EP1984430A2 - Mélanges contenant de l'acide phosphonique et polymères contenant de l'acide phosphonique - Google Patents

Mélanges contenant de l'acide phosphonique et polymères contenant de l'acide phosphonique

Info

Publication number
EP1984430A2
EP1984430A2 EP07711177A EP07711177A EP1984430A2 EP 1984430 A2 EP1984430 A2 EP 1984430A2 EP 07711177 A EP07711177 A EP 07711177A EP 07711177 A EP07711177 A EP 07711177A EP 1984430 A2 EP1984430 A2 EP 1984430A2
Authority
EP
European Patent Office
Prior art keywords
groups
hydroxymethylene
polymers
polymer
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP07711177A
Other languages
German (de)
English (en)
Inventor
Thomas HÄRING
Jochen Kerres
Frank SCHÖNBERGER
Martin Hein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAERING, THOMAS
Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart
Original Assignee
Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart filed Critical Institut fuer Chemische Verfahrenstechnik Universitaet Stuttgart
Publication of EP1984430A2 publication Critical patent/EP1984430A2/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2341/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • perfluorinated sulfonic acid-based ionomer membranes can operate at temperatures below 100 0 C in electrochemical cells, particularly fuel cells are used, and in this temperature range show good H + - conductivity and high (electro) chemical stability. However, they are not usable at temperatures above 100 0 C, since they then dry out and therefore their proton conductivity decreases by several orders of magnitude 1 , 2 . However, it is useful to operate fuel cells at temperatures above 100 0 C, since in this temperature range, the CO tolerance of the fuel cell reaction due to faster electrode kinetics is significantly greater than below 100 0 C 3 .
  • micrometer to nanometer size microporous particles which may be inorganic hydroxides, oxides or salts, or inorganic / organic hybrid compounds, such as SiO 2 , 5 , 6 , TiO 2 , ZrO 2 7 , or layer phosphates or zirconium sulfophenyl phosphonates , wherein the layer phosphates such as zirconium or
  • Zirconiumsulfophenylphosphonat also have a Eigenprotonenleitrange,.
  • Another approach is the incorporation of phosphoric acid into basic polybenzimidazole membranes, with the phosphoric acid acting as the proton conductor, since phosphoric acid can function both as a proton donor and as a proton acceptor.
  • Non-fluorinated arylphosphonic acids are generally only medium-strength acids (pKs «
  • Polymeric phosphonic acids have poor film-forming properties (are very brittle)
  • Phosphonic acids tend to condense at temperatures around 12O 0 C, which is their
  • the object of the present invention consists in the preparation of 1-hydroxymethylene-l, l-bisphosphonic acid-containing polymer blends having the following properties:
  • Another object of the invention are processes for preparing the polymer mixtures containing phosphonic acid groups (blends).
  • the object of the invention is the use of polymer mixtures containing phosphonic acid groups (blends) in membrane processes such as gas separation, pervaporation, perstraction, PEM electrolysis and secondary batteries such as PEM and direct methanol fuel cells, in particular under conditions of reduced humidification (0
  • the object of the invention can be achieved by: 1. Preparation of optionally physically, ionically or covalently crosslinked Blen ⁇ s and blend membranes of low molecular weight hydroxymethylene-oligophosphonic RC (POsH 2 ) x (OH) y with polymers which contain the following functional groups:
  • Basic groups such as primary, secondary or tertiary amino groups, imidazole groups, pyridine groups, pyrazole groups etc. and / or
  • Phosphonic acids for example, produced from carboxylic acids by reaction with
