EP1944432B1 - Explosionshemmendes Bauelement - Google Patents

Explosionshemmendes Bauelement Download PDF

Info

Publication number
EP1944432B1
EP1944432B1 EP20080000043 EP08000043A EP1944432B1 EP 1944432 B1 EP1944432 B1 EP 1944432B1 EP 20080000043 EP20080000043 EP 20080000043 EP 08000043 A EP08000043 A EP 08000043A EP 1944432 B1 EP1944432 B1 EP 1944432B1
Authority
EP
European Patent Office
Prior art keywords
plate
shaped
transmission elements
structural element
shaped component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20080000043
Other languages
English (en)
French (fr)
Other versions
EP1944432A1 (de
Inventor
Heinrich Sälzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saelzer Sicherheitstechnik GmbH
Original Assignee
Saelzer Sicherheitstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saelzer Sicherheitstechnik GmbH filed Critical Saelzer Sicherheitstechnik GmbH
Publication of EP1944432A1 publication Critical patent/EP1944432A1/de
Application granted granted Critical
Publication of EP1944432B1 publication Critical patent/EP1944432B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/04Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against air-raid or other war-like actions
    • E04H9/10Independent shelters; Arrangement of independent splinter-proof walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/12Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes against air pressure, explosion, or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/013Mounting or securing armour plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0442Layered armour containing metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D5/00Safety arrangements
    • F42D5/04Rendering explosive charges harmless, e.g. destroying ammunition; Rendering detonation of explosive charges harmless
    • F42D5/045Detonation-wave absorbing or damping means

