EP1951991B1 - Aube de turbine pour une turbine a vapeur - Google Patents

Aube de turbine pour une turbine a vapeur Download PDF

Info

Publication number
EP1951991B1
EP1951991B1 EP06819186A EP06819186A EP1951991B1 EP 1951991 B1 EP1951991 B1 EP 1951991B1 EP 06819186 A EP06819186 A EP 06819186A EP 06819186 A EP06819186 A EP 06819186A EP 1951991 B1 EP1951991 B1 EP 1951991B1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
turbine
section
blade
root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06819186A
Other languages
German (de)
English (en)
Other versions
EP1951991A1 (fr
Inventor
Detlef Haje
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06819186A priority Critical patent/EP1951991B1/fr
Priority to PL06819186T priority patent/PL1951991T3/pl
Publication of EP1951991A1 publication Critical patent/EP1951991A1/fr
Application granted granted Critical
Publication of EP1951991B1 publication Critical patent/EP1951991B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the invention relates to a turbine blade for a steam turbine with an airfoil section and a foot section, which airfoil section at least partially contains fiber composite material. Moreover, the invention relates to a steam turbine with such a turbine blade.
  • Such turbine blades in particular designed as blades turbine blades of this type are made in the prior art of steel or titanium.
  • Turbine blades in general and in particular end-stage blades are exposed to high centrifugal forces due to their function, since they are intended to provide the highest possible outflow area in order to achieve high efficiency and thus have to have a large blade length.
  • High-strength steels are therefore used for common applications. Where these are no longer applicable for reasons of centrifugal stresses, titanium vanes are used, which also experience lower centrifugal force stresses due to the lower density.
  • these blades are much more expensive than steel blades.
  • the outflow surfaces for full-speed machines (50 Hz) are limited to approximately 16 m 2 , which entails corresponding consequences for the achievable blade lengths.
  • the number of low-pressure floods is often increased in the prior art in low-pressure stages of steam turbines. This can be done, for example, by switching from single-flow to double-flow turbine stages or by using several low-pressure turbine parts. Also, the speed of the Turbosatzes be reduced. In this case larger outflow areas can be used. However, all these measures are associated with sometimes considerable costs.
  • An object of the invention is to provide a steam turbine with a turbine blade of the type mentioned, which allows a particularly high efficiency of the steam turbine and at the same time can be operated safely in the steam turbine.
  • Fiber composite blades are thus used according to the invention as low-pressure stage or final stage blades. Comparing the relative strengths of different materials clearly shows the advantage of fiber composites for use as a final stage blade material.
  • the strength above the density (R p0.2 / ⁇ ) for high-strength tempering steel is 115 m 2 / s 2 , for titanium 221 m 2 / s 2 , for the fiber-reinforced material CFK-HM, however, 563 m 2 / s 2 . Due to the significantly higher strength of the fiber composite material, either turbine blades produced with conventional dimensions can be utilized to a greater extent, or the turbine blades be made with a longer length. The resulting centrifugal force stresses can then be absorbed by the turbine blade without further loss of operational reliability due to the significantly increased strength / density ratio.
  • Due to the high strength / density ratio of a turbine blade according to the invention containing fiber composite can be provided due to the design of the airfoil section for use in a low pressure stage of the steam turbine despite the high centrifugal forces a greatly enlarged outflow. This can be done in particular by providing a particularly large blade length. Thus, the efficiency of the steam turbine can be significantly increased.
  • the turbine blade according to the invention is particularly suitable for the last row of blades of a steam turbine, but can also be used according to the invention for the second and possibly the third last row of blades. It can also be combined with steel or titanium precursor blades become.
  • the blade blade section of the turbine blade according to the invention containing at least in some regions fiber composite material preferably has the fiber composite material at least in the outer wall region.
  • the entire airfoil section can also consist of fiber composite material.
  • the number of fibers decreases advantageously in the longitudinal direction of the airfoil section when the airfoil section becomes leaner to the blade tip.
  • the above object is further achieved according to the invention with a generic turbine blade, wherein the blade section at least partially fiber composite material, wherein at least the fiber composite material containing area is surrounded with a deformable moisture-impermeable protective layer, which prevents the penetration of moisture into the fiber composite material during operation of the turbine blade ,
  • the object is achieved with a steam turbine, which is provided with such a turbine blade.
  • a moisture absorption of the airfoil section during operation in the steam turbine can be effectively prevented.
