EP1943382B1 - Horizontale stepmaschine mit mehreren nadeln sowie verfahren - Google Patents

Horizontale stepmaschine mit mehreren nadeln sowie verfahren Download PDF

Info

Publication number
EP1943382B1
EP1943382B1 EP06803304.2A EP06803304A EP1943382B1 EP 1943382 B1 EP1943382 B1 EP 1943382B1 EP 06803304 A EP06803304 A EP 06803304A EP 1943382 B1 EP1943382 B1 EP 1943382B1
Authority
EP
European Patent Office
Prior art keywords
needle
looper
thread
drive
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06803304.2A
Other languages
English (en)
French (fr)
Other versions
EP1943382A2 (de
EP1943382A4 (de
Inventor
James T. Frazer
Jeff Kaetterhenry
Michael A. James
Terrance L. Myers
Richard Villacis
Roland Keller
David Brian Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L&P Property Management Co
Original Assignee
L&P Property Management Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L&P Property Management Co filed Critical L&P Property Management Co
Publication of EP1943382A2 publication Critical patent/EP1943382A2/de
Publication of EP1943382A4 publication Critical patent/EP1943382A4/de
Application granted granted Critical
Publication of EP1943382B1 publication Critical patent/EP1943382B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B11/00Machines for sewing quilts or mattresses
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B69/00Driving-gear; Control devices
    • D05B69/28Applications of servo devices for tool-positioning purposes
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B57/00Loop takers, e.g. loopers
    • D05B57/30Driving-gear for loop takers
    • D05B57/32Driving-gear for loop takers in chain-stitch sewing machines
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B65/00Devices for severing the needle or lower thread

Definitions

  • This invention relates to quilting, and particularly relates to quilting with high-speed multi-needle quilting machines. More particularly, the invention relates to multi-needle chain stitch quilting machines, for example, of the types used in the manufacture of mattress covers and other quilted products that are usually formed of wide webs of multi-layered material.
  • Quilting is a sewing process by which layers of textile material and other fabric are joined to produce compressible panels that are both decorative and functional. Stitch patterns are used to decorate the panels with sewn designs while the stitches themselves join the various layers of material that make up the quilts.
  • the manufacture of mattress covers involves the application of large scale quilting processes.
  • the large scale quilting processes usually use high-speed multi-needle quilting machines to form series of mattress cover panels along webs of the multiple-layered materials.
  • These large scale quilting processes typically use chain-stitch sewing heads which produce resilient stitch chains that can be supplied by large spools of thread. Some such machines can be run at up to 1500 or more stitches per minute and drive one or more rows of needles each to simultaneously stitch patterns across webs that are ninety inches or more in width.
  • An X-axis can be considered as the longitudinal direction of motion of a web of the material as it moves through the quilting station.
  • bi-directional motion is provided in which the web of material can move in either a forward or a reverse direction to facilitate sewing in any direction, such as is needed for the quilting of 360 degrees patterns on the material.
  • Material accumulators usually accompany such bi-directional machines so that sections of a web can be reversed without changing the direction of the entire length of web material along the quilting line.
  • a Y-axis of motion is also provided by moving the web from side to side, also for forming quilted patterns.
  • the quilting mechanism remains stationary in the quilting process and the motion of the material is controlled to affect the quilting of various patterns.
  • the X-axis and the Y-axis are parallel to the plane of the material being quilted, which traditionally is a horizontal plane.
  • a third axis, a Z-axis is perpendicular to the plane of the material and defines the nominal direction of motion of reciprocating needles that form the quilting stitches.
  • the needles typically on an upper sewing head above the plane of the material, cooperate with loopers on the opposite or lower side of the material, which reciprocate perpendicular to the Z-axis, typically in the X-axis direction.
  • the upper portion of the sewing mechanism that includes the needle drive is, in a conventional multi-needle quilting machine, carried by a large stationary bridge.
  • the lower portion of the sewing mechanism that includes the looper drives is attached to a cast iron table. There may be, for example, three rows of sewing elements attached to each respective upper and lower structure. All of the needles are commonly linked to and driven by a single main shaft.
  • multi-needle quilting machines lack flexibility. Most provide a line or an array of fixed needles that operate simultaneously to sew the same pattern and identical series of stitches. Changing the pattern requires the physical setting, rearrangement or removal of needles and the threading of the altered arrangement of needles. Such reconfiguration takes operator time and substantial machine down-time.
  • the needle carries a needle thread through the material and presents a loop on the looper side of the material to be picked up by a looper thread.
  • a looper or hook is reciprocated about a shaft in a sinusoidal rotary motion.
  • the looper is positioned relative to the needle such that its tip enters the needle thread loop presented by the needle to extend a loop of looper thread through the needle thread loop on the looper side of the material.
  • the motion of the looper is synchronized with motion of the needle so that the needle thread loop is picked up by the looper thread when the needle is at the downward extent of its cycle.
  • the needle then rises and withdraws from the material and leaves the needle thread extending around the looper and looper thread loop.
  • the material When the needle is withdrawn from the material, the material is shifted relative to the stitching elements and the needle again descends through the material at a distance equal to one stitch length from the previous point of needle penetration, forming one stitch.
  • the needle inserts the next loop of needle thread through a loop formed in the looper thread that was previously poked by the looper through the previous needle thread loop.
  • the looper itself has already withdraw from the needle thread loop, in its sinusoidal reciprocating motion, leaving the looper thread loop extending around a stitch assisting element, known as a retainer in many machines, which holds the looper thread loop open for the next decent of a needle.
  • needle thread loops are formed and passed through looper thread loops as looper thread loops are alternatively formed and passed through needle thread loops, thereby producing a chain of loops of alternating needle and looper thread along the looper side of the material, leaving a series of stitches formed only of the needle thread visible on the needle side of the material.
  • the traditional sinusoidal motion of the needle and looper in a chain stitch forming machine have, through years of experience, been adjusted to maintain reliable loop-taking by the thread so that stitches are not missed in the sewing process.
  • the motion of the needle is such that the needle tip is present below the plane of the material, or a needle plate that supports the material, for approximately 1/3 of the cycle of the needle, or 120 degrees of the needle cycle.
  • looper heads on known multi-needle quilting machines provide the looper motion by moving cam followers over a cam surface, which requires lubrication and creates a wear component requiring maintenance.
  • chain stitch forming elements used on multi-needle quilting machines typically each include a needle that reciprocates through the material from the facing side thereof and a looper or hook that oscillates in a path on the back side of the material through top-thread loops formed on the back side of the material by the penetrating needle.
  • Chain stitching involves the forming of a cascading series or chain of alternating interlocking between a top thread and a bottom thread on the back side of the material by the interaction of the needle and looper on the backside of the material, which simultaneously forms a clean series of top-thread stitches on the top side of the material.
  • the reliable forming of the series of stitches requires that the paths of the needle and looper of each stitching element set be accurately established, so that neither the needle nor the looper misses the take-up of the loop of the opposing thread.
  • the missing of such a loop produces a missed stitch, which is a defect in the stitching pattern.
  • Looper adjustment has been typically a manual process.
  • the adjustment is made with the machine shut down by a technician using some sort of a hand tool to loosen, reposition, check and tighten the looper so that it passes close to or lightly against the needle when the needle is near the bottom-most point in the needle's path of travel on the bottom side of the material being quilted.
  • the adjustment takes a certain amount of operator time. In a multi-needle quilting machine, the number of needles may be many, and the adjustment time may be large. It is not uncommon that the quilting line would be shut down for the major portion of an hour or more just for needle adjustment.
  • Chain stitch forming elements used on multi-needle quilting machines typically each include a needle that reciprocates through the material from the facing side thereof and a looper or hook that oscillates in a path on the back side of the material through top-thread loops formed on the back side of the material by the penetrating needle.
  • Chain stitching involves the forming of a cascading series or chain of alternating interlocking between a top thread and a bottom thread on the back side of the material by the interaction of the needle and looper on the backside of the material, which simultaneously forms a clean series of top-thread stitches on the top side of the material.
  • the top thread or needle thread penetrates the fabric from the top side or facing side of the fabric and forms loops on the bottom side or back side of the fabric.
  • the bottom thread remains exclusively on the back side of the fabric where it forms a chain of alternating interlocking loops with the loops of the top thread.
  • High speed multi-needle quilting machines such as those that are used in the manufacture of mattress covers, often sew patterns in disconnected series of pattern components. In such sewing, tack stitches are made and, at the end of the quilting of a pattern component, at least the top thread is cut. Then the fabric advances relative to the needles to the beginning of a new pattern component, where more tack stitches are made and sewing recommences.
  • One such high speed multi-needle quilting machine is described in U.S. Patent No. 5,154,130 , referred to above. This patent particularly describes in detail one method of cutting thread in such multi-needle quilting machines. Accordingly, there is a need for more reliable and more efficient thread management in multi-needle quilting machines.
  • this need includes the need for ways to splice the length of material to be fed from a new supply to the trailing edge of the web of material that has been fed to the machine.
  • the material supply enters the machine from near the floor. This is particularly helpful in minimizing the resistance on the web that could cause distortion of the material when stretchable material is being quilted.
  • stretchable materials are used as ticking in mattress covers, for example.
  • US 2002/0104468 discloses a quilting machine which has at least one needle and looper set for forming chain-stitched patterns on a thick multi-layered material such as a mattress ticking, preferably a panel of the continuous web clamped stationary on a frame.
  • the stitch forming elements are mounted on separate heads that move independently transversely relative to the panel on a bridge that moves longitudinally relative to the panel.
  • the bridge is longitudinally moved by a servo and the heads are transversely moved on the bridge by separate linear servos.
  • the needle and looper are each driven by a linear servo having an armature to which the element is directly fixed to reciprocate without intervening mechanical linkage assemblies.
  • a controller drives the servos to chain-stitch patterns, differentially move the heads transversely to account for transverse needle deflection and to phase the needle and looper to compensate for longitudinal needle deflection.
  • the controller determines or predicts needle deflection, either based on stored empirically determined data or optical sensing, and generates deflection compensation signals to drive the servos.
  • US5,505,150 discloses a multiple needle double lock chain stitch quilting machine having an adjustment or calibrating system by which the positions of loopers relative to the corresponding needles of each of a plurality of sets of stitching elements of a ganged array are capable of being precisely set.
  • a control actuator is provided by which an operator, after observing the quality of the product and stopping the machine, actuates an adjustment control system.
  • a motor precisely advances the stitching mechanism.
  • a sensor monitors the stitching mechanism position, for example, by reading indicia on the needle drive shaft, and generates a position signal when the stitching mechanism precisely in the loop-take-time position of its cycle.
  • a controller stops the motor and activates a brake in response to the position signal locking the mechanism, including the needles and loopers, in the loop-take-time position. Simultaneously, the controller disables the stitching capability of the machine and releases service door locks to allow looper and needle adjustment, which the operator may perform. When the adjustment is complete and the doors are closed, a further operation of the actuator causes the controller to lock the service access doors and enable the machine to resume stitching.
  • a split start feature is provided that can be implemented using a single drive servo for the needles and loopers.
  • a phase shifting mechanism is provided to accomplish this with both needles and loopers being driven from the same motor. Further, in accordance with the invention, the phase of the loopers is advanced relative to that of the needles, then the loopers and needles are moved together maintaining the phase difference between them, then the loopers and needles are brought back into phase, by retracting the loopers for example or slowing or stopping the loopers relative to the needles while the needles catch up, from which point the cycle continues with the needles and loopers in phase.
  • Figs. 1 and 1A illustrate a multi-needle quilting machine 10 according to one embodiment of the invention.
  • the machine 10 is of a type used for quilting wide width webs of multi-layered material 12, such as the materials used in the bedding industry in the manufacture of mattress covers.