Definitions

  • the invention relates to an explosion-retardant component having a first plate-shaped component which forms a wall, ceiling or bottom surface of an interior or a building facade, a second plate-shaped component which is aligned parallel to the first plate-shaped component, and in a gap between the two Components arranged transmission elements, which are supported on opposite sides, each with at least one contact area on each one of the two plate-shaped components, wherein the first plate-shaped member under the action of an explosion-induced increased air pressure substantially perpendicular to the second plate-shaped member is movable, wherein the atiisurtgsetti under preferably plastic deformation of their self absorb energy and the plate-shaped components are arranged substantially congruent to each other and the transmission elements substantially over the entire Flä surface of the plate-shaped components are arranged distributed.
  • Such an explosion-retardant component is in the form of a security window with specially designed frame legs of the DE 37 44 816 A1 known.
  • the first plate-shaped component is formed by a filling consisting of an extremely pressure-resistant armored glass with a frame leg enclosing this U-shaped frame.
  • the transmission element consists of a zigzag-shaped sheet metal strip, which is arranged in a space between an inner rectangular section steel of the frame leg and a portion of the belt of a T-shaped or double-T-shaped steel profile which forms the second plate-shaped component.
  • the object of the known construction is to produce a frame leg of a profile combination, which - even if the profile parts have relatively weakly dimensioned cross sections - allows to absorb resulting from an explosives attack large forces without costly or space consuming or vorzuspannende and montageaufwcnige damping means ,
  • a bullet-proof wall of several metal sheets As an example of a bullet-proof wall of several metal sheets, but which is to serve for the equipment of passenger cars, is the DE 2 325 921 A1 called. In order to be able to equip a vehicle with a bullet-proof element, this must not exceed a certain weight despite the high requirements for bullet resistance.
  • the invention has for its object to propose an explosion-retardant component with two plate-shaped components, in which large amounts of energy can be absorbed by the transmission elements in their deformation.
  • this object is achieved in that at least one contact region of a transmission element in the course of its explosion-induced deformation on the surface of the associated plate-shaped member is movable along.
  • the transmission elements are arranged only in a comparatively small overlap area between the plate-shaped components and therefore in terms of their areal extent, but also their maximum energy absorption capacity, rather small are now given an almost complete overlap of the plate-shaped components, which, moreover, preferably matching sizes, ie base areas, have.
  • the construction according to the invention is thus characterized by a very large-scale pressure transmission from the area with an explosively increased air pressure and an equally large-scale arrangement of transmission elements, which in turn very large area supported on the rear plate-shaped component, which thus a kind of abutment element for the power dissipation in others correspondingly stable or solidly designed building parts represents.
  • the components according to the invention are therefore particularly suitable for large-area arrangement side by side - preferably with the release of only a small gap between adjacent elements - on walls, ceilings and / or floors, so that in extreme cases, all wall, ceiling and floor surfaces, for example, a
  • the contact region of a transmission element in the course of its explosive deformation on the surface of the associated plate-shaped member is movable along, a significantly higher deformation of the transmission element is possible when pressure forces occur due to an explosives attack.
  • the transmission elements according to the application can move relative to the surfaces of the plate-shaped components, as a result of which significantly higher deformations are possible and higher forces can be converted into deformation energy. The reduction of explosive pressure forces is thus optimized.
  • a contact region of a transmission element - viewed in a direction parallel to the planes defined by the plate-shaped components - is arranged at a distance to a contact region of an adjacent transmission element.
  • the distance should be selected accordingly.
  • both plate-shaped components can be provided with transmission elements which then engage in the manner of a zipper when the components are assembled.
  • connection between one of the plate-shaped components and the transmission elements should be designed such that their predictable deformation is not hindered by any connecting elements or connection points.
  • relative displacements parallel to the plane of the plate should be possible in contact areas between the transmission elements and one of the plate-shaped components, since the reduction of the thickness occurring as a result of the deformation of the transmission elements is typically accompanied by an increase in the width thereof, so that in connection with FIGS the transmission elements effective pressure forces Relativverschiebache between the components occur.
  • the two plate-shaped components are connected to one another only in their edge regions in such a way that the connection can transmit tensile forces. Accordingly, there are no connection points within the component, which could possibly limit the desired displaceability of the contact regions of the transmission elements.
  • a particularly stable connection of the two plate-shaped components can be achieved in that a plate-shaped component is provided with marginal folds whose height corresponds to the height of the transmission elements, wherein the two plate-shaped components in the region of the marginal folds preferably circumferentially by welding, screwing or riveting together are connected.
  • a variant in which the displaceability of the transmission elements is also not limited, provides the connection of the plate-shaped components by screw or dowel joints, which are performed next to or precisely in the area in which the connection between the transmission elements and the plate-shaped components is provided ,
  • the energy which can be absorbed by a plastic deformation of the transmission elements is then particularly high if the transmission elements are made of metal, in particular of a steel that can be plastically deformed well. Spring effects, ie elastic deformations, are undesirable in contrast.
  • the first plate-shaped component and the second plate-shaped component made of metal, in particular steel.
  • the transmission elements are metallic profile pieces which are parallel in their longitudinal extent and at a distance from each other, as well as parallel to the plate-shaped components, are arranged.
  • Such an arrangement allows for an approximation of the two plate-shaped components to each other a compression, ie broadening, the profile pieces without these due to the existing in the initial state distance contact each other and the deformation processes of the individual transmission elements would negatively affect each other.
  • the invention further ausgestaltend the profile pieces may be triangular or trapezoidal in cross-section and be open in the baseline of the triangle or trapezoidal and laterally outwardly projecting edge strips of the legs of the triangle or trapezoid perpendicular to the height of the triangle or parallel to the Headline of the trapezoid run.
  • the preparation of such profile pieces with a simple geometric shape is easily possible and the deformation not only geometrically well predictable, but also with respect to the absorbable amount of energy well calculated.
  • a preferred possibility for connecting such transmission elements with the associated plate-shaped component is that for this purpose only an edge strip of the leg of the triangle or trapezium or a portion of the head line of the trapezium or the apex of the triangle is used.
  • the first plate-shaped component may be plastically deformable under the action of the explosively increased air pressure such that it is located in free spaces between adjacent deformed transmission elements at a smaller distance from the second plate-shaped component than in FIG Contact areas in which a power transmission takes place on the transmission elements.
  • an energy-consuming plastic deformation of the first, the explosion-induced increased air pressure exposed, plate-shaped component thus takes place, which requires corresponding free spaces between the contact areas with the transmission elements.
  • the plate-shaped component thus more closely approaches the second plate-shaped component in the said free spaces than is the case in the contact areas with the transmission elements.
  • the transmission elements results in a different shape of the deformed after the pressure first plate-shaped member.
  • profile-like parallel spaced-apart transmission elements results in the deformed first plate-shaped component, a waveform.
  • the transmission elements are distributed over the surface of the first plate-shaped component in a punctiform manner, then the deformed plate-shaped component has Component distributed arranged and isolated from each other sinks, which can go up to an "egg box structure" depending on the shape and rigidity of the transmission elements.
  • Essential for the energy consumption and the plate-shaped component is not too large selected rigidity of the first plate-shaped component.
  • the thickness of the plate-shaped component with respect to the length to be bridged between adjacent transmission elements may not be too large.
  • the first plate-shaped component to pay attention to the possibility of sufficient plastic deformability, which is particularly true for suitable metallic materials such as steel or aluminum.
  • the first plate-shaped component will be a cover plate of the component which has a thickness in the range between 1.0 mm and 5.0 mm, the free distance between adjacent transmission elements being in the range between 20 mm and 100 mm.
  • the first plate-shaped component is in each case so strong to choose that the resistance force is stronger than that of the transmission element.
  • the second plate-shaped component is usually the most massive part. It can also be a wall panel made of concrete or masonry.
  • the component according to the invention can be, for example, a building closure that closes the building opening, which can preferably be opened by pivoting, turning, folding or sliding, in particular a door or a window or a flap.
  • the plate-shaped components with the intermediate transfer elements cover the entire surface of the device or only a part thereof.
  • the device may be designed in the form of a swing door or sliding door, the safety properties by two aligned parallel to each other Obtains cover plates and is provided on an attack-prone side with the two plate-shaped components and the transfer elements arranged therebetween.
  • the swing door In order to ensure a safe support of the acting forces in swing doors, the swing door should be swung open when opening in the direction of the side on which the plate-shaped components and the transmission elements arranged therebetween are arranged, i. the explosive air pressure tends to close the door.
  • the distance between the first plate-shaped component and the second plate-shaped component is at least 20 mm, preferably at least 50 mm, more preferably at least 80 mm.
  • the large distances between the two parallel plate-shaped components allow the use of transmission elements, which can absorb large amounts of energy during their transformation due to the large possible deformation path.
  • a particularly high energy consumption of the component according to the invention can be achieved if the surface of a side of the component formed by the first plate-shaped component is at least 1 m 2 , preferably at least 1.5 m 2 , more preferably at least 2 m 2 .
  • the invention further includes an explosion-proof guard house with an interior space and at least one door, which in the open state of a connection between the interior and the external environment and is characterized by at least one interior limiting component of the type described above and one threshold above the air pressure in the interior preferably outwardly opening pressure relief device.
  • the effects of the pressure relief device and the energy-consuming components according to the invention complement each other ideally in such a watch house construction.
  • the basic construction of the guard house which serves to attach the explosion-resistant components and should be designed largely pressure-tight, is greatly simplified by the pressure reduction as a result of deformation of the interior facing the first plate-shaped components and can be correspondingly inexpensive.
  • the watchhouse further ausgestaltend invention is provided that the two plate-shaped components of the explosion-retardant components are supported by a cage construction of steel profiles or reinforced concrete against displacement to the outside.
  • pressure relief devices will be located in the ceiling of the guardhouse and in the form of e.g. Folding wing windows are located in the walls of the guard house. Both types of pressure relief devices or pressure relief ports are preferably arranged outside the immediate area of residence of persons who are outside, for example, in the vicinity of the guard house or directly in the vicinity of its outer walls.
  • FIG. 1 shows a view of a blast effect hernmend designed device 1 in the form of a swing door with a belt provided with three bands 2 side 3 and provided with a lock 4 stop side 5.
  • the component 1 comprises a door panel 6, in a conventional manner by a connected to adjacent building parts frame 7 is surrounded circumferentially in the form of a corner frame. In a conventional manner go from a lock gear of the castle 4 upwards and downwards each a drive bolt 8, 9 from.
  • the drive bolts 8, 9 are used to actuate locking bolts 10 made of stainless steel, which engage in the folded region of the frame 7 in the locking position of the door in an adapted recess of the frame 7. Further locking bolts 10 are located in the area of the lock 4.
  • the door leaf 6 consists of a box-shaped base body 11 and an attack on an endangered side 12 of the device 1 on a viewing surface of the body 11 formed further box-shaped body 13, for energy absorption in the event of an explosion-induced increased air pressure in the attack vulnerable side 12 is responsible.
  • the main body 11 consists in a conventional manner of a rear, substantially U-shaped angled cover plate 14 and a parallel thereto extending at a distance front cover plate 15 which engages with its edge strips the edge strips of the cover plate 14 such that with the aid of a weld 16 a stable Forming a folding area is guaranteed.
  • U-shaped Reinforcement profiles 17.1, 17.2 and 17.3 and 17.4 are circumferentially in the edge regions U-shaped Reinforcement profiles 17.1, 17.2 and 17.3 and 17.4 (see vertical section in accordance with FIG. 3 ).
  • Outer edge strips 18.1, 18.2, 18.3 and 18.4 are located between the respective edge strips of the front cover plate 15 and the rear cover plate 14 of the main body 11.
  • Within the body 11 is located immediately adjacent to the front cover plate 15 and parallel to this extending and also its base comprising a reinforcing plate 19, which has a thickness of 5 mm and serves as a massive counter-pressure plate for the transmission elements explained below in the superior box-shaped body 13.
  • the box-shaped body 13 is closed to the outside by a second plate-shaped member 21 which is formed as a cover plate and fixed by screws to angles 22 which are welded to the front cover plate 15.
  • the explosion-inhibiting effect of the component 1 is achieved by a plurality of arranged in the interior of the box-shaped body 13 transmission elements 23, which are parallel and spaced apart steel profiles with a trapezoidal cross section (see. FIG. 3 ).
  • the transmission elements 23 extend in the horizontal direction; In principle, however, any other course or other geometry of transmission elements 23 is also conceivable. So they do not necessarily have to be stretched long, but can also be selectively distributed over the base of the view page of the door panel 6.
  • the elongated design of the transmission elements 23 in the form of profiles, preferably made of steel, is preferable. The proportion of plastic deformation is particularly high here. Out FIG.
  • the transmission elements 23 in cross-section with a head line 24 have a contact area to the inside of the attack-vulnerable side facing plate-shaped member 21. In this area, however, there is no firm connection between the transmission elements 23 and the plate-shaped component 21, but only a support which allows a transmission of compressive forces.
  • Dic transmission elements 23 have on their legs 25 edge strips 26 which form contact areas to the front cover plate 15 of the base body 11 and of which per transmission element 23 only one edge strip 26 is connected by a weld 27 with the associated front cover plate 15.
  • An energy absorption in the event of an explosion-induced pressure increase on the attack-prone side 12 is achieved not only by the deformation of the transmission elements 23, but also by a deformation of the front plate-shaped member 21 itself, which is dimensioned substantially thinner in thickness, for example 2 mm, than that serving as an abutment rear plate-shaped component 20 having a total thickness of, for example, 8 mm.
  • the first plate-shaped component 21 will approach the free space 28 between adjacent transmission elements 23 more strongly to the second plate-shaped member 20, as defined in contact areas defined by the head lines 24 of the trapezoids of the transmission elements 23.
  • a wave structure of the first plate-shaped component 21 thus results in such a way that the wave crests are in the region of the transmission elements 23 arranged behind them, whereas in the intervening free spaces 28 wave troughs can be found.
  • the on the rear, solid and designed as an abutment member plate-shaped member 20 via the transmission elements 23 acting forces are derived via the peripheral edge strips of the door panel 6, which are in contact with abutment surfaces 29 of the frame 7.
  • the frame 7 is attached to the two vertical sides and the upper horizontal side by means of tabs on a building part 30, in particular by screws.
  • the building part 30 is formed as a very massive angle steel, but may also consist of other building materials with sufficient strength, such as reinforced concrete, on the lower side of the frame 7, this is fixed by means of a door base mounting frame 31, in turn, via screw with a door base the building part 30 is screwed.
  • FIG. 3a is a detailed view of the transmission elements 23 from FIG. 3 to remove in the unloaded condition and FIG. 3b shows the transmission elements 23 also in detail, but in the deformed state.
  • FIG. 3b shows the transmission elements 23 also in detail, but in the deformed state.
  • guardhouse 40 shown in different views or sections has four walls 41.1, 41.2, 41.3 and 41.4, a roof 42 and a bottom 43.
  • the wall 41.1 are two windows, which are designed as folding wing window 44, and a door 45, the according to FIG. 7 in the direction of an interior 46 of the guard house 40 opens.
  • the opposing wall 41.3 also has two hinged-wing windows 44 and an inwardly-opening door 45.
  • the opposing walls 41.2 and 41.4 have no openings, as can be seen from FIG. 5 results.
  • the guardhouse 40 is constructed of a truss or cage structure of double T-beams 47 extending in the walls 41.1 to 41.4 in the vertical direction and in the floor 43 and the roof 42 in the transverse direction and in the longitudinal direction of the guard house 40.
  • the guard house 40 In the guard house 40 are pressure relief devices both in the form of the folding wing window 44 in the walls 41.1 and 41.3 and of pressure relief valves 48 in the roof 42 of the guard house 40.
  • the outwardly opening wings of the folding wing window 44 are in their closed position only in the associated frame fixed that they open when exceeding a certain threshold of a pressure acting in the interior 46 of the guard house 40 pressure, being overcome before the start of the actual opening movement, a closing element, ie in particular destroyed.
  • flap parts of the pressure relief valves 48 are mounted in their frames.
  • the walls are 41.3 and 41.4, but also the other not shown enlarged walls 41.1 and 41.2, composed of two parallel and spaced-apart plate-shaped members 49 and 50 and therebetween transmission elements 51.
  • the interior plate-facing inner plate-shaped member 50 is thinner and should take a waveform as a result of a pressure-induced deformation, as already described above, the rear plate-shaped member 49 is designed as a solid abutment element in greater wall thickness.
  • the geometry and operation of the trapezoidal profile pieces executed and equidistant, ie homogeneous, distributed over the base surfaces of the two plate-shaped members 49,50 transmission elements 51 is consistent with the formed in the explosion-resistant swing door according to the FIGS. 1 to 3 ,
  • FIG. 9 can be further seen that the rear, ie outer plate-shaped members 49 are connected to the double-T-beams 47 by welds 52 together. In contrast, there is no (metallic) connection between the inner plate-shaped component 50 and the double-T carrier 47.
  • the deliberately released gap 53 can be pasted over with the interior lining of the interior 46 of the guard house 40, for example with wallpaper, or closed by means of a permanently elastic grout. Both of the latter possibilities to conceal the gap 43 limit the possibility and required for the displacement of the inner plate-shaped component 50 to the outer plate-shaped component 49 in the event of an explosion and not required.
  • the inner plate-shaped components 50 fall over from their vertical operating position. Furthermore, it is possible to prevent the inner plate-shaped components by means of weakly dimensioned screws which tear off or shear in the event of loading, such as an explosion, with the supporting structure.
  • the two plate-shaped components 49, 50 and located in the intermediate space transmission elements 51 form a coherent unit, of course, the possibility of relative mobility of the two plate-shaped members 49, 50 to each other - under plastic deformation of the transmission elements 51- not be prevented.
  • the guard house 40 is surrounded on its entire outer skin with an insulating layer 54, for example, polystyrene foam boards or mineral fiber boards. These can be outside with known commercial cladding elements such as Sheet metal or similar be clad to produce the desired appearance from the outside.
  • an insulating layer 54 for example, polystyrene foam boards or mineral fiber boards.
  • These can be outside with known commercial cladding elements such as Sheet metal or similar be clad to produce the desired appearance from the outside.
  • the floor or the ceiling of the guard house 40 with the explosion-resistant component combination of two plate-shaped components 49, 50 with transmission elements 51 arranged therebetween.
  • the guardhouse 40 may be retrofitted, for example, in front of an existing building with high security requirements. So can in the way of a "Durchschleusens" in the interior. 46 of the guard house 40 a check example of visitors to the building are performed. In the event of an explosive explosion in the interior 46 of the guard house 40, for example, triggered by a suicide bomb attack, it comes to a deformation of the inner plate-shaped members 50 in connection with a deformation of the transmission elements 51, as shown in Connection with the Figures 1, to 3 was explained in more detail. Due to the large areas, which are equipped with the energy-consuming wall construction, a large amount of energy can be absorbed and converted.
  • the pressure relief devices In order to avoid bursting of the guard house 40 and in particular to avoid uncontrolled destruction of the basic construction of the guard house 40, ie to reduce the pressure on the cage structure of the double-T-beams 47, occur from a certain threshold pressure, the pressure relief devices in action and leave as a result of the opening of the folding wings or the flap parts to a pressure equalization to the environment. Splinter flight can not occur.
  • the pressure relief openings are arranged quite high, so that in particular by the pivoting movements of the flap or the flap part is no danger to possibly waiting outside the guard house 40 or passing this person.
  • FIG. 8 shows the sake of completeness again a cross section of the formed as a damping profile transmission element 51.
  • FIG. 9 Two alternatives for mounting the transmission element 51 within the wall construction are shown.
  • a welded connection preferably in the form of welds, between edge strips of the trapezoidal profile and the outer plate-shaped component can be selected.
  • the welding points are located in the region of the edge of the head line of the trapezoid of the transmission element 51.

