated in a reducing atmosphere with an H 2 content of at least 2% to 8% to a temperature of> 750 ° C to 850 ° C.
- b) The predominantly made of pure iron surface is characterized by a 1 to 10 sec continuous heat treatment of the strip at a temperature of> 750 ° C to 850 ° C in a continuous furnace integrated reaction chamber with an oxidizing atmosphere with an O 2 content of 0, 01% to 1% converted into an iron oxide layer.
- c) The flat steel product is then annealed in a reducing atmosphere with an H 2 content of 2% to 8% by heating up to a maximum of 900 ° C for a period of time much longer than the duration of the iron oxide layer formation Heat treatment (process step b) that the previously formed iron oxide layer is reduced at least on its surface in pure iron.
- d) The flat steel product is then cooled down to the molten bath temperature.
Durch die erfindungsgemäße Temperaturführung im Schritt a) wird verhindert, dass bei der Erwärmung wesentliche Legierungsbestandteile an die Oberfläche des Stahlflachproduktes diffundieren. Überraschend hat sich hierbei gezeigt, dass durch Einstellung von relativ hohen, oberhalb von 750 °C und bis maximal 850 °C reichenden Temperaturen die Diffusion von Legierungsbestandteilen an die Oberfläche besonders wirksam so weit unterdrückt wird, dass im folgenden Schritt eine wirksame Eisenoxidschicht gebildet werden kann. Diese verhindert, dass bei der anschließend weiter erhöhten Glühtemperatur weitere Legierungsbestandteile an die Oberfläche diffundieren. So kann bei der Glühbehandlung in der reduzierenden Atmosphäre eine Reineisenschicht entstehen, die für eine vollflächige und fest haftende Beschichtung aus Zink und/oder Aluminium sehr gut geeignet ist.The temperature control according to the invention in step a) prevents that during the heating essential alloying constituents diffuse to the surface of the flat steel product. Surprisingly, it has been found here that by adjusting relatively high temperatures above 750.degree. C. and up to a maximum of 850.degree. C., the diffusion of alloy constituents to the surface is particularly effectively suppressed so that an effective iron oxide layer can be formed in the following step , This prevents further alloying constituents from diffusing to the surface during the subsequently increased annealing temperature. Thus, during the annealing treatment in the reducing atmosphere, a pure iron layer can be formed which is suitable for a full-surface and firmly adhering coating of zinc and / or aluminum is very suitable.
Optimiert werden kann das Arbeitsergebnis dadurch, dass die in der oxidierenden Atmosphäre erzeugte Eisenoxidschicht vollständig in Reineisen reduziert wird. In diesem Zustand weist der Überzug auch bezüglich seiner Verformbarkeit und Festigkeit optimale Eigenschaften auf.The work result can be optimized by completely reducing the iron oxide layer produced in the oxidizing atmosphere to pure iron. In this state, the coating also has optimum properties with regard to its deformability and strength.
Nach einer Ausgestaltung der Erfindung wird bei der Behandlung des Stahlflachproduktes auf der Strecke mit der oxidierenden Atmosphäre die Dicke der sich bildenden Oxidschicht gemessen und in Abhängigkeit von dieser Dicke und der von der Durchlaufgeschwindigkeit des Stahlflachproduktes abhängigen Behandlungszeit der O2-Gehalt derart eingestellt, dass die Oxidschicht anschließend vollständig reduziert werden kann. Die Änderung der Durchlaufgeschwindigkeit des Stahlflachproduktes z. B. infolge von Störungen lässt sich auf diese Art und Weise ohne Nachteil für die Oberflächenqualität des schmelztauchbeschichteten Stahlflachproduktes berücksichtigen.According to one embodiment of the invention, in the treatment of the flat steel product on the route with the oxidizing atmosphere, the thickness of the forming oxide layer is measured and adjusted depending on this thickness and dependent on the flow rate of the flat steel product treatment time of O 2 content such that the Oxide layer can then be completely reduced. The change in the flow rate of the flat steel product z. B. as a result of disturbances can be considered in this way without detriment to the surface quality of the hot dip coated flat steel product.
Gute Ergebnisse bei der Durchführung des Verfahrens wurden erzielt, wenn eine Oxidschicht mit einer Dicke von maximal 300 Nanometer erzeugt wird.Good results have been achieved in carrying out the method when an oxide layer with a maximum thickness of 300 nanometers is produced.