  • the machine 10, as configured may be provided with a smaller footprint and thus occupies less floor area compared with machines of the prior art, or in the alternative, can be provided with more features in the same floor space as machines of the prior art.
  • the machine 10, for example has a footprint that is about one-third of the floor area as the machine described in U.S. Patent No. 5,154,130 , which has been manufactured by the assignee of the present invention for this industry for a number of years.
  • the machine 10 is built on a frame 11 that has an upstream or entry end 13 and a downstream or exit end 14.
  • the web 12 extending in a generally horizontal entry plane, enters the machine 10 beneath a catwalk 29 at the entry end 13 of the machine 10 at the bottom of the frame 11, where it passes either around a single entry idler roller 15 or between a pair of entry idler rollers at the bottom of the frame 11, where it turns upwardly and extends in a generally vertical quilting plane 16 through the center of the frame 11.
  • the web 12 again passes between a pair of web drive rollers 18 and turns downstream in a generally horizontal exit plane 17.
  • One or both of the pairs of rollers at the top and bottom of the frame may be linked to drive motors or brakes that may control the motion of the web 12 through the machine 10 and control the tension on the web 12, particularly in the quilting plane 16.
  • one or more other sets of rollers, as described below, may be provided for one or more of these purposes.
  • the machine 10 operates under the control of a programmable controller 19.
  • the top or facing layer 12a of the material 12, or, in the case of mattress cover quilting, the ticking layer, is fed beneath this catwalk from a supply station 400 located upstream of the catwalk 29.
  • the supply station 400 is that illustrated in perspective in Fig. 8 .
  • the remaining layers of material, including the fill 12b and the backing layer 12c are fed from supplies (not shown) upstream of the facing layer supply station 400.
  • the facing layer A is supplied to the machine 10 from a supply roll 401 supported at the supply station 400. as illustrated in Fig. 8 , and in the side elevational view of Fig. 8A .
  • the supply station 401 includes a frame 402 that can be set in a fixed position against the upstream side of the catwalk 29 of the quilting machine 10.
  • a supply roll cradle 403 is pivotally mounted to the frame 402 and carries, at its remote end, two pair of notched mounting blocks, including lower blocks 404 and upper blocks 405.
  • the blocks 404 and 405 are configured to support the opposite ends of an axial rod, such as axial rod 406, which extends through the center of, and supports, the supply roll 401.
  • the roll 401 is supported on the blocks 404, as illustrated in Fig. 8A , with the facing layer of material 12a extending horizontally from the roll 401, under the catwalk 29, and to the machine 10.
  • a new roll of facing material 410 is set on the catwalk 29, which serves as a pre-staging area, as illustrated in Fig. 8B .
  • the roll 410 may have an axial rod 411 extending through the hole in the center of the roll 410. The extensions of this rod 411 from the ends of the roll 410 can serve as handles for use by a pair of attendants for placing the roll 410 on the catwalk 29.
  • the new roll 410 is staged for replacing the roll 401 by rolling it onto a tray 412 immediately adjacent the catwalk 29, as illustrated in Fig. 8C . From this position, the roll 410 is moved to the cradle 403 by lifting from the tray 412 the axial rod 411 by its ends and placing them in the upper blocks 405 of the cradle 403, as illustrated in Fig. 8D .
  • a hydraulic or pneumatic cylinder 415 is activated to lift the cradle 403 above the frame 402 by pivoting the cradle 403 upward on the frame 402. This leaves the rolls 403 and in the positions illustrated in Fig. 8E , with the web of facing material 12a extending from the roll 401, below the catwalk 29, to the machine 10.
  • another cylinder 416 is activated to lower a clamping arm 417, which clamps the material 12a against a clamping bar 418 on the frame 402, as illustrated in Fig. 8F .
  • the material 12a is cut from the roll 401, which may be done manually with a knife or scissors, along a transverse line at location 420, providing just enough tailing material to allow the trailing edge 421 of the material 12a to drop into a splicing position in a splicer mechanism 425, as illustrated in Fig. 8G .
  • the roll 401 can be lifted by rod 406 and removed from the lower blocks 404 of the cradle 403 and placed in a tray 430 at the top of the frame 402, as illustrated in Fig. 8H . Then, the new roll 410 can be moved from upper blocks 405 of the cradle 403 to the lower blocks 404, where it will replace the pervious roll 401 of facing material 12a, as illustrated in Fig. 8I .
  • the leading edge 426 of material from the roll 410 is placed adjacent the trailing edge 421 of the facing material 12a, in the splicer 425, where the materials from rolls 410 and 401 are spliced together by sewing a transverse row of single-lock chain stitches with the splicer 425, to form a continuous web of facing material 12a, as illustrated in Fig. 8J .
  • the clamping arm 417 can be pivoted up out of its clamping position by actuation of the cylinder 416, leaving the new material from roll 410 extending from roll 410 spliced to the old material from roll 401 that extends into the quilting machine 10, as illustrated in Fig. 8K .
  • the cylinder 415 can be activated to lower the carriage 403 to bring the roll 410 into the former position of the original roll 401, at which the machine 10 can be run with facing material supplied from the new roll 410, as illustrated in Fig. 8L .
  • the device can be used for easily and efficiently splicing a short length of material to a web to feed one or a few panels of material into a quilter. This can be advantageous in providing custom printed panels to a quilter, for example, as described in U.S. Patent Nos. 6,263,816 and 6,435,117 , hereby expressly incorporated by reference herein.
  • the material 12a can be guided through the splicer mechanism 425 and spliced to the leading edge of the material from roll 410 before the material 12a is cut from the roll 401.
  • a motion system that includes a plurality of bridges, including a lower bridge 21 and an upper bridge 22, that move vertically on the frame, but which may include more than the two bridges illustrated.
  • Each of the bridges 21, 22 has a front member 23 and a back member 24 ( Fig. 1A ) that each extend horizontally generally parallel to, and on opposite sides of, the quilting plane 16.
  • Each front member 23 has mounted thereon a plurality of needle head assemblies 25, each configured to reciprocate a needle in longitudinal horizontal paths perpendicular to the quilting plane 16. Between adjacent needle head assemblies 25, a rib or stiffener plate 89 is provided to structurally stiffen the bridge and to resist dynamic deformation from the sewing forces applied by the needle drives.
  • Each of the needle head assemblies 25 can be separately activated and controlled by the machine controller 19.
  • a plurality of looper head assemblies 26, one corresponding to each of the needle head assemblies 25, are mounted on each of the back members 24 of each of the bridges 21,22.
  • the looper head assemblies 26 each are configured to oscillate a looper or hook in a plane generally perpendicular to the quilting plane 16 to intersect the longitudinal paths of the needles of the corresponding needle head assemblies 25.
  • the looper head assemblies 26 may also be separately activated and controlled by the machine controller 19.
  • Each needle head assembly 25 and its corresponding looper head assembly 26 make up a stitching element pair 90, in which the stitching elements cooperate to form a single series of double lock chain stitches. In the embodiment shown in Figs.
  • stitching element pairs 90 there are seven such stitching element pairs 90, including seven needle head assemblies 25 on the front members 23 of each bridge 21,22, and seven corresponding looper head assemblies 26 on the rear member 24 of each bridge 21,22. Stitching element pairs 90 are illustrated in more detail in Fig. 1B .
  • No single-piece needle plate is provided. Rather, a six-inch square needle plate 38 is provided parallel to the quilting plane 16 on the looper side of the plane 16 on each of the looper heads 26. This needle plate 38 has a single needle hole 81 that moves with the looper head 26. All of the needle plates 38 typically lie in the same plane.
  • each needle head assembly 25 includes a respective one of a plurality of separate presser feet 158.
  • Such local presser feet are provided in lieu of a single presser foot plate of the prior art that extends over the entire area of the multiple row array of needles.
  • a plurality of presser feet are provided on each front member 23 of each bridge 21,22, each to compress material around a single needle.
  • each needle assembly 25 is provided with its own local presser foot 158 having only sufficient area around the needle to compress the material 12 for sewing stitches with the respective needle assembly.
  • Each of the needle assemblies 25 on the front members 23 of the bridges 21,22 is supplied with thread from a corresponding spool of needle thread 27 mounted across on the frame 11 on the upstream or needle side of the quilting plane 16.
  • each of the looper assemblies 26 on the back members 24 of the bridges 21,22 is supplied with thread from a corresponding spool of looper thread 28 mounted across the frame 11, on the downstream or looper side of the quilting plane 16.
  • a common needle drive shaft 32 is provided across the front member 23 of each bridge 21,22 to independently drive each of the needle head assemblies 25.
  • Each shaft 32 is driven by a needle drive servo 67 on the needle side member 23 of each respective bridge 21,22 that is responsive to the controller 19.
  • a looper belt drive system 37 is provided on the back member 24 of each of the bridges 21,22 to drive each of the looper head assemblies.
  • Each looper drive belt system 37 is driven by a looper drive servo 69 on the looper side member 24 of each respective bridge 21,22 that is also responsive to the controller 19.
  • Each of the needle head assemblies 25 may be selectively coupled to or decoupled from the motion of the needle drive shaft 32.
  • each looper head assembly 26 may be selectively coupled to or decoupled from the motion of the looper belt drive system 37.
  • Each of the needle drive shafts 32 and looper belt drive systems 37 are driven in synchronism through either mechanical linkage or motors controlled by the controller 19.
  • each needle head assembly 25 is comprised of a clutch 100 that selectively transmits power from the needle drive shaft 32 to a needle drive 102 and presser foot drive 104.
  • the needle drive 102 has a crank 106 that is mechanically coupled to a needle holder 108 by an articulated needle drive 110, which includes three links 114, 116 and 120.
  • the crank 106 has an arm or eccentric 112 rotatably connected to one end of the first link 114.
  • One end of the second link 116 is rotatably connected to a pin 117 extending from a base 118 that, in turn, is supported on the front member of one of the bridges 21,22.
  • One end of the third link 120 is rotatably connected to a pin 123 extending from a block 122 that is secured to a reciprocating shaft 124, which is an extension of the needle holder 108.
  • Opposite ends of the respective links 114, 116 and 120 are rotatably connected together by a pivot pin 121 that forms a joint in the articulated needle drive 110.
  • the shaft 124 is mounted for reciprocating linear motion in fore and aft bearing blocks 126, 128, respectively.
  • the drive block 122 has a bearing (not shown) that is mounted on a stationary linear guide rod 130 that, in turn, is supported and rigidly attached to the bearing blocks 126, 128.
  • rotation of the crank 106 is operative via the articulated needle drive 110 to reciprocate a needle 132 secured in a distal end of the needle holder 108.
  • the presser foot drive 104 has an articulated presser foot drive 144 that is similar to the articulated needle drive 110.
  • a crank 140 is mechanically connected to a presser foot holder 142 via mechanical linkage 144, which includes three links, 146, 150 and 152.
  • One end of a fourth link 146 is rotatably coupled to an arm or an eccentric 148 on the crank 140.
  • One end of a fifth link 150 is rotatably connected to a pin 151 extending from the base 118, and one end of a sixth link 152 is rotatably connected to a pin 155 extending from a presser foot drive block 154.
  • Opposite ends of the respective links 146, 150 and 152 are rotatably connected together by a pivot pin 153 that forms a joint in the presser foot articulated drive 144.
  • the presser foot drive block 154 is secured to a presser foot reciprocating shaft 156 that, in turn, is slidably mounted within the bearing blocks 125, 126.
  • a presser foot 158 is rigidly connected to the distal end of the presser foot reciprocating shaft 156.
  • the drive block 154 has a bearing (not shown) that is mounted for sliding motion on the linear guide rod 130.