Description

    Einleitung
  • Die Erfindung betrifft ein explosionshemmendes Bauelement mit einem ersten plattenförmigen Bauteil, das eine Wand-, Decken- oder Bodenfläche eines Innenraumes oder einer Gebäudefassade bildet, einem zweiten plattenförmigen Bauteil, das parallel zu dem ersten plattenförmigen Bauteil ausgerichtet ist, und in einem Zwischenraum zwischen den beiden Bauteilen angeordneten Übertragungselementen, die sich auf gegenüber liegenden Seiten mit jeweils mindestens einem Kontaktbereich an jeweils einem der beiden plattenförmigen Bauteile abstützen, wobei das erste plattenförmige Bauteil unter Einwirkung eines explosionsbedingt erhöhten Luftdrucks im Wesentlichen senkrecht auf das zweite plattenförmige Bauteil zu bewegbar ist, wobei die Übertragurtgselemente unter vorzugsweise plastischer Verformung ihrer selbst Energie aufnehmen und die plattenförmigen Bauteile im Wesentlichen deckungsgleich zueinander angeordnet sind und die Übertragungselemente im Wesentlichen über die gesamte Fläche der plattenförmigen Bauteile verteilt angeordnet sind.
  • Stand der Technik
  • Ein derartiges explosionshemmendes Bauelement ist in Form eines Sicherheitsfensters mit speziell ausgebildeten Rahmenschenkeln aus der DE 37 44 816 A1 bekannt. Das erste plattenförmige Bauteil wird dabei von einer aus einem extrem druckfesten Panzerglas bestehenden Füllung mit einem diese U-förmig einfassenden Rahmenschenkel gebildet. Das Übertragungselement besteht aus einem zickzackförmig gebogenen Blechstreifen, der in einem Zwischenraum zwischen einem inneren rechteckförmigen Profilstahl des Rahmenschenkels und einem Abschnitt des Gurtes eines T-förmigen oder doppel-T-förmigen Stahlprofil angeordnet ist, welches das zweite plattenförmige Bauteil bildet. Aufgabe der bekannten Konstruktion ist es, einen Rahmenschenkel aus einer Profilkombination herzustellen, die es - auch wenn die Profileinzelteile verhältnismäßig schwach dimensionierte Querschnitte aufweisen - erlaubt, aus einem Sprengstoffanschlag resultierende große Kräfte aufzunehmen, ohne dazu kosten- oder raumaufwendige oder vorzuspannende und montageaufwcndige Dämpfungsmittel zu benötigen. Bei der bekannten Konstruktion ist es jedoch erforderlich, dass von den Übertragungselementen, die sich lediglich im Bereich der Rahmenschenkel umlaufend um die Füllung herum befinden, sehr große Kräfte aufgenommen und in Verformungsenergie umgewandelt werden. Dies resultiert aus der gegenüber der Fläche der Übertragungselemente sehr viel größeren Fläche der Füllung, auf die im Falle eines Sprengstoffanschlags die Druckkräfte einwirken. Daher wird es bei der bekannten Konstruktion häufig der Fall sein, dass nicht die gesamte, auf die Füllung einwirkende Druckenergie von den Übertragungselementen abgebaut werden kann, so dass im Ergebnis nach einem vollständigen Zusammenpressen der Übertragungselemente, d.h. nach Erreichen der Obergrenze der dort möglichen Energieaufnahme, nicht abgebaute Energie in Form großer Restkräfte in die dahinter befindliche Rahmenkonstruktion des Fensters eingeleitet wird.
  • Als Beispiel für eine schusssichere Wandung aus mehreren Metallblechen, die jedoch zur Ausrüstung von Personenkraftwagen dienen soll, sei die DE 2 325 921 A1 genannt. Um ein Fahrzeug mit einem schusssicheren Element ausstatten zu können, darf dieses trotz der hohen Anforderungen an eine Durchschusshemmung ein bestimmtes Gewicht nicht überschreiten. Zur Erzielung eines geringen Gewichts einer schusssicheren Wandung wird gemäß der vorgenannten Schrift vorgeschlagen, dass mindestens ein Metallblech der Wandung zum größten Teil schräg, vorzugsweise in Form von Lamellen, zu dem die Außenseite der Wandung bildenden Blech verläuft und einen freien Zwischenraum zu mindestens einem benachbarten Schrägblech oder Metallblech begrenzt.
  • Aufgabe
  • Der Erfindung liegt die Aufgabe zugrunde, ein explosionshemmendes Bauelement mit zwei plattenförmigen Bauteilen vorzuschlagen, bei dem von den Übertragungselementen bei deren Verformung große Energiemengen aufgenommen werden können.
  • Lösung
  • Ausgehend von einem explosionshemmenden Bauelement der eingangs beschriebenen Art wird diese Aufgabe erfingdungsgemäß dadurch gelöst, dass mindestens ein Kontaktbereich eines Übertragungselementes im Zuge dessen explosionsbedingter Verformung an der Oberfläche des zugeordneten plattenförmigen Bauteils entlang bewegbar ist.
  • Im Gegensatz zu der aus der DE 37 44 816 A1 bekannten Konstruktion, bei der die Übertragungselemente lediglich in einem vergleichsweise kleinen Überlappungsbereich zwischen den plattenförmigen Bauteilen angeordnet sind und daher hinsichtlich ihrer flächenmäßigen Erstreckung, d.h. aber auch ihres maximalen Energieaufnahmevermögens, eher gering bemessen sind, ist nunmehr eine nahezu vollständige Überlappung der plattenförmigen Bauteile gegeben, die im Übrigen vorzugsweise übereinstimmende Größen, d.h. Grundflächen, auf weisen. Die erfindungsgemäße Konstruktion zeichnet sich somit durch eine sehr großflächige Druckübertragung aus dem Bereich mit einem explosionsbedingt erhöhten Luftdruck sowie eine ebenso großflächige Anordnung von Übertragungselementen aus, die sich wiederum sehr großflächig an dem rückwärtigen plattenförmigen Bauteil abstützen, welches somit eine Art Widerlagerelement für die Kraftableitung in andere entsprechend stabil bzw. massiv ausgebildete Gebäudeteile darstellt. Die Bauelemente nach der Erfindung eignen sich daher insbesondere zur großflächigen Anordnung nebeneinander - vorzugsweise unter Freilassung lediglich einer kleinen Fuge zwischen benachbarten Elementen - an Wänden, Decken und/oder Böden, so dass im Extremfall sämtliche Wand-, Decken- und Bodenflächen beispielsweise eines
  • Innenraumes mit derartigen Bauelementen versehen sind, wodurch die Aufnahme sehr großer Energiemengen, wie sie beispielsweise bei Sprengstoffanschlägen frei werden, möglich ist.
  • Aufgrund der erfindungsgemäßen Idee, dass der Kontaktbereich eines Übertragungselementes im Zuge dessen explosionsbedingter Verformung an der Oberfläche des zugeordneten plattenförmigen Bauteils entlang bewegbar ist, ist bei Auftreten von Druckkräften infolge eines Sprengstoffanschlags eine deutlich höhere Verformung des Übertragungselementes möglich. Im Gegensatz zu starr beziehungsweise fest fixierten Übertragungselementen können die anmeldungsgemäßen Übertragungselemente sich relativ zu den Oberflächen der plattenförmi-gen Bauteile bewegen, wodurch deutlich höhere Deformationen möglich sind und höhere Kräfte in Verformungsenergie umgewandelt werden können. Der Abbau von explosionsbedingten Druckkräften ist somit optimiert.
  • Je nach Anordnung und Geometrie der Übertragungselemente ist es erforderlich, dass ein Kontaktbereich eines Übertragungselementes - in eine Richtung parallel zu den durch die plattenförmigen Bauteile definierten Ebenen betrachtet - in einem Abstand zu einem Kontaktbereich eines benachbarten Übertragungselements angeordnet ist. Um eine maximal mögliche Deformation der Übertragungselemente im Fall eines Sprengstoffanschlags zu gewährleisten, sollte der Abstand dementsprechend gewählt werden.
  • Um die Lage der Übertragungselemente sowohl im Normalzustand als auch im Belastungszustand festzulegen, müssen diese zumindest in einem Bereich jeweils mit nur einem plattenförmigen Bauteil verbunden sein.
  • Dabei gibt es zwei Varianten, die je nach Anforderung von Vorteil sein können: Zum Einen kann es vorteilhaft sein, wenn alle Übertragungselemente jeweils nur mit demselben plattenförmigen Bauteil verbunden sind. Somit kann die Herstellung des Bauelementes so erfolgen, dass zunächst alle Übertragungselemente an ein plattenförmiges Bauteil angebracht werden und in einem zweiten Schritt lediglich das zweite plattenförmige Bauteil vorgesetzt wird, ohne mit den Übertragungselementen verbunden zu werden.
  • Sind die Übertragungselemente jedoch abwechselnd mit dem ersten plattenförmigen Bauteil und mit dem zweiten plattenförmigen Bauteil verbunden, können entsprechend beide plattenförmigen Bauteile mit Übertragungselementen versehen werden, die bei Zusammenfügen der Bauteile dann nach Art eines Reißverschlusses ineinander greifen.
  • In jedem. Fall soll die Verbindung zwischen einem der plattenförmigen Bauteile und den Übertragungselementen derart gestaltet sein, dass deren vorhersehbare Verformung durch etwaige Verbindungselemente bzw. Verbindungsstellen, nicht behindert wird. Insbesondere sollten in Kontaktbereichen zwischen den Übertragungselementen und einem der plattenförmigen Bauteile Relativverschiebungen parallel zu der Plattenebene möglich sein, da die in Folge der Verformung der Übertragungselemente eintretende Reduzierung von deren Dicke typischerweise mit einer Vergrößerung von deren Breite einhergeht, so dass hier in Verbindung mit den auf die Übertragungselemente wirksamen Druckkräften Relativverschiebungen zwischen den Bauteilen auftreten.
  • Gemäß einer Ausführungsvariante des erfindungsgemäßen Bauelementes ist es vorgesehen, dass die beiden plattenförmigen Bauteile lediglich in deren Randbereichen derart miteinander verbunden sind, dass die Verbindung Zugkräfte übertragen kann. Demnach bestehen innerhalb des Bauelementes keine Verbindungsstellen, die gegebenenfalls die gewünschte Verschiebbarkeit der Kontaktbereiche der Übertragungselemente einschränken könnten.