  • Moisture absorption is an undesirable time-dependent process that can cause weight gain of the component and thus potential rotor imbalance.
  • a moisture absorption can cause a deformation of the fiber composite material as well as permanent damage the damage of the matrix and thus a failure of the component containing the fiber composite material.
  • the provision according to the invention of a moisture-impermeable protective layer avoids the consequences listed above which endanger the operational reliability of the steam turbine.
  • the protective layer according to the invention is made deformable.
  • the protective layer is within the meaning of the invention designed so deformable that the protective layer does not lose its moisture impermeability over its lifetime despite occurring during operation of the blade deformations of the fiber composite material contained the region of the airfoil section.
  • This can be achieved in particular by the protective layer having an elastic area of use which exceeds the utilized expansion range of the base material.
  • the turbine blade embodiment according to the invention can be used particularly reliably by the moisture-impermeable protective layer according to the invention.
  • the moisture-repellent protective layer encloses the airfoil section completely. Moreover, it may also be desirable for the protective layer to cover the entire turbine blade, i. also the blade foot, encloses.
  • the protective layer should be designed so that a secure adhesion of the protective layer is given even with drops of drops. Furthermore, the design of the base material of the airfoil section should be such that continuous droplet impacts do not cause any fatigue or disruption of the base material.
  • the aforementioned object is further achieved according to the invention with a generic turbine blade, in which both the airfoil section and the foot section in each case at least partially contains fiber composite material.
  • the object is achieved with a steam turbine, which is provided with such a turbine blade.
  • the use of fiber composite material in the airfoil section makes it possible to design the turbine blade with a large outflow surface due to the low density of the fiber composite material.
  • the fiber composite material advantageously contains glass fibers, plastic fibers, such as aramid fibers, and / or plastic fibers.
  • the fiber-reinforced material CFK-HM can be used as a fiber composite material.
  • the fiber composite material has fibers which are guided in the area of the blade leaf section at an angle deviating from a main axis of the turbine blade, in particular at an angle of ⁇ 15 °, ⁇ -30 ° and / or ⁇ 45 ° with respect to the main axis.
  • the fiber composite layers can be arranged mirror-symmetrically to the blade center surface, whereby a twist is avoided.
  • the anisotropy can also be used to achieve a targeted change in the blade geometry as a function of the operating stresses.
  • a twisting can be provided, in which the blade grid opens at overspeeds, so that the flow draws less energy and thus does not contribute to a further run-up.
  • the twisting can be used to adjust an optimized flow profile depending on the flow and load.
  • the blade grid can be closed with a smaller flow and be opened correspondingly with a larger flow.
  • the blade blade section has a packing arranged in the middle of the blade, which is completely enclosed by the fiber composite material.
  • an electrically conductive layer is arranged between the protective layer and the fiber composite material.
  • This electrically conductive layer serves as a warning mechanism, with which damage to the protective layer can be detected, whereupon countermeasures, such as replacement or replacement of the affected component, or repair of the protective layer can be made in good time.
  • Such an electrically conductive layer may be provided either individually or in pairs with an insulating layer therebetween.
  • an electrically conductive, in particular metallic layer, an insulating layer, another electrically conductive, in particular metallic layer and the protective layer results for the layer structure of the airfoil section in the surface region thereof a successive arrangement of the fiber composite material, an electrically conductive, in particular metallic layer, an insulating layer, another electrically conductive, in particular metallic layer and the protective layer.
  • the insulation resistance to the environment or between the two electrically conductive layers can then be measured.
  • the electrical capacitance of the electrically conductive layer, the insulating layer, as well as the further electrically conductive layer comprising arrangement for monitoring the function of the protective layer can be measured.
  • the measurement of the insulation resistance relative to the environment or of the electrical resistance of the electrically conductive layer for monitoring the function of the protective layer is appropriate.
  • water-soluble chemical substances are alternatively arranged between the protective layer and the fiber composite material.
  • the water-soluble chemical substances are preferably detectable in dissolved form, in particular by chemical, optical and / or radiological means. This measure represents an alternative monitoring possibility of the function of the protective layer.
  • the condensate of the water-steam cycle of the steam power plant can be continuously checked. If the chemical substances arranged under the protective layer are detectable in this, this indicates damage to the protective layer.