  • the needle drive crank 106 and presser foot crank 140 are mounted on opposite ends of an input shaft (not shown) supported by bearing blocks 160.
  • a pulley 162 is also mounted on and rotates with the cranks 106, 140.
  • a timing belt 164 drives the cranks 106, 140 in response to rotation of an output pulley 166.
  • the clutch 100 is operable to selectively engage and disengage the needle drive shaft 32 with the output pulley 166, thereby respectively initiating and terminating the operation of the needle head assembly 25.
  • the output pulley 166 is fixed to an output shaft 168 that is rotatably mounted within a housing 170 of the clutch 100 by means of bearings 172.
  • the needle drive shaft 32 is rotatably mounted within the output shaft 168 by bearings 174.
  • the drive member 176 is secured to the needle drive shaft 32 and is rotatably mounted within the housing 170 by bearings 178.
  • the drive member 176 has a first, radially extending, semicircular flange or projection 180 extending in a direction substantially parallel to the centerline 184 that provides a pair of diametrically aligned drive surfaces, one of which is shown at 182.
  • the drive surfaces 182 are substantially parallel to a longitudinal centerline 184 of the needle drive shaft 32.
  • the clutch 100 further includes a sliding member 186 that is keyed to the output shaft 168.
  • the sliding member 186 is able to move with respect to the output shaft 168 in a direction substantially parallel to the centerline 184.
  • the sliding member 186 is locked or keyed from relative rotation with respect to the output shaft 168 and therefore, rotates therewith.
  • the keyed relationship between the sliding member 186 and the output shaft 168 can be accomplished by use of a keyway and key or a spline that couples the sliding member 186 to the shaft 168.
  • an internal bore of the sliding member 186 and the external surface of the output shaft 168 can have matching noncircular cross-sectional profiles, for example, a triangular profile, a square profile, or a profile of another polygon.
  • the sliding member 186 has a first, semicircular flange or projection 188 extending in a direction substantially parallel to the centerline 184 toward the annular flange 182.
  • the flange 188 has a pair of diametrically aligned drivable surfaces, one of which is shown at 190, that can be placed in and out of opposition to the drive surfaces 182 of the flange 180.
  • the sliding member 186 is translated with respect to the output shaft 168 by an actuator 192.
  • the actuator 192 has an annular piston 194 that is mounted for sliding motion within an annular cavity 196 in the housing 100, thereby forming fluid chambers 198, 200 adjacent opposite ends of the piston 194.
  • Annular sealing rings 202 are used to provide a fluid seal between the piston 194 and the walls of the fluid chambers 198, 200.
  • the sliding member 186 is rotationally mounted with respect to the piston 194 by bearings 204.
  • the needle drive shaft 32 is stopped at a desired angular orientation, and pressurized fluid, for example, pressurized air, is introduced into the fluid chamber 198.
  • pressurized fluid for example, pressurized air
  • the piston 194 is moved from left to right as viewed in Fig. 3 , thereby moving the drivable surfaces 190 of the sliding member 186 opposite the drive surfaces 182.
  • the clutch 100 With the clutch 100 so engaged, the needle drive shaft 32 is directly mechanically coupled to the sliding member 186 and the output shaft 168, the output pulley 166 follows exactly the rotation of the needle drive shaft 32.
  • a subsequent rotation of the needle drive shaft 32 results in a simultaneous rotation of the output shaft 168.
  • the pressurized fluid is released from the fluid chamber 198 and applied to the fluid chamber 200.
  • the piston 194 is moved from right to left as viewed in Fig. 3 , thereby moving the drivable surfaces 190 out of contact with the driving surface 182 and disengaging the clutch 100.
  • the drive surfaces 182 rotate past the drivable lugs 188 and the needle drive shaft 32 rotates independent of the output shaft 168.
  • the sliding member 186 has a second, semicircular annular lockable flange 206 extending to the left, as viewed in Fig. 3 , in a direction substantially parallel to the centerline 184.
  • the lockable flange has diametrically aligned lockable surfaces 205.
  • the looper and retainer drive 212 provides a looper 216 with a reciprocating angular motion about a pivot axis 232 in a plane immediately adjacent the reciprocating needle 132.
  • the looper and retainer drive 212 also moves a retainer 234 in a closed loop path in a plane that is substantially perpendicular to the plane of reciprocating angular motion of the looper 216 and the path of the needle 132.
  • the looper 216 is secured in a looper holder 214 that is mounted on a flange 220 extending from a first looper shaft 218a.
  • An outer end of the looper shaft 218a is mounted in a bearing 236 that is supported by a looper drive housing 238.
  • An inner end of the looper shaft 218a is connected to an oscillator housing 240.
  • the looper 216 extends generally radially outward from the axis of rotation 232 of the looper shaft 218.
  • Fig. 4 shows the looper drive assembly 26 of a type of multi-needle quilting machine 10 in which the needles are oriented horizontally.
  • the looper drive assembly 26 may include a selective coupling element 210, for example, clutch 210 that connects the input 209 of the drive assembly 226 to a drive train that is synchronized to the drive for a cooperating needle drive assembly.
  • the looper drive assembly 26 includes a frame member 219 on which the drive assembly 226 and 210 are mounted in mutual alignment.
  • the frame member 219 is mounted to the rear portion 24 of the respective bridge 21,22 such that the looper head assembly 26 aligns with the corresponding needle head assembly 25.
  • the output of the clutch 210 drives a looper drive mechanism 212, that has an output shaft 218 having a flange 220 thereon, on which is mounted a looper holder 214.
  • a looper holder 214 may oscillate with other loopers about a common shaft that is rocked by a common drive linkage that is permanently coupled to the drive train of a needle drive, as described in U.S. Patent No. 5,154,130 .
  • the nature of the chain stitch forming machine and the number of needles is not material to the concepts of the present invention.
  • a looper 216 when mounted in a looper holder 214, is made to oscillate on the shaft 218 along a path 800 that brings it into a cooperating stitch forming relationship with a needle 132, as illustrated in Fig. 4C .
  • the stitch forming relationships and motions of the needle and looper are more completely described in U.S. Patent No. 5,154,130 .
  • the tip 801 of the looper enters a loop 803 in a top thread 222 that is presented by the needle 132.
  • the transverse position of the tip 801 of the looper 216 is maintained in adjustment so that it passes immediately beside the needle 132.
  • Adjustment of the looper 216 is made with the shaft 218 stopped in its cycle of oscillation with the looper tip 801 in transverse alignment with the needle 132, as illustrated in Fig. 4C .
  • the tip 801 of the looper 216 is moved transversely, that is, perpendicular to the needle 132 and perpendicular to the path 800 of the looper 216.
  • a preferred embodiment of the looper 216 is formed of a solid piece of stainless steel having a hook portion 804 and a base portion 805. At the remote end of the hook portion 804 is the looper tip 801.
  • the base portion 805 is a block from which the hooked portion 804 extends from the top thereof.
  • the base portion 805 has a mounting peg 806 extending from the bottom thereof by which the looper 216 is pivotally mounted in a hole 807 in the holder 214.
  • the holder 214 is a forked block 809 formed of a solid piece of steel.
  • the forked block 809 of the holder 214 has a slot 808 therein that is wider than the base portion 805 of the looper 218.
  • the looper 216 mounts in the holder 214 by insertion of the base 805 into the slot 808 and the peg 806 into the hole 807.
  • the looper 216 is loosely held in the holder 214 so that it pivots through a small angle 810 on the pin 806 with the body 805 moving in the slot 808 as illustrated in Fig. 4E .
  • the adjustment is made by an allen-head screw 812 threaded in the holder 214 so as to abut against the base 805 of the looper 214 at a point 813 offset from the pin 806.
  • a compression spring 814 bears against the looper body 805 at a point 815 opposite the screw 812 so that a tightening of the screw 812 causes a motion of the tip 801 of the looper 216 toward the needle 132 while a loosening of the screw 812 causes a movement of the tip 801 of the looper 216 away from the needle 132.
  • a locking screw 816 is provided to lock the looper 216 in its position of adjustment in the holder 214 and to loosen the looper 216 for adjustment. The locking screw 816 effectively clamps the pin 806 in the hole 807 to hold it against rotation.
  • the looper 214 position is preferably adjusted so that the tip 801 is either barely in contact with the needle 132 or minimally spaced from the needle 132.
  • an electrical indicator circuit 820 is provided, as diagrammatically illustrated in Fig. 4F .
  • the circuit 820 includes the looper 216, which is mounted in the holder 214, which is, in turn, mounted through an electrical insulator 821 to the flange 220 on the shaft 218, as shown in Fig. 4D .
  • the holder 214 is electrically connected to an LED or some other visual indicator 822, which is connected in series between the holder 214 and an electrical power supply or electrical signal source 823, which is connected to ground potential on the frame 11.
  • the needle 132 is also connected to ground potential.
  • An operator can adjust the looper 216 by adjusting the screw 812 back and forth such that the make-break contact point between the needle 132 and the looper 216 is found. Then the operator can leave the looper in that position or back off the setting one way or the other, as desired, and then lock the looper 216 in position by tightening the screw 816.
  • the machine 10 When looper adjustment is to be made, the machine 10 will be stopped with the needle in the 0 degree or top dead center position, whereupon the controller 19 advances the stitching elements to the loop-take-time position in the cycle ( Fig. 4C ), where the elements stop and the machine enters a safety lock mode in which an operator will make looper adjustments.
  • the controller 19 of the machine 10 moves the looper and needle in a direction other than the direction to form a stitch. This is achieved by driving the needle and looper drive servos 67 and 69 in reverse to rotate the needle drive shafts 32 and looper drives 37 backward to move the looper and needle backwards in their cycles, thereby returning the needle to its 0 degree position.
  • a device 850 is illustrated in Fig. 5 . It includes a reciprocating linear actuator 851, which may be pneumatic. A double barbed cutting knife 852 is mounted to slide on the actuator 851, which withdraws linearly toward the actuator 851 when it is actuated. The actuator 851 is, in turn, mounted on a sliding block 858 (not shown in Fig. 5 ; shown in embodiment of Fig. 2C ) which moves the actuator 851 and related assembly toward and away from the needle hole in the needle plate 38, to a position it occupies when the cutting device is actuated and back to a rest position out of the way of the looper 216.
  • a sliding block 858 not shown in Fig. 5 ; shown in embodiment of Fig. 2C
  • the knife 852 has a needle thread barb 854 and a looper thread barb 853, each of which hooks the respective top and bottom threads when the actuator 851 is actuated.
  • the barbs 853 and 854 both have cutting edges thereon to thereupon cut the respective threads.
  • a stationary sheath member 855 is fixed to the actuator 851, which has surfaces configured to cooperate with the sliding knife 852 to sever the threads. In doing so, the knife 852 is stopped in a retracted position which allows the tail of the needle thread to be released but keeps the bottom thread tail clamped between the knife 852 and a spring metal clamp 856 fixed to the bottom of the sheath member 855.
  • FIGs. 5-5D illustrate the assembly in a machine having the needles oriented vertically. In the machine 10, however, the needle 132 is oriented horizontally, perpendicular to the vertical material plane 16, while the looper 216 is oriented to oscillate in a transverse-horizontal direction, parallel to the plane 16, with the tip 801 of the looper 216 pointing toward the left side of the machine 10 (viewed from the front as in Fig. 1 ).
  • Fig. 5A shows the looper drive assembly 26 of a type of multi-needle quilting machine 10 in which the needles are oriented horizontally.
  • the needle 132 and looper 216 typically stop in a position as illustrated in Fig. 5A in which the needle 132 is withdrawn from the material on the needle side of the fabric 12 being quilted.
