EP1963881A1 - Capteur ultrasonique avec valeurs seuils de sensibilite variable dans le temps - Google Patents

Capteur ultrasonique avec valeurs seuils de sensibilite variable dans le temps

Info

Publication number
EP1963881A1
EP1963881A1 EP06819561A EP06819561A EP1963881A1 EP 1963881 A1 EP1963881 A1 EP 1963881A1 EP 06819561 A EP06819561 A EP 06819561A EP 06819561 A EP06819561 A EP 06819561A EP 1963881 A1 EP1963881 A1 EP 1963881A1
Authority
EP
European Patent Office
Prior art keywords
ultrasonic sensor
support points
ultrasonic
temporal
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06819561A
Other languages
German (de)
English (en)
Inventor
Dirk Schmid
Petko Faber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1963881A1 publication Critical patent/EP1963881A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • G01S2007/52012Means for monitoring or calibrating involving a reference ground return

Definitions

  • the invention is based on an ultrasonic sensor according to the preamble of the main claim. From DE 199 63 755 Al a distance sensor device is already known which is used in particular as part of a parking aid or reversing aid for a motor vehicle.
  • the distance sensor device has one or more
  • the distance sensors associated control device for driving the distance or the sensors via a respective signal line.
  • At least one of the distance sensors has different working modes.
  • a switchover between the working modes is feasible.
  • particularly used microwave sensors have a plurality of operating modes, whereas ultrasonic sensors used have only one working mode.
  • Detection of a reflected echo over the reception period to vary.
  • threshold values are specified for specific periods of time. These periods are described by reference points.
  • the point in time refers to the transit time of the reflected ultrasound signal and is thus directly related to the distance that the reflected signal has traveled from the obstacle at which it was reflected to the ultrasound sensor. Disclosure of the invention
  • Receiving characteristic of the ultrasonic sensor is described, is changed from a fixed reference mark. As a result, the reception characteristic of the ultrasonic sensor can be adjusted. Depending on the conditions of use of the sensor, e.g. The environmental conditions, or of a measuring method used, so that the receiving characteristic can be easily adjusted by a variation of the location of the nodes. Thus, an adjustment of the sensitivity of the ultrasonic sensor is possible in a simple manner. Here, in particular, the amount of data is minimized, which is to be transmitted to the control of the ultrasonic sensor to this. Thus it is e.g. possible to cover different ranges with an ultrasonic sensor by means of the displacement of the support points.
  • an ultrasonic sensor having a measurement mode compatible with a previously used sensor.
  • this sensor may have another, improved measurement mode.
  • compatibility with an older ultrasound system is easy to produce, while the same sensor can also be used in a newer measuring system.
  • different measuring methods e.g. a single measurement by direct echo evaluation, a cross-gauging or an interconnection of different sensors to realize a common measurement, the temporal position of the support points is adjusted accordingly.
  • the assignment of the support points to a temporal position is equivalent to the assignment to a certain distance value to a
  • Ultrasonic measurement possible It is also particularly advantageous to choose the threshold value for different temporal positions of the interpolation points differently. As a result, the adaptation of the sensitivity can possibly be better adapted to the requirements for obstacle detection. Furthermore, it is advantageous to switch the temporal positions of the support points between at least a first and a second state. Thus, it is possible to achieve other positions of the nodes and thus a different sensitivity of the sensor solely by the transmission of a switching command.
  • the temporal position of the interpolation points to a fixed time stamp or to the end of a signal transmission.
  • This time can be stored individually for each support point, so that a time reference can be produced in a simple manner for the respective measurement interval.
  • an ultrasonic sensor according to the invention is used in a motor vehicle. Especially during parking operations are for a survey of
  • FIG. 1 shows a schematic view of a plurality of ultrasonic sensors of a distance measuring unit in a vehicle
  • FIG. 2 shows a side view of the vehicle to illustrate the different ranges
  • FIG. 3 shows exemplary embodiments of control signals for the variation according to the invention, in particular the temporal position of the interpolation points,
  • the ultrasonic sensor according to the invention can be used in particular in motor vehicles.
  • FIG. 1 schematically shows a motor vehicle 1 in which ultrasonic sensors 3 designed according to the invention are arranged on a front side 2 and possibly also on the left and on the right corner.
  • ultrasonic sensors 3 designed according to the invention are arranged on a front side 2 and possibly also on the left and on the right corner.
  • a monitoring area 4 of the ultrasonic sensor indicated.