  • a leading edge of the turbine blade is provided with an edge reinforcement for protection against droplet impact.
  • edge reinforcement may be provided by adhering to the turbine blade or by laminating into the turbine blade.
  • an edge reinforcement can be made by means of a sealed protective or intermediate layer.
  • the basic component of the turbine blade itself can be designed with a turbine-like edge reinforcement.
  • protection against gobbing may be achieved by a laminate construction of the turbine blade in which the fibers are transverse.
  • the foot portion of the turbine blade a contact element for making contact with a Schaufelfußhalterung in a rotor shaft of a Steam turbine, wherein the contact element contains fiber composite material and / or a metallic material.
  • the contact element made of fiber composite or metallic materials.
  • the corresponding metallic materials should be chosen such that they allow a stable and dimensionally stable connection to the rotor shaft and prevent overstressing of the fiber composite surrounding the contact element of the blade root.
  • the contact element can be formed by a metallic sleeve.
  • the foot section has a deflection element, by means of which a substantial number of fibers of the blade is deflected, and / or a guide element, by means of which an advantageous fiber guidance in the blade root is diverted into a fiber guide adapted to the geometry of the blade section.
  • the deflecting element and / or the guide element may each consist of fiber composite material or a metallic material.
  • the contact element and the guide element or the contact element and the deflecting element can each be formed by the same element.
  • the foot portion is designed as a plug-in foot, which can be inserted into a blade root holder of a rotor shaft of the turbine with respect to the rotor shaft radial direction.
  • the fibers of the fiber composite material are guided around serving as contact elements sleeves.
  • the sheet curvature in the foot region can advantageously be modeled by an assignment to different pin positions of the plug foot, so that advantageously result in low deflections from the foot to the blade area in such a foot. The effort for guide elements remains limited.
  • the deformable moisture-impermeable protective layer also surrounds the foot section.
  • penetration of moisture is effectively prevented even in the fiber composite material contained in the foot section.
  • life of the turbine blade can be further increased.
  • the foot portion of the turbine blade is designed as a sliding foot, which is inserted into a blade root support of a rotor shaft of the turbine in relation to the rotor shaft in the substantially axial direction.
  • the insertion direction can deviate by up to ⁇ 40 ° from the axial direction.
  • the foot portion is curved, with the foot curvature substantially following the curvature of the airfoil portion present in the vicinity of the foot.
  • this has a device for monitoring the vibration behavior of the turbine blade.
  • a change in the natural frequency of the turbine blade can be detected, which may be due to a moisture absorption of the fiber composite material in the airfoil portion during operation of the steam turbine.
  • Such a change in the natural frequency of the turbine blade should then be taken as an opportunity to check the functionality of the aforementioned deformable moisture-impermeable protective layer and possibly repair the protective layer, so that a failure of the component can be prevented.
  • the steam turbine has at least one heatable guide blade.
  • a device for extracting moisture on at least one vane may be provided.
  • fiber composite blades are preferably carried out by the usual methods in which fibers are wound and impregnated with the matrix material or applied in the form of so-called prepregs. Thereafter, they are brought in a so-called die in its final form, whereby a curing of the matrix takes place.
  • optional contact, deflection or guide elements are already inserted or attached. Thereafter, it may be necessary to place the blades at certain locations, e.g. by grinding, for example, to achieve the required dimensional accuracy, tolerance compliance and surface quality.
  • deflection or guide elements can be edited or these elements are attached after the molding process.
  • an edge protector can also be mounted which is integrated into the blade profile by subsequent fitting work, such as grinding. This is followed by coating with the layers required for the protective layer and the warning system. In this case, individual layers can be reinforced at certain points in order to improve protection or amplification functions.
  • Fig. 1 shows a first embodiment of a turbine blade 10 according to the invention, which is designed in particular for use in a low-pressure stage of a steam turbine.
  • the turbine blade 10 comprises an airfoil section 12 and a foot section 14 in the form of a plug-in foot.
  • the foot section 14 has insertion tabs 16 for a pin connection.
  • the airfoil section 12 is made of fiber composite material 18 containing glass fibers and / or carbon fibers.
  • the main fiber direction 20 runs along a main axis 21 of the turbine blade 10.
  • the airfoil section 12 has an additional fiber composite layer 22.