  • a needle thread 222 and a looper thread 224 are present on the looper side of the material 12 being quilted.
  • the needle thread 222 extends from the material 12 down around the looper hook 804 of the looper 218 and returns to the fabric 12, while the looper thread 224 extends from a thread supply 856, through the looper hook 804 and out a hole in the tip 801 of the looper 216, and into the material 12.
  • each of a plurality of the looper heads 26 is positioned one of the cutting devices 850, each having an actuator 851 thereof equipped with a pneumatic control line 857 connected through appropriate. interfaces (not shown) to an output of a quilting machine controller 19.
  • the individual thread cutting device 850 per se is a thread cutting device used in the prior art in single needle sewing machines.
  • a plurality of the devices 850 are employed in a multi-needle quilting machine in the manner described herein.
  • a device 850 is positioned so that, when extended, the knife 852 of the device 850 extends between the looper 216 and the material 12, and is connected to operate under computer control of the controller 19 of the quilting machine.
  • the controller 19 actuates the actuator 851, which moves the knife 852 through the loop of the needle thread 222 such that it hooks the needle and looper threads, as illustrated in Fig. 5B . Then the knife 852 retracts to cut the needle thread 222 and the looper thread 224 extending from the material 12. Both cut ends of the needle thread 222 are released, as is the cut end of the looper thread 224 that extends to the material. However, the end of the looper thread 224 that extends to the looper 216 remains clamped, as illustrated in Fig. 5C . This clamping holds the looper thread end so that a loop is formed when sewing resumes, thereby preventing the loss of an unpredictable number of stitches before the chaining of the threads begins, which would cause defects in the stitched pattern.
  • the looper is oriented such that, should the end of the looper thread 224 fail to clamp, the end of the thread 224 will be oriented by gravity on the correct side of the needle so that the series of stitches will begin. In this way, the probability that the loops will take within the first few stitches that constitute the tack stitches sewn and the beginning of a pattern is high.
  • the above thread trimming feature is particularly useful for multi-needle quilting machines having selectively operable heads or heads that can be individually and separately installed, removed or rearranged on a sewing bridge.
  • the individual cutting devices 850 are provided with each looper head assembly and are removable, installable and movable with each of the looper head assemblies.
  • the feature provides that each thread cutting device is separately controllable.
  • a thread tail wiper 890 is provided on the needle head assembly 25.
  • the wiper 890 includes a wire hook wiping element 891 that is pivotally mounted on a pneumatic actuator 892 adjacent the needle 132 to rotate the wiping element 891, after the needle thread 221 is cut, about a horizontal axis that is perpendicular to the needle 132.
  • the actuator 892 sweeps the wiping element 891 around the tip of the needle 132 on the inside of the presser foot bowl 158 to pull the tail of the needle thread 221 from the material 12 to the needle side of the material 12 and to the inside of the presser foot bowl 158. From this position, upon startup of sewing, the top thread will not be clamped under the presser foot, so the thread tail will typically be readily tucked to the back of the material 12 when the needle first descends at the start of a pattern.
  • Fig. 5D illustrates a thread tension control system 870 that can similarly be applied to individual threads of sewing machines, and which is particularly suitable for each of the individual threads of a multi-needle quilting machine as described above.
  • a thread for example, a looper thread 224, typically extends from a thread supply 856 and through a thread tensioning device 871, which applies friction to the thread and thereby tensions the thread moving downstream, for example, to a looper 216.
  • the device 871 is adjustable to control the tension on the thread 224.
  • the system 870 includes a thread tension monitor 872 through which the thread 224 extends between the tensioner 871 and the looper 216.
  • the monitor 872 includes a pair of fixed thread guides 873, between which the thread is urged and deflected transversely by a sensor 874 on an actuating arm 875 supported on a transverse force transducer 876, which measures the transverse force exerted on the sensor 874 by the tensioned thread 224 to produce a thread tension measurement.
  • Each of the threads 222 and 224 is provided with such a thread tension control.
  • a thread tension signal is output by the transducer 876 and communicated to the controller 19.
  • the controller 19 determines whether the tension in the thread 224 is appropriate, or whether it is too loose or too tight.
  • the thread tensioner 871 is provided with a motor or other actuator 877, which performs the tension adjustment.
  • the actuator 877 is responsive to a signal from the controller 19.
  • the controller 19 determines from the tension measurement signal from the transducer 876 that the tension in thread 224 should be adjusted, the controller 19 sends a control signal to the actuator 877, in response to which the actuator 877 causes the tensioner 871 to adjust the tension of the thread 224.
  • a machine control sequence may be executed that will achieve the results of the thread tail wiping function.
  • Fig. 5E illustrates the state of the top thread 222 immediately after a tack stitch sequence is performed at the end of the sewing of a pattern component, before threads have been cut.
  • the top thread 222 is shown extending from a top-thread supply 401, through a top-thread tensioner 402 to the eye of the needle, which is operated by an actuator 403 controlled by an output of the controller 19, to the needle 132.
  • the top thread 222 passes through a pull-off mechanism 404 that includes a pusher 405 driven by an actuator 406 that is also controlled by an output of the controller 19.
  • the pusher 405 is shown in solid lines in its retracted position.
  • the actuator 406 is actuated, the pusher 405 moves to its extended position 407, illustrated by a broken line, to pull the top thread to the position also illustrated by a broken line.
  • a top-thread pull-off is executed by the controller 19 sending a signal to the actuator 403 of the top-thread tensioner 402 to release tension on the top thread 222 for a short interval of time during which the thread pull-off mechanism 404 is pulsed.
  • the pulsing of the thread pull-off mechanism 404 results from a signal from the controller 19 to the actuator 406 of the pull-off mechanism 404 which causes the pusher 405 to deflect the top thread 222 so as to pull off a length of slack top thread from the top-thread supply 401.
  • the needle 132 can be caused to move a short distance of roughly a few inches relative to the material 12 to pull the length of slack in the top thread to pull through the needle 132 to add a length of thread tail between the needle 132 and the material 12. This relative movement can be brought about by advancing the web 12 or by moving bridges 21,22 or both.
  • the top thread 222 After the top thread 222 has been pulled off as described above, the threads 222 and 224 are cut and the looper thread is clamped as described above in connection with Fig. 5C .
  • the wiper mechanism 890 need not be present. Instead, a wiping motion may be employed.
  • the top-thread tail extends from the needle 132 down through the material 12 to below the material to the position at which it was cut, as illustrated in Fig. 5F , and thread tension has been reapplied to the top thread.
  • the needle 132 is advanced to a new starting position 410 relative to the material 12, that is, either the bridges or the material or both can be moved, bringing the thread to the top of the material for the resumption of sewing as illustrated in Fig. 5G .
  • a top-thread tuck cycle is executed in which the sewing heads are operated through one stitch cycle, which pokes the top-thread tail through the material 12 to below the material 12, where it is caught by the looper 216, as illustrated in Fig. 5H .
  • the needle 132 is moved in a thread wipe motion relative to the material 12, away from and back to the starting position 410 where the thread penetrated the material 12 as illustrated in Fig. 5I .
  • the controller 19 selects the direction by interpreting the pattern to be sewn. This motion is enough to pull the remaining top-thread tail to the bottom or looper side of the material 12 without pulling the tail again out of the material. The length of this motion may be different for different applications.
  • the motion path may be, for example, a line, an arc, a triangle a combination of a line and an arc or some other motion or combination that takes the needle about two inches more or less from the position 410.
  • a different path length may be used depending on the length of the thread tail that the machine is designed or programmed to cut.
  • the path is preferably oriented so that any slack in the top thread produced at the needle 132 lies on a side of the pattern path that avoids the thread being caught in the sewing pattern or being struck by the needle 132. With the machine 10, this motion is preferably implemented by holding the material 12 stationary and moving the bridges 21,22 in the path parallel to the plane of the material 12. At the end of the tuck cycle, the machine is in the position shown in Fig. 5J .
  • the start of a pattern requires that the sewing elements, the needle 132 and the looper 216, cooperate such that the needle thread 222 and looper thread 224 alternately pick up loops formed by the other thread to start the formation of stitches of the chain.
  • the needle 132 descends through the material 12 to pick up a loop 412, sometimes referred to as the triangle, formed between the looper 216, the top thread 222 and the looper thread 224, the formation of which loop is facilitated by the action of the retainer or spreader 234, as illustrated in Fig. 5K .
  • FIGs 5A-5G of that patent are sequential illustrations of a normal chain-stitch forming cycle.
  • the looper thread 224 terminates below the needle plate 38 and below the retainer 234. Specifically, the looper thread 224 is clamped between the cutting knife 852 and the spring clamp 856 ( Fig. 5J ). Therefore, the triangle 412 does not yet exist in its normal form and the catching of this loop by the needle 132 is not necessarily completely predictable.
  • stitch-forming reliability when starting to sew a pattern is greatly improved by manipulating the threads so that the looper picks up the loop of the top thread before the needle picks up the loop of the bottom thread.
  • This can be achieved by redirecting the tail of the looper thread. More reliably, this can also be achieved by altering the timing of the stitching elements relative to each other, that is, the timing of the needles relative to the timing of the loopers, so that the first loop taken is the loop of the top thread, which is taken by the advancing looper.
  • This in turn, can be carried out by so manipulating the threads or timing the stitching elements so that the needle misses the bottom thread loop on the first descent of the needle.
  • the needle 132 Before the start of sewing, after the needle 132 is moved to a new position relative to the material 12, the needle 132 is above the material 12 with the top thread 222 extending through the eye of the needle 132 from the thread spool to the thread tail.
  • the needle 132 would start above the material, as shown in Fig. 5L , with the looper 216 advanced as shown.
  • the tail of the looper thread 224 is below the needle plate 38 and below the retainer 234.
  • the looper 216 would retract as the needle 132 descended, probably, but not necessarily, passing between the bottom thread 224 and the looper 216, as illustrated in Fig. 5M , taking the bottom thread loop, as illustrated in Fig. 5N .
  • Each sewing head including each needle head and each looper head, may be linked to a common rotary drive through an independently controllable clutch that can be operated by a machine controller to turn the heads on or off, thereby providing pattern flexibility.
  • the heads may be configured in sewing-element pairs, each needle head being modular with a corresponding similarly modular looper head. While the heads of each pair can be individually turned on or off, they are typically turned on and off together, either simultaneously or at different phases in their cycles, as may be most desirable.
  • only the needle heads may be provided with selective drive linkages, while the looper heads may be linked to the output of a needle drive motor so as to run continuously, since they do not penetrate the material and do not form stitches when the needles are not operating.
  • the looper linkage may be direct and permanent, or may be adjustable, switchable or capable of being phased in relation to the needle drive.
  • the looper drive may be coupled to the needle drive by providing a differential drive mechanism in the looper drive train.
  • the looper head drive may be linked to an input drive shaft through a gear box, rather than a clutch.
  • Each of the looper heads may be further provided with an alignment disk on the looper drive shaft to allow precise phase setting of each looper head relative to the other looper heads or the needle drive when the looper head is installed in the machine.
  • each looper head housing may be provided with adjustments in two dimensions in a plane perpendicular to the needle to facilitate alignment of the looper head with a corresponding needle head upon looper head installation.
  • a split-start control method is provided for avoiding missed stitches at startup.
  • a split start method is one use of the feature-that allows the needle and looper drives to be decoupled and moved separately. With the split start feature, the initial motion of the needle and looper proceed separately upon startup so as to render the pickup of the stitches predictable. This is achieved by insuring that the looper picks up the top-thread loop before the needle picks up the bottom thread loop triangle.