  • Eine besonders stabile Verbindung der beiden plattenförmigen Bauteile kann dadurch erreicht werden, dass ein plattenförmiges Bauteil mit randseitigen Abkantungen versehen ist, deren Höhe der Höhe der Übertragungselemente entspricht, wobei die beiden plattenförmigen Bauteile im Bereich der randseitigen Abkantungen vorzugsweise umlaufend durch Verschweißen, Verschrauben oder Vernieten miteinander verbunden sind.
  • Eine Ausführungsvariante, bei der die Verschiebbarkeit der Übertragungselemente ebenfalls nicht eingeschränkt ist, sieht die Verbindung der plattenförmigen Bauteile durch Schraub- oder Dübelverbindungen vor, die neben oder genau in dem Bereich durchgeführt sind, in dem die Verbindung zwischen den Übertragungselementen und den plattenförmigen Bauteilen vorgesehen ist.
  • Die bei einer plastischen Verformung der Übertragungselemente aufnehmbare Energie ist dann besonders hoch, wenn die Übertragungselemente aus Metall, insbesondere aus einem gut plastisch verformbaren Stahl bestehen. Federeffekte, also elastische Verformungen, sind demgegenüber unerwünscht. Vorteilhafterweise sind auch das erste plattenförmige Bauteil und das zweite plattenförmige Bauteil aus Metall, insbesondere aus Stahl.
  • Gemäß einer Weiterbildung des erfindungsgemäßen Bauelements ist vorgesehen, dass die Übertragungselemente metallische Profilstücke sind, die in ihrer Längserstreckung parallel und im Abstand zueinander, sowie parallel zu den plattenförmigen Bauteilen, angeordnet sind. Eine derartige Anordnung erlaubt bei einer Annährung der beiden plattenförmigen Bauteile aneinander eine Komprimierung, d.h. auch Verbreiterung, der Profilstücke, ohne dass diese aufgrund des im Ausgangszustand bestehenden Abstands zueinander miteinander in Kontakt treten und die Verformungsvorgänge der einzelnen Übertragungselemente sich gegenseitig negativ beeinflussen würden.
  • Die Erfindung weiter ausgestaltend können die Profilstücke im Querschnitt dreieckförmig oder trapezförmig sein und im Bereich der Basislinie des Dreiecks oder Trapezes offen sein und von den Schenkeln des Dreiecks oder Trapezes seitlich nach außen vorstehende Randstreifen besitzen, die senkrecht zur Höhe des Dreiecks bzw. parallel zu der Kopflinie des Trapezes verlaufen. Die Herstellung derartiger Profilstücke mit einfacher geometrischer Form ist problemlos möglich und die Verformung nicht nur geometrisch gut vorhersehbar, sondern auch in Bezug auf die absorbierbare Energiemenge gut berechenbar. Eine bevorzugte Möglichkeit zur Verbindung derartiger Übertragungselemente mit dem zugeordneten plattenförmigen Bauteil besteht darin, dass hierfür lediglich ein Randstreifen des Schenkels des Dreiecks oder Trapezes oder ein Bereich der Kopflinie des Trapezes oder der Spitze des Dreiecks verwendet wird.
  • Um die von dem Bauteil absorbierbare Energiemenge weiter zu erhöhen, kann das erste plattenförmige Bauteil unter der Einwirkung des explosionsbedingt erhöhten Luftdrucks in der Weise plastisch verformbar sein, dass es sich in Freiräumen zwischen benachbarten verformten Übertragungselementen in geringerem Abstand zu dem zweiten plattenförmigen Bauteil befindet als in Kontaktbereichen, in denen eine Kraftübertragung auf die Übertragungselemente stattfindet. In diesem Falle findet somit eine energieverzehrende plastische Verformung des ersten, dem explosionsbedingt erhöhten Luftdruck ausgesetzten, plattenförmigen Bauteil statt, die entsprechende Freiräume zwischen den Kontaktbereichen mit den Übertragungselementen erfordert. Das plattenförmige Bauteil nähert sich somit in den besagten Freiräumen stärker an das zweite plattenförmige Bauteil an, als dies in den Kontaktbereichen mit den Übertragungselementen der Fall ist. Je nach Anordnung bzw. Verteilung und auch der Form der Übertragungselemente ergibt sich eine unterschiedliche Form des nach der Druckeinwirkung verformten ersten plattenförmigen Bauteils. Bei profilartig parallel im Abstand nebeneinander angeordneten Übertragungselementen ergibt sich bei dem verformten ersten plattenförmigen Bauteil eine Wellenform. Sind die Übertragungselemente hingegen punktuell über die Fläche des ersten plattenförmigen Bauteils verteilt, so weist das verformte plattenförmige Bauteil verteilt angeordnete und voneinander isolierte Senken auf, die je nach Form und Steifigkeit der Übertragungselemente bis hin zu einer "Eierkarton-Struktur" gehen kann. Wesentlich für die Energieaufnahme auch des plattenförmigen Bauteils ist eine nicht zu groß gewählte Steifigkeit des ersten plattenförmigen Bauteils. Je nach den konkreten Abmessungen des explosionshemmenden Bauelements darf somit die Dicke des plattenförmigen Bauteils in Bezug auf die zwischen benachbarten Übertragungselementen zu überbrückende Länge nicht zu groß gewählt werden. Auch ist bei dem ersten plattenförmigen Bauteil auf die Möglichkeit einer hinreichenden plastischen Verformbarkeit zu achten, was insbesondere bei geeigneten metallischen Werkstoffen wie Stahl oder auch Aluminium gegeben ist. Typischerweise wird in diesem Fall das erste plattenförmige Bauteil ein Deckblech des Bauelements sein, das eine Dicke im Bereich zwischen 1,0 mm und 5,0 mm besitzt, wobei der freie Abstand zwischen benachbarten Übertragungselementen im Bereich zwischen 20 mm und 100 mm beträgt. Das erste plattenförmige Bauteil ist aber in jedem Fall so stark zu wählen, dass die Widerstandskraft stärker ist als die des Übertragungselementes. Das zweite plattenförmige Bauteil ist dabei meist das massivste Teil. Dabei kann es sich auch um eine Wandscheibe aus Beton oder Mauerwerk handeln.
  • Das erfindungsgemäße Bauelement kann beispielsweise ein eine Gebäudeöffnung verschlie-Bender Gebäudabschluss sein, der vorzugsweise durch Schwenken, Drehen, Klappen oder Verschieben öffenbar ist, wie insbesondere eine Tür oder ein Fenster oder eine Klappe. Dabei können die plattenförmigen Bauteile mit den dazwischen liegenden Übertragungselementen die Gesamtfläche des Bauelements abdecken oder lediglich einen Teil davon. So ist es beispielsweise bei Fenstern oder Türen möglich, dass neben transparenten oder transluzenten Glasfüllungen ohne dazwischen befindliche Übertragungselemente weitere Bereiche mit großflächig energeiverzehrender Eigenschaft vorhanden sind. Diese Bereiche können beispielsweise als (undurchsichtige) Füllungen ausgeprägt sein, die in denselben Rahmen wie die nicht energieverzehrenden (durchsichtige) Füllungen integriert sind. Es ist aber auch möglich, die mit dazwischen angeordneten Übertragungselementen versehenen zwei plattenförmigen Bauteile vor eine bestehende Fläche des Gebäudeabschlusses, z.B. eine Betonfassade oder - wand zu setzen. Es liegt aber ebenso im Rahmen der vorliegenden Erfindung, wenn ein plattenförmiges Element, insbesondere das hintere, von einem Gebäudeteil, wie z.B. einer aus Beton oder hinreichend stabilem Mauerwerk hergestellten Wandscheibe gebildet wird.
  • So kann beispiels weise das Bauelement in Form einer Drehflügeltür oder Schiebetür ausgeführt sein, die ihre Sicherheitseigenschaften durch zwei parallel zueinander ausgerichtete Deckbleche erhält und auf einer angriffsgefährdeten Seite mit den beiden plattenförmigen Bauteilen und den dazwischen angeordneten Übertragungselementen versehen ist.
  • Um bei Drehflügeltüren eine sichere Abstützung der einwirkenden Kräfte zu gewährleisten, sollte die Drehflügeltür beim Öffnen in Richtung auf die Seite aufschwenkbar sein, auf der die plattenförmigen Bauteile und die dazwischen angeordneten Übertragungselemente angeordnet sind, d.h. der explosionserhöhte Luftdruck ist bestrebt, die Tür zu schließen.
  • Typischerweise beträgt der Abstand zwischen dem ersten plattenförmigen Bauteil und dem zweiten plattenförmigen Bauteil mindestens 20 mm, vorzugsweise mindestens 50 mm, weiter vorzugsweise mindestens 80 mm. Die großen Abstände zwischen den beiden parallelen plattenförmigen Bauteilen ermöglichen die Verwendung von Übertragungselementen, die aufgrund des großen möglichen Verformungsweges große Energiemengen bei ihrer Umformung aufnehmen können.
  • Eine besonders hohe Energieaufnahme des erfindungsgemäßen Bauelements ist erzielbar, wenn die Fläche einer von dem ersten plattenförmigen Bauteil gebildeten Ansichtsseite des Bauelements mindestens 1 m2, vorzugsweise mindestens 1,5 m2, weiter vorzugsweise mindestens 2 m2 beträgt.
  • Die Erfindung umfasst des Weiteren auch ein explosionshemmendes Wachhaus mit einem Innenraum und mindestens einer Tür, die in geöffnetem Zustand einer Verbindung zwischen dem Innenraum und der äußeren Umgebung bildet und gekennzeichnet ist durch mindestens ein den Innenraum begrenzendes Bauelement der vorstehend beschriebenen Art und eine ab einem Schwellenwert des Luftdrucks in dem Innenraum vorzugsweise nach außen öffnende Druckentlastungseinrichtung.
  • Die Wirkungen der Druckentlastungseinrichtung und der energieverzehrenden erfindungsgemäßen Bauelemente ergänzen sich bei einer derartigen Wachhauskonstruktion in idealer Weise. Die Grundkonstruktion des Wachhauses, die der Befestigung der explosionshemmenden Bauteile dient und die weitestgehend druckdicht ausgeführt sein sollte, wird durch den Druckabbau in Folge der Verformung der dem Innenraum zugewandten ersten plattenförmigen Bauteile stark vereinfacht und kann entsprechend kostengünstig ausfallen.
