EP1963575B1 - Collage de papier - Google Patents

Collage de papier Download PDF

Info

Publication number
EP1963575B1
EP1963575B1 EP06824575.2A EP06824575A EP1963575B1 EP 1963575 B1 EP1963575 B1 EP 1963575B1 EP 06824575 A EP06824575 A EP 06824575A EP 1963575 B1 EP1963575 B1 EP 1963575B1
Authority
EP
European Patent Office
Prior art keywords
aqueous dispersion
amine
weight
nitrogen
anionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06824575.2A
Other languages
German (de)
English (en)
Other versions
EP1963575A1 (fr
Inventor
Hans Johansson-Vestin
Jonas LIESÉN
Marie Turunen
Jan Emanuelsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHEMISCHE FABRIK BRUEHL MARE GmbH
Original Assignee
Chemische Fabrik Bruehl Mare GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemische Fabrik Bruehl Mare GmbH filed Critical Chemische Fabrik Bruehl Mare GmbH
Priority to EP06824575.2A priority Critical patent/EP1963575B1/fr
Publication of EP1963575A1 publication Critical patent/EP1963575A1/fr
Application granted granted Critical
Publication of EP1963575B1 publication Critical patent/EP1963575B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/07Nitrogen-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper

Definitions

  • the present invention relates to sizing of paper and more specifically to aqueous dispersions of cellulose-reactive sizing agent and their preparation and use.
  • Cellulose-reactive sizing agents such as those based on alkenyl succinic anhydride (ASA) are widely used in papermaking at neutral or slightly alkaline stock pH's in order to give paper and paper board some degree of resistance to wetting and penetration by aqueous liquids.
  • Paper sizes based on cellulose-reactive sizing agents are generally provided in the form of dispersions containing an aqueous phase and finely divided particles or droplets of the sizing agent dispersed therein.
  • the dispersions are usually prepared with the aid of a dispersant system consisting of an anionic compound, e.g. sodium lignosulfonate, in combination with a high molecular weight amphoteric or cationic polymer, e.g. cationic starch, polyamine, polyamideamine or a vinyl addition polymer.
  • WO 96/17127 discloses aqueous dispersions which comprise a cellulose-reactive sizing agent and colloidal anionic aluminium-modfied silica particles.
  • WO 97/31152 discloses aqueous dispersions which comprise a reactive size and an anionic microparticulate material.
  • the dispersions may also contain not more than 2% (by weight based on the weight of the reactive size) of surfactant.
  • the surfactant can be non-ionic or anionic.
  • WO 98/33979 A1 discloses an aqueous dispersion of cellulose-reactive sizing agent and a dispersant system comprising a cationic organic compound and an anionic stabilizer.
  • US 5969011 A discloses an aqueous dispersion of cellulose-reactive sizing agents comprising a low molecular weight cationic compound and an anionic stabilizer.
  • the alkenyl succinic anhydride is usually delivered to paper mills as a liquid, which is then dispersed prior to its use as a sizing agent and the dispersion obtained is usually used within 2 hours to avoid the problems of insufficient Stability and loss of sizing efficiency.
  • the equipment used to prepare the dispersions provides high shear forces to be able to set surfaces free and produce dispersions having adequate particle size. Such equipment is often both complicated and expensive, and due to the high shear forces usually requires a considerable amount of energy.
  • the invention relates to an aqueous dispersion of cellulose-reactive sizing agent containing an acid anhydride, an anionic polyelectrolyte and a nitrogen-containing organic compound which is an amine or quaternary ammonium thereof having a molecular weight up to 160.
  • the invention further relates to a method for the preparation of an aqueous dispersion of cellulose-reactive sizing agent which comprises dispersing an acid anhydride in an aqueous phase in the presence of an anionic polyelectrolyte and a nitrogen-containing organic compound which is an amine or quaternary ammonium thereof having a molecular weight up to 160.
  • the invention also relates to the use of the aqueous dispersion of cellulose-reactive sizing agent as a stock sizing agent or surface sizing agent in the production of paper.
  • the invention further relates to a process for the production of paper which comprises adding the aqueous dispersion of cellulose-reactive sizing agent to an aqueous cellulosic suspension and dewatering the obtained suspension on a wire as well as a process for the production of paper which comprises applying the aqueous dispersion of cellulose-reactive sizing agent to a cellulosic web.
  • the present invention it has been found that improved sizing of paper can be achieved by using the present aqueous dispersion of cellulose-reactive sizing agent. It has also been found that the present dispersions show better stability over conventional dispersions. Furthermore, it has been found that lower shear forces can be used to prepare the present aqueous dispersions compared to when preparing conventional aqueous dispersions of cellulose-reactive sizing agent.
  • the present invention makes it possible to use simple and energy and investment saving equipment creating low shear forces, such as for example static mixers. The present invention thus offers substantial economical and technical benefits.
  • the cellulose-reactive sizing agent according to the invention can be selected from any acid anhydride-based sizing agent known in the art.
  • the sizing agent is a hydrophobic acid anhydride.
  • Suitable hydrophobic acid anhydrides can be characterized by the general formula (I) below, wherein R 1 and R 2 are independently selected from saturated or unsaturated hydrocarbon groups which suitably contain from 8 to 30 carbon atoms, or R 1 and R 2 together with the -C-O-C- moiety can form a 5 to 6 membered ring, optionally being further substituted with hydrocarbon groups containing up to 30 carbon atoms.