  • the elements are then unlocked so the looper can be moved independently of the needle, for example, to be advanced in its cycle, for example, by 180 degrees. Then the needle can be advanced 180 degrees relative to the looper position to bring the needle in phase with the looper, insuring that the needle will miss the looper thread triangle or loop in the looper thread at the beginning of the initial cycle. Then the elements can be relocked in phase. Upon further advancing of the elements, the looper will thereupon pick up the needle thread loop before a looper thread loop is picked up by the needle, producing a predictable start to the stitch sequence.
  • the needle and looper drives are decoupled when at the starting position of Fig. 5P , which is similar to that of Fig. 5L , and the needle is held in its top dead center position.
  • the looper drive is then advanced one-half cycle, to move the looper 216 to the position illustrated in Fig. 5Q , thereby retracting the looper 216 out of the path of the needle .132.
  • the looper drive is held in its half cycle position while the needle drive is activated to lower the needle 132 to its half cycle position, which leaves the needle 132 clear of the bottom thread 224, as illustrated in Fig. 5R .
  • the needle and looper drives are again coupled together and advanced together in synchronization, whereupon the looper 216 begins to take up the needle loop in approximately the three-quarter position of the stitch cycle, as illustrated in Fig. 5S , and proceeds from there to the full cycle position as illustrated in Fig. 5T . Then the elements continue to move through the next cycle, where the formation of stitches can be seen, as illustrated in Figs. 5U through 5X . Approximately by the position in Fig. 5X , the looper thread tail will have pulled itself from the clamping action of the thread trimmer.
  • the splitting of the needle and looper drive upon startup avoids the missing of stitches upon startup.
  • the splitting of the needle and looper drive cycles has other uses, such as in facilitating thread trimming.
  • the likelihood of missed stitches at startup can be reduced by redirecting or guiding the thread tail of the looper thread so as to prevent the bottom thread loop from being picked up by the needle before the top-thread loop is picked up by the looper.
  • Such redirection may be achieved by a shifting or other positioning of the thread trimmer and clamp 850 ( Fig. 5J ) to move the tail of the looper thread 224 away from the needle side of the looper 216.
  • the use of a thread-pusher mechanism or other looper thread redirecting technique can be used to cause the looper to pick up the top-thread loop before the needle picks up the bottom thread loop.
  • Such slack can form a large loop that swings to the opposite side of the looper from the needle, reducing the likelihood of a stitch being picked up in any given cycle, even after the first descent of the needle, thereby delaying unpredictably the start of a stitch chain. Such delay can result in an unacceptably long gap in the sewn pattern, requiring repair or scrapping of a panel.
  • the likelihood of such problems resulting from this looper thread slack can be reduced by confining the looper thread. This confinement can be achieved by providing a looper thread deflector 430 below the needle plate 38, as illustrated in Fig. 5Y .
  • Structure such as a thread deflector 430 can be placed to control the direction of the tail of looper thread 224 leaving the looper 216 upon start-up and to affect the spacing the looper thread tail and the looper in such a way that the needle 132 does not miss the looper thread loop after the looper has taken the needle thread loop.
  • Such structure as the looper thread deflector 430 improve the reliability of stitch formation whether or not split start techniques are employed. In some cases, the improved reliability is enough to allow the split start feature to be omitted.
  • the looper thread deflector 430 illustrated in Fig. 5Y is in the shape of a wedge and is secured to the bottom of the needle plate 38.
  • the wedge of the deflector 430 has a tapered surface 431 that is positioned close to the path of the tip of the looper 216 when the looper advances to its forward position near the zero degree or needle up position as illustrated in Fig. 5P . In this position, upon starting a pattern, the looper thread tail is clamped at the thread cut off 850 at the opposite side of the needle path.
  • the surface 431 of the deflector 430 is positioned relative to the path of the looper to guide the looper thread tail away from the needle plate enough so that, once the looper has picked up the needle thread loop, the looper thread 224 is highly likely to be on the needle side of the looper 216 so that the descending needle 132 picks up a looper thread loop on its next descent.
  • the looper thread deflector 430 contributes to reducing the missed stitches on startup when the split start method described above is not used or not available.
  • Fig. 5Y also illustrates a conventional needle guard 460, mounted to the base portion 805 of the looper 216, as better illustrated in Fig. 4D .
  • This needle guard can be adjusted by pivoting it on the looper 216, where it can beJocked in position by a set screw (not shown) in hole 461 in Fig. 4D .
  • This needle guard 460 keeps the descending needle 132 from deflecting to the right of the advancing looper 216, keeping it to the left of the looper, as illustrated in Figs. 5R and 5S , so that the looper 216 picks up the loop and does not skip the stitch.
  • FIG. 4G An improved alternative embodiment is illustrated in Fig. 4G , in which a double needle guard assembly 470 is provided.
  • the assembly 470 includes a first needle guard 471 and a second needle guard 472.
  • the first needle guard 471 performs a function similar to that of needle guard 460, and is also pivotally adjustably mounted to the base 805 of the looper 216.
  • the second needle guard 472 is a rod of circular cross-section, and is rotatably adjustably mounted in a hole in a mounting block 473 rigidly fixed to the looper side of the needle plate 38.
  • the thread deflector 430 is also mounted to the mounting block 473.
  • the needle guard 472 keeps the descending needle 132 from deflecting further to the left of the advancing looper 216 so that the looper 216 does not pass to the right of the needle thread 222 and thereby miss the top thread loop and thus skip the stitch, but rather passes between the needle thread 222 and the needle 132 ( Fig. 5S ).
  • the circular cross-section of the second needle guard 472 is centered on an axis 474 that is parallel to the plane of the looper motion and of the needle plate, that is, in horizontal, transverse orientation in the described machines.
  • the needle guard 472 has an eccentric base 475 having an axis 476 that is spaced from, but parallel to, the axis 474 and that mounts in a hole in the block 473.
  • the needle guard 472 is rotatably adjustable in its mounting hole in block 473 so as to move it and its axis 474 toward or away from the needle 132, where it can be locked in position by tightening of an alien head screw 477 on the block 473.
  • a start-up tack stitch sequence is started by sewing a short distance of approximately one inch in the direction of the intended pattern, then sewing back over the initial stitches to the starting position before proceeding forward over the same line of stitches. At the beginning, a few long stitches are sewn, followed by normal length stitches. A typical normal stitch rate might be seven stitches per inch.
  • the thread would first be set at the origin of the pattern curve, which can be by using the wipe and tuck cycle described above.
  • the feed of the bridges or the material or the combination thereof preferably results in a continuous feed motion of the stitching elements relative to the material.
  • the resultant feed is intermittent.
  • the intermittent feed is preferably not abrupt, however, and is rather made by smooth transitions between rapid relative motion between the stitching elements and the material when the needle is clear of the material and relatively little or no such motion when the needle is engaged with the material.
  • the feed is preferably continuous and smooth.
  • high speed sewing in the quilting of patterns is performed with continuous stitching, with a needle motion that is sinusoidal as a function of time or at least of the distance stitched.
  • the needle motion may be considered non-sinusoidal as a function of distance, with the reciprocation of the needle being faster than sinusoidal when the needle penetrates the material and slower when the needle is withdrawn from the material.
  • the needle speed transition may be smooth. This type of needle speed variation is useful whenever a reversal is employed in the sewing of a pattern. Cases involving the starting of sewing with needles moving from a stopped condition relative to the material are cases where such needle drive motion is beneficial. Tack sewing is a common example of both situations, and where such needle speed variation is desirable.
  • needle speed may be started from a stop and run at a continuous cycle speed with motion that is sinusoidal as a function of time, but with feed of the material and needle relative to each other being faster when the needle is withdrawn from the material and slower when the needle is penetrating the material, presenting needle motion as a non-sinusoidal motion relative to the distance moved relative to the material.
  • motion that is sinusoidal as a function of time, but with feed of the material and needle relative to each other being faster when the needle is withdrawn from the material and slower when the needle is penetrating the material, presenting needle motion as a non-sinusoidal motion relative to the distance moved relative to the material.
  • the needle direction relative to the material is reversed, and a similar sequence of a few longer than normal stitches, with the non-sinusoidal needle motion, are carried out followed by a transition to normal size stitches.
  • a similar scheme can be employed whenever direction reversal occurs, not just at the beginning and ending of a pattern. This reduces malformed stitches, missed stitches and.thread breakage.
  • the movement of the needle relative to the material can be carried out (1) by moving the bridges relative to the frame of the machine while holding the material stationary, (2) by holding the bridges stationary relative to the machine while moving the material, or (3) by a combination of relative movements of both the bridges and material relative to the frame of the machine.
  • the movement referred to above can be carried out in such a way that takes into account the inertia of machine components and the material as well as material deformation and other effects of acceleration, deceleration, needle deflection and other factors to optimize or minimize these effects.
  • the needles might reciprocate sinusoidally through the series of stitch cycles with the relative movement between the material and the needles, that is movement parallel to the plane of the material, being continuous, or at a constant speed.
  • the needles might reciprocate at 1400 cycles per minute with the needle movement relative to the material being 200 inches per minute.
  • the reciprocating needle motion speed can be varied and moved non-sinusoidally by, for example, moving at a 2100 cycle per second rate for the portion of a cycle when the needle is penetrating the material and then slowing to a few hundred cycles per second or less between penetrations of the material to sew a normal length stitch or a longer-than-normal length stitch, as the controller may command, with minimal needle deflection and minimal material distortion.
  • Transition stitches can be sewn before or after the tack stitch to transition to or from a normal stitch. Such a sequence can be used for tack stitch sewing or whenever a direction reversal is sewn in a pattern.
  • the machine 10 has a motion system 20 that is diagrammatically illustrated in Fig. 6 .
  • Each of the bridges 21,22 are separately and independently movable vertically on the frame 11 through a bridge vertical motion mechanism 30 of the motion system 20.
  • the bridge vertical motion mechanism 30 includes two elevator or lift assemblies 31, mounted on the frame 11, one on the right side and one on the left side of the frame 11 (see Fig. 1A ).
  • Each of the lift assemblies 31 includes two pairs of stationary vertical rails 40, one pair on each side of the frame 11, on each of which ride two vertically movable platforms 41, one for each of two of vertical bridge elevators, including a lower bridge elevator 33 and an upper bridge elevator 34.
  • Each of the elevators 33,34 includes two of the vertically movable platforms 41, one on each side of the frame 11, which is equipped with bearing blocks 42 that ride on the rails 40.
  • the platforms 41 of each of the elevators 33,34 are mounted on the rails 40 so as to support the opposite sides of the respective bridge to generally remain longitudinally level, that is, level front-to-back.
  • the upper bridge 22 is supported at its opposite left and right ends on respective right and left ones of the platforms 41 of the upper elevators 34, while the lower bridge 21 is supported at its opposite left and right ends on respective right and left platforms 41 of the lower elevators 33. While all of the elevator platforms 41 are mechanically capable of moving independently, the opposite platforms of each of the elevators 33,34 are controlled by the controller 19 to move up or down in unison. Further, the elevators 33,34 are each controlled by the controller 19 move the platforms 41 on the opposite sides each bridge 21,22 in synchronism to keep the bridges 21,22 transversely level, that is, from side-to-side.
  • a linear servo motor stator 39 mounted on each side of the frame 11 and extending vertically, parallel to the vertical rails 40.
  • a linear servo motor stator 39 mounted on each platform 41 of the lower and upper elevators 33,34 on each platform 41 of the lower and upper elevators 33,34 is fixed the armature of a linear servo motor 35,36, respectively.
  • the controller 19 controls the lower servos 35 to move the lower bridge 21 up and down on the stators 39 while maintaining the opposite ends of the bridge 21 level, and controls the upper servos 36 to move the upper bridge 22 up and down on the same stators 39, while maintaining the opposite ends of the bridge 22 level.