  • PCl 3 ZH 3 PO 3 and subsequent hydrolysis with H 2 O 23 ' 24 ' 25 '26 " 27 are shown in Figure 1. Further, preferred low molecular weight according to the invention.
  • a particular embodiment of these blends consists in the fact that ionic crosslinking sites can exist between the polymers and the low molecular weight phosphonic acids, for example between the cation exchange groups of the polymer with a basic group (eg pyridine radical) of the low molecular weight phosphonic acid compound, see Figure 8.
  • a basic group eg pyridine radical
  • the binding of the low molecular weight Hydroxymethylenphosphonkla to the polymers consists in covalent crosslinking, such as by crosslinking of the OH group of the phosphonic acid compound with an OH group of the polymer by means of an ⁇ , ⁇ -Dihalogenalkans, see Figure 9.
  • Further possible crosslinking reactions for the OH group of l-hydroxymethylene-l, l-bisphosphonic acid grouping and optionally with OH groups of polymers according to the invention are:
  • the covalent cross-linking prevents outdiffusion of the phosphonic acid compound from the polymer and improves the mechanical stability of the blend films.
  • interpenetrating networks of very different structure and composition.
  • IPN interpenetrating networks
  • a dipolar aprotic solvent such as N-methylpyrrolidinone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO): a polymer having sulfochloride groups, a crosslinker for Sulfochlorid phenomenon such.
  • NMP N-methylpyrrolidinone
  • DMAc N, N-dimethylacetamide
  • DMF N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • 4,4'-Diaminodiphenylsulfon 40 a bifunctional l-hydroxymethylene-l, l-bisphosphonic acid such as l, 4-bis (l-hydroxymethylene l, l-bisphosphonic) benzene and a crosslinker for the OH groups of the 1- Hydroxymethylene 1,1-bisphosphonic acid groups such.
  • glutaraldehyde After a homogeneous solution of all components has been prepared, the solution is spread out on a pad and the solvent is evaporated.
  • HPN hybrid polymer network
  • Glutaraldehyde 36 After a homogeneous solution of all components has been prepared, the solution is doctored on a pad and the solvent is evaporated. The resulting HPN can still be post-treated as follows: 1. Post-treatment in mineral acid (H 2 SO 4 from 0.1 to 80% concentration, HCl from 0.1 to 37% concentration or phosphoric acid from 0.1 to 85% concentration) and optionally 2. subsequent storage in water to remove excess mineral acid.
  • mineral acid H 2 SO 4 from 0.1 to 80% concentration, HCl from 0.1 to 37% concentration or phosphoric acid from 0.1 to 85% concentration
  • the resulting HPN consists of the covalent network of the polymer having the sulfinate and sulfonate groups 42 , the sulfinate groups having been cross-linked by S-alkylation using the 1,4-diiodobutane, and the network of 3- (l-hydroxy-l, l-bisphosphonic acid) pyridine and glutaraldehyde.
  • ionic interactions between the two networks additionally exist via the pyridine moiety of 3- (1-hydroxy-1,1-bisphosphonic acid) -pyridine and the sulfonate moieties of the sulfonated polymer.
  • the 1,4-diiodobutane crosslinker can also crosslink a portion of the pyridine groups by alkylation, whereby mixed crosslinking bridges between sulfinate groups and pyridine groups can arise 43 .
  • Polyolefins such as polyethylene, polypropylene, polyisobutylene, polynorbornene,
  • Styrene (co) polymers such as polystyrene, poly (methylstyrene), poly ( ⁇ , ß, ß-trifluorstyiOl),
  • Poly (4-vinylpyridine), poly (2-vinylpyridine) and their copolymers perfluorinated ionomers such as Nafion® or the SO 2 Hal precursor of Nafion® (HaI F,
  • Het aryl backbone polymers such as:
  • Polyether ketones such as polyether ketone PEK Victrex®, polyetheretherketone
  • Polyethersulfones such as Polysulfone Udel®, Polyphenylsulfone Radel R®,