  • Suitable add anhydrides include alkyl and alkenyl succinic anhydrides, e.g. iso-octadecenyl succinic anhydride, iso-octadecyl succinic anhydride, n-hexadecenyl succinic anhydride, dodecenyl succinic anhydride, decenyl succinic anhydride, octenyl succinic anhydride, tri-isobutenyl succinic anhydride, 1-octyl-2-decenyl-succinic anhydride and 1-hexyl-2-octenyl-succinic anhydride.
  • alkyl and alkenyl succinic anhydrides e.g. iso-octadecenyl succinic anhydride, iso-octadecyl succinic anhydride, n-hexadecenyl succinic anhydride,
  • Suitable add anhydrides further include the compounds disclosed in U.S. Pat. Nos. 3,102,064 ; 3,821,069 ; 3,968,005 ; 4,040,900 ; 4,522,686 ; and Re. 29,960 , which are hereby incorporated herein by reference.
  • the cellulose-reactive sizing agent according to the invention may contain one or more acid anhydrides, e.g. one or more alkyl and/or alkenyl succinic anhydrides.
  • the acid anhydride of this invention is liquid at room temperature.
  • the dispersion according to the invention contains a dispersant, or dispersant system, comprising an anionic polyelectrolyte and a nitrogen-containing organic compound.
  • a dispersant or dispersant system
  • these compounds are effective as a dispersant for the add anhydride sizing agent although the anionic polyelectrolyte and nitrogen-containing organic compound may not be effective as a dispersant when used singly.
  • the dispersion is anionic, i.e. the dispersant, or dispersant system, has an overall anionic charge.
  • the anionic polyelectrolyte according to the invention can be selected from organic and inorganic compounds and it can be derived from natural or synthetic sources.
  • the anionic polyelectrolyte has two or more anionic groups which can be of the same or different types.
  • suitable anionic groups i.e. groups that are anionic or rendered anionic in an aqueous phase, include silanol, aluminosilicate, phosphate, phosphonate, sulphate, sulphonate, sulphonic and carboxylic acid groups as well as salts thereof, usually ammonium or alkali metal (generally sodium) salts.
  • the anionic polyelectrolytes may be water-soluble, e.g.
  • the water-dispersable and particulate anionic polyelectrolytes are colloidal, i.e. in the colloidal range of particle size.
  • the colloidal particles suitably have a particle size from 1 nm to 100 nm, preferable from 2 to 70 nm and most preferably from 2 to 40 nm.
  • the water-dispersable and particulate anionic polyelectrolytes may contain aggregated and/or non-aggregated particles.
  • suitable organic anionic polyelectrolytes include anionic polysaccharides like starches, guar gums, celluloses, chitins, chitosans, glycans, galactans, glucans, xanthan gums, mannans, and dextrins.
  • suitable organic anionic polyelectrolytes include synthetic anionic polymers such as condensation polymers, e.g. polyurethanes and naphthalene-based and melamine-based polymers, e.g.
  • anionic or potentially anionic monomers e.g. acrylic acid, methacylic acid, maleic acid, itaconic acid, crotonic acid, vinylsulfonic acid, s
  • Examples of further suitable organic anionic polyelectrolytes include water-soluble branched polymers and water-dispersible crosslinked polymers obtained by polymerization of a monomer mixture comprising one or more ethylenically unsaturated anionic or potentially anionic monomers and, optionally, one or more other ethylenically unsaturated monomers, in the presence of one or more polyfunctional crosslinking agents.
  • a polyfunctional crosslinking agent renders possible preparation of branched polymers, slightly crosslinked polymers and highly crosslinked polymers that are water-dispersible.
  • suitable polyfunctional crosslinking agents include compounds having at least two ethylenically unsaturated bonds, e.g.
  • N,N-methylene-bis-(meth)acrylamide polyethyleneglycol di(meth)acrylate, N-vinyl (meth)acrylamide, divinyl-benzene, triallylammonium salts and N-methylallyl(meth)acrylamide
  • compounds having an ethylenically unsaturated bond and a reactive group e.g. glycidyl (meth)acrylate, acrolein and methylol(meth)acrylamide
  • compounds having at least two reactive groups e.g. dialdehydes like glyoxal, diepoxy compounds and epichlorohydrin.
  • the organic anionic polyelectrolyte usually has a degree of anionic substitution (DS A ) from 0.01 to 1.4, suitably from 0.1 to 1.2 and preferably from 0.2 to 1.0.
  • the anionic polyelectrolyte may contain one or more cationic groups as long as it has an overall anionic charge.
  • the molecular weight of the anionic polyelectrolyte can vary within wide ranges; usually the molecular weight is above 200 and suitably above 500, whereas the upper limit is usually 10 million and preferably 2 million.
  • suitable inorganic anionic polyelectrolytes include anionic siliceous materials, e.g. anionic silica-based materials prepared from silicic acid and days of the smectite type. Usually, these anionic polyelectrolytes have negative silanol, aluminosilicate or hydroxyl groups.
  • suitable inorganic anionic polyelectrolytes include polysilicic add, polysilicates, polyaluminiumsilicates, colloidal silica-based particles, e.g.
  • Preferred anionic polyelectrolytes include silica-based materials, e.g. colloidal silica-based particles.
  • the nitrogen-containing organic compound according to the invention is an amine or quaternary ammonium thereof.
  • Suitable nitrogen-containing organic compounds include primary, secondary and tertiary amines and quaternary ammoniums thereof.
  • Suitable nitrogen-containing organic compounds further include monoamines, diamines and polyamines and quaternary ammoniums thereof.
  • Suitable quaternary ammoniums include protonated, alkylated, arylated and alkarylated amines of the above-mentioned types, which can be formed by reaction of the amines with, for example, acids, e.g. hydrochloric acid, and methyl chloride, dimethyl sulphate and benzyl chloride.
