EP1952516A1 - Dispositif autonome de generation d'energie electrique - Google Patents

Dispositif autonome de generation d'energie electrique

Info

Publication number
EP1952516A1
EP1952516A1 EP06807535A EP06807535A EP1952516A1 EP 1952516 A1 EP1952516 A1 EP 1952516A1 EP 06807535 A EP06807535 A EP 06807535A EP 06807535 A EP06807535 A EP 06807535A EP 1952516 A1 EP1952516 A1 EP 1952516A1
Authority
EP
European Patent Office
Prior art keywords
excitation coil
central opening
coil
arm
magnetic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06807535A
Other languages
German (de)
English (en)
Inventor
Christian Bataille
Christophe Cartier-Millon
Stéphane FOLLIC
Jean-Pierre Pin
Didier Vigouroux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP1952516A1 publication Critical patent/EP1952516A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems

Definitions

  • the present invention relates to an autonomous device for generating electrical energy.
  • the device according to the invention uses the variation of the magnetic flux through an induction coil to create an electric current.
  • the present invention also relates to a remote control device powered by the autonomous device for generating electrical energy.
  • autonomous device for generating electrical energy is intended to mean a device making it possible to create an electric current without a source of current and without connection to an electrical network, that is to say wirelessly.
  • This converter comprises a permanent magnet and a soft magnetic element both forming a magnetic circuit and an electrical coil surrounding a portion of the magnetic circuit.
  • the soft magnetic element and the permanent magnet are rotatably mounted relative to each other, which during a movement allows a flow variation to be created in the magnetic circuit passing through the coil, resulting in the generation of an electric current in the coil.
  • WO 2004/093299 provides for using the converter in an autonomous energy switch, that is to say without power source and wireless.
  • the electric current generated by the variation of the magnetic flux passing through the coil makes it possible to supply a radio signal transmitter.
  • the radio signal is sent to a remote receiver which then starts an electrical appliance.
  • the switch is very far from the receiver or is separated from it by many obstacles, the generated radio signal is not always sufficient to systematically reach the receiver.
  • it is necessary to increase the number of turns of the coil which increases the size of the switch and which, given the cost of the copper wire used for winding, makes it much more expensive.
  • the object of the invention is to provide an electric power generation device of the type described above having improved performance while maintaining a small footprint and a modest cost.
  • an autonomous device for generating electrical energy comprising: an excitation coil provided with a central opening, a magnetic circuit passing through the central opening of the coil and formed of a fixed part and a moving part movable with respect to the fixed part for varying the magnetic flux through the excitation coil and creating an electric current in the excitation coil, characterized in that the magnetic circuit passes through the opening several times center of the excitation coil by forming at least one loop.
  • the magnetic circuit crosses twice the central opening of the excitation coil forming a loop.
  • the magnetic circuit crosses twice the central opening of the excitation coil by its fixed part forming a loop.
  • the current generated by the variation of magnetic flux through the coil in the device according to the invention is multiplied by one factor two compared to that generated in a device of the prior art in which the magnetic circuit passes only once the coil.
  • the energy E stored in the coil is thus also multiplied by two in the device according to the invention, compared to that generated in a device of the prior art.
  • the ferromagnetic material used to make the magnetic circuit such as for example iron
  • the copper used to form the turns of the coil is considerably less expensive than the copper used to form the turns of the coil. It would be perfectly advantageous and economical to minimize the amount of copper needed to improve the performance of the device by compensating for it by increasing the amount of iron used.
  • the coil will make it possible to recover the energy associated with a variation of flux and the speed of this variation.
  • the increase in power generation performance is also achieved by adjusting the peak voltage that is related to the rate of change of the magnetic flux through the coil.
  • the speed of variation of the magnetic flux corresponds to the speed of movement of the moving part of the magnetic circuit relative to its fixed part.
  • the device according to the invention makes it possible to obtain improved performances compared to those of a device of the prior art without increasing its size and its bulk or to obtain performances equivalent to those of a device of the prior art. prior art with a smaller size and bulk.
  • the fixed part comprises a base connected to two non-contiguous arms, a first arm and a second arm, each passing through the central opening of the excitation coil.
  • the fixed part of the magnetic circuit is thus made in three distinct parts, the base and the two arms.
  • the two arms are passed through the central opening of the coil and each leg of the base is then connected to one end of an arm which allows to create a complete perfectly rigid subassembly.
  • the arms can be embedded in the material composing the armature of the coil.
  • a magnetic field flowing in the magnetic circuit traverses a path passing through the moving part, the first arm, the base, the second arm, before returning to the moving part, the passage of the magnetic field being in the same direction in both arms.
  • each arm has a free end forming a stop for the movable part.
  • the base has a U-shaped having two parallel legs spanning the excitation coil.
  • the parallel legs of the base each comprise for example a slot for receiving an end of an arm.
  • the movable portion comprises a movable permanent magnet adapted to perform a rotational movement.
  • the rotational movement of the permanent magnet is for example a rocking movement effected between two extreme positions limited by stops.
  • the stops are for example formed by the free end of the arms passing through the coil.
  • the movable portion is mounted on resilient means biasing the movable portion towards one of the extreme positions.
  • the mobile part has an H-shape and is composed of the permanent magnet between two parallel ferromagnetic layers.
  • the permanent magnet has a direction of magnetization perpendicular to the planes defined by the two ferromagnetic layers.
  • the moving part is manually operated.
  • the device is then actuated by a toggle type switch or pusher.
  • the moving part can also be set in motion by a mechanical member in a position detector.
  • the device can be manufactured in MEMS technology.
  • the invention also relates to a remote control device comprising a transmitter coupled to a remote receiver, and an autonomous device for generating electrical energy as described above, for generating an electric current for supplying the transmitter.
  • FIG. 1 represents a subset of a remote control device powered by an autonomous device for generating electrical energy according to the invention
  • FIG. 2 represents, in exploded view, the fixed part of the magnetic circuit used in the device according to the invention.
  • FIG. 3 represents, for three-quarters, the autonomous device for generating electrical energy according to the invention, configured to be implemented in a remote control device
  • FIG. autonomous device for generating electrical energy according to the invention configured to be implemented in a remote control device
  • FIG. 5 is an exploded view of the device according to the invention
  • FIGS. 6A and 6B show, in front view and schematically, the moving part respectively in a first extreme position and in a second extreme position
  • FIG. 7 schematically represents an alternative embodiment of the device according to the invention.
  • the autonomous device 1 for generating electrical energy according to the invention makes it possible to generate an electric current in an excitation coil 2 by varying the magnetic flux passing through the coil 2 by an external mechanical action, for example manual.
  • Such a device 1 can be used in a wireless remote control device and without internal source of current.
  • This remote control device is for example manually operated by a toggle-type switch or pushbutton capable of controlling a light and can be positioned without constraint at different locations in a room.
  • the remote control device comprises in particular a mechanical subassembly shown in FIG. 1. This mechanical subassembly is intended to receive the autonomous energy generation device 1 according to the invention and also comprises means actuator 6, 7 for transmitting mechanical energy to the device 1 for generating electrical energy.
  • the remote control device also comprises a transmitter (not shown) supplied with the current produced by the device 1 for sending radio signals to a remote receiver and electronic circuits (not shown) comprising in particular means for storing the electrical energy generated. by the device 1 according to the invention, such as capacities, to smooth the amount of current to be delivered downstream to the transmitter.
  • the autonomous device 1 for generating electrical energy according to the invention can also be implemented for other applications such as, for example, a position detector or a mechanical pressure sensor in which the quantity of generated current measured makes it possible to determine if a mechanical force has been exerted.
  • the mechanical action makes it possible to create an electric current that is used to trigger for example an alarm or a signaling device or to power a radio transmitter as described above.
  • the device 1 comprises, in particular, a magnetic circuit formed of a fixed part 3 and a mobile part 5, through which a magnetic field and an excitation coil can flow. 2. It can be manufactured in MEMS technology ("Micro Electro-Mechanical System"). MEMS technology is well known and consists of stacking successive layers, one of the layers being a sacrificial layer which is then removed, for example by etching, to release a moving part.
  • MEMS technology Micro Electro-Mechanical System