Einer Diffusion von Legierungsbestandteilen an die Oberfläche des Stahlflachprodukts kann auch dadurch entgegengewirkt werden, dass die Aufheizung im Schritt a) des erfindungsgemäßen Verfahrens möglichst schnell erfolgt. Gute Arbeitsergebnisse stellen sich dabei insbesondere dann ein, wenn die Dauer der der Oxidation vorgeschalteten Erwärmung des Stahlflachproduktes auf mehr als 750 °C bis 850 °C auf max. 300 s, insbesondere max. 250 s, beschränkt wird.A diffusion of alloy constituents to the surface of the flat steel product can also be counteracted by the heating in step a) of the process according to the invention taking place as rapidly as possible. Good work results are in particular then if the duration of the heating upstream of the oxidation of the flat steel product to more than 750 ° C to 850 ° C to max. 300 s, in particular max. 250 s, is limited.
Dementsprechend ist es günstig, wenn die Aufheizgeschwindigkeit bei der erfindungsgemäß der Oxidation vorgeschalteten Erwärmung des Stahlflachproduktes mindestens 2,4 °C/s beträgt, insbesondere im Bereich von 2,4 - 4,0 °C/s liegt.Accordingly, it is favorable if the heating rate in the case of the heating of the flat steel product preceding the oxidation according to the invention is at least 2.4 ° C./s, in particular in the range from 2.4 to 4.0 ° C./s.
Die der Oxidation nachgeschaltete Wärmebehandlung mit anschließender Abkühlung des Stahlflachproduktes sollte demgegenüber länger als 30 sec, insbesondere länger als 50 sec., dauern, um eine sicher ausreichende Reduktion der zuvor gebildeten Eisenoxidschicht zu Reineisen zu gewährleisten.By contrast, the heat treatment followed by oxidation followed by cooling of the flat steel product should take more than 30 seconds, in particular more than 50 seconds, in order to ensure a sufficiently sufficient reduction of the previously formed iron oxide layer to pure iron.
Als Legierungsbestandteile kann der höherfeste Stahl mindestens eine Auswahl folgender Bestandteile enthalten: Mn > 0,5 %, A1 > 0,2 %, Si > 0,1 %, Cr > 0,3 %. Weitere Bestandteile wie z. B. Mo, Ni, V, Ti, Nb und P können beigefügt werden.As alloy constituents, the high-strength steel may contain at least one of the following constituents: Mn> 0.5%, A1> 0.2%, Si> 0.1%, Cr> 0.3%. Other ingredients such. Mo, Ni, V, Ti, Nb and P can be added.
Bei erfindungsgemäßer Verfahrensführung dauert die Wärmebehandlung des Stahlflachproduktes in der reduzierenden Atmosphäre sowohl beim Aufwärmen als auch späteren Glühen um ein Vielfaches länger als die Wärmebehandlung in der oxidierenden Atmosphäre. Auf diese Weise wird erreicht, dass das Volumen der oxidierenden Atmosphäre im Vergleich zum übrigen Volumen der reduzierenden Atmosphäre sehr klein ist. Dies hat den Vorteil, dass auf Veränderungen des Behandlungsprozesses, insbesondere der Durchlaufgeschwindigkeit und der Bildung der Oxidationsschicht schnell reagiert werden kann. In der Praxis lässt sich daher die erfindungsgemäße Wärmebehandlung des Stahlflachproduktes in der reduzierenden Atmosphäre in einem Durchlaufofen durchführen, der mit einer die oxidierende Atmosphäre enthaltenden Kammer ausgestattet ist, wobei das Volumen der Kammer um ein Vielfaches kleiner sein kann als das übrige Volumen des Durchlaufofens.When carrying out the process according to the invention, the heat treatment of the flat steel product in the reducing atmosphere, both during warm-up and later annealing, lasts many times longer than the heat treatment in the oxidizing atmosphere. In this way it is achieved that the volume of the oxidizing atmosphere is very small compared to the remaining volume of the reducing atmosphere. This has the Advantage that can be reacted quickly to changes in the treatment process, in particular the flow rate and the formation of the oxidation layer. In practice, therefore, the inventive heat treatment of the flat steel product in the reducing atmosphere can be carried out in a continuous furnace, which is equipped with a chamber containing the oxidizing atmosphere, wherein the volume of the chamber can be many times smaller than the remaining volume of the continuous furnace.