  • the nitrogen-containing organic compound is an amine or quaternary ammonium thereof having one or more hydroxyl groups.
  • one or more hydroxyl groups are present in a terminal position of one or more substituents of the nitrogen-containing compound, i.e. a hydroxyl group terminated amine or quaternary ammonium thereof.
  • suitable nitrogen-containing organic compounds include the following amines and their quaternary ammoniums: diethylene triamine, triethylene tetramine, hexamethylene diamine, diethyl amine, dipropyl amine, di-isopropyl amine, cyclohexylamine, pyrrolidine, guanidine, triethanol amine, monoethanol amine, diethanol amine, 2-methoxyethyl amine, aminoethylethanol amine, alanine and lysine.
  • suitable nitrogen-containing organic compounds include choline hydroxide, tetramethyl ammoniumhydroxide, tetraethyl ammoniumhydroxide.
  • Preferred nitrogen-containing organic compounds include triethanol amine and quaternary ammoniums thereof.
  • the molecular weight of the amine or quaternary ammonium thereof is up to 160.
  • the molecular weight is usually at least 30.
  • the molecular weight of a quaternary ammonium of an amine means the molecular weight of the cationic part of the quaternary ammonium compound, meaning that the anionic part of the quaternary ammonium compound is not included in the molecular weights given above.
  • the aad anhydride may be present in an amount of from about 0.1 to about 50% by weight, suitably from 0.1 to about 30% by weight and preferably from about 1 to about 20% by weight, based on the weight of the aqueous dispersion.
  • the anionic polyelectrolyte is usually present in an amount of up to about 100% by weight, usually from 0.1 to 15% by weight, suitably from 0.5 to 10% by weight and preferably from 1 to 7% by weight, based on the weight of the add anhydride.
  • the nitrogen containing organic compound can be present in an amount of up to 20% by weight, usually from 0.1 to 15% by weight, suitably from 0.5 to 10% by weight and preferably from 1 to 7% by weight, based on the weight of the acid anhydride.
  • anionic polyelectrolyte and nitrogen containing organic compound optional additional compounds may be present in the dispersion.
  • additional compounds include mono-, di- and poly-anionic and non-ionic surfactants and dispersing agents, stabilizers, extenders and preservative agents such as, for example, hydrolyzed acid anhydrides, e.g.
  • hydrolyzed alkyl and alkenyl acid anhydrides as mentioned above, preferably hydrolyzed alkenyl succinic anhydrides, e.g. hydrolyzed acid anhydrides in the form of carboxylic acid and/or carboxylic acid ester derivatives, anionic surfactants like phosphate esters, such as ethoxylated phosphate esters, alkyl sulphates, sulphonates and phosphates, alkylaryl sulphates, sulphonates and phosphates, e.g. sodium lauryl sulphonate and ethoxylated, phosphated isotridecylalcohol.
  • phosphate esters such as ethoxylated phosphate esters, alkyl sulphates, sulphonates and phosphates, alkylaryl sulphates, sulphonates and phosphates, e.g. sodium lauryl sulphonate and ethoxylated,
  • the content of such additional compounds in the dispersion can be from 0.1 to 15% by weight, suitably from 1 to 10% by weight and preferably from 2 to 7% by weight, based on the weight of the acid anhydride. Water is also present in the dispersion and may constitute the remainder of the dispersion up to 100% by weight.
  • the dispersion according to the invention can be produced by forming a mixture containing the acid anhydride, anionic polyelectrolyte and nitrogen-containing organic compound as defined above and dispersing the mixture in the presence of water.
  • the components of the dispersion may be admixed in any order but preferably the anionic polyelectrolyte and the nitrogen-containing organic compound are mixed and diluted with water to appropriate concentration, and then the acid anhydride is dispersed therein.
  • the mixture may be dispersed by using suitable dispersing equipment providing sufficient degree of dispersing, e.g. a static mixer providing relatively low shear forces.
  • the obtained dispersion contains droplets of acid anhydride usually having a droplet size of from 0.1 to 10 ⁇ m in diameter.
  • the aqueous sizing dispersions according to the invention can be used in conventional manner in the production of paper using any type of cellulosic fibres and they can be used both for surface sizing and internal sizing.
  • the term "paper”, as used herein, is meant to include not only paper but all types of cellulosic products in sheet and web form including, for example, board and paperboard.
  • the cellulosic suspension and finished paper can also contain mineral fillers, and usually the content of cellulosic fibres is at least 50% by weight, based on dry cellulosic suspension or finished paper.
  • the present invention also relates to a process for the production of paper in which the present aqueous sizing dispersion is either added to an aqueous cellulosic suspension or applied to a cellulosic sheet or web.
  • the amount of cellulose-reactive sizing agent either added to the cellulosic suspension to be drained on a wire to form paper, or applied to the surface of a cellulosic sheet or web as a surface size, usually at the size press is from 0.01 to 1.0% by weight, based on dry cellulosic suspension and optional fillers, preferably from 0.05 to 0.5% by weight, where the dosage is mainly dependent on the quality of the pulp or paper to be sized and the level of sizing desired.
  • the aqueous sizing dispersions according to the invention are particularly useful in the manufacture of paper from an aqueous cellulosic suspension that has a high conductivity.
  • the conductivity of the suspension that is dewatered on the wire can be within the range of from 0.3 mS/cm to 10 mS/cm. According to this invention, good results can be achieved when the conductivity is at least 2.0 mS/cm, notably at least 3.5 mS/cm, particularly at least 5.0 mS/cm and even at least 7.5 ms/cm.