  • Das erfindungsgemäße Wachhaus weiter ausgestaltend ist vorgesehen, dass die zwei plattenförmigen Bauteile der explosionshemmenden Bauelemente von einer Käfigkonstruktion aus Stahlprofilen oder aus Stahlbeton gegen eine Verlagerung nach außen abgestützt sind.
  • Schließlich ist noch vorgesehen, dass Druckentlastungseinrichtungen sich in der Decke des Wachhauses und in Form von z.B. Klappflügelfenstern in den Wänden des Wachhauses befinden. Beide Arten von Druckentlastungseinrichtungen bzw. Druckentlastungsöffhungen sind vorzugsweise außerhalb des unmittelbaren Aufenthaltsbereichs von Personen angeordnet, die sich beispielsweise außen in der Nähe des Wachhauses oder unmittelbar in der Nähe von dessen Außenwänden aufhalten.
  • Ausführungsbeispiele
  • Die Erfindung wird nachfolgend anhand zweier Ausführungsbeispiele, und zwar zum einen eines explosionshemmenden Bauelements in Form einer Sicherheitstür und zum anderen in Form eines explosionshemmenden Wachhauses, die beide in Zeichnungen dargestellt sind, näher erläutert.
  • Es zeigt:
  • Fig. 1:
    eine Vorderansicht eines als Drehflügeltür ausgebildeten ersten explosions-hemmenden Bauelements,
    Fig. 2:
    einen Horizontalschnitt durch das Bauelement gemäß Figur 1,
    Fig. 3:
    einen Vertikalschnitt durch das Bauelement gemäß Figur 1,
    Fig. 3a:
    eine Detailansicht der Übertragungselemente aus Figur 3 im unbelasteten Zustand,
    Fig. 3b:
    eine Detailansicht der Übertragungselemente aus Figur 3 im belasteten Zustand,
    Fig. 4:
    einen Vertikalschnitt in Längsrichtung durch ein Wachhaus mit explosions-hemmenden Bauelementen an den Innenseiten der Wände,
    Fig. 5:
    einen Vertikalschnitt in Querrichtung durch das Wachhaus gemäß Figur 4,
    Fig. 6:
    einen Horizontalschnitt im unteren Bereich durch das Wachhaus gemäß den Figuren 4 und 5,
    Fig. 7:
    einen Horizontalschnitt im oberen Bereich durch das Wachhaus gemäß den Figuren 4 und 5,
    Fig. 8:
    einen Querschnitt durch ein Übertragungselement in Form eines im Querschnitt trapezförmigen Profils und
    Fig. 9:
    einen Horizontalschnitt durch einen Eckbereich des Wachhauses gemäß den Figuren 4 bis 7.
  • Figur 1 zeigt eine Ansicht eines sprengwirkungshernmend ausgebildeten Bauelements 1 in Form einer Drehflügeltür mit einer mit drei Bändern 2 versehenen Bandseite 3 und einer mit einem Schloss 4 versehenen Anschlagseite 5. Das Bauelement 1 umfasst ein Türblatt 6, das in konventioneller Weise von einer mit angrenzenden Gebäudeteilen verbundenen Zarge 7 in Form einer Eckzarge umlaufend umgeben ist. In ebenfalls herkömmlicher Weise gehen von einem Schlossgetriebe des Schlosses 4 nach oben und nach unten jeweils ein Treibriegel 8, 9 aus. Die Treibriegel 8, 9 dienen zur Betätigung von Verriegelungsbolzen 10 aus Edelstahl, die im Falzbereich der Zarge 7 in der Verriegelungsstellung der Tür in eine angepasste Ausnehmung der Zarge 7 eingreifen. Weitere Verriegelungsbolzen 10 befinden sich im Bereich des Schlosses 4.
  • Aus dem Horizontalschnitt gemäß Figur 2 ist ersichtlich, dass das Türblatt 6 aus einem kastenförmigen Grundkörper 11 und einem auf einer angriffsgefährdeten Seite 12 des Bauelements 1 an einer Ansichtsfläche des Grundkörpers 11 ausgebildeten weiteren kastenförmigen Körper 13 besteht, der für die Energieaufnahme im Falle eines explosionsbedingt erhöhten Luftdrucks im Bereich der angriffsgefährdeten Seite 12 zuständig ist. Der Grundkörper 11 besteht in konventioneller Weise aus einem hinteren, im Wesentlichen U-förmig gewinkelten Deckblech 14 und einem parallel hierzu im Abstand verlaufenden vorderen Deckblech 15, das mit seinen Randstreifen die Randstreifen des Deckblechs 14 derart umgreift, dass mit Hilfe einer Schweißnaht 16 eine stabile Ausbildung eines Falzbereichs gewährleistet ist. Zur Stabilisierung des Grundkörpers 11 befinden sich umlaufend in dessen Randbereichen U-förmige Verstärkungsprofile 17.1, 17.2 sowie 17.3 und 17.4 (vgl. Vertikalschnitt gemäß Figur 3). Äußere Randstreifen 18.1, 18.2, 18.3 und 18.4 befinden sich zwischen den jeweiligen Randstreifen des vorderen Deckblechs 15 und des hinteren Deckblechs 14 des Grundkörpers 11. Innerhalb des Grundkörpers 11 befindet sich unmittelbar angrenzend an das vordere Deckblech 15 und parallel zu diesem verlaufend und auch dessen Grundfläche aufweisend, ein Verstärkungsblech 19, das eine Dicke von 5 mm aufweist und als massive Gegendruckplatte für die weiter unten erläuterten Übertragungselemente in dem vorgesetzten kastenförmigen Körper 13 dient. Das Verstärkungsblech 19 bildet zusammen mit dem vorderen Deckblech 15 ein plattenförmiges Bauteil, das als Widerlager für die Energieaufnahme dienenden Übertragungselemente fungiert.
  • Der kastenförmige Körper 13 wird nach außen hin von einem zweiten plattenförmigen Bauteil 21 abgeschlossen, das als Deckblech ausgebildet und mittels Schrauben an Winkeln 22 befestigt ist, die an dem vorderen Deckblech 15 verschweißt sind.
  • Die explosionshemmende Wirkung des Bauelements 1 wird erzielt durch eine Mehrzahl von im Inneren des kastenförmigen Körpers 13 angeordneten Übertragungselementen 23, bei denen es sich um parallel und im Abstand zueinander angeordnete Stahlprofile mit einem trapezförmigen Querschnitt (vgl. Figur 3) handelt. In dem beschriebenen Ausführungsbeispiel verlaufen die Übertragungselemente 23 in horizontale Richtung; grundsätzlich ist jedoch aber auch jeglicher andere Verlauf bzw. andere Geometrie von Übertragungselementen 23 denkbar. So müssen diese nicht zwingend lang gestreckt sein, sondern können auch punktuell über die Grundfläche der Ansichtsseite des Türblatts 6 verteilt sein. Aus Gründen einer rationellen Fertigung und Montage ist jedoch die lang gestreckte Bauform der Übertragungselemente 23 in Form von Profilen, vorzugsweise aus Stahl, zu bevorzugen. Der Anteil der plastischen Verformung ist hierbei besonders hoch. Aus Figur 3 wird deutlich, dass die Übertragungselemente 23 im Querschnitt mit einer Kopflinie 24 einen Kontaktbereich zu der Innenseite der angriffsgefährdeten Seite zugewandten plattenförmigen Bauteils 21 besitzen. In diesem Bereich besteht jedoch keine feste Verbindung zwischen den Übertragungselementen 23 und dem plattenförmigen Bauteil 21, sondern lediglich eine Abstützung, die eine Übertragung von Druckkräften erlaubt.
  • Dic Übertragungselemente 23 besitzen an ihren Schenkeln 25 Randstreifen 26, die Kontaktbereiche zum vorderen Deckblech 15 des Grundkörpers 11 bilden und von denen pro Übertragungselement 23 jeweils nur ein Randstreifen 26 durch eine Schweißnaht 27 mit dem zugeordneten vorderen Deckblech 15 verbunden ist.
  • Die vorstehend erläuterte Befestigungsweise ermöglicht es, dass im Falle einer Druckemwirkung von der angriffsgefährdeten Seite 12 her Druckkräfte über das erste plattenförmige Bauteil 21 auf die Übertragungselemente 23 übertragen werden, wobei diese in Folge der gewählten Materialstärke entsprechend dem mittleren, in Figur 3 dargestellten, Übertragungselement 23 in der Weise plastisch verformt werden, dass sich ihre senkrecht zu den plattenförmigen Elementen 20, 21 gemessene Höhe reduziert. Während dabei der mit der Schweißnaht 27 befestigte Randstreifen 26 des Übertragungselements 23 seine Position beibehält, verschiebt sich sowohl der Kontaktbereich, der von dem gegenüber liegenden Randstreifen 26 gebildet wird, als auch der Kontaktbereich, der von der Kopflinie 24 des Trapezes gebildet wird. Aus diesem Grunde sind Befestigungspunkte in diesen Kontaktbereichen dann nicht möglich, wenn sie eine seitliche Verschiebung der miteinander in Kontakt tretenden Bauteile verhindert.
  • Eine Energieaufnahme im Falle eines explosionsbedingten Druckanstiegs auf der angriffsgefährdeten Seite 12 wird nicht nur durch die Verformung der Übertragungselemente 23 erreicht, sondern auch durch eine Verformung des vorderen plattenförmigen Bauteils 21 selbst, das in seiner Dicke mit beispielsweise 2 mm wesentlich dünner bemessen ist, als das als Widerlager dienende hintere plattenförmige Bauelement 20, das eine Gesamtdicke von beispielsweise 8 mm aufweist. Nach Einwirkung der Druckkräfte auf das Türblatt 6 wird das erste plattenförmige Bauteil 21 sich in Freiräumen 28 zwischen benachbarten Übertragungselementen 23 stärker an das zweite plattenförmige Bauteil 20 annähren, als dies in Kontaktbereichen definiert durch die Kopflinien 24 der Trapeze der Übertragungselemente 23 der Fall ist. Im Ergebnis ergibt sich somit eine Wellenstruktur des ersten plattenförmigen Bauelements 21 dergestalt, dass die Wellenberge im Bereich der dahinter angeordneten Übertragungselemente 23 sind, wohingegen in den dazwischen befindlichen Freiräumen 28 Wellentäler zu finden sind.
  • Die auf das hintere, massiv und als Widerlagerelement ausgebildete plattenförmige Bauteil 20 über die Übertragungselemente 23 einwirkenden Kräfte werden über die umlaufenden Randstreifen des Türblatts 6 abgeleitet, die mit Widerlagerflächen 29 der Zarge 7 in Kontakt stehen. Die Zarge 7 ist an den beiden vertikalen Seiten und der oberen horizontalen Seite mittels Laschen an einem Gebäudeteil 30 insbesondere durch Schrauben befestigt. Der Gebäudeteil 30 ist dabei als sehr massiver Winkelstahl ausgebildet, kann aber auch aus anderen Baumaterialien mit hinreichender Festigkeit, wie beispielsweise Stahlbeton, bestehen, An der unteren Seite der Zarge 7 ist diese mit Hilfe eines Türsockel-Montagerahmens 31 befestigt, der wiederum über Schraubverbindungen mit einem Türsockel des Gebäudeteils 30 verschraubt ist.