  • the supplemental fiber composite layer 22 includes additional fibers that extend at a different angle to the major axis 21 of the turbine blade 10, e.g. at an angle of ⁇ 15 °, ⁇ 30 ° or ⁇ 45 ° and are provided for stiffening the airfoil section 12. It is also possible to provide a plurality of such additional fiber composite layers 22. In this case, these layers can be arranged mirror-symmetrically to the blade center surface, whereby a distortion is avoided. An asymmetrical arrangement of the additional fiber composite layers leads to a twist. This may possibly be used for self-adjustment purposes.
  • Fig. 2 shows the section II-II in the blade section 12 according to Fig. 1 , This shows a arranged in the range of large sheet thickness for weight and stiffness filler 24. This is surrounded by the fiber composite material 18.
  • the turbine blade 10 is determined by means of turbine steam 26 in accordance with Fig. 2 flowed in from the left.
  • the inflowing turbine steam 26 facing the leading edge of the turbine blade 10 is provided with an edge reinforcement 28.
  • the edge reinforcement 28 is in Fig. 2c shown in more detail. It consists of metal and is attached by means of an adhesive bond 40 with a sticky and fiber composite fair outlet 42 to the leading edge 27 of the turbine blade 10.
  • Fig. 2a illustrates a first embodiment of the construction of the turbine blade 10 according to Fig. 2 in a surface area thereof.
  • the inner fiber composite material 18 is surrounded by a first electrically conductive layer 36 in the form of a metallic layer, an insulating layer 34, a second electrically conductive layer 32 in the form of a metallic layer, and finally a protective layer 30.
  • the protective layer 30 is moisture-repellent for sealing the airfoil section 12 to liquid.
  • the protective layer 30 thus prevents moisture from penetrating into the fiber composite material 18.
  • the protective layer 30 is deformable in such a way that it compensates for the deformations to be expected during operation of the turbine blade 10 without loss of its sealing function.
  • the successive arrangement of the electrically conductive layer 32, the insulating layer 34 and the electrically conductive layer 36 serves to monitor the function of the protective layer 30.
  • Fig. 2b shows a second embodiment of the construction of the turbine blade 10 according to Fig. 2 in a surface area thereof.
  • the fiber composite material 18 is surrounded by a layer of indication material 38, which in turn is surrounded by the protective layer 30.
  • the indication material 38 is in the form of water-soluble substances which are detectable in dissolved form in a chemical, optical and / or radiological manner. The indication material 38 thus serves to detect a leak in the protective layer 30. If moisture penetrates into the interior of the airfoil section 12, the water-soluble chemical substances of the indication material 38 are released and can be detected in the condensate leaving the turbine.
  • Fig. 3a shows a second embodiment of a turbine blade 110 according to the invention.
  • a foot section 43 adjoins an airfoil section 12, which is only partially shown, with fiber composite material 18.
  • the fibers of the fiber composite material 18 are guided starting from the blade section 12 in the foot section 43 and guided around a contact and deflection element 46 in the form of a metallic sleeve, whereupon the fiber then again runs back into the airfoil section 12.
  • the element 46 thus fulfills a deflection function.
  • it also fills a contact function in which it makes contact with a shaft groove 48 of a rotor shaft 47 of a steam turbine.
  • the turbine blade 110 according to FIG Fig. 3a a so-called guide element 44, by means of which an advantageous fiber guide in the blade root is diverted into a fiber guide of the fiber composite material 18 adapted to the geometry of the blade leaf section 12.
  • Fig. 3b is the section III-III after Fig. 3a shown.
  • the foot portion 43 is designed in the form of a plug foot with insertion tabs 45 for insertion into corresponding transversely to a longitudinal axis 50 of a rotor shaft 47 extending wave grooves 48.
  • the push-in tabs 45 are then secured in the shaft grooves 48 by means of insertion pins arranged transversely thereto.
  • Each of these plug-in feet 45 has one of the contact and deflection elements 46.
  • Fig. 4a is a third embodiment of a turbine blade 210 according to the invention illustrated with a foot portion 52 in the form of a sliding foot.
  • the foot section 52 the in Fig. 4b is shown in more detail in section, is inserted into a running in the axial direction of the rotor shaft shaft groove 60.
  • the foot section 52 is provided with a curvature, as in Fig. 4a and has a deflection element 56, around which a substantial number of fibers of the fiber composite material 18 is led around. These fibers are surrounded by a guide or contact element 54.
  • This element initially fulfills the function of redirecting an advantageous fiber guide in the foot section 52 into a fiber guide adapted to the geometry of the blade section 12.
  • the element 54 fulfills the function of making contact with a shaft groove 60 of the rotor shaft 58.
  • the guide and contact element 54 completely surrounds the fiber composite material 18 of the foot section 14 and also adjoins the fiber composite material 18 in the lower region of the fiber blade leaf section 12.
  • a gap 62 is provided between the fiber composite material 18 and the element 54.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Laminated Bodies (AREA)