  • Conductivity can be measured by standard equipment such as, for example, a WTW LF 330 instrument supplied by Christian Bemer.
  • the values referred to above are suitably determined by measuring the conductivity of the cellulosic suspension that is fed into or present in the headbox of the paper machine or, alternatively, by measuring the conductivity of white water obtained by dewatering the suspension.
  • High conductivity levels mean high contents of salts (electrolytes) which can be derived from the materials used to form the stock, from various additives introduced into the stock, from the fresh water supplied to the process, etc. Further, the content of salts is usually higher in processes where white water is extensively recirculated, which may lead to considerable accumulation of salts in the water circulating in the process.
  • Chemicals conventionally added to the cellulosic suspension in papermaking such as retention aids, aluminium compounds, dyes, wet-strength resins, optical brightening agents, etc., can of course be used in conjunction with the present dispersion.
  • aluminium compounds include alum, aluminates and polyaluminium compounds, e.g. polyaluminium chlorides and sulphates.
  • suitable retention aids include cationic polymers, anionic inorganic materials in combination with organic polymers, e.g. bentonite in combination with cationic polymers, silica-based sols in combination with cationic polymers or cationic and anionic polymers.
  • Suitable cationic polymers include cationic starch, acrylate-based and acrylamide-based polymers, polyethyleneimine, polyamines, polyamidoamines and poly(diallyldimethyl ammoniumchloride) and combinations thereof.
  • Preferred retention aids include cationic starch and cationic acrylamide-based polymers.
  • the dispersions are used in combination with a retention system comprising at least one cationic polymer and anionic siliceous material, e.g. silica-based particles or bentonite.
  • the present aqueous sizing dispersion can be prepared just prior to introducing it into the cellulosic suspension by bringing into contact the acid anhydride and nitrogen containing organic compound with an anionic polyelectrolyte such as, for example, an aqueous siliceous material, e.g. a silica-based sol or bentonite slurry.
  • a retention aid e.g. an anionic siliceous material
  • Aqueous dispersions according to the invention were prepared by dispersing alkenyl succinic anhydride (ASA) based on an olefin fraction comprising iso-hexadecenyl and iso-octadecenyl succinic anhydride in the presence of a mixture of anionic polyelectrolyte and amine in a Hash pipe static mixer.
  • ASA alkenyl succinic anhydride
  • Aqueous dispersions used for comparison in this and further examples were prepared in a similar manner, except that no amine, no colloidal silica, high molecular weight amines and/or amines having no hydroxyl groups were used.
  • the anionic polyelectrolyte used in this example was colloidal silica (Eka NP 590) in the form of an aqueous sol having a SiO 2 content of 8.1% by weight and containing silica particles with a specific surface area of 850 m 2 /g which were aluminum-modified.
  • the amine used in this example was triethanol amine (TEA) having a molecular weight of 149.
  • the anionic polyelectrolyte and amine were mixed in the presence of water to form a mixture which was pumped into one end of the pipe at a flow of 3.17 l/min, and concentrated ASA was pumped in from the side of the pipe at a flow of 0.167 l/min.
  • the pressure drop over the mixing unit was 3.4 bar.
  • the obtained dispersion had an ASA content of 5% by weight, anionic polyelectrolyte content (in this example; SiO 2 content) of 5.0% by weight, based on the ASA, and amine content varying from 0 to 2.0% by weight, based on the ASA.
  • Dispersions 1 to 4 were prepared, as shown in Table 1, in which the given SiO 2 and amine contents are based on ASA.
  • Table 1 Dispersion No. SiO 2 (%) TEA (%) 1 5 0 2 5 0.5 3 5 1.0 4 5 2.0
  • the particle size of the ASA droplets was measured in a Malvem Mastersizer Microplus after dilution of the dispersions with water to an ASA content of 0.5% by weight. The results are shown in Table 2.
  • D(v 0.1), D(v 0.5) and D(v 0.9) means that 10, 50 and 90% of the particles, respectively, had a diameter less than the given size.
  • Table 2 Dispersion Particle Size ( ⁇ m) D(v 0.1) D(v 0.5) D(v 0.9) 1 0.43 4.64 12.42 2 0.82 2.32 6.88 3 0.50 1.78 5.40 4 0.59 1.43 5.30
  • Dispersion Nos. 2 to 4 resulted in smaller particle sizes over the dispersion used for comparison, Dispersion No. 1.
  • Sizing efficiency was evaluated by preparing hand sheets according to the standard method SCAN-C26:76 and sizing was measured as Cobb-60 values according to the standard method Tappi T441.
  • Paper sheets were prepared according to a process in which the dispersions were added to an aqueous cellulosic suspension comprising recycled pulp having a fiber concentration of 0.5 g/l, conductivity of 0.7 mS/cm and pH around 7.0.
  • the dispersions were added in amounts of 0.5, 1.0 and 1.5 kg/t, calculated as ASA and based on the weight of dry cellulosic suspension.
  • a retention system was used comprising 6 kg/t of cationic potato starch (Perlbond 970) and 0.5 kg/t of silica sol (Eka NP 442), calculated as dry substances on dry cellulosic suspension.
  • Dispersion Nos. 2 to 4 resulted in improved sizing efficiency over the dispersion used for comparison, Dispersion No. 1.
  • Dispersions were prepared and sizing efficiency of the dispersions was evaluated according to the general procedures of Example 1, except that varying contents of silica were used and the amine content was constant.
  • the dispersions had an ASA content of 5% by weight, based on the weight of the dispersion.
  • Table 4 shows the results.