  • (Benz) imidazole group may be present in the main chain or in the polymer side chain
  • Polyphenylene ethers such. Poly (2,6-dimethyloxyphenylene), poly (2,6-diphenyloxyphenylene)
  • 1,4-benzoyl groups or p-phenyloxy-l, 4-benzoyl groups can.
  • aryl main chain polymers are possible as base polymers for the polymers and polymer mixtures according to the invention.
  • All possible block copolymers of the polymeric, in particular aryl main chain, polymers are also possible, the following types of block copolymers being preferred:
  • Block copolymers composed of blocks containing basic groups and of unmodified blocks; while the choice of basic groups is not limited, but there are heterocyclic or heteroaromatic, z.
  • Block copolymers of acidic (cation exchange group-containing) blocks and blocks containing basic groups
  • Block copolymers with blocks containing OH groups and blocks containing acid groups Block copolymers with blocks containing OH groups and blocks containing acid groups
  • Block copolymers with OH-containing blocks and blocks containing basic groups Block copolymers with OH-containing blocks and blocks containing basic groups.
  • Method via metallation first metallation (eg with n-butyllithium) 3 then reaction with an S-electrophile (SO 2 , SO 3 , SOCl 2 , SO 2 Cl 2 ), then optionally conversion to
  • Monomers are polymerized / polycondensed, such as. In McGrath et al., 53 , 54 , 55 .
  • One possible method is the metallation of the polymer and the subsequent reaction of the metalated polymer with a halogenated phosphoric or phosphonic esters (examples: Chlorphosphorklarediaryl 16 - or alkyl ester, 2- Bromethanphosphonklaredialkylester, 3-dialkyl phosphonate -Brompropan etc.).
  • carboxylation of the polymers all common methods can be used. Likely here are the carboxylation of polymers via lithiated intermediates, for example the lithiation of polysulfone PSU Udel or the lithiation of polyphenylene oxide with subsequent reaction of the lithiated intermediate with solid or gaseous CO 2 56 '57 .
  • the corresponding acid chloride can be prepared from the polymeric carboxylic acid by reaction with thionyl chloride (for further reaction with, for example, tris (timethylsilyl) phosphite to give the corresponding 1-hydroxymethylene-1,1-bisphosphonic acid).
  • methyl aromatics can be reacted with potassium permanganate to the corresponding aromatic carboxylic acids, for example, the 2-, 3- or 4-methylpyridines.
  • Aliphatic carboxylic acids are also accessible by oxidation of aliphatic alcohols or aldehydes.
  • Arylene main chain polymer (general regulation)
  • caustic alkali metal such as NaOH, KOH 5 LiOH etc.
  • alkaline earth liquor such as Ba (OH) 25 Ca (OH) 2
  • aqueous ammonia or aqueous primary, secondary or tertiary amines or quaternary ammonium salts at temperatures from O to 10O 0 C for 1 to 480 hours;
  • a polymer containing OH groups is dissolved in a dipolar aprotic or in a protic solvent, for example in DMSO.
  • the low molecular weight aryl-l-hydroxymethylene-l, l-bisphosphonic acid is dissolved in the same solvent, either in the H form or in the Na + form.
  • Glutaraldehyde is then added to the solution of the low molecular weight 1-hydroxymethylene-1,1-bisphosphonic acid, specifically per mole of OH groups of the low molecular weight aryl-1-hydroxymethylene-1,1-bisphosphonic acid, Vi mole of glutaraldehyde.
  • the combined solution is doctored onto a glass plate to a thin film.
  • the DMSO at temperatures of 50 to 150 0 C and optionally reduced pressure of 800-1 Ombar removed by evaporation.
  • the glass plate is removed with the polymer film under water from the glass plate.
  • the polymer film is aftertreated as follows:
  • caustic alkali, such as NaOH, KOH, LiOH etc.
  • alkaline earth liquor such as Ba (OH) 25 Ca (OH) 2