  • Obstacles in a monitoring range of one of the ultrasonic sensors lead to a transmitted ultrasonic signal being reflected from the obstacle to the ultrasonic sensor (direct measurement) or to another ultrasonic sensor (cross-measurement). From the transit time of the ultrasonic signal, the distance to the obstacle can be determined taking into account the speed of sound.
  • the received measurement data from the ultrasonic sensors 3, 3 'to a control unit 5 forwarded.
  • the control unit 5 processes the received data and outputs at a falling below a predetermined distance via a display unit 6 and / or via an acoustic output unit 10 a warning to a driver of the vehicle 1 from.
  • the control unit 5 is used to control the ultrasonic sensors 3, 3 'and possibly to coordinate their measurements to each other.
  • the control unit 5 is used to specify the sensitivity of the ultrasonic sensors 3, 3 '.
  • FIG. 2 shows a central region 8 of the ultrasound signals which are emitted by the ultrasound sensor 3 '.
  • a sensitivity and in particular a duration of a reception of reflective signals is selected such that only obstacles up to a first distance mark 11 are detected.
  • the detection period is selected such that the maximum transit time of the ultrasonic signal from the ultrasonic sensor 3 'to an obstacle and back corresponds to that time which requires a sound signal for the distance between the ultrasonic sensor 3' and the first distance mark 11.
  • the ultrasonic sensor can be adjusted such that distance measurements up to the second distance mark 12 are possible.
  • the first distance mark 11 ' may be e.g. Be over 2.5 meters from the vehicle.
  • the second distance mark 12 may be, for example, 5 meters away from the vehicle.
  • the first distance mark can be chosen so that it corresponds to the maximum range of previous sensors, while the second distance mark 12 corresponds to a measuring distance of a further developed ultrasonic sensor.
  • the further developed ultrasonic sensor between the two distance marks 11, 12 can be switched, it can also be used together with a previous sensor generation, without having to be performed on the ultrasonic sensor itself, a mechanical change.
  • a second control signal 22 is designed such that a data header 13 'is coded in such a way that the sensor is switched to a receive state 15 following the transmission of the corresponding header data. The sensor now listens to received
  • Ultrasound signals and transmits a signal to the control unit 5 when the predetermined threshold for a given time is exceeded by the envelope of a received ultrasonic signal.
  • a third control signal 23 has an extended data header 16.
  • the third control signal 23 serves to interrogate the status of the ultrasonic sensor and to switch the mode of the ultrasonic sensor. In this case, a switch is made between a first state in which the support points for the threshold values for the detection of a received signal have a first time position, and a second state in which these reference points change their time position relative to the first state. Whether a status inquiry or a change of the mode takes place, the ultrasound sensor is informed in a second data header 17. This may be followed by the control data in a data section 18 during a mode changeover. In a further embodiment of the invention, a parameterization of the interpolation points can also take place via the third control signal.
  • the ultrasonic sensor in the second data header 17.
  • the parameterization data are transmitted to the ultrasonic sensor.
  • the control unit 5 several ultrasonic sensors connected, it is possible in a first embodiment that all sensors are addressed simultaneously.
  • the data headers 13, 13 ', 16 have an addressing with which a specific sensor can be addressed.
  • the status query by means of the third control signal 23 can also be used to transmit to the control unit in which measurement mode the ultrasound sensor is located, that is to say which temporal position the interpolation points have or which threshold values are assigned to the interpolation points. It is possible, on the one hand, for this assignment to be stored coded in the control unit 5 for the different modes. In another
  • the individual values can also be transmitted to the control unit 5.
  • the status query it is possible with the status query that error messages about the status of the ultrasonic sensor are also transmitted.
  • base values for the temporal position of the interpolation points and for the threshold values can be stored in the ultrasonic sensors. Should during a data transmission, e.g. By means of a parity bit inquiry, it can be determined that the transmitted data are not valid, so the ultrasonic sensor can switch to a standard operating mode and the data stored there
  • Ultrasonic sensors in a further development stage are preferably designed such that they can read out the control signals shown in FIG. 3 with different data transmission frequencies. It is thus possible, for example, for the data headers to be transmitted to the ultrasound sensor at a lower frequency, that is, at a greater bit spacing. If it is determined in the status query by the control unit 5 that there is a further developed ultrasonic sensor, it is then possible to switch over to a higher frequency for the parameterization in which the bit spacing is reduced. This allows the parameter data to be transmitted to the ultrasonic sensor at a higher speed. For example, the distance between two bit signals can be reduced from about 2 ms to 0.3 ms.