  • Table 4 Dispersion No. SiO 2 (%) TEA (%) Cobb-60 (1 kg/t) 5 0 2 29 6 1 2 25 7 3 2 23 8 4 2 21 9 5 2 25
  • Dispersion Nos. 6 to 9 resulted in improved sizing efficiency over the dispersion used for comparison, Dispersion No. 5.
  • Dispersions were prepared and evaluated according to the general procedures of Example 1. Comparisons of the dispersions were made in aqueous cellulosic suspensions having increased conductivity by addition of calcium chloride. Conductivity of the suspensions was measured by using a WTW LF 330 instrument from Christian Bemer. The results are presented in table 5. Table 5 Dispersion No. ASA (%) SiO 2 (%) TEA (%) Conductivity mS/cm Cobb-60 0.5 kg/t 1.0 kg/t 1.5 kg/t 10 5 0 2 4 128 123 117 11 5 5 2 4 126 108 48 10 5 0 2 8 146 141 135 11 5 5 2 8 125 105 47
  • Dispersion No. 11 showed considerably better sizing efficiency than the dispersion used for comparison, Dispersion No. 10, when the conductivity of the suspension was increased.
  • Dispersions were prepared and evaluated according to the general procedures of Example 1, except that different amines were used.
  • the obtained dispersion had an ASA content of 5% by weight, SiO 2 content of 5.0% by weight, based on the ASA, and amine content of 2.0% by weight, based on the ASA.
  • the amines used were triethanol amine (TEA) having a molecular weight of 149, diethylene triamine (DETA) having a molecular weight of 103, a fractioned coconut fatty amine (FCA) having a molecular weight of about 200, and a dihydrogenated tallow dimethylammonium chloride (DTDMAC) having a molecular weight of about 530.
  • TEA triethanol amine
  • DETA diethylene triamine
  • FCA fractioned coconut fatty amine
  • DTDMAC dihydrogenated tallow dimethylammonium chloride
  • Table 7 Dispersion No. Amine in Dispersion Cobb-60 0.5 kg/t 1.0 kg/t 1.5 kg/t 12 DTDMAC 106 44 29 13 FCA 114 83 39 14 DETA 87 26 23 15 TEA 51 26 21
  • Dispersion Nos. 14 and 15 which contained amines having a molecular weight less than 180 (Dispersion Nos. 14 and 15) and having hydroxyl groups (Dispersion No.15), resulted in smaller particle size and considerably improved sizing efficiency over the dispersions used for comparison, Dispersion Nos. 12 and 13. This also means that less energy was required to set surfaces free according to the present invention.
  • Dispersions were prepared and evaluated according to the general procedures of Example 1, except that different anionic polyelectrolytes were used.
  • the obtained dispersion had an ASA content of 5% by weight, SiO 2 content of 5.0% by weight, based on the ASA, and triethanol amine content 0 or 2.0% by weight, based on the ASA.
  • the anionic polyelectrolytes used are shown in Table 8.
  • the bentonites were slurried in water (5% by weight bentonite) and stored for 5 days in order to achieve sufficient swelling and delamination.
  • Particle size was determined and stability was evaluated. Stability was measured 2 hours after preparation. If still stable after 24 hours, the particle size was determined again. The term "sep.” means separation. The results are shown in Table 9. Table 9 Dispersion No. Anionic Polyelectrolyte Amine Content Particle Size ( ⁇ m) Stability / Separation D(v 0.5) (24 h) (%) D(v 0.1) D(v 0.5) D(v 0.9) (2 h) 16 A - 0.21 1.21 8.29 Small sep. - 17 A 2 0.10 0.27 0.83 Stable 0.27 18 B - 0.25 1.26 6.69 Small sep. - 19 B 2 0.16 0.33 0.80 Stable 0.27 20 C - 0.27 1.99 13.24 Small sep.
  • Table 10 Dispersion No. Anionic Polyelectrolyte Amine Content (%) Cobb-60 0.5 kg/t 0.75 kg/t 1.0 kg/t 16 A - 128 103 64 17 A 2 89 44 29 18 B - 129 62 33 19 B 2 91 40 33 20 C - 116 102 66 21 C 2 128 45 31 22 D - 120 112 91 23 D 2 88 34 28 24 E - 122 127 120 25 E 2 99 41 29
  • Dispersion Nos. 17, 19, 21, 23, and 25 which contained both anionic polyelectrolyte and nitrogen-containing organic compound, showed better sizing efficiency, better stability and resulted in smaller particle size over the dispersions used for comparison, Dispersion Nos. 16, 18, 20, 22 and 24, which contained no nitrogen-containing organic compound.
  • Dispersions were prepared and particle size and sizing efficiency of the dispersions were evaluated according to the general procedures of Example 1, except that different surfactants and varying contents of the surfactants were used.
  • the anionic polyelectrolyte used was colloidal silica (Eka NP 780) in the form of aqueous sol having a SiO 2 content of 7.5% by weight and containing silica particles with a specific surface area of about 900 m 2 /g and which were aluminium modified.
  • the amine used was triethanol amine (TEA).
  • the obtained dispersion had an ASA content of 5% by weight, SiO 2 content of 5.0% by weight, based on the ASA, and amine content of 2.0% by weight, based on the ASA.
  • Dispersion No. 26 No surfactant was incorporated into the Dispersion No. 26. Hydrolyzed ASA was incorporated as surfactant into Dispersion Nos. 27 and 28.
  • the surfactant used in Dispersion No. 29 was a phosphate ester (poly(oxy-1,2-ethanediyl) alpha-isotridecyl-omega-hydroxyphosphate).
  • the surfactant contents in the dispersions were based on ASA. The results of the particle size measurements are shown in Table 11. Table 11 Dispersion No.
  • Dispersion Nos. 27, 28 and 29 containing a surfactant resulted in smaller particle size and showed better sizing efficiency than the dispersion containing no surfactant.
  • Example 6 The dispersions of Example 6 were evaluated in terms of sizing efficiency when using aqueous cellulosic suspensions comprising unbleached kraft pulp having varying conductivities. The results are shown in Table 13.
  • Table 13 Dispersion No. Conductivity mS/cm Cobb-60 0.5 kg/t 0.75 kg/t 1.0 kg/t 26 0.4 100 72 37 27 0.4 86 42 27 28 0.4 40 28 23 29 0.4 49 28 22 28 0.7 44 27 22 26 4.0 97 100 76 27 4.0 89 52 28 28 4.0 44 27 23 29 4.0 102 98 76
  • Dispersion Nos. 27, 28 and 29 containing a surfactant showed better sizing efficiency than the dispersion containing no surfactant, Dispersion No. 26.