  • the magnetic flux in the magnetic circuit is defined by the instantaneous angular position of the moving part 5 with respect to the fixed part 3 so that the movement of the movable part 5 with respect to the fixed part 3 creates a variation of the magnetic flux to through the coil 2 which causes the creation of an electric current in the coil 2.
  • the voltage created across the coil 2 by the variation of the magnetic flux depends on the time and therefore the speed of movement of the moving part 5 by in relation to the fixed part 3.
  • the excitation coil 2 comprises a frame 20 made of a non-magnetic material, on which is wound a winding 21 of N turns of a conductive wire ( Figures 3 and 4).
  • the armature 20 has a central opening formed along a longitudinal axis (A) and whose dimensions are adapted to be traversed several times by the magnetic circuit.
  • the fixed part 3 of the magnetic circuit passes through the central opening of the coil 2 twice, forming a loop.
  • the circuit Thus, the magnet passes through the central opening of the coil 2 for the first time, then bypasses the coil 2 to form the loop, and passes through the central opening of the coil 2 a second time.
  • the armature 20 of the excitation coil comprises drums 22a, 22b for receiving the two ends of the conductive wire of the coil 2 to connect them to an electronic card (not shown) positioned above the armature 20.
  • the moving part 5 of the magnetic circuit has for example a symmetrical H-shaped shape comprising for example a permanent magnet 50 between two parallel layers 51a, 51b of ferromagnetic material, an upper layer 51a and a lower layer 51b.
  • the permanent magnet 50 is fixed on the inner faces 510a, 510b of the lower layer 51a and the upper layer 51b.
  • This moving part 5 is rotatably mounted on a horizontal axis of rotation (R) perpendicular to the longitudinal axis (A) of the central opening of the armature 20.
  • the axis of rotation (R) is shown in FIGS. and 4 by a cylindrical piece 52 integral with a support piece 53 mounted on the movable part 5 and integral in rotation with the movable part (5).
  • the permanent magnet is polarized South-North, in a vertical direction perpendicular to the axis of rotation (R) of the movable portion 5, for example from the bottom to the top ( Figures 6A and 6B).
  • the fixed part 3 of the magnetic circuit is made of a material of high magnetic permeability such as a ferromagnetic material.
  • the fixed portion 3 comprises a U-shaped base 30 spanning the excitation coil 2 ( Figure 4) to form the loop.
  • the base 30 thus has a first leg 301a and a second leg 301b parallel to each other and separated by a central core 300.
  • the two legs 301a, 301b extend on either side of the excitation coil 2 without passing through the central opening of the armature 20, in a direction parallel to the axis (R) of rotation of the movable part 5.
  • the free end of each leg 301 a, 301 b has a slot 302a, 302b .
  • the fixed part 3 of the magnetic circuit also comprises a first arm 31 and a second arm 32 which are distinct, non-contiguous and not identical, one of the arms being the reflection of the other in a mirror.
  • These arms 31, 32 are L-shaped and each have, from a first end, a long leg 310, 320 and a shorter leg 31 1, 321 terminated by a second free end. They are further provided at the junction of their two branches of a portion 312, 322 slightly inclined.
  • the long limbs 310, 320 of these two arms 31, 32 pass distinctly through the central opening of the armature 20 in two planes parallel to the longitudinal axis (A) of the central opening of the coil 2.
  • the first arm 31 is connected by his first end to the first leg 301a of the base 30 and the second arm 32 is connected by its first end to the second leg 301b of the base 30.
  • a recess 325 formed on the first end of each arm 31, 32 allows to engage the arm 31, 32 in the slot 302a, 302b of the leg 301a, 301b to which it is connected.
  • the inclined portions 312, 322 of each of the arms 31, 32 return the short branches 31 1, 321 in the same horizontal plane, in which the rotation axis (R) is also located. of the movable part 5.
  • each of the arms 31, 32 are positioned on either side of the permanent magnet 50 of the movable part 5 and between the two ferromagnetic layers 51 a, 51 b of the movable part 5.
  • the short leg 31 1, 321 of each arm 31, 32 forms a stop for the movable part 5 and defines two opposite bearing pads, an upper bearing pad 313, 323 and a lower bearing pad 314, 324.
  • the movable portion 5 has a degree of freedom in rotation between the stops formed by each of the arms 31, 32.
  • suitable guiding means for example of plastic, are arranged inside the central opening of the armature 20 so as to guide and hold each arm 31, 32 at a sufficient distance. from one another, so as not to disturb the circulation of the magnetic field in the magnetic circuit and to prevent leakage between the arms 31, 32.
  • the magnetic field flowing in the arms 31, 32 always passes through the central opening of the coil 2 in the same way.
  • the magnetic field passes through the central opening of the excitation coil 2 twice in the same direction. If the central opening of the excitation coil is traversed more than twice by the magnetic circuit, the magnetic field created passes through the central opening of the excitation coil in the same direction, as many times as the coil is crossed. .
  • the fixed part 3 of the magnetic circuit is thus made in three distinct parts, the base 30 and the two arms 31, 32.
  • the two arms 31, 32 are passed through the central opening of the coil 2 and each leg 301a, 301b of the base 30 is then connected to the first end of an arm 31, 32 which allows to create a perfectly rigid compact subassembly.
  • the two arms 31, 32 can also be embedded in the material forming the armature 20 of the excitation coil 2 to form a perfectly rigid part composed of the coil 2 and the arms 31, 32.
  • the sections of the different elements of magnetic material are determined so that the magnetic circuit has a minimum of saturation in the ranges of use of the device 1 autonomous energy generation.
  • the moving part 5 makes a rocking movement about its axis (R) and takes two distinct end positions defined by the stops, in each of which the movable portion 5 is retained by magnetic forces.
  • R axis
  • the moving part is detached from one of its extreme positions, beyond a central equilibrium position, it is instantly attracted by magnetic effect to the other end position. This phenomenon is described in particular in patent application GB 1,312,927.
  • the inner face 510b of the lower layer 51b of the movable part 5 is glued by magnetic force against the lower bearing surface 314 of the short branch 311 of the first arm 31 while the inner face 510a of the upper layer 51a of the movable part 5 is glued by magnetic force against the upper bearing surface 323 of the short branch 321 of the second arm 32.
  • the magnetic field flowing inside the magnetic circuit traverses the following path: permanent magnet 50, upper layer 51a of the movable portion 5, second arm 32, second leg 301b of the base 30, core center 300 of the base 30, first leg 301a of the base 30, first arm 31, lower layer 51b of the movable part 5, permanent magnet 50.
  • the inner face 510a of the upper layer 51a of the moving part 5 is glued by magnetic force against the upper bearing surface 313 of the short branch 31 1 of the first arm 31 while the inner face 510b of the lower layer 51b of the movable part 5 is force-bonded magnetic against the lower bearing pad 324 of the short leg 321 of the second arm 32.
  • the magnetic field flowing inside the magnetic circuit travels the following inverse path: permanent magnet 50, upper layer 51a of the movable part 5, first arm 31, first leg 301a of the base 30, central core 300 of the base 30, second leg 301b of the base 30, second arm 32, lower layer 51b of the movable part 5, permanent magnet 50.
  • the magnetic field formed in the magnetic circuit is thus oriented in the same direction in the two arms 31, 32 passing through the coil 2.
  • a spring blade 54 (FIGS. 3 and 4) is mounted integral on the one hand with the actuating means 6, 7 of the device (FIG. 1) and on the other hand with the moving part 5 by via a triangular section piece 55 connected to the support piece 53, itself mounted on the movable part 5.
  • the spring blade 54 is dimensioned to deform abruptly when a certain amount of mechanical energy is supplied to actuate the moving part 5 in rotation. During an actuation, the spring blade 54 thus makes it possible to store mechanical energy up to a certain threshold before causing the movable part 5 to tilt.
  • the spring blade 54 thus makes it possible to confer on the device 1 according to FIG. invention a constant operating dynamics independent of the mechanical pressure exerted by the user.
  • the spring blade 54 is in fact mounted on resilient means, such as for example a spring (not shown), making it possible to rearm the device 1 according to the invention and thus to systematically reduce the moving part 5 in the extreme position of stable rest after an actuation.
  • the mechanical energy generated by the deformation of the spring blade 54 must be sufficient to detach the movable portion 5 of its support surfaces 314, 323 ( Figure 6A) when in its first extreme stable position.
  • an actuation therefore systematically causes a go and a return of the movable portion 5 between its first extreme position and its second extreme position.
  • a single actuation allows to double the amount of electric current produced.
  • the magnetic circuit comprises a fixed part 3 'and a movable part 5'.
  • the fixed part 3 ' has two portions 31', 32 'passing twice through the central opening of the armature of the coil 2.
  • the fixed part 3' has on the outside the coil 2 two non-contiguous portions between which is positioned the movable portion 5 '.
  • the mobile part 5 ' comprises for example a cylinder of ferromagnetic material having at its periphery a portion consisting of a permanent magnet 50'.
  • This moving part 5 ' is actuated in rotation about its axis of revolution (R'), between the two non-contiguous portions of the fixed part 3 'of the magnetic circuit.
  • the axis of rotation (R ') of the movable portion 5' is vertical and perpendicular to the longitudinal axis (A) of the central opening of the armature of the coil 2.
  • the overall operation of this variant is identical to that described above, that is to say that the rotational movement of the movable portion 5 'about its axis (R') creates a variation of the magnetic flux passing through the coil 2 causing the creation of a Electric power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