  • Der Figur 3a ist eine Detailansicht der Übertragungselemente 23 aus Figur 3 im unbelasteten Zustand zu entnehmen und Figur 3b zeigt die Übertragungselemente 23 ebenfalls in Detailansicht, jedoch im verformten Zustand. Bei einem Vergleich der beiden vorgenannten Figuren wird deutlich, dass die mit der Schweißnaht 27 befestigten Randstreifen 26 der Übertragungselemente 23 ihre Position im Fall eines explosionsbedingten Druckanstiegs nicht verändern. Lediglich die Kontaktbereiche, die von dem gegenüberliegenden Randstreifen 26 und von der Kopflinie 24 des Trapezes gebildet werden, verschieben sich, wobei die Verschiebung der gegenüberliegenden Randstreifen 26 doppelt so groß ist wie die der Kopflinien 24. Des Weiteren liegen die gegenüberliegenden Randstreifen 26 nicht mehr über ihre gesamte Länge an dem zugehörigen Bauteil 20 an, sondern stehen in einem Winkel von diesem ab.
  • Das in den Figuren 4 bis 5 in verschiednen Ansichten bzw. Schnitten dargestellte Wachhaus 40 besitzt vier Wände 41.1, 41.2, 41.3 und 41.4, ein Dach 42 sowie einen Boden 43. In der Wand 41.1 befinden sich zwei Fenster, die als Klappflügelfenster 44 ausgebildet sind, sowie eine Tür 45, die gemäß Figur 7 in Richtung eines Innenraums 46 des Wachhauses 40 öffnet. In entsprechender Weise besitzt die gegenüber liegende Wand 41.3 gleichfalls zwei Klappflügelfenster 44 und eine nach innen öffnende Tür 45. Im Gegensatz hierzu besitzen die gegenüber liegenden Wände 41.2 und 41.4 keine Öffnungen, wie sich auch aus Figur 5 ergibt. Das Wachhaus 40 ist aus einer Fachwerk- bzw. Käfigkonstruktion von Doppel-T-Trägern 47 aufgebaut, die in den Wänden 41.1 bis 41.4 in vertikale Richtung und in dem Boden 43 und dem Dach 42 in Querrichtung sowie in Längsrichtung des Wachhauses 40 verlaufen.
  • In dem Wachhaus 40 befinden sich Druckentlastungseinrichtungen sowohl in Form der Klappflügelfenster 44 in den Wänden 41.1 und 41.3 als auch von Druckentlastungsklappen 48 in dem Dach 42 des Wachhauses 40. Die nach außen öffnenden Flügel der Klappflügelfenster 44 sind in ihrer Schließstellung lediglich derart in dem zugeordneten Blendrahmen fixiert, dass sie bei Überschreitung eines bestimmten Schwellenwertes eines in dem Innenraum 46 des Wachhauses 40 wirkenden Druckes öffnen, wobei vor Beginn der eigentlichen Öffnungsbewegung ein Verschließelement überwunden, d.h. insbesondere zerstört wird. In gleicher Weise sind Klappenteile der Druckentlastungsklappen 48 in ihren Rahmen gelagert.
  • Wie sich sehr anschaulich aus der Schnittdarstellung gemäß Figur 9 ergibt, sind die Wände 41.3 und 41.4, aber auch die übrigen nicht vergrößert dargestellten Wände 41.1 und 41.2, aus zwei parallel und im Abstand zueinander verlaufenden plattenförmigen Bauteile 49 und 50 sowie dazwischen befindlichen Übertragungselementen 51 zusammengesetzt. Während das dem Innenraum 46 zugewandte innere plattenförmige Bauteil 50 dünner ausgebildet ist und in Folge einer druckbedingten Verformung eine Wellenform annehmen soll, wie bereits weiter oben geschildert wurde, ist das hintere plattenförmige Bauteil 49 als massives Widerlagerelement in größerer Wandstärke ausgeführt. Die Geometrie und Funktionsweise der als trapezförmige Profilstücke ausgeführten und äquidistant, d.h. homogen, über die Grundflächen der beiden plattenförmigen Bauteile 49,50 verteilten Übertragungselemente 51 ist überein-stimmend mit der bei der explosionshemmend ausgebildeten Drehflügeltür gemäß den Figuren 1 bis 3.
  • Aus Figur 9 lässt sich des Weiteren entnehmen, dass die hinteren, d.h. äußeren plattenförmigen Bauteile 49 mit den Doppel-T-Trägern 47 durch Schweißnähte 52 miteinander verbunden sind. Es besteht hingegen keine (metallische) Verbindung zwischen dem inneren plattenförmigen Bauteil 50 und dem Doppel-T-Träger 47. Der bewusst freigelassene Spalt 53 kann bei der Innenverkleidung des Innenraums 46 des Wachhauses 40 beispielsweise mit Tapete überklebt oder mittels einer dauerelastischen Fugenmasse verschlossen werden. Beide letztgenannten Möglichkeiten den Spalt 43 zu kaschieren schränken die im Explosionsfall gewünschte und benötigte Möglichkeit zur Verschiebung des inneren plattenförmigen Bauteils 50 auf das äußere plattenförmige Bauteil 49 zu nicht ein. Es versteht sich jedoch, dass auf geeignete Weise, z.B. durch Leisten oder Klötze, verhindert werden muss, dass die inneren plattenförmigen Bauteile 50 aus ihrer vertikalen Betriebsposition umfallen. Ferner ist es möglich, die inneren plattenförmigen Bauteile mittels schwach dimensionierter Schrauben, die im Belastungsfall, wie z.B. einer Explosion, abreißen bzw. abscheren, mit der Tragkonstruktion zu verhindern. Um die Montage zu vereinfachen, können die beiden plattenförmigen Bauteile 49, 50 und die in dem Zwischenraum befindlichen Übertragungselemente 51 eine zusammenhängende Einheit bilden, wobei natürlich die Möglichkeit der Relativbeweglichkeit der beiden plattenförmigen Bauteile 49, 50 zueinander - unter plastischer Verformung der Übertragungselemente 51- nicht unterbunden sein darf.
  • Zu Isolierzwecken ist das Wachhaus 40 an seiner gesamten Außenhaut mit einer Isolierschicht 54 beispielsweise aus Polysterol-Hartschaum-Platten oder Mineralfaserplatten umgeben. Diese können außenseitig mit bekannten handelsüblichen Verkleidungselementen wie Blechplatten o.ä. verkleidet werden, um die gewünschte Optik von außen zu erzeugen. Neben den Wänden 41.1 bis 41.4 besteht zur Erhöhung der Menge der absorbierbaren Energie die Möglichkeit, auch den Boden bzw. die Decke des Wachhauses 40 mit der explosionshemmenden Bauteilkombination aus zwei plattenförmigen Bauteilen 49, 50 mit dazwischen angeordneten Übertragungselementen 51 zu versehen.
  • Das Wachkhaus 40 kann beispielsweise nachträglich vor einem bestehendes Gebäude mit hohen Sicherheitsanforderungen angeordnet werden. So kann im Wege eines "Durchschleusens" im Innenraum. 46 des Wachhauses 40 eine Kontrolle beispielsweise von Besuchern des Gebäudes durchgeführt werden. Im Falle einer Sprengstoffexplosion im Innenraum 46 des Wachhauses 40, beispielsweise ausgelöst durch einen Selbstmord-Sprengstoffanschlag, kommt es in Folge des Druckanstiegs im Innenraum 46 zum einen zu einer Verformung der inneren plattenförmigen Bauteile 50 in Verbindung mit einer Verformung der Übertragungselemente 51, wie dies in Verbindung mit den Figuren 1, bis 3 näher erläutert wurde. Aufgrund der großen Flächen, die mit der energieverzehrenden Wandkonstruktion bestückt sind, kann eine große Energiemenge aufgenommen und umgewandelt werden. Um ein Bersten des Wachhauses 40 zu vermeiden und insbesondere eine unkontrollierte Zerstörung der Grundkonstruktion des Wachhauses 40 zu vermeiden, d.h. um die Druckbelastung auf die Käfigkonstruktion aus den Doppel-T-Trägern 47 zu reduzieren, treten ab einem gewissen Schwellendruck die Druckentlastungseinrichtungen in Aktion und lassen in Folge des Öffnens der Klappflügel bzw. der Klappenteile einen Druckausgleich an die Umgebung zu. Splitterflug kann dabei nicht auftreten. Im Übrigen sind die Druckentlastungsöffnungen recht hoch angeordnet, so dass insbesondere durch die Schwenkbewegungen des Klappflügels bzw. des Klappenteils keine Gefährdung für möglicherweise außen vor dem Wachhaus 40 wartenden oder dieses passierenden Personen besteht.
  • Figur 8 zeigt der Vollständigkeit halber nochmals einen Querschnitt des als Dämpfungsprofil ausgebildeten Übertragungselements 51. In Figur 9 sind zwei Alternativen zur Befestigung des Übertragungselements 51 innerhalb der Wandkonstruktion dargestellt. Zum einen kann eine Schweißverbindung, vorzugsweise in Form von Schweißpunkten, zwischen Randstreifen des Trapezprofils und dem äußeren plattenförmigen Bauteil, gewählt werden. Ebenso möglich ist die Alternative, wobei die Schweißpunkte sich im Bereich des Randes der Kopflinie des Trapezes des Übertragungselements 51 befinden.
  • Bezugszeichenliste
  • 1
    Bauelement
    2
    Band
    3
    Bandseite
    4
    Schloss
    5
    Anschlagseite
    6
    Türblatt
    7
    Zarge
    8
    Treibriegel
    9
    Treibriegel
    10
    Verriegelungsbolzen
    11
    Grundkörper
    12
    Seite
    13
    kastenförmiger Körper
    14
    Deckblech
    15
    Deckblech
    16
    Schweißnaht
    17
    Verstärkungsprofil.
    18
    Randstreifen
    19
    Verstärkungsblech
    20
    plattenförmiges Bauteil
    21
    plattenförmiges Bauteil
    22
    Winkel
    23
    Übertragungselement
    24
    Kopflinie
    25
    Schenkel
    26
    Randstreifen
    27
    Schweißnaht
    28
    Freiraum
    29
    Widerlagerfläche
    30
    Gebäudeteil
    31
    Türsockel-Montagerahmen
    40
    Wachhaus
    41
    Wand
    42
    Decke
    43
    Boden
    44
    Fenster
    45
    Tür
    46
    Innenraum
    47
    Doppel-T-Träger
    48
    Druckentlastungsklappe
    49
    plattenförmiges Bauteil
    50
    plattenförmiges Bauteil
    51
    Übertragungselement
    52
    Schweißnaht
    53
    Spalt
    54
    Isolierschicht