  • aqueous ammonia or aqueous primary, secondary or tertiary amines or quaternary ammonium salts at temperatures from 0 to 100 ° C for 1 to 480 hours;
  • Carboxylated PSU with 2 carboxylic acid groups per repeat unit is prepared after 5 ⁇ .
  • the PSU diacid chloride To prepare the PSU diacid chloride, the PSU dicarboxylic acid is dissolved in a 9-fold excess of thionyl chloride, based on the mass of the polymer. A small amount of N, N-dimethylformamide is added to this mixture and refluxed for 72 hours. The PSU diacid chloride is precipitated in a large excess of isopropanol and excess thionyl chloride is washed out. The PSU-di-acid chloride is dried to zw constant weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyethers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Conductive Materials (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne des mélanges et des membranes faites de mélanges d'acides oligophosphoniques d'hydroxyméthylène à bas poids moléculaire R-C(PO<SUB>3</SUB>H<SUB>2</SUB>)x(OH)<SUB>y</SUB> et de polymères, le radical R étant un radical organique quelconque et les polymères contenant les groupes suivants : des groupes échangeurs de cations ou leurs précurseurs non ioniques du type SO<SUB>2</SUB>X, X=HaI, OH OMe, NR<SUB>1</SUB>R<SUB>2</SUB>, OR<SUB>1</SUB> où Me est un cation métallique quelconque ou un cation d'ammonium, R<SUB>1</SUB>, R<SUB>2 </SUB>est<SUB/>H ou un radical aryle ou alkyle quelconque, POX<SUB>2</SUB>, COX et/ou des groupes basiques tels que des groupes amino primaires, secondaires ou tertiaires, des groupes imidazol, des groupes pyridine, des groupes pyrazol etc. et/ou des groupes OH. Selon l'invention, il s'agit de préférence d'acides oligophosphoniques d'hydroxyméthylène à bas poids moléculaire R-C(PO<SUB>3</SUB>H<SUB>2</SUB>)x(OH)<SUB>y</SUB> pour lesquels x=2 et y=1. L'invention concerne aussi des mélanges et des membranes faites de mélanges d'acides oligophosphoniques d'hydroxyméthylène à bas poids moléculaire R-C(PO<SUB>3</SUB>H<SUB>2</SUB>)<SUB>2</SUB>(OH)<SUB>1</SUB> et de polymères, le radical R des acides oligophosphoniques d'hydroxyméthylène contenant un groupement aliphatique ou aromatiques qui entre en interaction ionique avec les groupes acides du polymères ou du mélange de polymères. L'invention a également pour objet des mélanges et des membranes faites de mélanges d'acides oligophosphoniques d'hydroxyméthylène à bas poids moléculaire R-C(PO<SUB>3</SUB>H<SUB>2</SUB>)<SUB>2</SUB>(OH)<SUB>1</SUB> et de polymères, les groupes OH des acides I-hydroxyméthylène-II-biphosphoniques à bas poids moléculaire étant réticulés entre eux de façon covalente et éventuellement avec des groupes OH du polymère. L'invention se rapporte également à des polymères modifiés avec les groupes acide I-hydroxyméthylène-II-biphosphonique, ceux-ci étant préparés par réaction avec des polymères qui contiennent des groupes acide carboxylique ou des groupes halogénure d'acide carboxylique -COHal (Hal=F, Cl, Br, I), avec des composés de phosphite, ou par réaction d'aldéhydes polymères ou de composés céto polymères avec des esters d'acide phosphoreux sous catalyse aminée, sous oxydation des acides hydroxyphosphoniques intermédiaires avec MnO<SUB>2</SUB> ou un autre agent d'oxydation. L'invention concerne aussi des procédés pour préparer les substances mentionnées ci-dessus et l'utilisation de membranes faites des substances mentionnées ci-dessus, dans le cadre de processus membranaires et en particulier dans des piles à combustible, même à des températures >100°C.
EP07711177A 2006-02-03 2007-02-05 Mélanges contenant de l'acide phosphonique et polymères contenant de l'acide phosphonique Pending EP1984430A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006005782 2006-02-03
PCT/DE2007/000260 WO2007101415A2 (fr) 2006-02-03 2007-02-05 Mélanges contenant de l'acide phosphonique et polymères contenant de l'acide phosphonique