Claims (16)

  1. Aube de turbine (10, 110, 210) pour une turbine à vapeur comprenant une section d'ailette (12) et une section de base (14, 43, 52), la section d'ailette (12) contenant au moins par endroits du matériau composite renforcé par des fibres (18), au moins la zone contenant le matériau composite renforcé par des fibres (18) étant entourée d'une couche de protection (30) déformable et imperméable à l'humidité, qui empêche la pénétration de l'humidité dans le matériau composite renforcé par des fibres (18) pendant le fonctionnement de l'aube de turbine (10, 110, 210), caractérisée en ce qu'une couche (32, 36) électroconductrice ou des substances (38) chimiques solubles à l'eau sont disposées entre la couche de protection (30) et le matériau composite renforcé par des fibres (18), la fonction de la couche de protection (30) étant ainsi contrôlable.
  2. Aube de turbine selon la revendication 1, aussi bien la section d'ailette (12) que la section de base (14, 43, 52) contenant à chaque fois au moins par endroits du matériau composite renforcé par des fibres (18).
  3. Aube de turbine selon l'une quelconque des revendications précédentes, le matériau composite renforcé par des fibres (18) contenant des fibres de verre, des fibres de plastique et/ou des fibres de carbone.
  4. Aube de turbine selon l'une quelconque des revendications précédentes, le matériau composite renforcé par des fibres (18) contenant des fibres qui sont guidées dans la zone de l'ailette (12) sous un angle s'écartant d'un axe principal (21) de l'aube de turbine (10, 110, 210), en particulier sous des angles ± 15°, ± 30° et/ou ± 45° par rapport à l'axe principal (21).
  5. Aube de turbine selon l'une quelconque des revendications précédentes, la section d'ailette (12) présentant un corps de remplissage (24) disposé au centre de l'ailette et entouré complètement par le matériau composite renforcé par des fibres (18).
  6. Aube de turbine selon l'une quelconque des revendications précédentes, la section d'ailette (12) étant conçue pour une utilisation dans un étage de basse pression de la turbine à vapeur.
  7. Aube de turbine selon l'une quelconque des revendications précédentes, les substances (38) chimiques solubles à l'eau pouvant être décelées dans une forme dissoute, en particulier de façon chimique, optique et/ou radiologique.
  8. Aube de turbine selon l'une quelconque des revendications précédentes, une arête d'arrivée du courant (27) de l'aube de turbine (10, 110, 210) étant dotée d'un renfort d'arête (28) pour la protection contre le choc des gouttes.
  9. Aube de turbine selon l'une quelconque des revendications précédentes, la section de base (14) présentant un élément de contact (46, 54) pour l'établissement d'un contact avec un support de base d'aube (48, 60) dans un arbre de rotor (47, 58) d'une turbine à vapeur, l'élément de contact (46, 54) contenant du matériau composite renforcé par des fibres (18) et/ou un matériau métallique.
  10. Aube de turbine selon l'une quelconque des revendications précédentes, la section de base (14, 43, 52) présentant un élément de déviation (46, 56), au moyen duquel un nombre important de fibres de la section d'ailette (12) est dévié, et/ou un élément de guidage (44, 54) au moyen duquel un guidage de fibre avantageux dans la section de base (14, 43, 52) est dévié dans un guidage de fibre adapté à la géométrie de la section d'ailette (12).
  11. Aube de turbine selon l'une quelconque des revendications précédentes, la section de base (14, 43, 52) étant réalisée sous forme de pied emboîtable (14, 43), qui peut être enfiché dans un support de base d'aube (48) d'un arbre de rotor (47) de la turbine dans la direction radiale par rapport à l'arbre de rotor (47).
  12. Aube de turbine selon l'une quelconque des revendications précédentes, la couche de protection (30) rejetant l'humidité entourant également la section de base (14, 43, 52).
  13. Aube de turbine selon l'une quelconque des revendications précédentes, la section de base (14, 43, 52) étant réalisée sous forme de pied coulissant (52), qui peut être introduit dans un support de base d'aube (60) d'un arbre de rotor (58) de la turbine dans la direction sensiblement axiale par rapport à l'arbre de rotor (58).
  14. Turbine à vapeur comprenant une aube de turbine (10, 110, 210) selon l'une quelconque des revendications précédentes.
  15. Turbine à vapeur selon la revendication 14, présentant un dispositif pour le suivi du comportement aux vibrations de l'aube de turbine (10, 110, 210).
  16. Turbine à vapeur selon la revendication 14 ou 15, présentant au moins une ailette directrice chauffante.
EP06819186A 2005-11-21 2006-10-30 Aube de turbine pour une turbine a vapeur Not-in-force EP1951991B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06819186A EP1951991B1 (fr) 2005-11-21 2006-10-30 Aube de turbine pour une turbine a vapeur
PL06819186T PL1951991T3 (pl) 2005-11-21 2006-10-30 Łopatka turbiny dla turbiny parowej