  • the vertical motion mechanism 30 includes digital encoders or resolvers 50, one carried by each elevator, to precisely measure its position of the platform 41 on the rails 40 to feed back information to the controller 19 to assist in accurately positioning and leveling the bridges 21,22. While linear motors such as the linear servos are preferable, alternative drives such as ball-screws and rotary servos, or other drive devices, may be employed.
  • the encoders 50 are preferably absolute encoders that output actual position signals.
  • the motion system 20 includes a transverse-horizontal motion mechanism 85 for each of the bridges 21,22.
  • Each of the bridges 21,22 has a pair of tongues 49 rigidly extending from its opposite ends on the right and left sides thereof, which support the bridges 21,22 on the platforms 41 of the elevators 33,34.
  • the tongues 49 are moved transversely on the elevator platforms 41 in the operation of the transverse-horizontal bridge motion mechanism 85 .
  • the tongues 49 on each of the bridges 21,22 carry transversely extending guide structure 44 in the form of rails that ride in bearings 43 on the platforms 41 of the respective elevators 33,34 ( Fig. 6A ).
  • each of the bridges 21,22 Fixed to the tongue 49 on one side of each of the bridges 21,22, extending parallel to the rails or guide structure 44, is a linear servo stator bar 60. Fixed to one of the platforms 41 of each respective bridge 21,22 is an armature of a linear servo 45,46 positioned to cooperate with and transversely move the stator bar 60 in response to signals from the controller 19.
  • the transverse-horizontal motion mechanism includes decoders 63 for each of the bridges 21,22 that are provided adjacent the armatures of servos 45,46 on the respective elevators 41 to feed back transverse bridge position information to the controller 19 to aid in precise control of the transverse bridge position.
  • the bridges 21,22 are independently controllable to move vertically, up and down, and transversely, left and right, and operated in a coordinated manner to stitch a quilted pattern on the material 12.
  • each bridge can move transversely 18 inches (+/- 9 inches from its center position), and each bridge can move up or down 36 inches (+/- 18 inches from its center position.
  • the range of vertical motion of the lower and upper bridges 21,22 can overlap.
  • the drive rollers 18 at the top of the frame 11, which are also part of the overall motion system 20, are driven by a feed servo motor 64 at the top of the frame 11, as illustrated in Fig. 6 , on the right side (facing downstream) of the frame 11.
  • the servo 64 drives the rollers 18 to feed the web of material 12 downstream, pulling it upward along the plane 16 through the quilting station and between the members 23 and 24 of both of the bridges 21 and 22.
  • the rollers 18 further drive a timing belt 65 located in the frame 11 at the left side of the machine 10, as illustrated in Fig. 6A .
  • the bridges 21,22 may also each be provided with a pair of pinch rollers 66, in place of idler roller 15, that are journalled to the respective elevator platforms 41 on which the respective bridges 21,22 are supported. These rollers 66 grip the material 12 at the levels of the bridges 21,22 to minimize the transverse shifting of the material at the level of the sewing heads 25,26.
  • the pinch rollers 66 are synchronized by the belt 65 so that the tangential motion of their surfaces at the nips of the pairs of roller 66 move with the material 12.
  • the structure that enables the belt 65 to synchronize the motion of the pinch rollers 66 with the motions of the bridges 21,22 and the web 12 is illustrated also in Figs. 6C and 6D as well as Figs. 6A and 6B as explained above.
  • the belt 65 extends around the cog drive roller 600, which is driven through a gear assembly 601 by the feed rollers 18 ( Fig. 6D ).
  • the belt 65 further extends around four idler pulleys 602-605 rotatably mounted to the stationary frame 11.
  • the belt 65 also extends around a driven pulley 606 and an idler pulley 607, both rotatably mounted to the elevator platform 41 for the lower bridge 21, and around idler pulley 608 and driven pulley 609, both rotatably mounted to the elevator platform 41 for the upper bridge 22, all on the left side of the frame 11.
  • the driven pulley 606 is driven by the motion of the belt 65 and, in turn, through a gear mechanism 610 ( Fig. 6D ), drives the pinch rollers 66 of the lower bridge 21, while driven pulley 609, is also driven by the motion of belt 65 and, through gear mechanism 611, drives the pinch rollers 66 of the upper bridge 22.
  • the gear mechanisms 610 and 611 have drive ratios related to that of drive gear mechanism 601 such that the tangential velocity of the rollers 66 and rollers 18 is zero relative to that of the web 12. It should be noted that the path of the belt 65 remains the same regardless of the positions of the bridges 21 and 22.
  • inlet rollers 15 are shown at the bottom of Fig. 6D and in Figs. 6E and 6F as a pair of rollers similar to rollers 18. If such rollers 15 are so provided and are to be driven, which might be desirable or undesirable, depending on the feed system for the web 12 upstream of the machine 10, such rollers 15 should be also driven by the belt 65, as through a gear mechanism 612 driven by the roller 605 that is driven by the belt 65. In such a case, the rollers 15 should be maintained at the same tangential velocity as the feed rollers 18 through properly matched gear ratios between mechanisms 601 and 612.
  • rollers 15 it might, however, be preferred to allow the rollers 15 to rotate freely as idler rollers, and to provide only a single roller 15 above and on the upstream side of the material 12, around which the material 12 would extend.
  • gear mechanisms 601, 610 and 611 may be substantially as illustrated and described for gear mechanism 612.
  • the vertical motion of the bridges 21,22 is coordinated with the downstream motion of the web of material 12 by the controller 19.
  • the motion is coordinated in such a way that the bridges 21,22 can efficiently remain within their 36 inch vertical range of travel.
  • the two bridges 21,22 can be moving so as to stitch different patterns or different portions of a pattern.
  • their separate motions are also coordinated so that both bridges 21,22 remain in their respective ranges of travel, which may require that they operate at different stitch speeds. This may be achieved by the controller 19 controlling one bridge independently while the motion of the other bridge is dependent on or slaved to that of the other bridge, though other combinations of motion may be better suited to various patterns and circumstances.
  • the stitching of patterns by the sewing heads 25,26 on the bridges 21,22 is carried out by a combination of vertical and transverse motions of the bridges 21,22 and thus, the sewing heads 25,26 that are on the bridges, relative to the material 12.
  • the controller 19 coordinates these motions in most cases so as to maintain a constant stitch size, for example, seven stitches to the inch, which is typical. Such coordination often requires a varying of the speed of motion of the bridges or the web or both or a varying of the speed of sewing heads 25,26.
  • the speed of the needle heads 25 is controlled by the controller 19 controlling the operation of two needle drive servos 67 that respectively drive the common needle drive shafts 32 on each of the bridges 21,22.
  • the speed of the looper heads 26 is controlled by the controller 19 controlling the operation of two looper drive servos 69, one on each bridge 21,22, that drive the common looper belt drive systems 37 on each of the bridges 21,22.
  • the sewing heads 25,26 on different bridges 21,22 can be driven at different rates by different operation of the two servos 67 and the two servos 69.
  • the needle heads 25 and looper heads 26 on the same bridges 21,22 are run at the same speed and in synchronism to cooperate in the formation of stitches, although these may be phased slightly with respect to each other for proper loop take-up, needle deflection compensation, or other purposes.
  • the horizontal motion of the bridges is controlled in some circumstances such that they move in opposite directions, thereby tending to cancel the transverse distortion of the material 12 by the sewing operations being performed by either of the bridges 21,22.
  • the two bridges 21,22 are sewing the same patterns, they can be controlled to circle in opposite directions. Different patterns can also be controlled such that transverse forces exerted on the web 12 cancel as much as practical.
  • each bridge 21,22 includes a needle drive servo 67, separately controllable by a signal from the controller 19, which drives a shaft 32, which, in turn, drives all of the needle head assemblies 25 on the respective bridge, with each needle head assembly 25 being selectively engageable through a clutch 100, also operated by signals from the controller 19.
  • each bridge 21,22 further includes a looper drive servo 69, also separately controllable by a signal from the controller 19, which drives a belt 37, which, in turn, drives all of the looper head assemblies 26 on the respective bridge, with each looper head assembly 26 being selectively engageable through a similar clutch 210, also operated by signals from the controller 19.
  • the separate drives 67 and 69 facilitate the split-start feature, described above, as well as needle deflection compensation, plus is useful for other control refinements.
  • FIG. 6H an end portion or tongue 49 of a bridge 21 or 22 is illustrated in which the needle drive motor 67 is linked to drive both the needle head assemblies 25 and looper head assemblies 26 of the same bridge.
  • the servo 67 directly drives the output shaft 32, which is the needle drive input shaft for that bridge.
  • the shaft 32 drives a cog belt 32a that drives a looper drive input shaft 37a, which takes the place of the looper drive belt 37 in previously described embodiments.
  • needles 132 and loopers 216 are driven together, and are not separately controlled or phased.
  • the stitching elements are mechanically linked, power failures and other malfunctions are less likely to result in mechanical damage to the machine. Nonetheless, the ability to separately contro needle and looper heads can be reinstated by retaining the looper drive servo 69 while linking its output to the shaft 37a through a differential drive 69a, which can be added between the belt drive 32a and the looper drive shaft 37a.
  • the looper drive shaft 37a is linked through a belt 37b to a segmented shaft 37c that is formed of an alternating series of torque tubes 37d and gear boxes 210a.
  • the gear boxes 210a take the place of the looper drive clutches 210, but drive the looper and retainer drives 212 of the looper head assemblies 26 continuously rather than allowing each to be driven selectively as with the embodiments described above.
  • Activation and deactivation of the needle alone determines whether the set of stitching elements participates in the sewing of the pattern. Since the loopers 216 do not penetrate the material being sewn, they can be run continuously whether the corresponding needle drive assemblies 25 are being driven or not, although clutches 210 could be provided instead of gear boxes 210a.
  • the looper head assemblies 26 of this embodiment include a looper and retainer drive 212 essentially as described above. They also each include the needle plate 38, illustrated as a rectangular plate 38a, which is fixed relative to the looper drive housing 238, which contains the needle hole 81.
  • Each gear box 210a has an output shaft that is locked to the input shaft of the looper and retainer drive 212 by a collar 440 such that these shafts are adjustable only axially with respect to each other.
  • Each gear box 210a is supported by two bearings 441, one on each side of the gear box 210a, that surround the shaft 37c, which is the input drive shaft of the gear boxes 210a.
  • the bearings 441 are each locked in a clamp member 442 that is bolted to the bridge. As such, the gear boxes 210a are adjustable only axially relative to the shaft 37c.
  • a looper head assembly 26a When a looper head assembly 26a is installed on the rear portion 24 of a bridge 21,22, four adjustments can be made. Two horizontal adjustments are available to adjust the assembly 26a on the bridge. Before tightening the clamp members 442, the gear box 210a can be positioned transversely on the shaft 37c to align the needle hole 81 transversely with needle 132. Then the collar 440 can be loosened and the assembly 26a moved toward or away from the needle drive assembly 25 to adjust the needle plate 38a relative to the fabric plane 16 . Angular adjustment of the looper and retainer drive 212 is made by aligning a disc (not shown) on the input shaft of the drive 212 inside the housing 238 with an alignment hole 444 in the housing 238.
  • a needle head assembly 25 that produces a simple sinusoidal needle motion is illustrated, as the needle head assembly embodiment 25a also in Fig. 2C .
  • Each needle head assembly 25a includes a clutch 100 that selectively transmits power from the needle drive shaft 32 to a needle drive 102a and presser foot drive 104a.
  • the needle drive 102a, the presser foot drive 104a and the clutch 100 as well as the shaft 32, are supported on a needle drive housing 418.
  • the needle drive 102a includes the crank 106 that is driven through a drive belt 164 by the output pulley 166 of the clutch 100.