Das erfindungsgemäße Verfahren ist besonders gut für das Feuerverzinken geeignet. Das Schmelzbad kann aber auch aus Zink-Aluminium oder Aluminium mit Silizium-Zusätzen bestehen. Unabhängig davon, welche Schmelzenzusammensetzung gewählt wird, sollte der in der Schmelze jeweils vorhandene Zink- und/oder Aluminium-Gehalt in Summe mindestens 85 % betragen. Derart zusammengesetzte Schmelzen sind z. B.:
- Z: 99 % Zn
- ZA: 95 % Zn + 5 % A1
- AZ: 55 % A1 + 43,4 % Zn + 1,6 % Si
- AS: 89 - 92 % A1 + 8 - 11 % Si
- Z: 99% Zn
- ZA: 95% Zn + 5% A1
- AZ: 55% A1 + 43.4% Zn + 1.6% Si
- AS: 89 - 92% A1 + 8 - 11% Si
Im Falle eines reinen Zinküberzügs (Z) kann dieser durch Wärmebehandlung (Diffusionsglühen) in eine verformungsfähige Zink-Eisenschicht (galvanealed Überzug) umgewandelt werden.In the case of a pure Zinküberzügs (Z) this can be converted by heat treatment (diffusion annealing) in a ductile zinc-iron layer (galvanized coating).
Nachfolgend wird die Erfindung anhand einer ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert.The invention will be explained in more detail with reference to a drawing illustrating an exemplary embodiment.
Die einzige Figur zeigt schematisch eine Verzinkungsanlage mit einem Durchlaufofen 5 und einem Schmelzenbad 7. Zusätzlich ist in der Figur für den Durchlaufofen der Temperaturverlauf über der Durchlaufzeit aufgetragen.The single figure shows schematically a galvanizing plant with a
Die Verzinkungsanlage ist zum im Durchlauf erfolgenden Beschichten eines in Form eines warmgewalzten oder kaltgewalzten Stahlbands 1 vorliegenden Stahlflachprodukts bestimmt, das aus höherfestem, mindestens ein Legierungselement der Gruppe Mn, Al, Si und Cr sowie wahlweise zur Einstellung bestimmter Eigenschaften weitere Legierungselemente enthaltendem Stahl hergestellt ist. Bei dem Stahl kann es sich insbesondere um einen TRIP-Stahl handeln.The galvanizing plant is intended for continuous coating of a flat steel product in the form of hot rolled or cold rolled steel strip 1, which is made of higher strength steel containing at least one alloying element of the Mn, Al, Si and Cr group and optionally further alloying elements containing certain alloying elements. The steel may in particular be a TRIP steel.
Das Stahlband 1 wird von einem Coil 2 abgezogen und durch eine Beize 3 und/oder eine andere Anlage 4 zur Oberflächenreinigung geleitet.The steel strip 1 is withdrawn from a
Das gereinigte Band 1 durchläuft dann in einem kontinuierlichen Arbeitsablauf einen Durchlaufofen 5 und wird von dort über einen gegenüber der Umgebungsatmosphäre abgeschlossenen Rüssel 6 in ein Schmelztauchbad 7 geleitet. Das Schmelztauchbad 7 ist vorliegend durch eine Zinkschmelze gebildet.The cleaned belt 1 then passes through a
Das aus dem Schmelztauchbad 7 austretende, mit dem Zinküberzug versehene Stahlband 1 gelangt über eine Kühlstrecke 8 oder eine Einrichtung zur Wärmebehandlung zu einer Aufwickelstation 9, in der es zu einem Coil gewickelt wird.The emerging from the
Erforderlichenfalls wird das Stahlband 1 mäanderförmig durch den Durchlaufofen 5 geleitet, um bei praktikabler Länge des Durchlaufofens 5 ausreichend lange Behandlungszeiten erreichen zu können.If necessary, the steel strip 1 is meander-shaped passed through the
Der Durchlaufofen 5 vom RTF-Typ (RTF = Radiant Tube Furnace) ist in drei Zonen 5a, 5b, 5c aufgeteilt. Die mittlere Zone 5b bildet eine Reaktionskammer und ist gegenüber der ersten und letzten Zone 5a, 5c atmosphärisch abgeschlossen. Ihre Länge beträgt nur etwa 1/100 der gesamten Länge des Durchlaufofens 5. Aus Gründen der besseren Darstellung ist die Zeichnung insoweit nicht maßstabgerecht.The RTF (RTF = Radiant Tube Furnace)
Entsprechend der unterschiedlichen Längen der Zonen sind auch die Behandlungszeiten des durchlaufenden Bandes 1 in den einzelnen Zonen 5a, 5b, 5c unterschiedlich.According to the different lengths of the zones and the treatment times of the continuous belt 1 in the
In der ersten Zone 5a herrscht eine reduzierende Atmosphäre. Eine typische Zusammensetzung dieser Atmosphäre besteht aus 2 % bis 8 % H2, typisch 5 % H2, und Rest N2.In the
In der Zone 5a des Durchlaufofens 1 erfolgt eine Erwärmung des Bandes auf mehr als 750 bis 850 °C, typisch 800 °C. Die Erwärmung erfolgt dabei mit einer Aufheizgeschwindigkeit von mindestens 3,5 °C/s. Bei dieser Temperatur und Aufheizgeschwindigkeit diffundieren die im Stahlband 1 enthaltenen Legierungsbestandteile in nur geringen Mengen an dessen Oberfläche.In the