La présente invention concerne un dispositif autonome de génération d'énergie électrique comprenant : - une bobine d'excitation (2) dotée d'une ouverture centrale, - un circuit magnétique traversant l'ouverture centrale de la bobine et formé d'une partie fixe (3) et d'une partie mobile (5) pouvant se déplacer par rapport à la partie fixe (3) pour faire varier le flux magnétique à travers la bobine d'excitation (2), caractérisé en ce que, - le circuit magnétique traverse plusieurs fois l'ouverture centrale de la bobine d'excitation (2) en formant au moins une boucle. L'invention concerne également un dispositif de télécommande comportant un émetteur couplé à un récepteur distant et un dispositif (1) autonome de génération d'énergie électrique pour générer un courant électrique destiné à alimenter son émetteur.

Description

Dispositif autonome de génération d'énergie électrique
La présente invention se rapporte à un dispositif autonome de génération d'énergie électrique. Le dispositif selon l'invention utilise la variation du flux magnétique à travers une bobine à induction pour créer un courant électrique. La présente invention concerne également un dispositif de télécommande alimenté par le dispositif autonome de génération d'énergie électrique.
Dans la suite de la description, on entend par dispositif autonome de génération d'énergie électrique, un dispositif permettant de créer un courant électrique sans source de courant et sans raccordement à un réseau électrique, c'est-à-dire sans fil.
Il est connu par la demande de brevet US 2003/048018 une machine électrique comportant un stator doté d'une pluralité de conducteurs magnétiques, un conducteur électrique constitué d'un enroulement s'étendant à travers chaque conducteur magnétique et une partie mobile comprenant une pluralité d'aimants permanents, cette partie mobile étant apte à se déplacer par rapport au stator pour créer un courant électrique dans l'enroulement. Chaque conducteur magnétique forme avec des aimants permanents un circuit magnétique s'étendant autour d'une partie de l'enroulement. Dans ce document, le flux magnétique créé se divise en deux et la variation de flux obtenu dans la bobine n'est donc pas suffisante pour créer un courant électrique à une intensité suffisamment forte.
Il est également connu par la demande de brevet WO 2004/093299 un convertisseur d'énergie mécanique en énergie électrique. Ce convertisseur comporte un aimant permanent et un élément magnétique doux formant tous deux un circuit magnétique et une bobine électrique entourant une partie du circuit magnétique. L'élément magnétique doux et l'aimant permanent sont montés rotatifs l'un par rapport à l'autre, ce qui permet lors d'un mouvement de créer une variation de flux dans le circuit magnétique traversant la bobine, entraînant la génération d'un courant électrique dans la bobine.
Le document WO 2004/093299 prévoit d'utiliser le convertisseur dans un commutateur d'énergie autonome, c'est-à-dire sans source d'énergie et sans fil. Lors de l'activation mécanique du commutateur, le courant électrique généré par la variation du flux magnétique traversant la bobine permet d'alimenter un émetteur de signal radio. Le signal radio est envoyé vers un récepteur distant qui se charge alors de mettre en marche un appareil électrique. Lorsque le commutateur est très éloigné du récepteur ou est séparé de celui-ci par de nombreux obstacles, le signal radio généré n'est pas toujours suffisant pour atteindre systématiquement le récepteur. Pour améliorer les performances du convertisseur, il faut augmenter le nombre de spires de la bobine ce qui augmente la taille du commutateur et ce qui, compte tenu du coût du fil de cuivre utilisé pour le bobinage, le rend beaucoup plus onéreux.
Le but de l'invention est de proposer un dispositif de génération d'énergie électrique du type de celui décrit ci-dessus présentant des performances améliorées tout en conservant un encombrement réduit et un coût modeste.
Ce but est atteint par un dispositif autonome de génération d'énergie électrique comprenant : une bobine d'excitation dotée d'une ouverture centrale, un circuit magnétique traversant l'ouverture centrale de la bobine et formé d'une partie fixe et d'une partie mobile pouvant se déplacer par rapport à la partie fixe pour faire varier le flux magnétique à travers la bobine d'excitation et créer un courant électrique dans la bobine d'excitation, caractérisé en ce que, le circuit magnétique traverse plusieurs fois l'ouverture centrale de la bobine d'excitation en formant au moins une boucle.
Selon une particularité de l'invention, le circuit magnétique traverse deux fois l'ouverture centrale de la bobine d'excitation en formant une boucle.
Selon une autre particularité, le circuit magnétique traverse deux fois l'ouverture centrale de la bobine d'excitation par sa partie fixe en formant une boucle.
Ainsi dans un dispositif de génération d'énergie électrique qui comporte un circuit magnétique traversant deux fois la bobine d'excitation en formant une boucle, on augmente l'inductance et donc la quantité d'énergie stockée dans la bobine selon la relation E=1/2.L.I2, dans laquelle E est l'énergie stockée dans la bobine, L est l'inductance de la bobine, et I l'intensité du courant créé par la variation du flux magnétique à travers la bobine.
De ce fait, pour une vitesse d'actionnement de la partie mobile donnée et pour un même nombre de spires de la bobine, le courant généré par la variation de flux magnétique à travers la bobine dans le dispositif selon l'invention est multiplié par un facteur deux par rapport à celui généré dans un dispositif de l'art antérieur dans lequel le circuit magnétique ne traverse qu'une seule fois la bobine. Selon la relation définie ci- dessus, l'énergie E stockée dans la bobine est donc également multipliée par deux dans le dispositif selon l'invention, par rapport à celle générée dans un dispositif de l'art antérieur.
En outre, le matériau ferromagnétique servant à réaliser le circuit magnétique, tel que par exemple du fer, est largement moins onéreux que le cuivre employé pour former les spires de la bobine. Il serait donc parfaitement avantageux et économique de minimiser la quantité de cuivre nécessaire pour améliorer les performances du dispositif en la compensant par une augmentation de la quantité de fer utilisé.
L'augmentation de la longueur du circuit magnétique tend naturellement de par son principe à augmenter l'inductance (longueur de fer plus importante à flux identique) ce qui permet donc d'augmenter l'énergie stockée dans la bobine selon la relation E=1/2.L.I2 déjà définie ci-dessus.