  • FIGS. 4 to 7 show the course of the threshold value for the detection of a received ultrasonic signal over time.
  • the threshold value is plotted on the Y-axis in FIGS. 4 to 7 in each case.
  • the threshold value is the value that the maximum of an envelope of a received ultrasonic signal must exceed in order to positively transmit a detection of a received signal to the control unit 5 at the appropriate time.
  • the time is plotted on the X-axis. As the zero point 40 for the time axis in each case the end of the transmission activity of the ultrasonic sensor is set. Following this, a threshold value 49 is set very high, so that a dead time is predetermined, in which no received signal is detected.
  • This dead time serves to avoid errors due to the decay of the oscillation of the transmitting element of the ultrasonic sensor, generally a piezoelectric element.
  • the zero point is the first interpolation point from which the high value 49, which is also not exceeded by the decay oscillation, must be exceeded as the threshold value. This value remains valid until a first interpolation point 41.
  • the interpolation point course will first be explained with reference to FIG. 4, in which a course 50 of a threshold value is shown.
  • the threshold value drops to a first operating value 42.
  • the temporal position of the third and the fourth support point is chosen so that in the corresponding period reflections from the surface 7 can arrive at the ultrasonic sensor.
  • By raising the threshold value to a second work value 45 these reflections can not lead to misdetection due to the relatively poor reflection on the generally smooth floor surface.
  • FIG. 6 shows a second mode of the ultrasonic sensor.
  • the mode according to FIG. 6 also shows a curve 80 of a threshold curve.
  • the Threshold curve 80 corresponds with respect to the threshold values set to the threshold value course 50 shown in FIG. 4.
  • the temporal position of the interpolation points is changed.
  • the position of the initial interpolation points 41, 43, 44, which relate to the bottom echo and the decay behavior of the ultrasound sensor, is opposite to FIG 4 unchanged threshold value course.
  • 46, 47 each have an enlarged distance from each other and thus also to the zero point 40. Due to the increased distance of the otherwise numerically constant support points 46 ', 47', the end of the measurement interval 48 'is much later. This means that, towards the end of the measurement interval, it is also possible to detect obstacles which are farther away from the ultrasound sensor than in the case of a measurement according to the threshold curve 50, which already ends at the earlier time 48.
  • FIG. 5 shows a further exemplary embodiment with a threshold curve 60 in which two possible measures are combined with one another. On the one hand, it is possible to shift the temporal position of a support point and thus the
  • FIG. 7 shows a further exemplary embodiment with reference to a threshold curve 70, in which not only the temporal position of the interpolation points, but also the respective threshold value assigned to the interpolation points is changed, for example, with respect to the embodiment according to FIG.
  • the threshold value curve 70 the threshold value initially remains constant in the case of a first interpolation point 61, whereas it then decreases in several stages in the case of the following interpolation points 62, in order subsequently to terminate at the first interpolation point Support points 63 to remain constant again.
  • the temporal position of the interpolation points has also changed here.
  • a realization of the assignment of the temporal position of a support point can e.g. be done by a data field is specified, in which the individual entries subsequent nodes, for example, ten nodes, are assigned.
  • These support points can each be assigned a predetermined standard distance. This standard distance is provided in a memory of the ultrasonic sensor.
  • a shift range is transmitted, within which the support point can be moved a bit forward or backward a bit.
  • the distance between the support points can be equidistant.
  • the support points may also have increasing distances with increasing distance to the ultrasonic sensor. This can also change the shift range.
  • the displacement areas around the individual support points are designed such that there are overlap areas of the maximum possible
  • different threshold value curves can be stored in accordance with FIGS. 4-7.
  • a control signal can be used to select one of the curves.
  • new support points or new support points, including a corresponding threshold value it is also possible for new support points or new support points, including a corresponding threshold value, to be transmitted to the ultrasound sensor.
  • All interpolation points can also have different threshold values.
  • the threshold between two nodes is assumed to be constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