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05025359A EP1788197A1 (fr) 2005-11-21 2005-11-21 Aube de turbine pour turbine à vapeur
PCT/EP2006/067923 WO2007057294A1 (fr) 2005-11-21 2006-10-30 Aube de turbine pour une turbine a vapeur
EP06819186A EP1951991B1 (fr) 2005-11-21 2006-10-30 Aube de turbine pour une turbine a vapeur

Publications (2)

Publication Number Publication Date
EP1951991A1 EP1951991A1 (fr) 2008-08-06
EP1951991B1 true EP1951991B1 (fr) 2010-02-24

Family

ID=36010462

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05025359A Withdrawn EP1788197A1 (fr) 2005-11-21 2005-11-21 Aube de turbine pour turbine à vapeur
EP06819186A Not-in-force EP1951991B1 (fr) 2005-11-21 2006-10-30 Aube de turbine pour une turbine a vapeur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05025359A Withdrawn EP1788197A1 (fr) 2005-11-21 2005-11-21 Aube de turbine pour turbine à vapeur

Country Status (11)

Country Link
US (1) US20100014982A1 (fr)
EP (2) EP1788197A1 (fr)
JP (1) JP4772873B2 (fr)
CN (1) CN101313129B (fr)
AT (1) ATE458900T1 (fr)
BR (1) BRPI0618860A2 (fr)
DE (1) DE502006006279D1 (fr)
ES (1) ES2338369T3 (fr)
PL (1) PL1951991T3 (fr)
RU (1) RU2418956C2 (fr)
WO (1) WO2007057294A1 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921099B1 (fr) * 2007-09-13 2013-12-06 Snecma Dispositif d'amortissement pour aube en materiau composite
US20090077802A1 (en) * 2007-09-20 2009-03-26 General Electric Company Method for making a composite airfoil
EP2113635A1 (fr) 2008-04-30 2009-11-04 Siemens Aktiengesellschaft Turbine à vapeur à condensation à plusieurs étages
DE102008033402A1 (de) * 2008-07-16 2010-01-21 Siemens Aktiengesellschaft Dampfturbinenanlage sowie Verfahren zum Betreiben einer Dampfturbine
DE102008061573B4 (de) 2008-12-11 2016-03-31 Siemens Aktiengesellschaft Turbinenschaufel mit Beschichtung
DE102009006418A1 (de) * 2009-01-28 2010-12-09 Siemens Aktiengesellschaft Turbinenschaufel, insbesondere Laufschaufel für eine Dampfturbine, sowie Herstellungsverfahren hierfür
DE102009010613A1 (de) * 2009-02-25 2010-09-02 Siemens Aktiengesellschaft Verfahren zum Anbringen bzw. Herstellen eines geschlossenen Deckbandes für eine Laufbeschaufelung einer Turbinenstufe sowie Laufbeschaufelung einer Turbinenstufe für eine Turbine
DE102009036624A1 (de) * 2009-08-07 2011-02-17 Siemens Aktiengesellschaft Beschaufelung einer Turbinenstufe einer Turbine sowie Turbine
DE102009047798A1 (de) * 2009-09-30 2011-04-14 Siemens Aktiengesellschaft Turbinenschaufel, insbesondere Endstufenlaufschaufel für eine Dampfturbine
EP2322763A1 (fr) * 2009-11-17 2011-05-18 Siemens Aktiengesellschaft Aube de turbine ou de compresseur
US8807931B2 (en) * 2010-01-04 2014-08-19 General Electric Company System for impact zone reinforcement
DE102010004663A1 (de) 2010-01-14 2011-07-21 Siemens Aktiengesellschaft, 80333 Turbinenschaufel mit Beschichtung
WO2012113623A1 (fr) * 2011-02-22 2012-08-30 Siemens Aktiengesellschaft Aube de turbine ainsi que procédé de fabrication d'une aube de turbine
CH705171A1 (de) * 2011-06-21 2012-12-31 Alstom Technology Ltd Turbinenschaufel mit einem Schaufelblatt aus Verbundwerkstoff und Verfahren zum Herstellen davon.
JP5967883B2 (ja) * 2011-09-05 2016-08-10 三菱日立パワーシステムズ株式会社 回転機械翼
EP2669479B1 (fr) * 2012-05-31 2015-10-07 Alstom Technology Ltd Turbine axiale et procédé de contrôle de l'humidité de la région distale d'une aube de dernier étage d'une telle turbine
DE102012213596A1 (de) * 2012-08-01 2014-02-06 Siemens Aktiengesellschaft Schaufel, Laufbeschaufelung oder Leitbeschaufelung einer Turbine sowie Verfahren zur Herstellung zumindest einer Schaufel einer Turbine
SG10201502975RA (en) * 2014-06-03 2016-01-28 United Technologies Corp Systems and methods for pre-stressing blades
US10099434B2 (en) * 2014-09-16 2018-10-16 General Electric Company Composite airfoil structures
FR3041684B1 (fr) * 2015-09-28 2021-12-10 Snecma Aube comprenant un bouclier de bord d'attaque et procede de fabrication de l'aube
JP6732920B2 (ja) * 2016-01-12 2020-07-29 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft タービンブレード用の可撓性ダンパ
CA2958351A1 (fr) * 2016-02-16 2017-08-16 RAB Lighting Inc. Appareil d'eclairage encastre dote d'un dispositif d'ajustement d'orientation
US11383494B2 (en) * 2016-07-01 2022-07-12 General Electric Company Ceramic matrix composite articles having different localized properties and methods for forming same
USD848657S1 (en) 2017-01-19 2019-05-14 Nora Lighting, Inc. Recessed lighting fixture with independent adjustment between a light assembly and a driver assembly
JP6968006B2 (ja) * 2018-03-09 2021-11-17 三菱重工業株式会社 前縁カバー部材、前縁カバー部材ユニット、複合材翼、前縁カバー部材の製造方法及び複合材翼の製造方法
US10941665B2 (en) * 2018-05-04 2021-03-09 General Electric Company Composite airfoil assembly for an interdigitated rotor
US10483659B1 (en) * 2018-11-19 2019-11-19 United Technologies Corporation Grounding clip for bonded vanes
US11326455B2 (en) 2019-07-04 2022-05-10 Doosan Heavy Industries & Construction Co., Ltd. 3D-printed composite compressor blade having stress-oriented fiber and method of manufacturing the same
DE102019216073B4 (de) * 2019-09-23 2021-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer Leichtbau-Turbinenschaufel als Verbundbauteil sowie eine mit dem Verfahren hergestellte Leichtbau-Turbinenschaufel
DE102020201867A1 (de) * 2020-02-14 2021-08-19 Siemens Aktiengesellschaft Faserverstärkte Laufschaufel für eine Strömungsmaschine sowie Verfahren zum Herstellen einer solchen Laufschaufel
FR3116229B1 (fr) * 2020-11-17 2023-11-17 Safran Aircraft Engines Pièce composite, notamment pour une turbomachine d’aéronef