Landscapes

  • Paper (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Claims (20)

  1. Dispersion aqueuse de produit d'encollage réactif à la cellulose contenant un anhydride d'acide, un polyélectrolyte anionique et un composé organique contenant de l'azote, lequel est une amine ou un ammonium quaternaire de celle-ci présentant un poids moléculaire allant jusqu'à 160.
  2. Procédé pour la préparation d'une dispersion aqueuse d'un produit d'encollage réactif à la cellulose, lequel comprend la dispersion d'un anhydride d'acide dans une phase aqueuse en présence d'un polyélectrolyte anionique et d'un composé organique contenant de l'azote, lequel est une amine ou un ammonium quaternaire de celle-ci présentant un poids moléculaire allant jusqu'à 160.
  3. Dispersion aqueuse selon la revendication 1, ou procédé selon la revendication 2, dans lesquels le composé contenant de l'azote possède un ou plusieurs groupe(s) hydroxyle(s).
  4. Dispersion aqueuse selon la revendication 3, ou procédé selon la revendication 3, dans lesquels un ou plusieurs groupe(s) hydroxyle(s) est (sont) présent(s) dans une position terminale d'un ou de plusieurs substituant(s) du composé contenant de l'azote.
  5. Dispersion aqueuse selon l'une quelconque des revendications 1, 3 et 4, ou procédé selon l'une quelconque des revendications 2 à 4, dans lesquels le composé contenant de l'azote est une amine.
  6. Dispersion aqueuse selon l'une quelconque des revendications 1 et 3 à 5, ou procédé selon l'une quelconque des revendications 2 à 5 dans lesquels le composé contenant de l'azote est un ammonium quaternaire.
  7. Dispersion aqueuse selon l'une quelconque des revendications 1 et 3 à 6, ou procédé selon l'une quelconque des revendications 2 à 6, dans lesquels le composé contenant de l'azote est une diéthylènetriamine , une triéthylènetétramine, une hexaméthylènediamine, une diéthylamine, une dipropylamine, une diisopropylamine, une cyclohexylamine, une pyrrolidine, une guanidine, une triéthanolamine, une monoéthanolamine, une diéthanol amine, une 2-méthoxyéthylamine, une aminoéthyléthanolamine, de l'alanine, de la lysine, un hydroxyde de choline, un hydroxyde d'ammoniumtétraméthyle ou un hydroxyde d'ammoniumtétraéthyle.
  8. Dispersion aqueuse selon l'une quelconque des revendications 1 et 3 à 7, ou procédé selon l'une quelconque des revendications 2 à 7, dans lesquels le polyélectrolyte anionique est une matière inorganique.
  9. Dispersion aqueuse selon la revendication 8 ou procédé selon la revendication 8, dans lesquels le polyélectrolyte anionique est un matériau siliceux.
  10. Dispersion aqueuse selon la revendication 9 ou procédé selon la revendication 9, dans lesquels le polyélectrolyte anionique est de la bentonite.
  11. Dispersion aqueuse selon la revendication 9 ou procédé selon la revendication 9, dans lesquels le polyélectrolyte anionique comporte des particules à base de silice.
  12. Dispersion aqueuse selon l'une quelconque des revendications 1 et 3 à 11, ou procédé selon l'une quelconque des revendications 2 à 11, dans lesquels l'anhydride d'acide est de l'anhydride iso-octadécénylsuccinique, de l'anhydride iso-octadécylsuccinique, de l'anhydride n-hexadécénylsuccinique, de l'anhydride dodécénylsuccinique, de l'anhydride décénylsuccinique, de l'anhydride octénylsuccinique, de l'anhydride tri-isobuténylsuccinique, de l'anhydride 1-octyl-2-décénylsuccinique ou de l'anhydride 1-hexyl-2-octénylsuccinique.
  13. Dispersion aqueuse selon l'une quelconque des revendications 1 et 3 à 12, ou procédé selon l'une quelconque des revendications 2 à 12, dans lesquels l'anhydride d'acide est présent dans une quantité allant de 0,1 à 30% en poids sur la base du poids de la dispersion aqueuse.
  14. Dispersion aqueuse selon l'une quelconque des revendications 1 et 3 à 13, ou procédé selon l'une quelconque des revendications 2 à 13, dans lesquels le polyélectrolyte anionique est présent dans une quantité allant de 0,5 à 10% en poids, sur la base du poids de l'anhydride d'acide.
  15. Dispersion aqueuse selon l'une quelconque des revendications 1 et 3 à 14, ou procédé selon l'une quelconque des revendications 2 à 14, dans lesquels le composé organique contenant de l'azote est présent dans une quantité allant de 0,5 à 10% en poids sur la base du poids de l'anhydride d'acide.
  16. Dispersion aqueuse selon l'une quelconque des revendications 1 et 3 à 15, ou procédé selon l'une quelconque des revendications 2 à 15, dans lesquels la dispersion comporte, de plus, un surfactant anionique.
  17. Dispersion selon la revendication 16 ou procédé selon la revendication 16 dans lesquels le surfactant anionique est un anhydride d'acide hydrolysé.
  18. Utilisation de la dispersion aqueuse d'un produit d'encollage réactif à la cellulose selon l'une quelconque des revendications 1 à 17 destiné à un collage interne ou à un collage de surface dans la production de papier.
  19. Procédé pour la production de papier qui comprend l'addition d'une dispersion aqueuse d'un agent d'encollage réactif à la cellulose à une suspension cellulosique aqueuse et la déshydratation de la suspension obtenue sur une toile, ou en appliquant une dispersion aqueuse d'un produit d'encollage réactif à la cellulose à la surface d'une plaque ou d'une nappe de cellulose, dans lequel la dispersion est une dispersion aqueuse d'agent d'encollage réactif à la cellulose selon l'une quelconque des revendications 1 et 3 à 17.
  20. Procédé selon la revendication 19 dans lequel la suspension cellulosique aqueuse présente une conductivité d'au moins 2,0 mS/cm.
EP06824575.2A 2005-12-21 2006-11-24 Collage de papier Active EP1963575B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06824575.2A EP1963575B1 (fr) 2005-12-21 2006-11-24 Collage de papier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05112656 2005-12-21
EP06824575.2A EP1963575B1 (fr) 2005-12-21 2006-11-24 Collage de papier
PCT/SE2006/050506 WO2007073321A1 (fr) 2005-12-21 2006-11-24 Collage de papier