La présente invention concerne un capteur ultrasonique, un cycle temporel de la sensibilité étant prédéterminé par des valeurs seuils qui sont associées à des points de d'appui individuels. La position temporelle des points d'appui pour le capteur ultrasonique peut être modifiée.
EP06819561A 2005-12-15 2006-11-16 Capteur ultrasonique avec valeurs seuils de sensibilite variable dans le temps Withdrawn EP1963881A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005059907A DE102005059907A1 (de) 2005-12-15 2005-12-15 Ultraschallsensor
PCT/EP2006/068585 WO2007071507A1 (fr) 2005-12-15 2006-11-16 Capteur ultrasonique avec valeurs seuils de sensibilite variable dans le temps

Publications (1)

Publication Number Publication Date
EP1963881A1 true EP1963881A1 (fr) 2008-09-03

Family

ID=37698058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819561A Withdrawn EP1963881A1 (fr) 2005-12-15 2006-11-16 Capteur ultrasonique avec valeurs seuils de sensibilite variable dans le temps

Country Status (5)

Country Link
US (1) US20100214872A1 (fr)
EP (1) EP1963881A1 (fr)
CN (1) CN101331407A (fr)
DE (1) DE102005059907A1 (fr)
WO (1) WO2007071507A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230366A (ja) * 2009-03-26 2010-10-14 Denso Corp 障害物検出装置
US8566721B2 (en) * 2009-04-30 2013-10-22 Apple Inc. Editing key-indexed graphs in media editing applications
US8286081B2 (en) * 2009-04-30 2012-10-09 Apple Inc. Editing and saving key-indexed geometries in media editing applications
CN102043152B (zh) * 2009-10-10 2012-11-21 建兴电子科技股份有限公司 超音波感测装置与应用于其上的控制方法
DE102009046338B4 (de) * 2009-11-03 2021-06-02 Robert Bosch Gmbh Verfahren, Sende-/Empfangseinrichtung und System zum Erkennen von Objekten
DE102010034263B4 (de) * 2010-08-13 2021-09-23 Valeo Schalter Und Sensoren Gmbh Verfahren zur Erzeugung einer Schwellwertkurve sowie Verfahren zur Auswertung von Signalen eines Ultraschallsensors und Vorrichtung zur Umfelderfassung
DE102010063438A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Schallwellenbasierter Sensor zur Umfelddetektion und Verwendung desselben
DE102010063555A1 (de) * 2010-12-20 2012-06-21 Robert Bosch Gmbh Vorrichtung zum Senden und/oder Empfangen eines Ultraschallsignals
CN102360078B (zh) * 2011-07-19 2013-05-15 深圳市豪恩电子科技股份有限公司 一种测试倒车距离的方法、装置及倒车雷达
KR101316501B1 (ko) * 2011-10-14 2013-10-10 현대자동차주식회사 메쉬형 공간 해석기법을 이용한 주차 공간 탐지방법 및 그 시스템
DE102011121000B4 (de) 2011-12-14 2022-03-17 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen einer Schwellwertkurve für einen Sensor, Sensor für ein Kraftfahrzeug und Kraftfahrzeug mit einem Sensor
DE102011121463A1 (de) * 2011-12-17 2013-06-20 Valeo Schalter Und Sensoren Gmbh Verfahren zur Kommunikation zwischen einem Sensor und einem Steuergerät in einem Kraftfahrzeug, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102012106693A1 (de) * 2012-07-24 2014-01-30 Valeo Schalter Und Sensoren Gmbh Ultraschallsensoranordnung mit einem Ultraschallsensor im Kühlergrill, Kraftfahrzeug und entsprechendes Verfahren
DE102012017667A1 (de) * 2012-09-07 2014-03-13 Valeo Schalter Und Sensoren Gmbh Verfahren zur Erzeugung einer Schwellwertkurve sowie Verfahren zur Auswertung von Signalen eines Ultraschallsensors und Vorrichtung zur Umfelderfassung
JP6430778B2 (ja) 2014-10-22 2018-11-28 株式会社デンソー 物体検知装置
JP2016080641A (ja) * 2014-10-22 2016-05-16 株式会社デンソー 物体検知装置
JP6474228B2 (ja) 2014-10-22 2019-02-27 株式会社デンソー 物体検知装置
JP6430777B2 (ja) 2014-10-22 2018-11-28 株式会社デンソー 物体検知装置
JP6442225B2 (ja) 2014-10-22 2018-12-19 株式会社デンソー 物体検知装置
JP6462308B2 (ja) 2014-10-22 2019-01-30 株式会社デンソー 物体検知装置
JP6404679B2 (ja) 2014-10-22 2018-10-10 株式会社デンソー 物体検知装置
JP6484000B2 (ja) 2014-10-22 2019-03-13 株式会社デンソー 物体検知装置
DE102015122413B4 (de) * 2015-12-21 2021-12-23 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102016100732B4 (de) 2016-01-18 2023-09-21 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs. Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102016101006B4 (de) 2016-01-21 2021-12-23 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen einer aktuellen Schwellwertkurve für einen Ultraschallsensor eines Kraftfahrzeugs, Auswerteeinrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
US10852427B2 (en) * 2017-06-30 2020-12-01 Gopro, Inc. Ultrasonic ranging state management for unmanned aerial vehicles
JP6945399B2 (ja) * 2017-09-13 2021-10-06 株式会社クボタ 障害物検出装置
DE102017129734B4 (de) 2017-12-13 2022-07-14 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Ultraschallsensors eines Kraftfahrzeugs mit Trennung eines detektierten Echos, Ultraschallsensorvorrichtung sowie Fahrerassistenzsystem
KR102557840B1 (ko) * 2018-04-02 2023-07-20 현대모비스 주식회사 주차보조시스템 및 이의 초음파센서 감지성능 향상 방법
GB2584641B (en) 2019-06-04 2021-06-16 Ford Global Tech Llc Parking assistance systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785664A (en) * 1986-04-28 1988-11-22 Kay-Ray, Inc. Ultrasonic sensor
US4975889A (en) * 1988-06-16 1990-12-04 Petrucelli Steven P Acoustic ranging apparatus and method
DE19645339B4 (de) * 1996-11-04 2010-05-06 Valeo Schalter Und Sensoren Gmbh Verfahren zur von den Fahrzeugdaten abhängigen Abstandsmessung aus einem Fahrzeug
DE19963755A1 (de) * 1999-12-30 2001-07-12 Bosch Gmbh Robert Abstandssensorvorrichtung
WO2002048737A1 (fr) * 2000-12-14 2002-06-20 Pepperl + Fuchs Gmbh Montage comparateur adaptatif et capteur de distance acoustique comportant un tel circuit
EP1418546A1 (fr) * 2002-11-07 2004-05-12 Mitsubishi Electric Information Technology Centre Europe B.V. Méthode et appareil pour représenter des objets en mouvement dans une söquence d'images