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1178140A (fr) * 1956-07-05 1959-05-04 Licentia Gmbh Aube pour un étage traversé par de la vapeur humide d'une turbine à vapeur
US3737250A (en) * 1971-06-16 1973-06-05 Us Navy Fiber blade attachment
FR2195255A5 (fr) * 1972-08-04 1974-03-01 Snecma
CH547943A (de) * 1972-08-15 1974-04-11 Bbc Brown Boveri & Cie Leichtschaufel fuer axiale stroemungsmaschine.
DD107962A1 (fr) * 1973-11-21 1974-08-20
JPS58165501A (ja) * 1982-03-26 1983-09-30 Mitsui Eng & Shipbuild Co Ltd 軸流回転機動翼の製造方法
JPS6262224A (ja) * 1985-09-12 1987-03-18 Mitsubishi Heavy Ind Ltd 翼振動計測装置
JPS63263204A (ja) * 1987-04-21 1988-10-31 Toshiba Corp タ−ビンの羽根侵食防止装置
US5049036A (en) * 1988-09-09 1991-09-17 Airfoil Textron Inc Composite blade with divergent root and method for making same
US5240377A (en) * 1992-02-25 1993-08-31 Williams International Corporation Composite fan blade
JPH06137103A (ja) * 1992-10-26 1994-05-17 Mitsubishi Heavy Ind Ltd 繊維強化複合材ブレード
JP3100301B2 (ja) * 1995-01-17 2000-10-16 三菱重工業株式会社 蒸気タービン静翼
DE19640298A1 (de) * 1996-09-30 1998-04-09 Siemens Ag Dampfturbine, Verfahren zur Kühlung einer Dampfturbine im Ventilationsbetrieb sowie Verfahren zur Kondensationsminderung bei einer Dampfturbine im Leistungsbetrieb
JP3285771B2 (ja) * 1996-10-01 2002-05-27 三菱重工業株式会社 翼振動計測装置
US6607358B2 (en) * 2002-01-08 2003-08-19 General Electric Company Multi-component hybrid turbine blade
US7300255B2 (en) * 2002-09-27 2007-11-27 Florida Turbine Technologies, Inc. Laminated turbomachine airfoil with jacket and method of making the airfoil
US7306826B2 (en) * 2004-02-23 2007-12-11 General Electric Company Use of biased fabric to improve properties of SiC/SiC ceramic composites for turbine engine components
US7300708B2 (en) * 2004-03-16 2007-11-27 General Electric Company Erosion and wear resistant protective structures for turbine engine components
US7104760B2 (en) * 2004-05-05 2006-09-12 General Electric Company Hybrid bucket and related method of pocket design
US7186092B2 (en) * 2004-07-26 2007-03-06 General Electric Company Airfoil having improved impact and erosion resistance and method for preparing same
US7753653B2 (en) * 2007-01-12 2010-07-13 General Electric Company Composite inlet guide vane