Claims (20)

  1. Explosionshemmendes Bauelement (1) mit einem ersten plattenförmigen Bauteil (21, 50), das eine Wand-, Decken- oder Bodenfläche eines Innenraumes eines Gebäudes oder einer Gebäudefassade bildet, einem zweiten plattenförmigen Bauteil (20, 49), das parallel zu dem ersten plattenförmigen Bauteil (21, 50)ausgerichtet ist, und in einem Zwischenraum zwischen den beiden Bauteilen (20, 21 oder 49, 50) angeordneten Übertragungselementen (23,51), wobei das erste plattenförmige Bauteil (21, 50) unter Einwirkung eines explosionsbedingt erhöhten Luftdrucks im Wesentlichen senkrecht auf das zweite plattenförmige Bauteil (20, 49) zu bewegbar ist, wobei die Übertragungselemente (23, 51) unter vorzugsweise plastischer Verformung ihrer selbst Energie aufnehmen können und die plattenförmigen Bauteile (20, 21 oder 49, 50) im Wesentlichen deckungsgleich zueinander angeordnet sind und die Übertragungselemente (23, 51) im Wesentlichen über die gesamte Fläche der plattenförmigen Bauteile (20, 21 oder 49, 50) verteilt angeordnet sind, dadurch gekennzeichnet, dass die Übertragungselemente (23,51) sich auf gegenüber liegenden Seiten mit jeweils mindestens einem Kontaktbereich an jeweils einem der beiden plattenförmigen Bauteile (20, 21,49,50) abstützen, und dass mindestens ein Kontaktbereich eines Übertragungselementes (23, 51) im Zuge dessen explosionsbedingter Verformung an der Oberfläche des zugeordneten plattenförmigen Bauteils (20, 21, 49, 50) entlang bewegbar ist.
  2. Bauelement nach Anspruch 1, dadurch gekennzeichnet, dass ein Kontaktbereich - in eine Richtung parallel zu den durch die plattenförmigen Bauteile (20, 21, 49, 50) definierten Ebenen betrachtet - in einem Abstand zu einem Kontaktbereich eines benachbarten Übertragungselements (23, 51) angeordnet ist.
  3. Bauelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jedes Übertragungselement (23, 51) jeweils nur mit einem plattenförmigen Bauteil (20, 21, 49, 50) verbunden ist.
  4. Bauelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass alle Übertragungselemente (23, 51) jeweils nur mit demselben plattenförmigen Bauteil (20, 21, 49, 50) verbunden sind.
  5. Bauelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Übertragungselemente (23,51) abwechselnd mit dem ersten plattenförmigen Bauteil (21, 50) und mit dem zweiten plattenförmigen Bauteil (20, 49) verbunden sind.
  6. Bauelement nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die beiden plattenförmigen Bauteile (20, 21,49, 50) lediglich in deren Randbereichen derart miteinander verbunden sind, dass die Verbindung Zugkräfte übertragen kann.
  7. Bauelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein plattenförmiges Bauteil (20, 21, 49, 50) mit randseitigen Abkantungen versehen ist, deren Höhe der Höhe der Übertragungselemente (23, 51) entspricht, wobei die beiden plattenförmigen Bauteile (20, 21, 49, 50) im Bereich der randseitigen Abkantungen vorzugsweise umlaufend durch Verschweißen, Verschrauben oder Vernieten miteinander verbunden sind.
  8. Bauelement nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass das erste plattenförmige Bauteil (21, 50) und/oder das zweite plattenförmige Bauteil (20,49) und/oder die Übertragungselemente (23, 51) aus Metall, insbesondere aus Stahl, bestehen.
  9. Bauelement nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Übertragungselemente (23, 51) metallische Profilstücke sind, die in ihrer Längserstreckung parallel und im Abstand zueinander sowie parallel zu den plattenförmigen Bauteilen (20, 21 oder 49, 50) angeordnet sind.
  10. Bauelement nach Anspruch 9, dadurch gekennzeichnet, dass die Profilstücke im Querschnitt dreiecksförmig oder trapezförmig sind und dass die Profilstücke im Bereich der Basislinie des Dreiecks oder Trapezes offen sind und von den Schenkeln (25) des Dreiecks oder Trapezes seitlich nach außen vorstehende Randstreifen (26) besitzen, die senkrecht zur Höhe des Dreiecks oder parallel zu der Kopflinie des Trapezes verlaufen.
  11. Bauelement nach Anspruch 10, dadurch gekennzeichnet, dass die Übertragungselemente (23, 51) lediglich im Bereich eines Randstreifes (26) oder im Bereich einer Kopflinie (24) des Trapezes oder Spitze des Dreiecks mit dem zugeordneten plattenförmigen Bauteil (20, 21 oder 49, 50)verbunden sind.
  12. Bauelement nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das erste plattenförmige Bauteil (21, 50) unter der Einwirkung des explosionsbedingt erhöhten Luftdrucks in der Weise plastisch verformbar ist, dass es sich in Freiräumen (28) zwischen benachbarten verformten Übertragungselementen (23, 51) in geringerem Abstand zu dem zweiten plattenförmigen Bauteil (20,49) befindet, als in Kontaktbereichen, in denen eine Kraftübertragung auf die Übertragungselemente (23, 51) stattfindet.
  13. Bauelement nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Bauelement (1) ein eine Gebäudeöffnung verschließender Gebäudeabschluss, insbesondere eine Tür oder ein Fenster oder eine Klappe, ist.
  14. Bauelement nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass es als eine als Drehflügeltür oder Schiebetür ausgebildete Sicherheitstür ausgebildet ist, die zwei parallel zueinander ausgerichtete Deckbleche (14, 15) aufweist, die auf einer angriffsgefährdeten Seite (12) mit den plattenförmigen Bauteilen und den dazwischen angeordneten Übertragungselementen (23) versehen sind.
  15. Bauelement nach Anspruch 14, dadurch gekennzeichnet, dass die Drehflügeltür beim Öffnen in Richtung auf die Seite aufschwenkbar ist, auf der die plattenförmigen Bauteile (20, 21) und die dazwischen angeordneten Übertragungselemente (23) angeordnet sind.
  16. Bauelement nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Abstand zwischen dem ersten plattenförmigen Bauteil (21,50) und dem zweiten plattenförmigen Bauteil (20, 49) mindestens 50 mm, vorzugsweise mindestens 80 mm, weiter vorzugsweise mindestens 100 mm, beträgt.
  17. Bauelement nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Fläche einer von dem ersten plattenförmigen Bauteil (21,50) gebildeten Ansichtsseite des Bauelements (1) mindestens 1,0 m2, vorzugsweise mindestens 1,5 m2, weiter vorzugsweise mindestens 2,0 m2 beträgt.
  18. Explosionshemmendes Wachhaus (40) mit einem Innenraum (46) und mindestens einer Tür (45), die in geöffnetem Zustand eine Verbindung zwischen dem Innenraum und der äußeren Umgebung bildet, gekennzeichnet durch mindestens ein den Innenraum (46) begrenzendes Bauelement gemäß einem der Ansprüche 1 bis 17 und eine ab einem Schwellenwert des Luftdrucks in dem Innenraum (46) vorzugsweise nach außen öffnende Druckentlastungseinrichtung (48).
  19. Wachhaus (40) nach Anspruch 18, dadurch gekennzeichnet, dass die zwei plattenförmigen Bauteile (49, 50) der explosionshemmenden Bauelemente von einer Käfigkonstruktion aus Stahlprofilen (47) oder aus Stahlbeton gegen eine Verlagerung nach außen abgestützt sind.
  20. Wachhaus nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass Druckentlastungseinrichtungen (48) sich in der Decke des Wachhauses (40) und in Form von Klappflügelfenstern (44) in den Wänden (41.1, 41.2, 41.3, 41.4) des Wachhauses (40) befinden.
EP20080000043 2007-01-11 2008-01-03 Explosionshemmendes Bauelement Active EP1944432B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200720000682 DE202007000682U1 (de) 2007-01-11 2007-01-11 Explosionshemmendes Bauelement