In der mittleren Zone 5b des Durchlaufofens 5 wird das Stahlband 1 im Wesentlichen nur bei der in der ersten Zone 5a erreichten Temperatur gehalten. Die Atmosphäre der Zone 5b ist jedoch aber sauerstoffhaltig, so dass es zur Oxidation der Oberfläche des Stahlbands 1 kommt. Der O2-Gehalt der in der Zone 5b herrschenden Atmosphäre liegt zwischen 0,01 % bis 1 %, typischerweise bei 0,5 %. Dabei kann der Sauerstoffgehalt der in der Zone 5b herrschenden Atmosphäre beispielsweise in Abhängigkeit von der Behandlungszeit und der Dicke der auf dem Stahlbad 1 zu erzeugenden Oxidschicht eingestellt werden. Ist die Behandlungszeit kurz, wird beispielsweise ein hoher O2-Gehalt eingestellt, während bei langer Behandlungszeit beispielsweise ein niedrigerer Sauerstoffgehalt gewählt werden kann, um eine Oxidschicht gleicher Dicke zu erzeugen.In the
Infolgedessen, dass die Oberfläche des Stahlbands 1 einer sauerstoffhaltigen Atmosphäre ausgesetzt ist, bildet sich an der Oberfläche des Bandes die gewünschte Eisenoxidschicht. Die Dicke dieser Eisenoxidschicht kann optisch erfasst werden, wobei das Ergebnis der Messung zur Einstellung des jeweiligen Sauerstoffgehalts der Zone 5b herangezogen wird.As a result of the surface of the steel strip 1 being exposed to an oxygen-containing atmosphere, the desired iron oxide layer forms on the surface of the strip. The thickness of this iron oxide layer can be detected optically, the result of the measurement being used to set the respective oxygen content of the
Da die mittlere Zone 5b im Vergleich zur gesamten Ofenlänge sehr kurz ist, ist das Kammervolumen entsprechend klein. Deshalb ist die Reaktionszeit für eine Änderung der Zusammensetzung der Atmosphäre klein, so dass auf eine Veränderung der Bandgeschwindigkeit oder auf eine von einem Sollmaß abweichende Dicke der Oxidschicht durch eine entsprechende Verstellung des Sauerstoffgehalts der in der Zone 5b herrschenden Atmosphäre schnell reagiert werden kann. Das geringe Volumen der Zone 5b ermöglicht so kurze Regelzeiten.Since the
In der sich an die Zone 5b anschließenden Zone 5c des Durchlaufofens 5 wird das Stahlband 1 bis auf eine Glühtemperatur von ca. 900 °C erwärmt. Die in der Zone 5c vorgenommene Glühung erfolgt in einer reduzierenden Stickstoffatmosphäre, die einen H2-Gehalt von 5 %aufweist. Während dieser Glühbehandlung verhindert die Eisenoxidschicht einerseits, dass Legierungsbestandteile an die Bandoberfläche diffundieren. Da die Glühbehandlung in einer reduzierenden Atmosphäre erfolgt, wird die Eisenoxidschicht andererseits in eine Reineisenschicht umgewandelt.In the subsequent to the
Das Stahlband 1 wird auf seinem weiteren Weg in Richtung des Schmelztauchbades 7 weiter abgekühlt, so dass es bei Verlassen des Durchlaufofens 5 eine Temperatur aufweist, die um bis zu 10 % höher ist als die Temperatur des Schmelztauchbades 7 von etwa 480 °C. Da das Band 1 nach Verlassen des Durchlaufofens 5 an seiner Oberfläche aus Reineisen besteht, bietet es eine optimale Grundlage für eine haftfeste Anbindung des im Schmelztauchbad 7 aufgetragenen Zinküberzuges.The steel strip 1 is further cooled on its further way in the direction of the
Claims (11)
- Method for the coating of a flat steel product manufactured from a higher strength steel containing different alloy constituents, in particular Mn, Al, Si and/or Cr, with a metallic coating, wherein the flat steel product is initially subjected to a heat treatment, in order then, in the heated state, to be hot-dip coated with the metallic coating in a melting bath containing overall at least 85% zinc and/or aluminium, characterised in that the heat treatment comprises the following method steps:a) The flat steel product is heated in a reducing atmosphere with an H2 content of at least 2% to 8% to a temperature of > 750°C to 850°C.b) The surface, consisting predominantly of pure iron, is converted into an iron oxide layer by a heat treatment of the flat steel product lasting 1 to 10 secs. at a temperature of > 750°C to 850°C in a reaction chamber integrated into the continuous furnace, with an oxidising atmosphere with an O2 content of 0.01% to 1%.c) The flat steel product is then annealed in a reducing atmosphere with an H2 content of 2% to 8% by heating to a maximum of 900°C over a period of time which is that much longer than the duration of the heat treatment carried out for the formation of the iron oxide layer (method step b) such that the iron oxide layer formed previously is reduced at least on its surface to pure iron.d) The flat steel product is then cooled to melting bath temperature.