Publications (2)

Publication Number Publication Date
EP1963575A1 EP1963575A1 (fr) 2008-09-03
EP1963575B1 true EP1963575B1 (fr) 2014-06-04

Family

ID=37056579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06824575.2A Active EP1963575B1 (fr) 2005-12-21 2006-11-24 Collage de papier

Country Status (14)

Country Link
EP (1) EP1963575B1 (fr)
JP (1) JP5363114B2 (fr)
KR (1) KR101257451B1 (fr)
CN (1) CN101346513B (fr)
AR (1) AR058371A1 (fr)
AU (1) AU2006327338B2 (fr)
BR (1) BRPI0620351B1 (fr)
CA (1) CA2634697C (fr)
MY (1) MY146790A (fr)
NO (1) NO20082691L (fr)
RU (1) RU2429323C2 (fr)
TW (1) TWI321178B (fr)
WO (1) WO2007073321A1 (fr)
ZA (1) ZA200806278B (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201000716A (en) * 2008-01-28 2010-01-01 Akzo Nobel Nv A method for production of paper
AT506695B1 (de) * 2008-11-14 2009-11-15 Kemira Chemie Ges Mbh Zusammensetzung zur papierleimung
CN102182111B (zh) * 2011-03-12 2012-12-26 牡丹江恒丰纸业股份有限公司 一种纸张表面施胶剂的制备方法
CN102268839B (zh) * 2011-07-25 2013-04-10 华南理工大学 Pickering乳液型ASA造纸施胶剂的制备方法
CN102493272B (zh) * 2011-11-18 2014-07-16 山东轻工业学院 一种asa乳液施胶剂及其制备方法
CN102493273B (zh) * 2011-11-19 2014-02-12 山东轻工业学院 一种烯基琥珀酸酐乳液施胶剂及其制备方法
CN102493275A (zh) * 2011-12-08 2012-06-13 山东轻工业学院 一种稳定的asa造纸施胶乳液及其制备方法
CN102493276B (zh) * 2011-12-08 2015-04-15 山东轻工业学院 一种稳定的烯基琥珀酸酐造纸施胶乳液及其制备方法
CN103194934B (zh) * 2013-03-29 2016-01-06 华南理工大学 一种由片状固体颗粒乳化的造纸施胶剂的制备方法
CN103437244B (zh) * 2013-09-02 2015-06-10 齐鲁工业大学 一种三聚氰胺改性锂皂石稳定的asa施胶乳液及其制备方法
CN103451996B (zh) * 2013-09-02 2016-01-06 齐鲁工业大学 一种三聚氰胺改性锂皂石乳化剂及其乳化asa的方法
CN103724437A (zh) * 2014-01-09 2014-04-16 福建农林大学 一种胍盐接枝羧甲基纤维素多功能造纸助剂及其制备方法
FI126960B (en) 2014-02-06 2017-08-31 Kemira Oyj Stabilized adhesive formulation
CN105815807A (zh) * 2016-04-19 2016-08-03 滁州卷烟材料厂 一种能缓解疲劳的烟草薄片烟丝及其制备方法
CN105768181A (zh) * 2016-04-19 2016-07-20 滁州卷烟材料厂 一种口感甜润的烟草薄片烟丝及其制备方法
CN105901761A (zh) * 2016-04-19 2016-08-31 滁州卷烟材料厂 一种含山竹壳的烟草薄片烟丝及其制备方法
CN105768188A (zh) * 2016-04-19 2016-07-20 滁州卷烟材料厂 一种含松树皮的烟草薄片烟丝及其制备方法
CN105768183A (zh) * 2016-04-19 2016-07-20 滁州卷烟材料厂 一种安神助眠烟草薄片烟丝及其制备方法
CN105747265A (zh) * 2016-04-19 2016-07-13 滁州卷烟材料厂 一种清香型烟草薄片烟丝及其制备方法
CN105768187A (zh) * 2016-04-19 2016-07-20 滁州卷烟材料厂 一种添加黄瓜藤的烟草薄片烟丝及其制备方法
CN111041889B (zh) * 2019-12-13 2022-04-29 保定钞票纸业有限公司 纸张表面处理用胶液、纸张处理方法、所得纸张及其应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036520B2 (ja) * 1982-05-13 1985-08-21 出光興産株式会社 製紙用サイズ剤エマルジョン
JPS61231298A (ja) * 1984-11-02 1986-10-15 第一工業製薬株式会社 製紙用サイズ剤
AR244372A1 (es) * 1990-04-11 1993-10-20 Hercules Inc Pretratamiento de rellenador con dimero de reteno cationico.
US6315824B1 (en) * 1996-02-02 2001-11-13 Rodrigue V. Lauzon Coacervate stabilizer system
GB9603909D0 (en) * 1996-02-23 1996-04-24 Allied Colloids Ltd Production of paper
SE9704930D0 (sv) * 1997-02-05 1997-12-30 Akzo Nobel Nv Sizing of paper
SE9704932D0 (sv) * 1997-02-05 1997-12-30 Akzo Nobel Nv Aqueous dispersions of hydrophobic material
US5969011A (en) * 1997-02-05 1999-10-19 Akzo Nobel Nv Sizing of paper
SE9704931D0 (sv) * 1997-02-05 1997-12-30 Akzo Nobel Nv Sizing of paper
US6093217A (en) * 1997-02-05 2000-07-25 Akzo Nobel N.V. Sizing of paper