Also Published As

Publication number Publication date
JP4772873B2 (ja) 2011-09-14
BRPI0618860A2 (pt) 2011-09-13
RU2008125060A (ru) 2009-12-27
RU2418956C2 (ru) 2011-05-20
US20100014982A1 (en) 2010-01-21
ATE458900T1 (de) 2010-03-15
DE502006006279D1 (de) 2010-04-08
PL1951991T3 (pl) 2010-07-30
EP1788197A1 (fr) 2007-05-23
JP2009516798A (ja) 2009-04-23
WO2007057294A1 (fr) 2007-05-24
EP1951991A1 (fr) 2008-08-06
CN101313129B (zh) 2011-07-06
ES2338369T3 (es) 2010-05-06
CN101313129A (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
EP1951991B1 (fr) Aube de turbine pour une turbine a vapeur
EP2137381B1 (fr) Procédé de fabrication d'aubes mobiles de turbine recouvertes
EP0818606B1 (fr) Aube pour turbomachine pourvue d'un revêtement métallique
EP2325478B1 (fr) Pale de rotor dotée d'un trou de drainage
EP2238374B1 (fr) Assemblage avec joint brosse et procédé de montage d'un joint brosse
EP1843044A1 (fr) Compresseur axial pour une turbine à gaz
DE102012022198A1 (de) Welle eines Gasturbinentriebwerks, insbesondere einer Radialwelle oder einer zur Maschinenachse in einem Winkel angeordneten Welle
DE2753773A1 (de) Laufschaufel
EP2730395B1 (fr) Procédé de fabrication d'un arbre de turbine à gaz
WO2005056983A1 (fr) Rotor a renfort de fibres pour turbogenerateur
EP2647796A1 (fr) Système d'étanchéité pour turbomachine
EP3564523B1 (fr) Raccordement à bride pour une pale de rotor d'éolienne, base de raidissement pour un raccordement à bride, insert de bride, pale de rotor d'éolienne, éolienne ainsi que procédé de fabrication d'un raccordement à bride
EP2282010A1 (fr) Aube de rotor pour une turbomachine à flux axial
EP2494153A2 (fr) Aube d'un étage de turbine à vapeur et aubage mobile ou aubage directeur d'un étage de turbine à vapeur
EP2288790A1 (fr) Aube directrice pour une turbine à vapeur à condensation et turbine à vapeur à condensation correspondante
EP2022944A1 (fr) Fixation d'aube dans une rainure circonférentielle au moyen d'une masse céramique durcissable
EP2436878B1 (fr) Boulons de couplage pour aubes de turbines
EP0602631B1 (fr) Procédé pour la construction d'une rangée d'aubes statoriques, en particulier pour un compresseur axial
EP4088007A1 (fr) Aube de rotor renforcée par des fibres pour une turbomachine et procédé de fabrication d'une telle aube de rotor
EP2401477A2 (fr) Procédé de fixation ou de fabrication d' un anneau de renfort fermé pour un rotor d'un étage de turbine et rotor de turbine
WO2009094984A1 (fr) Joint brosse et procédé de montage d'un joint brosse
EP3971415B1 (fr) Procédé d'essai d'un composant d'une pale de rotor pour une éolienne et composant de pale de rotor
DE102018210262A1 (de) Turbomaschinen-Schaufelanordnung
EP2236753A1 (fr) Ensemble d'aubes pour turbomachine
DE102009043096A1 (de) Laufschaufel für eine Dampfturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090327

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006006279

Country of ref document: DE

Date of ref document: 20100408

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2338369

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100224

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100625

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100525

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100524

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

26N No opposition filed

Effective date: 20101125

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101030

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101030

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20150922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151027

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20151126

Year of fee payment: 10

Ref country code: FR

Payment date: 20151016

Year of fee payment: 10

Ref country code: CZ

Payment date: 20151029

Year of fee payment: 10

Ref country code: AT

Payment date: 20150907

Year of fee payment: 10

Ref country code: SE

Payment date: 20151015

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151218

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006006279

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 458900

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161030

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161030

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181126