Selon l'invention, la bobine va permettre de récupérer l'énergie liée à une variation de flux et à la rapidité de cette variation. L'augmentation des performances de génération d'énergie est également réalisée en ajustant le pic de tension qui est liée à la vitesse de variation du flux magnétique à travers la bobine. La vitesse de variation du flux magnétique correspond à la vitesse du mouvement de la partie mobile du circuit magnétique par rapport à sa partie fixe.
Ainsi, le dispositif selon l'invention permet d'obtenir des performances améliorées par rapport à celles d'un dispositif de l'art antérieur sans augmenter sa taille et son encombrement ou d'obtenir des performances équivalentes à celles d'un dispositif de l'art antérieur avec une taille et un encombrement plus réduits.
Selon une autre particularité, la partie fixe comporte une embase reliée à deux bras non jointifs, un premier bras et un deuxième bras, traversant chacun l'ouverture centrale de la bobine d'excitation.
Selon l'invention, la partie fixe du circuit magnétique est donc réalisée en trois parties distinctes, l'embase et les deux bras. En fabrication, les deux bras sont passés à travers l'ouverture centrale de la bobine et chaque jambe de l'embase est ensuite reliée à une extrémité d'un bras ce qui permet de créer un sous-ensemble complet parfaitement rigide. Les bras peuvent être noyées dans le matériau composant l'armature de la bobine.
Selon l'invention, un champ magnétique circulant dans le circuit magnétique parcourt un chemin passant par la partie mobile, le premier bras, l'embase, le deuxième bras, avant de revenir à la partie mobile, le passage du champ magnétique se faisant dans un même sens dans les deux bras.
Selon une autre particularité, chaque bras présente une extrémité libre formant une butée pour la partie mobile.
Selon une autre particularité, l'embase présente une forme en U comportant deux jambes parallèles enjambant la bobine d'excitation. Les jambes parallèles de l'embase comportent par exemple chacune une fente pour recevoir une extrémité d'un bras.
Selon une autre particularité, la partie mobile comporte un aimant permanent mobile apte à effectuer un mouvement de rotation. Le mouvement de rotation de l'aimant permanent est par exemple un mouvement de balancier effectué entre deux positions extrêmes limitées par des butées. Les butées sont par exemple formées par l'extrémité libre des bras traversant la bobine.
Avantageusement, la partie mobile est montée sur des moyens élastiques sollicitant la partie mobile vers l'une des positions extrêmes.
Selon une particularité, la partie mobile présente une forme en H et est composée de l'aimant permanent pris entre deux couches ferromagnétiques parallèles.
Selon une autre particularité, l'aimant permanent présente une direction d'aimantation perpendiculaire aux plans définis par les deux couches ferromagnétiques.
Selon une autre particularité, la partie mobile est actionnée manuellement. Le dispositif est alors actionné par un interrupteur de type à bascule ou poussoir. La partie mobile peut également être mise en mouvement par un organe mécanique dans un détecteur de position.
Selon l'invention, le dispositif peut être fabriqué en technologie MEMS.
L'invention concerne également un dispositif de télécommande comportant un émetteur couplé à un récepteur distant, et un dispositif autonome de génération d'énergie électrique tel que décrit précédemment, pour générer un courant électrique destiné à alimenter l'émetteur.
D'autres caractéristiques et avantages vont apparaître dans la description détaillée qui suit en se référant à un mode de réalisation donné à titre d'exemple et représenté par les dessins annexés sur lesquels : la figure 1 représente un sous-ensemble d'un dispositif de télécommande alimenté par un dispositif autonome de génération d'énergie électrique selon l'invention, la figure 2 représente, en vue éclatée, la partie fixe du circuit magnétique utilisé dans le dispositif selon l'invention, la figure 3 représente en vue de trois quart, le dispositif autonome de génération d'énergie électrique selon l'invention, configuré pour être mis en œuvre dans un dispositif de télécommande, la figure 4 représente en vue de dessus, le dispositif autonome de génération d'énergie électrique selon l'invention, configuré pour être mis en œuvre dans un dispositif de télécommande, la figure 5 représente en vue éclatée le dispositif selon l'invention,
Les figures 6A et 6B représentent, en vue de face et schématiquement, la partie mobile respectivement dans une première position extrême et dans une deuxième position extrême,
La figure 7 représente schématiquement une variante de réalisation du dispositif selon l'invention.
Dans la suite de la description, les termes "supérieur" et "inférieur" ainsi que les autres expressions équivalentes employées doivent être compris en prenant comme référence sur les dessins annexés, un axe de direction verticale.
Le dispositif 1 autonome de génération d'énergie électrique selon l'invention permet de générer un courant électrique dans une bobine d'excitation 2 en faisant varier le flux magnétique traversant la bobine 2 par une action mécanique externe, par exemple manuelle.
Un tel dispositif 1 peut être utilisé dans un dispositif de télécommande sans fil et sans source interne de courant. Ce dispositif de télécommande est par exemple actionné manuellement par un interrupteur de type à bascule ou poussoir apte à commander une lumière et peut être positionné sans contrainte à différents emplacements dans une pièce. Le dispositif de télécommande comporte notamment un sous-ensemble mécanique représenté en figure 1. Ce sous-ensemble mécanique est destiné à recevoir le dispositif 1 autonome de génération d'énergie selon l'invention et comprend également des moyens d'actionnement 6, 7 pour transmettre une énergie mécanique au dispositif 1 de génération d'énergie électrique. Le dispositif de télécommande comporte également un émetteur (non représenté) alimenté par le courant produit par le dispositif 1 pour envoyer des signaux radio vers un récepteur distant et des circuits électroniques (non représentés) comportant notamment des moyens de stockage de l'énergie électrique générée par le dispositif 1 selon l'invention, tels que des capacités, pour lisser la quantité de courant à délivrer en aval à l'émetteur.
Le dispositif 1 autonome de génération d'énergie électrique selon l'invention peut également être mis en œuvre pour d'autres applications tels que par exemple un détecteur de position ou un capteur de pression mécanique dans lequel la quantité de courant générée mesurée permet de déterminer si une force mécanique a été exercée. L'action mécanique permet de créer un courant électrique qui est utilisé pour déclencher par exemple une alarme ou un organe de signalisation ou pour alimenter un émetteur radio comme décrit précédemment.