- Method according to Claim 1, characterised in that the iron oxide layer produced is completely reduced to pure iron.
- Method according to Claim 2, characterised in that, during the treatment of the flat steel product on the stretch with the oxidising atmosphere, the thickness of the oxide layer being formed is measured and, as a function of this thickness and of the treatment time, dependent on the run-through speed of the flat steel product, the O2 content is adjusted in such a manner that the oxide layer is then completely reduced.
- Method according to Claim 3, characterised in that an oxide layer is produced with a thickness of max 300 nm.
- Method according to any one of the preceding claims, characterised in that the heating of the flat steel product upstream of the oxidation to more than 750°C to 850°C lasts for a max. 300 secs.
- Method according to any one of the preceding claims, characterised in that the further heat treatment downstream of the oxidation with following cooling of the flat steel product lasts longer than 30 secs.
- Method according to any one of the preceding claims, characterised in that the higher strength steel contains at least a selection of the following alloy constituents: Mn > 0.5 %, Al > 0.2 %, Si > 0.1 %, Cr > 0.3 %.
- Method according to any one of the preceding claims, characterised in that the heat treatment of the flat steel product in the reducing atmosphere takes place in a continuous furnace with an integrated chamber with the oxidising atmosphere, wherein the volume of the chamber is many times smaller than the remaining volume of the continuous furnace.
- Method according to any one of the preceding claims, characterised in that the flat steel product is heat treated after the hot-dip galvanizing.
- Method according to any one of the preceding claims, characterised in that the heating-up speed during the heating of the flat steel product upstream of the oxidation amounts to at least 2.4°C/s.
- Method according to Claim 10, characterised in that the heating-up speed amounts to 2.4 - 4.0°C/s.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL06754869T PL2010690T3 (en) | 2006-04-26 | 2006-04-26 | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2006/061858 WO2007124781A1 (en) | 2006-04-26 | 2006-04-26 | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2010690A1 EP2010690A1 (en) | 2009-01-07 |
EP2010690B1 true EP2010690B1 (en) | 2010-02-24 |
Family
ID=37492622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06754869A Active EP2010690B1 (en) | 2006-04-26 | 2006-04-26 | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel |
Country Status (12)
Country | Link |
---|---|
US (1) | US8636854B2 (en) |
EP (1) | EP2010690B1 (en) |
JP (1) | JP5189587B2 (en) |
KR (1) | KR101275839B1 (en) |
CN (1) | CN101501235B (en) |
AT (1) | ATE458838T1 (en) |
BR (1) | BRPI0621610A2 (en) |
CA (1) | CA2647687C (en) |
DE (1) | DE502006006289D1 (en) |
ES (1) | ES2339804T3 (en) |
PL (1) | PL2010690T3 (en) |
WO (1) | WO2007124781A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010037254A1 (en) | 2010-08-31 | 2012-03-01 | Thyssenkrupp Steel Europe Ag | Process for hot dip coating a flat steel product |
DE102011051731A1 (en) | 2011-07-11 | 2013-01-17 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer |
DE102011056823A1 (en) | 2011-12-21 | 2013-06-27 | Thyssen Krupp Steel Europe AG | A nozzle device for a furnace for heat treating a flat steel product and equipped with such a nozzle device furnace |
EP2824216A1 (en) | 2013-05-24 | 2015-01-14 | ThyssenKrupp Steel Europe AG | Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system |
WO2016177590A1 (en) | 2015-05-07 | 2016-11-10 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
EP3135778A1 (en) | 2015-08-31 | 2017-03-01 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
EP3173495A1 (en) | 2015-11-25 | 2017-05-31 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
EP3686534A1 (en) | 2019-01-23 | 2020-07-29 | Drever International | Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber |
US10801086B2 (en) | 2015-04-02 | 2020-10-13 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