  • the crank 106 is mechanically coupled to the needle holder 108 by a direct needle drive link 110a.
  • the arm or eccentric 112 of crank 106 is rotatably connected to one end of the link 110a.
  • the other end of the link 110a is rotatably connected to pin 123 extending from block 122 of the reciprocating shaft 124, which is an extension of the needle holder 108.
  • the shaft 124 is mounted for reciprocating linear motion as in the assembly 25 described in connection with Fig. 2 above.
  • the presser foot drive 104a is generally similar to the presser foot drive 104 described in connection with Fig. 2A above.
  • the components of the needle head assemblies 25a are made of materials that allow the heads to be operated without requiring lubrication.
  • the housing 418 is a structural member having three mounting flanges 451, 452 and 453 that support the assembly 25a and its related components on the front portion 23 of the bridge 21,22.
  • the front portions 23 of the bridges 21,22 of the embodiment 23a illustrated in Fig. 6I use the housings 418 of the head assemblies 25a to stiffen the bridge portion, which is formed of an open trough 455.
  • the flanges 451 are bolted to the vertical face of the trough 455, while the flanges 452 and 453 are bolted to transversely extending channels along the base of the trough 455, thereby adding stiffening structure that reinforces the trough 455 so as to resist the main stresses and dynamic loads encountered during sewing.
  • the drive shaft 32 which is formed of sections of torque tubes 32a and solid shaft sections 32b ( Fig. 2C ), is also in part supported by the housings 218 through the clutches 100 that are mounted to the housings 218, thereby confining some of the drive forces to these housings 218.
  • This arrangement makes it practical to eliminate additional structural features such as the ribs 89 ( Fig. 1 ).
  • the quilter 10 quilts a web 12 that may be fed downstream to a panel cutter and trimmer, or that may be rolled and transferred to an off-line cutting and trimming device. Motion of the web 12 and the bridges 21,22 can also be coordinated with panel cutting operations performed by a panel cutting assembly 71 located at the top of the frame 11.
  • the panel cutter 71 has a cut-off head 72 that traverses the web 12 just downstream of the drive rollers 18, and a pair of trimming or slitting heads 73 on opposite sides of the frame 11, immediately downstream of the cut-off head 72, to trim selvage from the sides of the web 12.
  • the cut-off head 72 is mounted on a rail 74 to travel transversely across the frame 11 from a rest position at the left side of the frame 11.
  • the head is driven across the rail 74 by an AC motor 75 that is fixed to the frame 11 with an output linked to the head 72 by a cog belt 76.
  • the cut-off head 72 includes a pair of cutter wheels 77 that roll along opposite sides of the material 12 with the material 12 between them so as to transversely cut quilted panels from the leading edge of the web 12.
  • the wheels 77 are geared to the head 72 such that the speed of the cutting edges of the wheels 77 are proportional to the speed of the head 72 across the rail 74.
  • the controller 19 synchronizes the operation of the cut-off head 72, activating the motor 75 when the edge of a panel is correctly positioned at a cut-off position defined by the path of the travel of the cutting wheels 7.7.
  • the controller 19 stops the motion of the material 12 at this position as the cut-off action is carried out.
  • the controller 19 may stop the sewing performed by the sewing heads 25,26, or may continue the sewing by moving the bridges 21,22 to impart any longitudinal motion of the sewing heads 25,26 relative to the material 12 when the material 12 is stopped for cutting.
  • the trimming or slitting by the slitting heads 73 takes place as the web of material 12 or panels cut therefrom are moved downstream from the cutting head 72.
  • the slitting heads 73 each have a set of opposed feed belts 78 thereon that are driven in coordination with a pair of slitting wheels 79.
  • the structure and operation of these slitting heads 73 are explained in detail in U.S. Patent No. 6,736,078, filed March 1, 2002, by Kaetterhenry et al. and entitled "Soft Goods Slitter and Feed System for Quilting", hereby expressly incorporated by reference herein.
  • the feed belts 78 and wheels 79 are geared to operate together and driven by the drive system of feed rollers 18 as the web 12 is advanced through the slitters 73.
  • the belts 78 are operated separate from the feed rolls 18 after a panel has been cut from the web by the cutting head 72 to clear the panels from the belts 78.
  • the slitting heads 73 are transversely adjustable on a transversely extending track 80 across the width of the frame 11 so as to accommodate webs 12 of differing widths, as explained in U.S. Patent No. 6,736,078 .
  • the adjustment is made under the control of the controller 19 after a panel has been severed and cleared from the trimming belts 78.
  • the slitting heads 73 and the adjustment of their transverse position on the frame 11 to coincide with the edges of the material 12 are carried out under the control of controller 19 in a manner set forth in U.S. Patent No. 6,736,078 and as explained herein.
  • the controller 19 moves the web in the forward direction, moves the upper bridge up, down, right and left, moves the lower bridge up, down, right and left, switches individual needle and looper drives selectively on and off, and controls the speed of the needle and looper drive pairs, all in various combinations and sequences of combinations, to provide an extended variety of patterns and highly efficient operation.
  • simple lines are sewn faster and in a variety of combinations.
  • Continuous 180 degree patterns (those that can be sewn with side to side and forward motion only) and 360 degree patterns (those that require sewing in reverse) are sewn in greater varieties and with greater speed than with previous quilters.
  • Discrete patterns that require completion of one pattern component, sewing of tack stitches, cutting the threads and jumping to the beginning of a new pattern component can be sewn in greater varieties and with greater efficiency.
  • Different patterns can be linked. Different patterns can be sewn simultaneously. Patterns can be sewn with the material moving or stationary. Sewing can proceed in synchronization with panel cutting. Panels can be sewn at variable needle speeds and with different parts of the pattern sewn simultaneously at different speeds. Needle settings, spacings and positions can be changed automatically.
  • simple straight lines can be sewn parallel to the length of the web 12 by fixing the bridges in selected positions and then only advancing the web 12 through the machine by operation of the drive rollers 18.
  • the sewing heads 25,26 are driven so as to form stitches at a rate synchronized to the speed of the web to maintain a desired stitch density.
  • Continuous straight lines can be sewn transverse the web 12 by fixing the web 12 and moving a bridge horizontally while similarly operating the sewing heads.
  • Multiple sewing heads can be operated simultaneously on the moving bridge to sew the same transverse line in segments so that the motion of the bridge need only equal the horizontal spacing between the needles. As a result, the transverse lines are sewn faster.
  • Continuous patterns are those that are formed by repeating the same pattern shape repeatedly as the machine sews. Continuous patterns that can be produced by only unidirectional motion of the web relative to the sewing heads, coupled with transverse motion, can be referred to as standard continuous patterns. These are sometimes referred to as 180 degree patterns. They are sewn on the machine 10 by fixing the vertical positions of the bridges and advancing the feed rolls 18 to move the web 12, moving the bridges 21,22 horizontally only. On the machine 10, the web 12 does not move transversely relative to the frame 11.
  • Fig. 7A is an example of a standard continuous pattern.
  • the illustrated pattern 900 can be sewn provided that there are two rows of needles spaced by the distance D.
  • the distance D is a fixed parameter of the machine and cannot be varied from pattern to pattern. This is because the needle row spacing is fixed and all of the needles must move together.
  • the distance D can be any value, because alternate stitches can be sewn with needles on one bridge while the other stitches are sewn with needles on the other bridge.
  • the two bridges can be moved in any relationship to each other.
  • the two bridges are spaced at a vertical distance of 2D , with a needle of each bridge starting at points 901 and 902, for example, they can move in the opposite transverse directions as the web feeds upward, thereby sewing the alternate rows 903 and 904 as mirror images of the same pattern. In this way, the transverse forces exerted on the material by bridge motion will cancel, thereby minimizing material distortion.
  • 360 degree patterns Continuous patterns that require bidirectional web motion relative to the sewing heads are referred to herein as 360 degree patterns. These 360 degree patterns can be sewn in various ways.
  • the web 12 can be held stationary with a pattern repeat length sewn entirely with bridge motion, then the web 12 can be advanced one repeat length, stopped, and the next repeat length can then also be sewn with only bridge motion.
  • a more efficient and higher throughput method of sewing such 360 degree continuous patterns involves advancing the web 12 to impart the required vertical component of web versus head motion of the pattern, with the bridges sewing only by horizontal motion relative to the web 12 and the frame 11. When a point in the pattern is reached where reverse vertical sewing direction is required, the web 12 is stopped by stopping feed rolls 18 and the bridge or bridges doing the sewing are moved upward.
  • FIG. 7B An example of a 360 degree continuous pattern 910 is illustrated in Fig. 7B .
  • the sewing of this pattern starts, for example, at point 911 and vertical line 912 is sewn only with upward vertical web motion. Then, at point 913, the web stops and the horizontal line 914 is sewn with transverse bridge motion only to point 915, then with upward bridge motion only to sew line 916, then transverse bridge motion only to sew line 917, then with downward vertical bridge motion only to sew line 918, then transverse bridge motion only to sew line 919, then downward vertical bridge motion only to sew line 920.
  • line 921 is sewn with transverse bridge motion only, then line 922 is sewn with upward bridge motion only, then line 923 is sewn with transverse bridge motion only to point 924.
  • the bridge is at the farthest distance below its initial position than at any point in the pattern. Then, the bridge moves downward to sew line 925 as far as point 926, which is adjacent point 915 where the vertical bridge motion started, at which point 926, the bridge is back to its initial vertical position, whereupon its vertical motion stops and the web moves upward to sew the line further to point 927.
  • transverse bridge motion only sews line 928 to point 929, which is back to the beginning point of the pattern.
  • Discontinuous patterns that are formed of discrete pattern components which are referred to by the trademark as TACK & JUMP patterns by applicant's assignee, are sewn in the same manner as the continuous patterns, with tack stitches made at the beginning and end of each pattern component, thread trimming after the completion of each pattern component and the advancing of the material relative to the needles to the beginning of the next pattern.
  • 180 degree and 360 degree patterns are processed as are continuous patterns.
  • An example of such a 360 degree pattern 930 is illustrated in Fig. 7C .
  • One simple way to sew these patterns is to sew the patterns with bridge motion, tack the patterns and cut the threads, then jump to the next repeat with web motion only. However, adding web motion as in Fig. 7B to the pattern sewing portion can increase throughput.
  • Fig.7D is an example of linked patterns that can be sewn on the machine 10 without vertical motion of a bridge, with the two bridges sharing the sewing of the clover-leaf patterns 941 by sewing the opposite sides as mirror images.
  • one bridge can sew the patterns 941 as 360 degree discontinuous patterns while the other bridge sews the straight line patterns.
  • Fig. 7E illustrates a continuous 360 degree pattern 950 sewn with one bridge sewing alternative patterns 951 with the other bridge sewing a mirror image 952 of the same pattern.
  • This pattern 950 is sewn using similar web and bridge vertical motion logic as pattern 910 of Fig. 7B .
  • the controller 19 analyzes the pattern before sewing begins. In such a determination, at the start of each pattern repeat, the transverse position at the end of the repeat must be the same as it was when the pattern started and the vertical web position must be the same or further downstream (up).
  • the pattern 950 may be sewn with the lower bridge first sewing tack stitches at points 953 and sewing patterns 951.
  • the sewing will use bridge horizontal motion and only web vertical motion until points 954 are reached. Then, the web stops and the bridge sews vertically, down then up, to point 955, at which the bridge is at the same longitudinal position on the web and the same vertical position as it was at point 954. Then the web feed takes over for the sole vertical motion and the sequence is repeated for the second half of the pattern 956.
  • the second bridge begins patterns 952 with a tack stitch at point 953, which it sews in the same manner as the first bridge sewed pattern 951, except with the horizontal or transverse direction being reversed.