En référence aux figures 2 à 6B, le dispositif 1 selon l'invention comporte notamment un circuit magnétique formé d'une partie fixe 3 et d'une partie mobile 5, à travers lesquels peut circuler un champ magnétique, et une bobine d'excitation 2. Il peut être fabriqué en technologie MEMS ("Micro Electro-Mechanical System"). La technologie MEMS est bien connue et consiste à empiler des couches successives, l'une des couches étant une couche sacrificielle qui est ensuite éliminée, par exemple par gravure, pour libérer une partie mobile.
Le flux magnétique dans le circuit magnétique est défini par la position angulaire instantanée de la partie mobile 5 par rapport à la partie fixe 3 de sorte que le mouvement de la partie mobile 5 par rapport à la partie fixe 3 crée une variation du flux magnétique à travers la bobine 2 ce qui entraîne la création d'un courant électrique dans la bobine 2. La tension créée aux bornes de la bobine 2 par la variation du flux magnétique dépend du temps et donc de la vitesse de déplacement de la partie mobile 5 par rapport à la partie fixe 3.
La bobine d'excitation 2 comporte une armature 20 réalisée dans un matériau amagnétique, sur laquelle est enroulé un bobinage 21 de N spires d'un fil conducteur (figures 3 et 4). L'armature 20 présente une ouverture centrale formée suivant un axe longitudinal (A) et dont les dimensions sont adaptées pour pouvoir être traversée plusieurs fois par le circuit magnétique. Sur les figures, la partie fixe 3 du circuit magnétique traverse deux fois l'ouverture centrale de la bobine 2 en formant une boucle. Le circuit magnétique traverse donc une première fois l'ouverture centrale de la bobine 2, puis contourne la bobine 2 pour former la boucle, et traverse une seconde fois l'ouverture centrale de la bobine 2. L'armature 20 de la bobine d'excitation comporte des fûts 22a, 22b destinés à recevoir les deux extrémités du fil conducteur de la bobine 2 pour les connecter à une carte électronique (non représentée) positionnée au-dessus de l'armature 20.
La partie mobile 5 du circuit magnétique présente par exemple une forme symétrique en H comportant par exemple un aimant permanent 50 pris entre deux couches 51 a, 51 b parallèles en matériau ferromagnétique, une couche supérieure 51 a et une couche inférieure 51 b. L'aimant permanent 50 est fixé sur les faces internes 510a, 510b de la couche inférieure 51 a et de la couche supérieure 51 b. Cette partie mobile 5 est montée rotative sur un axe de rotation (R) horizontale perpendiculaire à l'axe longitudinal (A) de l'ouverture centrale de l'armature 20. L'axe de rotation (R) est matérialisé sur les figures 3 et 4 par une pièce cylindrique 52 solidaire d'une pièce support 53 montée sur la partie mobile 5 et solidaire en rotation de la partie mobile (5). L'aimant permanent est polarisé Sud-Nord, suivant une direction verticale perpendiculaire à l'axe de rotation (R) de la partie mobile 5, par exemple du bas vers le haut (figures 6A et 6B).
La partie fixe 3 du circuit magnétique est réalisée dans un matériau de forte perméabilité magnétique tel qu'un matériau ferromagnétique. En référence à la figure 2, la partie fixe 3 comporte une embase 30 en forme de U enjambant la bobine d'excitation 2 (figure 4) pour former la boucle. L'embase 30 présente ainsi une première jambe 301a et une deuxième jambe 301 b parallèles entre elles et séparées par une âme centrale 300. Les deux jambes 301 a, 301 b s'étendent de part et d'autre de la bobine d'excitation 2 sans traverser l'ouverture centrale de l'armature 20, suivant une direction parallèle à l'axe (R) de rotation de la partie mobile 5. L'extrémité libre de chaque jambe 301 a, 301 b présente une fente 302a, 302b.
En référence à la figure 2, la partie fixe 3 du circuit magnétique comporte également un premier bras 31 et un second bras 32 distincts, non jointifs et non identiques, l'un des bras étant le reflet de l'autre dans un miroir. Ces bras 31 , 32 sont en forme de L et présentent chacun, à partir d'une première extrémité, une branche longue 310, 320 puis une branche plus courte 31 1 , 321 terminée par une deuxième extrémité libre. Ils sont dotés en outre à la jonction de leurs deux branches d'une portion 312, 322 faiblement inclinée. Les branches longues 310, 320 de ces deux bras 31 , 32 traversent distinctement l'ouverture centrale de l'armature 20 suivant deux plans parallèles à l'axe longitudinal (A) de l'ouverture centrale de la bobine 2. Le premier bras 31 est relié par sa première extrémité à la première jambe 301 a de l'embase 30 et le second bras 32 est raccordé par sa première extrémité à la seconde jambe 301 b de l'embase 30. Un décrochement 325 réalisé sur la première extrémité de chaque bras 31 , 32 permet d'enclencher le bras 31 , 32 dans la fente 302a, 302b de la jambe 301 a, 301 b à laquelle il est relié. A l'extérieur de l'ouverture centrale, les portions inclinées 312, 322 de chacun des bras 31 , 32 ramènent les branches courtes 31 1 , 321 dans un même plan horizontal, dans lequel est également situé l'axe (R) de rotation de la partie mobile 5. Les deuxièmes extrémités de chacun des bras 31 , 32 sont positionnées de part et d'autre de l'aimant permanent 50 de la partie mobile 5 et entre les deux couches ferromagnétiques 51 a, 51 b de la partie mobile 5. La branche courte 31 1 , 321 de chaque bras 31 , 32 forme une butée pour la partie mobile 5 et définit deux plages d'appui opposées, une plage d'appui supérieure 313, 323 et une plage d'appui inférieure 314, 324. La partie mobile 5 présente un degré de liberté en rotation entre les butées formées par chacun des bras 31 , 32.
Selon l'invention, des moyens de guidage appropriés, par exemple en matière plastique, sont aménagés à l'intérieur de l'ouverture centrale de l'armature 20 de manière à guider et à maintenir chaque bras 31 , 32 à une distance suffisante l'un de l'autre, pour ne pas perturber la circulation du champ magnétique dans le circuit magnétique et pour éviter les fuites entre les bras 31 , 32.
Comme l'embase 30 est agencée pour que ses deux jambes 301a, 301 b soient positionnés de part et d'autre de la bobine 2, le champ magnétique circulant dans les bras 31 , 32 traverse toujours l'ouverture centrale de la bobine 2 dans le même sens. En conséquence, le champ magnétique traverse l'ouverture centrale de la bobine d'excitation 2 deux fois dans le même sens. Si l'ouverture centrale de la bobine d'excitation est traversée plus de deux fois par le circuit magnétique, le champ magnétique créé traverse l'ouverture centrale de la bobine d'excitation dans le même sens, autant de fois que la bobine est traversée.