Publications (1)

Publication Number Publication Date
EP1984430A2 true EP1984430A2 (fr) 2008-10-29

Family

ID=38353891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07711177A Pending EP1984430A2 (fr) 2006-02-03 2007-02-05 Mélanges contenant de l'acide phosphonique et polymères contenant de l'acide phosphonique

Country Status (5)

Country Link
US (3) US8637174B2 (fr)
EP (1) EP1984430A2 (fr)
JP (3) JP2009525360A (fr)
DE (1) DE112007000280A5 (fr)
WO (1) WO2007101415A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559115A (zh) * 2018-05-03 2018-09-21 佛山九陌科技信息咨询有限公司 一种高尺寸稳定型聚芳醚电解质膜材料的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101415A2 (fr) * 2006-02-03 2007-09-13 Universität Stuttgart - Institut für Chemische Verfahrenstechnik Mélanges contenant de l'acide phosphonique et polymères contenant de l'acide phosphonique
US8541517B2 (en) 2011-03-10 2013-09-24 Battelle Energy Alliance, Llc Polymer compositions, polymer films and methods and precursors for forming same
FR2974090B1 (fr) * 2011-04-15 2013-05-31 Chryso Copolymeres a groupements gem-bisphosphones
US9453129B2 (en) 2014-06-23 2016-09-27 Ut-Battelle, Llc Polymer blend compositions and methods of preparation
CN104772050B (zh) * 2015-04-03 2016-10-12 燕山大学 乙二胺四亚甲基膦酸和二乙烯三胺五乙酸改性聚偏氟乙烯螯合膜的制备方法
US9815985B2 (en) 2015-07-14 2017-11-14 Ut-Battelle, Llc High performance lignin-acrylonitrile polymer blend materials
US11124652B2 (en) 2017-06-21 2021-09-21 Ut-Battelle, Llc Shape memory polymer blend materials
DE102021003228A1 (de) * 2021-06-23 2022-12-29 Riva Power Systems GmbH & Co. KG Neuartige phosphonierte nichtfluorierte und teilfluorierte Arylpolymere aus sulfonierten Arylpolymeren und neuartige polymere Perfluorphosphonsäuren aus polymeren Perfluorsulfonsäuren, deren Herstellungsverfahren und Anwendung in Elektromembrananwendungen
CN113611884A (zh) * 2021-08-03 2021-11-05 中国科学技术大学 钌掺杂α-二氧化锰的复合材料、其制备方法及其应用
DE102022105790A1 (de) * 2022-03-11 2023-09-14 Forschungszentrum Jülich GmbH Stoff, Verfahren zur Herstellung eines Stoffs, Membran und Verwendung einer Membran
CN116970136B (zh) * 2023-09-20 2024-02-09 山西大学 一种苯并咪唑基共价有机框架及其制备方法和应用、质子导体及其制备方法和应用