US10821706B2 (en) * | 2016-05-30 | 2020-11-03 | Jfe Steel Corporation | Ferritic stainless steel sheet |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5555992B2 (en) * | 2008-09-05 | 2014-07-23 | Jfeスチール株式会社 | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion |
JP5556033B2 (en) * | 2009-03-19 | 2014-07-23 | Jfeスチール株式会社 | Method for producing high-strength hot-dip galvanized steel sheet |
KR20140128458A (en) | 2009-03-31 | 2014-11-05 | 제이에프이 스틸 가부시키가이샤 | High-strength hot-dip galvanized steel plate and method for producing same |
EP2374910A1 (en) | 2010-04-01 | 2011-10-12 | ThyssenKrupp Steel Europe AG | Steel, flat, steel product, steel component and method for producing a steel component |
EP2664682A1 (en) | 2012-05-16 | 2013-11-20 | ThyssenKrupp Steel Europe AG | Steel for the production of a steel component, flat steel product comprising same, component comprised of same and method for producing same |
KR101482335B1 (en) * | 2012-12-21 | 2015-01-13 | 주식회사 포스코 | Ultra-high strenth galvinized steel sheet having galvanizing property and adhesion and method for manufacturing the same |
JP5920249B2 (en) * | 2013-03-05 | 2016-05-18 | Jfeスチール株式会社 | High strength hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same |
WO2015001367A1 (en) | 2013-07-04 | 2015-01-08 | Arcelormittal Investigación Y Desarrollo Sl | Cold rolled steel sheet, method of manufacturing and vehicle |
WO2016169918A1 (en) | 2015-04-22 | 2016-10-27 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
EP3170913A1 (en) | 2015-11-20 | 2017-05-24 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
JP6397806B2 (en) * | 2015-09-11 | 2018-09-26 | 東芝メモリ株式会社 | Semiconductor device manufacturing method and semiconductor device |
DE102017218704A1 (en) | 2017-10-19 | 2019-04-25 | Thyssenkrupp Ag | Process for producing a steel component provided with a metallic, corrosion-protective coating |
WO2020064096A1 (en) * | 2018-09-26 | 2020-04-02 | Thyssenkrupp Steel Europe Ag | Method for producing a coated flat steel product and coated flat steel product |
DE102019108457B4 (en) * | 2019-04-01 | 2021-02-04 | Salzgitter Flachstahl Gmbh | Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings |
DE102019108459B4 (en) * | 2019-04-01 | 2021-02-18 | Salzgitter Flachstahl Gmbh | Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3420656A (en) * | 1966-09-02 | 1969-01-07 | Lummus Co | Process for forming hard oxide pellets and product thereof |
GB1231478A (en) | 1968-11-05 | 1971-05-12 | ||
US3925579A (en) | 1974-05-24 | 1975-12-09 | Armco Steel Corp | Method of coating low alloy steels |
US5023113A (en) | 1988-08-29 | 1991-06-11 | Armco Steel Company, L.P. | Hot dip aluminum coated chromium alloy steel |
JPH02285057A (en) * | 1989-04-27 | 1990-11-22 | Sumitomo Metal Ind Ltd | Method for continuously annealing steel sheet to be galvanized |
JPH0448062A (en) * | 1990-06-18 | 1992-02-18 | Nippon Steel Corp | Production of galvannealed steel sheet |
JPH04254531A (en) * | 1991-02-01 | 1992-09-09 | Nippon Steel Corp | Method for annealing high si-containing high tensile strength steel before galvanizing |
JPH05247614A (en) * | 1992-03-06 | 1993-09-24 | Sumitomo Metal Ind Ltd | Galvanizing method for silicon-containing steel sheet |
JPH06212384A (en) * | 1993-01-18 | 1994-08-02 | Sumitomo Metal Ind Ltd | Hot dip galvanizing method for silicon-containing steel sheet |
JPH0797670A (en) * | 1993-09-30 | 1995-04-11 | Sumitomo Metal Ind Ltd | Galvanizing method for silicon-containing steel sheet |
US5447754A (en) | 1994-04-19 | 1995-09-05 | Armco Inc. | Aluminized steel alloys containing chromium and method for producing same |
JP3444007B2 (en) * | 1995-03-10 | 2003-09-08 | Jfeスチール株式会社 | Manufacturing method of high workability, high strength galvanized steel sheet |
JP3016122B2 (en) * | 1995-10-13 | 2000-03-06 | 住友金属工業株式会社 | Galvannealed steel sheet with excellent paintability and its manufacturing method |
FR2828888B1 (en) | 2001-08-21 | 2003-12-12 | Stein Heurtey | METHOD FOR HOT GALVANIZATION OF HIGH STRENGTH STEEL METAL STRIPS |
FR2852330B1 (en) * | 2003-03-12 | 2007-05-11 | Stein Heurtey | METHOD OF CONTROLLED OXIDATION OF STRIPS BEFORE CONTINUOUS GALVANIZATION AND LINE OF GALVANIZATION |
JP3907656B2 (en) * | 2004-12-21 | 2007-04-18 | 株式会社神戸製鋼所 | Hot dip galvanizing method |
-
2006
- 2006-04-26 WO PCT/EP2006/061858 patent/WO2007124781A1/en active Application Filing