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007071507A1 *

Also Published As

Publication number Publication date
DE102005059907A1 (de) 2007-06-21
WO2007071507A1 (fr) 2007-06-28
CN101331407A (zh) 2008-12-24
US20100214872A1 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
EP1963881A1 (fr) Capteur ultrasonique avec valeurs seuils de sensibilite variable dans le temps
EP2144083B1 (fr) Procédé de détermination dynamique du niveau de bruit
DE4338743C2 (de) Verfahren und Vorrichtung zum Betrieb eines Ultraschallsensors
DE19645339B4 (de) Verfahren zur von den Fahrzeugdaten abhängigen Abstandsmessung aus einem Fahrzeug
EP1517157B1 (fr) Procédé et dispositif pour mesurer des distances
DE4032713C2 (de) Ultraschallsensor zur Hinderniserfassung
EP1478547B1 (fr) Procede de stationnement d'un vehicule
EP1395846B1 (fr) Procede et dispositif pour l'auto-etalonnage d'un ensemble de capteurs radar
DE102005062539A1 (de) Verfahren zur Kalibrierung eines Sensorsystems
DE3937585C2 (de) Einrichtung zur Abstandsmessung
EP2569650A1 (fr) Procédé et dispositif pour la détermination de la position d'un objet par rapport à un véhicule, en particulier un véhicule à moteur, en vue de leur utilisation dans un système d'assistance du conducteur du véhicule
DE102007042220A1 (de) Objektklassifizierungsverfahren, Einparkhilfeverfahren und Einparkhilfesystem
WO1998043111A1 (fr) Procede de determination de l'ecart vertical entre un objet et un dispositif a position variable
DE19963755A1 (de) Abstandssensorvorrichtung
WO2005116688A2 (fr) Procede, dispositif et module capteur pour mesurer la distance entre un vehicule et un obstacle
WO2009083288A1 (fr) Procédé pour faire fonctionner un système d'aide au stationnement
WO2003016941A2 (fr) Dispositif et procede de surveillance utilisant des signaux d'echo
DE4335728C2 (de) Verfahren und Vorrichtung zur Ultraschall-Abstandsmessung
EP0965057B1 (fr) Systeme d'ecartometrie a ultrasons a signaux de mesure numeriques transmis par multiplexage temporel
EP1801613B1 (fr) Procédé et dispositif destinés à la détection d'objets dans l'environnement d'un véhicule
EP2780737B1 (fr) Dispositif d'aide à la conduite pour un véhicule automobile, véhicule automobile et procédé de fonctionnement d'un dispositif d'aide à la conduite dans un véhicule automobile
EP2322952A2 (fr) Procédé de détection d'un objet, dispositif d'assistance au conducteur et véhicule doté d'un dispositif d'assistance au conducteur
DE10041094A1 (de) Sensorsystem und Verfharen, insbesondere zur Entfernungsbestimmung
EP3574342A1 (fr) Dispositif à capteurs à ultrasons
DE3540704A1 (de) Einrichtung zur abstandsmessung, insbesondere fuer kraftfahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151007

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160218