US6491790B1 (en) * 1998-09-10 2002-12-10 Bayer Corporation Methods for reducing amine odor in paper
EP1314822A1 (fr) * 2001-11-19 2003-05-28 Akzo Nobel N.V. Procédé de collage de papier et composition de collage
US6869471B2 (en) * 2001-11-19 2005-03-22 Akzo Nobel N.V. Process for sizing paper and sizing composition
PT1488040E (pt) * 2002-03-04 2012-06-01 Amcol International Corp Papel e materiais e processos para a sua produção

Also Published As

Publication number Publication date
NO20082691L (no) 2008-07-21
ZA200806278B (en) 2009-04-29
JP2009521610A (ja) 2009-06-04
CA2634697A1 (fr) 2007-06-28
MY146790A (en) 2012-09-28
CN101346513A (zh) 2009-01-14
KR101257451B1 (ko) 2013-04-23
JP5363114B2 (ja) 2013-12-11
TWI321178B (en) 2010-03-01
CA2634697C (fr) 2014-04-15
AU2006327338A1 (en) 2007-06-28
AU2006327338B2 (en) 2011-06-23
WO2007073321A1 (fr) 2007-06-28
RU2429323C2 (ru) 2011-09-20
BRPI0620351A2 (pt) 2011-11-08
AR058371A1 (es) 2008-01-30
KR20080083144A (ko) 2008-09-16
TW200736463A (en) 2007-10-01
BRPI0620351B1 (pt) 2018-02-14
EP1963575A1 (fr) 2008-09-03
RU2008129682A (ru) 2010-01-27
CN101346513B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
EP1963575B1 (fr) Collage de papier
US5969011A (en) Sizing of paper
CA2393797C (fr) Sols a base de silice
AU729833B2 (en) Sizing of paper
US6093217A (en) Sizing of paper
RU2601465C2 (ru) Способ получения бумаги и картона
JP2004514796A (ja) 紙のサイジング方法
AU729702B2 (en) Aqueous dispersions of hydrophobic material
EP1470292B1 (fr) Procede de fabrication de papier
JP3998638B2 (ja) 紙のサイジング方法及びサイジング組成物
US7892398B2 (en) Sizing of paper
US6869471B2 (en) Process for sizing paper and sizing composition
MX2008008274A (en) Sizing of paper
RU2237014C2 (ru) Золи на основе двуокиси кремния
NZ617482B2 (en) Process for the production of paper and board

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081106

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AKZO NOBEL PULP AND PERFORMANCE CHEMICALS AB

Owner name: AKZO NOBEL N.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140103

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CHEMISCHE FABRIK BRUEHL MARE GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 671190

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006041816

Country of ref document: DE

Effective date: 20140717

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 671190

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140604

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141006

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141004

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006041816

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

26N No opposition filed

Effective date: 20150305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006041816

Country of ref document: DE

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141124

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061124

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140604

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231129

Year of fee payment: 18