- 2006-04-26 ES ES06754869T patent/ES2339804T3/en active Active
- 2006-04-26 EP EP06754869A patent/EP2010690B1/en active Active
- 2006-04-26 PL PL06754869T patent/PL2010690T3/en unknown
- 2006-04-26 JP JP2009506924A patent/JP5189587B2/en not_active Expired - Fee Related
- 2006-04-26 US US12/297,112 patent/US8636854B2/en active Active
- 2006-04-26 CA CA2647687A patent/CA2647687C/en not_active Expired - Fee Related
- 2006-04-26 AT AT06754869T patent/ATE458838T1/en active
- 2006-04-26 BR BRPI0621610-2A patent/BRPI0621610A2/en not_active IP Right Cessation
- 2006-04-26 DE DE502006006289T patent/DE502006006289D1/en active Active
- 2006-04-26 CN CN2006800543675A patent/CN101501235B/en active Active
- 2006-04-26 KR KR1020087025650A patent/KR101275839B1/en active IP Right Grant
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010037254A1 (en) | 2010-08-31 | 2012-03-01 | Thyssenkrupp Steel Europe Ag | Process for hot dip coating a flat steel product |
WO2012028465A1 (en) | 2010-08-31 | 2012-03-08 | Thyssenkrupp Steel Europe Ag | Method for hot-dip coating a flat steel product |
DE102011051731A1 (en) | 2011-07-11 | 2013-01-17 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer |
DE102011051731B4 (en) * | 2011-07-11 | 2013-01-24 | Thyssenkrupp Steel Europe Ag | Process for the preparation of a flat steel product provided by hot dip coating with a metallic protective layer |
WO2013007578A3 (en) * | 2011-07-11 | 2013-05-02 | Thyssenkrupp Steel Europe Ag | Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating |
WO2013092479A1 (en) | 2011-12-21 | 2013-06-27 | Thyssenkrupp Steel Europe Ag | Nozzle device for a furnace for heat-treating a flat steel product, and furnace equipped with such a nozzle device |
DE102011056823A1 (en) | 2011-12-21 | 2013-06-27 | Thyssen Krupp Steel Europe AG | A nozzle device for a furnace for heat treating a flat steel product and equipped with such a nozzle device furnace |
EP2824216A1 (en) | 2013-05-24 | 2015-01-14 | ThyssenKrupp Steel Europe AG | Method for manufacturing a flat steel product having a protective metal coating produced by means of hot-dip coating and continuous furnace for a hot-dip coating system |
US10801086B2 (en) | 2015-04-02 | 2020-10-13 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
WO2016177590A1 (en) | 2015-05-07 | 2016-11-10 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
EP3135778A1 (en) | 2015-08-31 | 2017-03-01 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
EP3173495A1 (en) | 2015-11-25 | 2017-05-31 | Cockerill Maintenance & Ingenierie S.A. | Method and device for reaction control |
US10821706B2 (en) * | 2016-05-30 | 2020-11-03 | Jfe Steel Corporation | Ferritic stainless steel sheet |
EP3686534A1 (en) | 2019-01-23 | 2020-07-29 | Drever International | Method and furnace for thermal treatment of a high-resistance steel strip including a temperature homogenisation chamber |
BE1026986A1 (en) | 2019-01-23 | 2020-08-17 | Drever Int Sa | Method and furnace for the heat treatment of a strip of high strength steel comprising a temperature homogenization chamber |
Also Published As
Publication number | Publication date |
---|---|
KR101275839B1 (en) | 2013-06-18 |
CN101501235B (en) | 2012-07-04 |
WO2007124781A1 (en) | 2007-11-08 |
DE502006006289D1 (en) | 2010-04-08 |
PL2010690T3 (en) | 2010-07-30 |
ATE458838T1 (en) | 2010-03-15 |
US8636854B2 (en) | 2014-01-28 |
ES2339804T3 (en) | 2010-05-25 |
CA2647687A1 (en) | 2007-11-08 |
KR20080111492A (en) | 2008-12-23 |
JP2009534537A (en) | 2009-09-24 |
CA2647687C (en) | 2012-10-02 |
US20090199931A1 (en) | 2009-08-13 |
JP5189587B2 (en) | 2013-04-24 |
BRPI0621610A2 (en) | 2011-12-13 |
CN101501235A (en) | 2009-08-05 |
EP2010690A1 (en) | 2009-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2010690B1 (en) | Hot dip coating process for a steel plate product made of high strengthheavy-duty steel | |
EP1819840B1 (en) | Method for hot dip coating a strip of heavy-duty steel | |
DE102006039307B3 (en) | Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer | |
DE69930291T2 (en) | High-strength hot-dip galvanized steel sheet with excellent plating adhesion and press formability, and process for its production | |
EP2732062B1 (en) | Method for producing a flat steel product which is provided with a metallic protective layer by means of hot dip coating | |