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2943498C2 (de) 1979-10-27 1983-01-27 Henkel KGaA, 4000 Düsseldorf Verfahren zur Herstellung von 3-Amino-1-hydroxypropan-1,1-diphosphonsäure
DE3016289A1 (de) 1980-04-28 1981-10-29 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung von omega -amino-1-hydroxyalkyliden-1,1-bis-phosphonsaeuren
US4728460A (en) * 1980-09-01 1988-03-01 Monsanto Company Aminomethylenephosphonic acid solutions
US4304734A (en) 1980-10-16 1981-12-08 Vysoka Skola Chemicko-Technologicka 6-Amino-1-hydroxyhexylidene diphosphonic acid, salts and a process for production thereof
IT1201087B (it) 1982-04-15 1989-01-27 Gentili Ist Spa Bifosfonati farmacologicamente attivi,procedimento per la loro preparazione e relative composizioni farmaceutiche
US4830847A (en) * 1985-06-28 1989-05-16 The Procter & Gamble Company Diphosphonate-derivatized macromolecules
DE3536077A1 (de) * 1985-10-09 1987-04-09 Muehlbauer Ernst Kg Polymerisierbare saeure und saeurederivate enthaltende verbindungen, dieselben enthaltende mischungen und ihre verwendung
US4937367A (en) * 1987-07-15 1990-06-26 Zambon Group S.P.A. Process for the preparation of intermediates for the synthesis of fosfomycin
US5259985A (en) * 1990-09-03 1993-11-09 Katayama Chemical, Incorporated Calcium carbonate scale inhibitor having organophosphonate, water soluble acrylic or maleic copolymer and citric acid
JP3192691B2 (ja) * 1990-09-03 2001-07-30 株式会社片山化学工業研究所 カルシウム系スケール防止剤
JP3107873B2 (ja) * 1991-09-26 2000-11-13 ユニ・チャーム株式会社 高吸水性ポリマーの経時着色防止方法および経時着色防止剤
EP0574791B1 (fr) 1992-06-13 1999-12-22 Aventis Research & Technologies GmbH & Co. KG Membrane d'électrolyte polymère et procédé pour sa fabrication
US5584981A (en) * 1994-05-06 1996-12-17 United Kingdom Atomic Energy Authority Electrochemical deionization
US5525436A (en) 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
US5599639A (en) * 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
SG86324A1 (en) * 1997-07-03 2002-02-19 Kao Corp Superabsorbent resin composition
JP2883330B1 (ja) * 1997-07-03 1999-04-19 花王株式会社 高吸水性樹脂組成物
DE19836514A1 (de) 1998-08-12 2000-02-17 Univ Stuttgart Modifikation von Engineeringpolymeren mit N-basischen Gruppe und mit Ionenaustauschergruppen in der Seitenkette
JP2000063844A (ja) * 1998-08-24 2000-02-29 Nippon Chem Ind Co Ltd 難燃剤組成物及び難燃性樹脂組成物
DE60029731T8 (de) * 1999-11-29 2007-11-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Fester Polymerelektrolyt mit hoher Dauerhaftigkeit
DE10024576A1 (de) 2000-05-19 2001-11-22 Univ Stuttgart Kovalent und ionisch vernetzte Polymere und Polymermembranen
US20030216275A1 (en) * 2001-04-18 2003-11-20 Crump Druce K Nª,n -dialkyl aminomethylenephosphonic acids and use thereof
KR100933647B1 (ko) * 2002-01-15 2009-12-23 스미또모 가가꾸 가부시끼가이샤 고분자 전해질 조성물 및 이의 용도
US6987163B2 (en) * 2002-08-07 2006-01-17 Research Foundation Of The State University Of New York Modified polybenzimidazole (PBI) membranes for enhanced polymer electrochemical cells
DE10246459A1 (de) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
EP1626453B1 (fr) * 2004-07-30 2012-03-28 Sumitomo Chemical Company, Limited Pile à combustible à électrolyte polymère solide
JP4435745B2 (ja) * 2005-03-23 2010-03-24 三洋電機株式会社 燃料電池用電解質、膜電極接合体、および燃料電池用電解質の製造方法
JP5539651B2 (ja) * 2006-01-23 2014-07-02 トーマス ヘーリング ホスホン酸含有電解液
WO2007101415A2 (fr) * 2006-02-03 2007-09-13 Universität Stuttgart - Institut für Chemische Verfahrenstechnik Mélanges contenant de l'acide phosphonique et polymères contenant de l'acide phosphonique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2007101415A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559115A (zh) * 2018-05-03 2018-09-21 佛山九陌科技信息咨询有限公司 一种高尺寸稳定型聚芳醚电解质膜材料的制备方法

Also Published As

Publication number Publication date
DE112007000280A5 (de) 2008-10-30
WO2007101415A3 (fr) 2007-12-21
US20090220843A1 (en) 2009-09-03
US20140213672A1 (en) 2014-07-31
JP2016145351A (ja) 2016-08-12
US20170170505A1 (en) 2017-06-15
JP2009525360A (ja) 2009-07-09
JP2013177598A (ja) 2013-09-09
US8637174B2 (en) 2014-01-28
WO2007101415A2 (fr) 2007-09-13