Publications (2)

Publication Number Publication Date
EP1944432A1 EP1944432A1 (de) 2008-07-16
EP1944432B1 true EP1944432B1 (de) 2009-03-25

Family

ID=37905747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080000043 Active EP1944432B1 (de) 2007-01-11 2008-01-03 Explosionshemmendes Bauelement

Country Status (2)

Country Link
EP (1) EP1944432B1 (de)
DE (2) DE202007000682U1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023908A1 (de) * 2007-05-23 2008-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sicherheitswand zur explosionsgeschützten Begrenzung von Räumen
CN101230599B (zh) * 2008-02-28 2010-06-02 同济大学 竖向抗剪跷动减震钢板剪力墙
CN101532807B (zh) * 2008-12-18 2012-12-26 湖北白莲河抽水蓄能有限公司 抽水蓄能电站尾水预留岩坎爆破安全防护方法
ATE549474T1 (de) 2010-04-01 2012-03-15 Saelzer Sicherheitstechnik Explosions- und beschusshemmende bauwerksstruktur sowie verfahren zur herstellung einer selben
GB201103948D0 (en) * 2011-03-08 2011-04-20 Bastion Security North Ltd Modular security walling
DE102021203633A1 (de) 2021-04-13 2022-10-13 Sommer Fassadensysteme-Stahlbau-Sicherheitstechnik Gmbh & Co. Kg Verschlussvorrichtung für gebäudeöffnungen oder räume

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2325921A1 (de) 1973-05-22 1974-12-12 Karl Weber Schussichere wandung, insbesondere fuer fahrzeuge, einschliesslich flugzeuge
FR2449190A1 (fr) * 1979-02-16 1980-09-12 Gubri Sa Ets L Perfectionnements aux panneaux mobiles resistants a la pression et destines a obturer des ouvertures
DE3744816C2 (en) 1987-02-20 1991-03-07 Saelzer Sicherheitstechnik Gmbh, 3550 Marburg, De Explosion-resistant glazing
FR2705396B1 (fr) * 1993-05-17 1995-06-30 Eurosid Sa Porte, en particulier porte anti-souffle.

Also Published As

Publication number Publication date
DE502008000004D1 (de) 2009-05-07
DE202007000682U1 (de) 2007-03-22
EP1944432A1 (de) 2008-07-16

Similar Documents

Publication Publication Date Title
EP1361331B1 (de) Gebäudeabschluss in sprengwirkungshemmender Ausführung
EP2275361B1 (de) Schutzausstattung für Container, Container und Containerverbund damit
EP1640550B1 (de) Sprengwirkungshemmendes Fenster
DE2639691C3 (de) Schutztür
EP1645714B1 (de) Verbund zwischen Rahmen und Füllung
EP1944432B1 (de) Explosionshemmendes Bauelement
EP1361330B1 (de) Sprengwirkungshemmend ausgeführter Gebäudeabschluss
DE102004062060B3 (de) Fensterscheibe mit einem Sicherungselement
WO2010063297A1 (de) Haltesystem für isolierglasscheiben
EP1662086B1 (de) Explosionshemmendes Fenstersystem
DE19719113C2 (de) Türsystem
EP2863001B1 (de) Rahmenlose glastür für brandschutzzwecke
DE102006032889B4 (de) Aufkeilvorrichtung zum Aufkeilen eines Dachflächenfensters
EP2572055B1 (de) Einbruchhemmende wand
DE202014101934U1 (de) Brandschutzschrank, insbesondere Sicherheitsschrank
EP1790815B1 (de) Fenster- und/oder Fassadensystem
EP1978200B1 (de) Pfosten-Riegel-Fassade in sprengwirkungshemmender Ausführung
EP2372047B1 (de) Explosions- und beschusshemmende Bauwerksstruktur sowie Verfahren zur Herstellung einer selben
DE102019108770A1 (de) Sprengwirkungshemmende rahmenlose glaskonstruktion
DE102004011757B4 (de) Plattenförmiges Abschlusselement für eine Gebäudeöffnung
DE102015107035A1 (de) Brandschutzschiebetor
WO2005078214A1 (de) Gebäude
EP2080852A1 (de) Gerüstbelag mit Durchstiegsklappe, deren Schwenkwinkel begrenzt ist
EP2845982B1 (de) Pfosten für eine Schwenktür und Brandschutzverglasung mit einem solchen Pfosten
DE202014007355U1 (de) Beschuss- und durchbruchhemmende Sicherheitstür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502008000004

Country of ref document: DE

Date of ref document: 20090507

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000004

Country of ref document: DE

Representative=s name: BAUER WAGNER PRIESMEYER, PATENT- UND RECHTSANW, DE

Effective date: 20131205

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008000004

Country of ref document: DE

Owner name: SAELZER GMBH, DE

Free format text: FORMER OWNER: SAELZER SICHERHEITSTECHNIK GMBH, 35037 MARBURG, DE

Effective date: 20131205

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000004

Country of ref document: DE

Representative=s name: PATENT- & RECHTSANWAELTE BAUER WAGNER PRIESMEY, DE

Effective date: 20131205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000004

Country of ref document: DE

Representative=s name: PATENT- UND RECHTSANWAELTE LOESENBECK, SPECHT,, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000004

Country of ref document: DE

Representative=s name: BAUER WAGNER PELLENGAHR SROKA PATENT- & RECHTS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000004

Country of ref document: DE

Representative=s name: PATENT- UND RECHTSANWAELTE LOESENBECK, SPECHT,, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231221

Year of fee payment: 17

Ref country code: GB

Payment date: 20240104

Year of fee payment: 17