EP2812458B1 (en) | Process for the hot dip coating of a flat steel product | |
DE60116477T2 (en) | WARM, COLD-ROLLED AND MELT-GALVANIZED STEEL PLATE WITH EXCELLENT RECEPTION BEHAVIOR | |
EP2611946B1 (en) | Method for hot-dip coating a flat steel product | |
EP2855718B1 (en) | Flat steel product and process for producing a flat steel product | |
EP2432910B2 (en) | Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product | |
DE19610675C1 (en) | Dual phase steel for cold rolled sheet or strip - contg. manganese@, aluminium@ and silicon | |
WO2009021897A1 (en) | Dual-phase steel, flat product made of such dual-phase steel and method for producing a flat product | |
DE102007061489A1 (en) | Process for producing hardened hardenable steel components and hardenable steel strip therefor | |
DE69014532T2 (en) | Process for the production of a steel sheet. | |
EP2055799A1 (en) | Flat steel product with an anti-corrosion metal coating and method for creating an anti-corrosion metal coating on a flat steel product | |
WO2008058530A1 (en) | Process for producing a steel strip comprising a relatively high strength dual phase steel | |
EP2513346A2 (en) | Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product | |
WO2019068560A1 (en) | Ultrahigh strength multiphase steel and method for producing a steel strip from said multiphase steel | |
DE102019200338A1 (en) | Process for continuous heat treatment of a steel strip, and plant for hot dip coating a steel strip | |
WO2022029033A1 (en) | Method for producing coated steel strip, and method for producing a hardened steel product therefrom | |
EP3415646A1 (en) | High-strength steel sheet having enhanced formability | |
DE19543804B4 (en) | Process for producing hot-dip galvanized steel strip and hot-dip galvanized sheet or strip made of steel made therewith | |
WO2024179867A1 (en) | Method of hot press forming, with improved properties | |
DE102018217835A1 (en) | Process for producing a hot-formable steel flat product | |
DE102021109973A1 (en) | Process for the manufacture of hot-dip coated steel flat products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081021 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MEURER, MANFRED Inventor name: SCHAFFRATH, NORBERT Inventor name: NOTHACKER, GERNOT Inventor name: ULLMANN, MICHAEL Inventor name: ZEIZINGER, SABINE Inventor name: LEUSCHNER, RONNY Inventor name: WARNECKE, WILHELM |
|
17Q | First examination report despatched |
Effective date: 20090303 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THYSSENKRUPP STEEL EUROPE AG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502006006289 Country of ref document: DE Date of ref document: 20100408 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2339804 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100625 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100624 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 7311 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100524 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 |
|
26N | No opposition filed |
Effective date: 20101125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100426 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20160324 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20160329 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20160422 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 7311 Country of ref document: SK Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170427 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20210319 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210421 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210520 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220426 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230601 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20230418 Year of fee payment: 18 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230419 Year of fee payment: 18 Ref country code: DE Payment date: 20230418 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20230421 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20230418 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230418 Year of fee payment: 18 |