Similar Documents

Publication Publication Date Title
EP1984430A2 (fr) Mélanges contenant de l&#39;acide phosphonique et polymères contenant de l&#39;acide phosphonique
JP5707187B2 (ja) ポリマー溶液の製造方法、ポリマー溶液、薄膜の製造方法および薄膜
JP5037773B2 (ja) 複合体膜並びにその製造方法および使用法
Wang et al. Construction of novel proton transport channels by triphosphonic acid proton conductor-doped crosslinked mPBI-based high-temperature and low-humidity proton exchange membranes
DE102014009170A1 (de) Kombinatorisches Materialsystem für Ionenaustauschermembranen und dessen Verwendung in elektrochemischen Prozessen
Yu et al. Bilayer designed hydrocarbon membranes for all-climate vanadium flow batteries to shield catholyte degradation and mitigate electrolyte crossover
DE10209784A1 (de) Sulfinatgruppen enthaltende Oligomere und Polymere und Verfahren zu ihrer Herstellung
CA2627887C (fr) Procede de fabrication d&#39;electrolyte solide presentant une forte conductivite ionique
WO2008141018A1 (fr) Nouvel électrolyte utilisant un acide de lewis/un complexe acide de bronsted
Yang et al. Polyether ether ketone-based anion exchange membranes with bis-imidazolium cations for all-vanadium redox flow batteries
Wang et al. High-performance proton exchange membranes based on block polybenzimidazole and organic–inorganic fillers with a low acid doping level
KR102227017B1 (ko) 특정 중합체 매트릭스 및 이온교환입자로 이루어진 충전제를 함유하는 이온교환 복합재를 제조하는 방법
Wang et al. Anchoring highly sulfonated hyperbranched PBI onto oPBI: fast proton conduction with low leaching
JP4765401B2 (ja) 固体高分子形燃料電池用膜の製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
Wang et al. Bifunctional Cross-Linking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries
WO2008034399A1 (fr) Mélanges de polymères sulfonés et phosphonés
Abu-Saied et al. Zirconium phosphate based polyvinyl chloride to use as proton conducting membrane for dmfc application
US20160156052A1 (en) Process for preparing an ion-exchange composite material comprising a polymer matrix and a filler consisting of ion-exchange particles
Sutar et al. Proton Conductivity in a Metal–Organic Cube-Based Framework and Derived Hydrogel with Tubular Morphology
Ying et al. Thermal-Tolerant CdPS3-Polybenzimidazole Membranes with High Proton Conductivity
DE102021003228A1 (de) Neuartige phosphonierte nichtfluorierte und teilfluorierte Arylpolymere aus sulfonierten Arylpolymeren und neuartige polymere Perfluorphosphonsäuren aus polymeren Perfluorsulfonsäuren, deren Herstellungsverfahren und Anwendung in Elektromembrananwendungen
Kim et al. Advances in Proton Exchange Membranes for Direct Alcohol Fuel Cells
Abu-Saied et al. PREPARATION AND CHARACTERIZATION OF POLYELECTROLYTE MEMBRANE BASED ON POLYVINYL CHLORIDE (PVC)/ZIRCONIUM PHOSPHATE (ZrP) FOR FUEL CELL APPLICATIONS
WO2003014201A9 (fr) Membranes pour le transport ionique
DE10218367A1 (de) Mehrschichtige Elektrolytmembran

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080903

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAERING, THOMAS

Owner name: UNIVERSITAET STUTTGART INSTITUT FUER CHEMISCHE VER

17Q First examination report despatched

Effective date: 20090403

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITAET STUTTGART INSTITUT FUER CHEMISCHE VERFAHRENSTECHNIK

Owner name: HAERING, THOMAS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITAET STUTTGART INSTITUT FUER CHEMISCHE VERFAHRENSTECHNIK

Owner name: HAERING, THOMAS