Selon l'invention, la partie fixe 3 du circuit magnétique est donc réalisée en trois parties distinctes, l'embase 30 et les deux bras 31 , 32. En fabrication, les deux bras 31 , 32 sont passés à travers l'ouverture centrale de la bobine 2 et chaque jambe 301a, 301 b de l'embase 30 est ensuite reliée à la première extrémité d'un bras 31 , 32 ce qui permet de créer un sous-ensemble compact parfaitement rigide. Selon l'invention, les deux bras 31 , 32 peuvent également être noyés dans le matériau formant l'armature 20 de la bobine d'excitation 2 pour former une pièce parfaitement rigide composée de la bobine 2 et des bras 31 , 32. Selon l'invention, les sections des différents éléments en matériau magnétique, sont déterminées pour que le circuit magnétique présente un minimum de saturation dans les plages d'utilisation du dispositif 1 autonome de génération d'énergie.
La partie mobile 5 effectue un mouvement de balancier autour de son axe (R) et prend deux positions extrêmes distinctes définies par les butées, dans chacune desquelles la partie mobile 5 est retenue par des forces magnétiques. Lorsque la partie mobile est décollée de l'une de ses positions extrêmes, au-delà d'une position d'équilibre centrale, elle est instantanément attirée par effet magnétique vers l'autre position extrême. Ce phénomène est notamment décrit dans la demande de brevet GB 1 312 927.
Dans la première position extrême (figure 6A), la face interne 510b de la couche inférieure 51 b de la partie mobile 5 est collée par force magnétique contre la plage d'appui inférieure 314 de la branche courte 311 du premier bras 31 tandis que la face interne 510a de la couche supérieure 51 a de la partie mobile 5 est collée par force magnétique contre la plage d'appui supérieure 323 de la branche courte 321 du deuxième bras 32.
Dans la première position extrême, le champ magnétique circulant à l'intérieur du circuit magnétique parcourt le chemin suivant : aimant permanent 50, couche supérieure 51a de la partie mobile 5, deuxième bras 32, deuxième jambe 301 b de l'embase 30, âme centrale 300 de l'embase 30, première jambe 301 a de l'embase 30, premier bras 31 , couche inférieure 51 b de la partie mobile 5, aimant permanent 50.
Dans la seconde position extrême (figure 6B), la face interne 510a de la couche supérieure 51 a de la partie mobile 5 est collée par force magnétique contre la plage d'appui supérieure 313 de la branche courte 31 1 du premier bras 31 tandis que la face interne 510b de la couche inférieure 51 b de la partie mobile 5 est collée par force magnétique contre la plage d'appui inférieure 324 de la branche courte 321 du deuxième bras 32.
Dans la seconde position extrême, le champ magnétique circulant à l'intérieur du circuit magnétique parcourt le chemin inverse suivant : aimant permanent 50, couche supérieure 51a de la partie mobile 5, premier bras 31 , première jambe 301 a de l'embase 30, âme centrale 300 de l'embase 30, deuxième jambe 301 b de l'embase 30, deuxième bras 32, couche inférieure 51 b de la partie mobile 5, aimant permanent 50.
Le champ magnétique formé dans le circuit magnétique est donc orienté dans le même sens dans les deux bras 31 , 32 traversant la bobine 2.
Dans une application de type interrupteur mécanique, une lame ressort 54 (figures 3 et 4) est montée solidaire d'une part des moyens d'actionnement 6, 7 du dispositif (figure 1 ) et d'autre part de la partie mobile 5 par l'intermédiaire d'une pièce 55 à section triangulaire reliée à la pièce support 53, elle-même montée sur la partie mobile 5. La lame ressort 54 est dimensionnée pour se déformer brusquement lorsqu'une certaine quantité d'énergie mécanique est fournie pour actionner la partie mobile 5 en rotation. Lors d'un actionnement, la lame ressort 54 permet donc de stocker de l'énergie mécanique jusqu'à un certain seuil avant de provoquer le basculement de la partie mobile 5. La lame ressort 54 permet ainsi de conférer au dispositif 1 selon l'invention une dynamique de fonctionnement constante indépendante de la pression mécanique exercée par l'utilisateur.
Dans une application de type interrupteur, l'une des positions extrêmes de la partie mobile 5, par exemple la première position extrême (figure 6A), est une position de repos stable tandis que l'autre position extrême, c'est-à-dire la deuxième position extrême (figure 6B) est instable. La lame ressort 54 est en effet montée sur des moyens élastiques, tels que par exemple un ressort (non représenté), permettant de réarmer le dispositif 1 selon l'invention et ainsi de ramener systématiquement la partie mobile 5 dans la position extrême de repos stable après un actionnement. L'énergie mécanique générée par la déformation de la lame ressort 54 doit donc être suffisante pour décoller la partie mobile 5 de ses plages d'appui 314, 323 (figure 6A) lorsqu'elle est dans sa première position extrême stable.
Dans un interrupteur, un actionnement provoque donc systématiquement un aller et un retour de la partie mobile 5 entre sa première position extrême et sa deuxième position extrême. Lors de l'aller, il se produit une première variation du flux magnétique traversant la bobine 2 et donc la création d'un premier courant et lors du retour, il se produit une seconde variation du flux magnétique à travers la bobine 2 et donc la création d'un second courant électrique. Un unique actionnement permet donc de doubler la quantité de courant électrique produite.
Selon une variante de réalisation du dispositif selon l'invention représentée en figure 7, le circuit magnétique comporte une partie fixe 3' et une partie mobile 5'. Comme dans le dispositif décrit ci-dessus, la partie fixe 3' comporte deux portions 31 ', 32' traversant deux fois l'ouverture centrale de l'armature de la bobine 2. En outre la partie fixe 3' comporte à l'extérieur de la bobine 2 deux portions non jointives entre lesquelles est positionnée la partie mobile 5'. La partie mobile 5' comporte par exemple un cylindre en matériau ferromagnétique présentant à sa périphérie une portion constituée d'un aimant permanent 50'. Cette partie mobile 5' est actionnée en rotation autour de son axe de révolution (R'), entre les deux portions non jointives de la partie fixe 3' du circuit magnétique. Selon cette variante, l'axe de rotation (R') de la partie mobile 5' est vertical et perpendiculaire à l'axe longitudinal (A) de l'ouverture centrale de l'armature de la bobine 2. Le fonctionnement global de cette variante est identique à celui décrit précédemment, c'est-à-dire que le mouvement de rotation de la partie mobile 5' autour de son axe (R') crée une variation du flux magnétique traversant la bobine 2 entraînant la création d'un courant électrique.
Il est bien entendu que l'on peut, sans sortir du cadre de l'invention, imaginer d'autres variantes et perfectionnements de détail et de même envisager l'emploi de moyens équivalents.

Claims

REVENDICATIONS
1. Dispositif autonome de génération d'énergie électrique comprenant :
une bobine d'excitation (2) dotée d'une ouverture centrale,
un circuit magnétique traversant l'ouverture centrale de la bobine et formé d'une partie fixe (3) et d'une partie mobile (5) apte à se déplacer par rapport à la partie fixe (3) pour faire varier le flux magnétique à travers la bobine d'excitation (2) et créer ainsi un courant électrique dans la bobine d'excitation (2),
caractérisé en ce que,
le circuit magnétique traverse plusieurs fois l'ouverture centrale de la bobine d'excitation (2) en formant au moins une boucle.
2. Dispositif selon la revendication 1 , caractérisé en ce que le circuit magnétique traverse deux fois l'ouverture centrale de la bobine d'excitation (2) en formant une boucle.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que la partie fixe du circuit magnétique traverse deux fois l'ouverture centrale de la bobine d'excitation (2).
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que la partie fixe (3) comporte une embase (30) reliée à deux bras (31 , 32) non jointifs, un premier bras (31 ) et un deuxième bras (32), traversant chacun l'ouverture centrale de la bobine d'excitation (2).
5. Dispositif selon la revendication 4, caractérisé en ce qu'un champ magnétique circulant dans le circuit magnétique parcourt un chemin passant par la partie mobile (5), le premier bras (31 ), l'embase (30), le deuxième bras (32), avant de revenir à la partie mobile (5), le passage du champ magnétique se faisant dans un même sens dans les deux bras (31 , 32).
6. Dispositif selon la revendication 4 ou 5, caractérisé en ce que chaque bras (31 , 32) présente une extrémité libre formant une butée pour la partie mobile (5).
7. Dispositif selon l'une des revendications 4 à 6, caractérisé en ce que l'embase (30) présente une forme en U comportant deux jambes (301 a, 301 b) parallèles enjambant la bobine d'excitation (2).
8. Dispositif selon la revendication 7, caractérisé en ce que les jambes (301a, 301 b) parallèles de l'embase (30) comportent chacune une fente (302a, 302b) pour recevoir une extrémité d'un bras (31 , 32).
9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce que la partie mobile (5) comporte un aimant permanent (50) mobile apte à effectuer un mouvement de rotation.
10. Dispositif selon la revendication 9, caractérisé en ce que le mouvement de rotation de l'aimant permanent (50) est un mouvement de balancier effectué entre deux positions extrêmes limitées par des butées.
1 1. Dispositif selon la revendication 10, caractérisé en ce que la partie mobile (5) est montée sur des moyens élastiques sollicitant la partie mobile (5) vers l'une des positions extrêmes.
12. Dispositif selon l'une des revendications 9 à 1 1 , caractérisé en ce que la partie mobile (5) présente une forme en H et est composée de l'aimant permanent (50) pris entre deux couches (51a, 51 b) ferromagnétiques parallèles.
13. Dispositif selon la revendication 12, caractérisé en ce que l'aimant permanent (50) présente une direction d'aimantation perpendiculaire aux plans définis par les deux couches (51 a, 51 b) ferromagnétiques.
14. Dispositif selon l'une des revendications 1 à 13, caractérisé en ce que la partie mobile (5) est actionnée manuellement.
15. Dispositif selon l'une des revendications 1 à 14, caractérisé en ce qu'il est fabriqué en technologie MEMS.
16. Dispositif de télécommande comportant un émetteur couplé à un récepteur distant, caractérisé en ce qu'il comporte un dispositif (1 ) autonome de génération d'énergie électrique selon l'une des revendications 1 à 14, pour générer un courant électrique destiné à alimenter l'émetteur.
EP06807535A 2005-11-22 2006-10-25 Dispositif autonome de generation d'energie electrique Ceased EP1952516A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553539A FR2893780A1 (fr) 2005-11-22 2005-11-22 Dispositif autonome de generation d'energie electrique
PCT/EP2006/067755 WO2007060072A1 (fr) 2005-11-22 2006-10-25 Dispositif autonome de generation d'energie electrique

Publications (1)

Publication Number Publication Date
EP1952516A1 true EP1952516A1 (fr) 2008-08-06

Family

ID=36794915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06807535A Ceased EP1952516A1 (fr) 2005-11-22 2006-10-25 Dispositif autonome de generation d'energie electrique

Country Status (8)

Country Link
US (1) US8148856B2 (fr)
EP (1) EP1952516A1 (fr)
JP (1) JP5128487B2 (fr)
CN (1) CN101361252B (fr)
AU (1) AU2006316662B2 (fr)
CA (1) CA2630554C (fr)
FR (1) FR2893780A1 (fr)
WO (1) WO2007060072A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899826A1 (fr) 2014-01-27 2015-07-29 Schneider Electric Industries SAS Système d'alimentation électrique sécurisée

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003596A1 (de) * 2008-01-09 2009-07-23 Panasonic Electric Works Europe Ag Schalteinrichtung und Verfahren zum Einschalten eines Elektrogeräts
DE102008003595B4 (de) 2008-01-09 2009-10-08 Panasonic Electric Works Europe Ag Energiewandler
FR2928501B1 (fr) * 2008-03-04 2011-04-01 Schneider Electric Ind Sas Dispositif de generation d'energie a deux parties mobiles
FR2953059B1 (fr) * 2009-11-25 2011-11-04 Schneider Electric Ind Sas Dispositif de commande a distance
FR2953659B1 (fr) * 2009-12-04 2011-12-23 Schneider Electric Ind Sas Dispositif generateur d'energie electrique et telecommande pourvue d'un tel dispositif
CN102823119B (zh) * 2010-03-23 2015-02-25 Zf腓德烈斯哈芬股份公司 感应发生器
DE102010003152A1 (de) 2010-03-23 2011-09-29 Zf Friedrichshafen Ag Funkschalter
DE102011007397B4 (de) * 2011-04-14 2016-03-10 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Vorrichtung zur Umwandlung kinetischer Energie in elektrische Energie
JP5859763B2 (ja) * 2011-07-07 2016-02-16 アルプス電気株式会社 発電入力装置および前記発電入力装置を使用した電子機器
CN102938600A (zh) * 2011-09-21 2013-02-20 武汉领普科技有限公司 交错咬合式磁发电装置
WO2013084409A1 (fr) * 2011-12-09 2013-06-13 パナソニック株式会社 Dispositif de production d'énergie
US9343931B2 (en) 2012-04-06 2016-05-17 David Deak Electrical generator with rotational gaussian surface magnet and stationary coil
DE102012220418A1 (de) * 2012-11-09 2014-05-15 Zf Friedrichshafen Ag Induktionsgenerator und Verfahren zum Generieren eines elektrischen Stroms unter Verwendung eines Induktionsgenerators
DE102012220419A1 (de) 2012-11-09 2014-05-15 Zf Friedrichshafen Ag Induktionsgenerator und Verfahren zum Generieren eines elektrischen Stroms unter Verwendung eines Induktionsgenerators
DE102012112897A1 (de) * 2012-12-21 2014-07-10 Eltako GmbH Schaltgeräte Funkschalter
JP5979028B2 (ja) 2013-01-31 2016-08-24 オムロン株式会社 発電装置、発信装置、切替装置
JP6479011B2 (ja) * 2013-08-26 2019-03-06 エンホウ リュウ 自己発電無線スイッチ
JP6198323B2 (ja) * 2014-02-05 2017-09-20 アルプス電気株式会社 発電機
FR3023648B1 (fr) 2014-07-09 2016-07-01 Schneider Electric Ind Sas Dispositif d'arret d'urgence
US10608516B2 (en) * 2015-03-09 2020-03-31 Panasonic Intellectual Property Management Co., Ltd. Power generation device
JP6558048B2 (ja) 2015-04-24 2019-08-14 ミツミ電機株式会社 発電スイッチ
CN110703657B (zh) * 2015-05-29 2023-07-25 广东易百珑智能科技有限公司 自发电无线开关及其应用
US9843248B2 (en) * 2015-06-04 2017-12-12 David Deak, SR. Rocker action electric generator
CN104883025B (zh) * 2015-06-12 2019-08-20 武汉领普科技有限公司 自复位发电装置及开关
CN106469630B (zh) * 2015-08-18 2019-03-12 泰科电子(深圳)有限公司 极性继电器
CN205081657U (zh) * 2015-10-23 2016-03-09 瑞声光电科技(常州)有限公司 振动电机
JP6058773B2 (ja) * 2015-10-27 2017-01-11 アルプス電気株式会社 発電入力装置を使用した電子機器
CN105469568A (zh) * 2015-11-30 2016-04-06 南京邮电大学 一种自供电的无线开关
CN106899190B (zh) * 2015-12-21 2019-01-11 上海交通大学 一种利用磁通转向提高发电效率的微型振动能量采集装置
CN112863163A (zh) * 2016-02-04 2021-05-28 广东易百珑智能科技有限公司 自发电遥控器及其应用
US10673313B2 (en) * 2016-02-24 2020-06-02 YuanFang LIU Self-powered wireless switch
FR3071678B1 (fr) * 2017-09-28 2019-09-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Convertisseur d'energie electromagnetique
CN111819770B (zh) 2017-10-30 2023-09-19 威能科技有限责任公司 磁动量传递式发电机
DE102019127605A1 (de) * 2019-10-14 2021-04-15 Enocean Gmbh Elektromagnetischer Energiewandler
EP4062522A1 (fr) 2019-11-21 2022-09-28 WePower Technologies LLC Générateur de transfert de moment magnétique à actionnement tangentiel
CN112614326A (zh) * 2020-12-09 2021-04-06 无锡迪富智能电子股份有限公司 智能马桶用自发电遥控器
FR3122049B1 (fr) 2021-04-15 2023-03-03 Commissariat Energie Atomique Dispositif électromagnétique de conversion d'une énergie mécanique en une énergie électrique

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2114784A1 (de) * 1970-04-03 1971-10-21 Zentronik Veb K Kontaktlose Schalteinrichtung zur Erzeugung elektrischer Impulse
US5349256A (en) * 1993-04-23 1994-09-20 Holliday Jeffrey C Linear transducer
DE19620880A1 (de) * 1996-05-23 1997-11-27 Brandestini Marco Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie für den Betrieb elektrischer Kleingeräte
JP2000287470A (ja) * 1999-03-30 2000-10-13 Akira Matsushita 複合磁性体の起電力発生装置
US20030048018A1 (en) * 2000-04-07 2003-03-13 Chandur Sadarangani Electrical machine
WO2004017501A1 (fr) * 2002-08-14 2004-02-26 Volvo Technology Ab Machine electrique et son utilisation
EP1420427A1 (fr) * 2002-11-13 2004-05-19 Schneider Electric Industries SAS Actionneur électromagnétique.
DE10301192A1 (de) * 2003-01-15 2004-07-29 Robert Bosch Gmbh Vorrichtung zur Stromversorgung eines Reifendrucksensors
WO2004093299A1 (fr) * 2003-04-07 2004-10-28 Enocean Gmbh Convertisseur d'energie electromagnetique

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303054B1 (fr) * 1984-04-04 1993-06-09 Omron Tateisi Electronics Co. Entrainement électromagnétique et relais polarisé
KR950000241B1 (ko) * 1990-01-12 1995-01-12 배연수 동력발생 및 전력발생용 회전장치의 자기회로 및 자기유도 방법
JPH04197041A (ja) * 1990-11-27 1992-07-16 Matsushita Electric Works Ltd 携帯用電気機器の充電装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2114784A1 (de) * 1970-04-03 1971-10-21 Zentronik Veb K Kontaktlose Schalteinrichtung zur Erzeugung elektrischer Impulse
US5349256A (en) * 1993-04-23 1994-09-20 Holliday Jeffrey C Linear transducer
DE19620880A1 (de) * 1996-05-23 1997-11-27 Brandestini Marco Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie für den Betrieb elektrischer Kleingeräte
JP2000287470A (ja) * 1999-03-30 2000-10-13 Akira Matsushita 複合磁性体の起電力発生装置
US20030048018A1 (en) * 2000-04-07 2003-03-13 Chandur Sadarangani Electrical machine
WO2004017501A1 (fr) * 2002-08-14 2004-02-26 Volvo Technology Ab Machine electrique et son utilisation
EP1420427A1 (fr) * 2002-11-13 2004-05-19 Schneider Electric Industries SAS Actionneur électromagnétique.
DE10301192A1 (de) * 2003-01-15 2004-07-29 Robert Bosch Gmbh Vorrichtung zur Stromversorgung eines Reifendrucksensors
WO2004093299A1 (fr) * 2003-04-07 2004-10-28 Enocean Gmbh Convertisseur d'energie electromagnetique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007060072A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899826A1 (fr) 2014-01-27 2015-07-29 Schneider Electric Industries SAS Système d'alimentation électrique sécurisée

Also Published As

Publication number Publication date
FR2893780A1 (fr) 2007-05-25
US8148856B2 (en) 2012-04-03
JP2009516802A (ja) 2009-04-23
CA2630554C (fr) 2015-04-21
CN101361252A (zh) 2009-02-04
US20080315595A1 (en) 2008-12-25
WO2007060072A1 (fr) 2007-05-31
CN101361252B (zh) 2012-07-18
AU2006316662A1 (en) 2007-05-31
CA2630554A1 (fr) 2007-05-31
JP5128487B2 (ja) 2013-01-23
AU2006316662B2 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
CA2630554C (fr) Dispositif autonome de generation d'energie electrique
EP2250725B1 (fr) Dispositif de generation d'energie a deux parties mobiles
CA2767166C (fr) Dispositif de commutation sans-fil
EP2609607B1 (fr) Dispositif de detection et de signalement du changement d'etat d'un bouton-poussoir
EP3488517B1 (fr) Convertisseur d'énergie électromagnétique
FR2953661A1 (fr) Dispositif generateur d'energie electrique
EP2395625B1 (fr) Dispositif de commande à distance incluant un dispositif d'accumulation d'énergie
FR2705510A1 (fr) Actionneur électromagnétique monophasé à faible course présentant un bon rapport force sur puissance électrique.
EP2085987B1 (fr) Dispositif de commande à double mode d'actionnement
EP2328132B1 (fr) Dispositif de commande à distance
FR2521377A1 (fr) Appareil d'enregistrement et de lecture optique
EP3889941B1 (fr) Dispositif de commande sans fil et ensemble comprenant un tel dispositif, ainsi qu'un autre dispositif de commande apte à être branché sur un fil électrique
FR2873232A1 (fr) Dispositif de commande electromagnetique fonctionnant en basculement
FR3122049A1 (fr) Dispositif électromagnétique de conversion d'une énergie mécanique en une énergie électrique
EP2367180A2 (fr) Actionneur linéaire électromagnétique
EP0107167A1 (fr) Percuteur à grande sensibilité
EP1659676A1 (fr) Vibreur pour un objet portable
EP3109983B1 (fr) Machine électrique tournante synchrone compacte
EP3729618B1 (fr) Actionneur a entrainement direct commandé en boucle ouverte
EP4191847A1 (fr) Transducteur electromagnetique pour la recuperation d'energie vibratoire
EP1889275B1 (fr) Dispositif de commutation d'un circuit electrique utilisant un aimant torique mobile.
EP1836713B1 (fr) Microsysteme integrant un circuit magnetique reluctant
BE544337A (fr)
WO1992008238A1 (fr) Procede de fabrication d'un actionneur electromagnetique et actionneur ainsi realise
CH333593A (fr) Dispositif magnéto-électrique pour l'entretien des oscillations du balancier d'un mouvement d'horlogerie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PIN, JEAN-PIERRE

Inventor name: CARTIER-MILLON, CHRISTOPHE

Inventor name: VIGOUROUX, DIDIER

Inventor name: FOLLIC, STEPHANE

Inventor name: BATAILLE, CHRISTIAN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHNEIDER ELECTRIC INDUSTRIES SAS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20180926