  • the sewing continues with the bridges and web moving vertically the same and simultaneously for both patterns 951 and 952, with transverse motion of one bridge being equal and opposite to the transverse motion of the other bridge.
  • the sewing continues until the lower bridge reaches point 958, where tack stitches are sewn and the threads are cut. After one more pattern repeat, the second bridge comes to the same point, and it sews tack stitches and its threads are cut.
  • Two different patterns can be sewn simultaneously by moving one bridge to form one pattern and the other bridge to form another pattern.
  • the operation of both bridges and the sewing heads thereon are controlled in relation to a common virtual axis.
  • This virtual axis can be increased in speed until one bridge reaches its maximum speed, with the other bridge being operated at a lower speed at a ratio determined by the pattern requirements.
  • Pattern 960 of Fig. 7F illustrates this. With one bridge sewing the vertical lines of pattern 961 and the other bridge simultaneously sewing the zig-zag lines of pattern 962, the stitching rates of the two bridges must be different.
  • pattern 962 is driven at a one-to-one ratio to a virtual axis or reference which is set at the maximum stitching speed. If the lines of pattern 962 are at a 45 degree angle, for example, the stitch rate for pattern 961 will be set at 0.707 times the rate of that of pattern 962.
  • Patterns can be sewn by combinations of vertical and horizontal motion of the bridges while the material is being advanced, thereby making possible the optimizing of the process.
  • Fig. 7G shows a pattern 970 made up of a straight line border pattern 971 in combination with diamond patterns 972 and circle patterns 973. If the overall panel is larger than the 36 inch vertical bridge travel, for example if dimension L is 70 inches, stitching can proceed as follows: the diamonds and circles of the upper half 974 of the panel are sewn first, with one bridge sewing the diamonds and the other sewing the circles, or some other combination, using 360 degree logic, with the web stationary. Then the border pattern 971 is sewn with the web moving 35 inches upward during the process, sewing vertical and horizontal lines as described above.
  • the diamonds and circles of the bottom half 975 of the panel being sewn.
  • the upper half of the panel can be sewn with the upper circle and diamond patterns being sewn by the top bridge and the lower circle and diamond (two rows) being sewn with the bottom bridge.
  • the circle and diamond patterns of the lower panel half can be similarly apportioned between the bridges.
  • Fig. 9 shows a section 500 of the quilted web 12 on which two pattern sections 501 and 502 have been quilted. Both of these patterns are selected as continuous, unidirectional patterns for simplicity, but the principles discussed in connection with the sewing of these patterns can be combined with the principles discussed above in connection with many of the patterns of Figs. 7A-7G to produce other, more complex patterns and combinations of patterns to provide advantages of additional features and sewing techniques.
  • the patterns 501 and 502 on the web section 500 have some common characteristics as well as some distinctive properties.
  • the pattern 501 is referred to as an "onion” pattern, which is formed of alternating, generally-sinusoidal curves 503 and 504. These curves 503,504 may be considered as identical but 180 degrees out of phase, so that they converge and diverge to produce the illustrated onion pattern 501.
  • the pattern 502 is referred to as a "diamond” pattern, and is formed of alternating, zig-zag lines 505 and 506.
  • These lines or curves 505 and 506 may be also considered as identical but 180 degrees out of phase, so that they too converge and diverge to produce the illustrated diamond pattern 502.
  • the two curves 503, 504 of the pattern 501 are made up of pattern repeat cycles 507, while the two curves 505, 506 of the pattern 502 are made up of repeat cycles 508.
  • the two patterns 501 and 502 are separated by a small length 510 of the web 12.
  • Each of the patterns 501 and 502 may be considered as being made up of (1) a starting length 511 and 512, respectively, that is spanned by 180 degrees, or half, of a pattern repeat cycle, (2) an intermediate length 513 and 514, respectively, that is spanned by one or more 360 degree, or full, pattern repeat cycles, and (3) an ending length 515 and 516, respectively, that is also spanned by 180 degrees of a pattern repeat cycle.
  • These lengths 511-516 are described for a web 12 that moves upward in Fig. 9 through the machine 10 and is quilted from top to bottom in the figure.
  • Each curve of the patterns 501 and 502 begins with a tack stitch sequence 517 and ends with a tack stitch sequence 518.
  • the tacked beginnings and ends of these curves and the longitudinal proximity of the end tacks 518 of one pattern and the beginning tacks 517 of the next pattern are particularly advantageous features of this aspect of the present invention.
  • the length 210 of web 12 between the patterns 501 and 502 may be less than the length of 180 degrees of the pattern, even substantially less, for example, 90 degrees, 15 degrees or zero degrees.
  • This inter-pattern length 210 may be present on a panel where the panel is made of two of the same or different patterns, such as both of the patterns 501 and 502 as illustrated, or may be present at the boundary between two panels.
  • each of the patterns 501 and 502 is shown as two pattern cycles long, with each respectively made up of one half-cycle long starting length 511 or 512, one full-cycle long intermediate length 513 or 514, and one half-cycle long ending length 515 or 516..
  • each of the patterns 501 and 502 can be sewn on prior art multi-needle quilting machines such as described in U.S. Patent No. 5,154,130 , there are limitations, as can be appreciated by reference to Fig. 9A .
  • the simultaneous stitches are formed by the needles of a first row, at positions 521, spaced a transverse distance 522 from each other, and needles of a second row, at positions 523, spaced a transverse distance 524 from each other, with the rows being spaced a longitudinal distance 525 apart.
  • This needle arrangement defines the relative dimensions of the components, particularly in the longitudinal direction, of the onion designs of the pattern 501 in Fig. 9A .
  • Similar dimensional limitations are the result of the needle positions 526 transversely spaced a distance 527 on the first bar and needle positions 528 spaced a distance 529 on the second bar.
  • the transverse spacings 527 and 529 need not be, and in Fig.
  • pattern 502 The transition from stitching the pattern 501, which, as shown in Fig. 9A , uses four needles per bar for each of two needle bars, to stitching the pattern 502, which, as shown uses seven needles per bar for each of the two needle bars, requires a change of needle settings. With at least most machines of the prior art, needle setting change is typically a manual operation. Alternatively, pattern 502 could be replaced with a pattern limited to those that use the same four needles as pattern 501, such as a pattern having four rather than seven rows of diamonds, so that no needle change would be required to change from pattern 501 to pattern 502.
  • the start and stop positions of pattern curves 503 and 504, which are sewn by needles on different rows and located at positions 521 and 523, respectively, are necessarily longitudinally spaced a distance 525 apart, leaving a half-length portion of one of the only curves 503 or 504 occupying a length of the web equal to the distance 525 at both the beginning and end of each of the patterns 501 and 502. This results in a production of a length 530 of scrap material or waste equal to two lengths 525 between adjacent patterns on the web 12, which must be cut off and discarded.
  • a pattern as illustrated in Fig. 9 is produced on a modified multiple-needle quilting machine.
  • a pattern has the limitation that the repeat length 507 for pattern 501 is generally the same as the repeat length 508 for the pattern 502.
  • a multi-needle quilting machine such as that of U.S. Patent No. 5,154,130 is provided with automatically retractable or selectable needles, so that one bar of needles may be disabled while another bar of needles is sewing.
  • such a multi-needle quilting machine has the ability to reverse the relative motion of the web 12 relative to the bars or bridges that carry the sewing heads.
  • a web 12 is advanced in the direction of the arrow 531 through a quilting station having a needle bar array 532 that includes an upstream needle bar 533 and a downstream needle bar 534.
  • the needle bars 533 and 534 are at a fixed distance 525 apart.
  • the needles of the upstream needle bar 533 begin sewing pattern curves 503 by sewing tack stitch sequences 517 at needle positions 523.
  • the needles of the downstream bar 534 are activated and begin sewing the pattern curves 504 by sewing tack stitch sequences 517 at needle positions 521 to begin sewing curves 504 at start positions that align at the same longitudinal position as the beginnings of curves 503. Then the web 12 is advanced further as both bars 533 and 534 of needles stitch curves 503 and 504 simultaneously until the position of Fig. 9D is reached, at which points tack stitch sequences 518 are sewn, the thread is cut and the needles at positions 523 on bar 533 are disabled. Sewing then continues with the needles at positions 521 on bar 534 until the web is at the position illustrated in Fig. 9E . At this position of the web 12, the needles of bar 534 sew tack stitch sequences 518, then the threads are cut and the needles of bar 534 are disabled, whereupon the pattern 501 is completed.
  • needles at positions 526 on bar 534 are activated to sew tack stitch sequences 517 for the start of curves 506. Then the web 12 is advanced further as both bars 533 and 534 of needles stitch curves 503 and 504 simultaneously until the position of Fig. 9H is reached, at which points tack stitch sequences 518 are sewn, the thread is cut and the needles at positions 528 on bar 533 are disabled. Sewing then continues with the needles at positions 526 on bar 534 until the web is at the position illustrated in Fig. 9I .
  • the needles of bar 534 sew tack stitch sequences 518, then the threads are cut and the needles of bar 534 are disabled, whereupon the pattern 502 is completed. If another pattern 501 or 502 is to be sewn close to the completed pattern 502, again the web 12 will have to be reversed a distance 525 to the start of the next pattern.
  • Fig. 9J shows the bridges 21 and 22 of the machine 10 in arbitrary start positions in the middle of their travel ranges, sufficiently high on the frame to allow for some downward travel.
  • the sewing may start with the needles of the lower bridge 21 stitching tack stitch sequences 517 at the beginnings of curves 503 of pattern 501.
  • the lower bridge 21 begins to sew the curves 503 while moving downwardly with the web 12 stationary while upper bridge 22 moves downwardly to the same starting position, to the positions shown in Fig. 9K .
  • This motion could be accompanied by, or replaced by, upward motion of the web 12.
  • the needles of upper bridge 22 When at the starting positions, the needles of upper bridge 22 then stitch tack stitch sequences 518 at the beginnings of curves 504. Because the sewing heads on the bridges 21 and 22 can operate independently, the tack stitch sequences 518 can be sewn by upper bridge 22 while the lower bridge 21 continues uninterruptedly to stitch normal stitches of the curves 503. Furthermore, the distance that the lower bridge 21 moves downwardly can be any distance within its travel range that allows enough clearance for the upper bridge 22 to be placed at the starting position. By moving downward a full pattern cycle 513, for example, the curves 503 and 504 can be stitched with the bridges 21 and 22 moving transversely in the opposite directions, using the web-distortion reduction method described above.
  • the web 12 is stopped and the bridges 21 and 22 move upward until the bridge is at the same starting position that is shown in Fig. 9J .
  • the needle heads are then activated or deactivated, as necessary, to prepare for the stitching of the new pattern.
  • three intervening sewing heads are activated, one between each of the four heads that were activated for the stitching of pattern 501, so that all seven heads can stitch pattern 502.
  • the stitching of pattern 502 proceeds in the same general manner as did the stitching of pattern 501.
  • the lower bridge 21 can proceed immediately after completing curves 503 of pattern 501 to begin stitching curves 505 of pattern 502, even while upper bridge 22 is still stitching curves 504 of pattern 501.
  • the controller 19 of the machine 10 controls the bridge motion, the web motion and the sewing head drives in such a way as to maintain a programmed stitch density, for example seven stitches per inch being typical, for the curves being stitched by both bridges.
  • this can be done by holding one bridge longitudinally stationary as the web moves at a constant feed rate or the heads on the stationary bridge stitch at a constant stitching rate, while compensating movements are made by controlling the other bridge and the sewing heads on the other bridge.
  • Figs. 9-9M While the description of Figs. 9-9M have been described in connection with continuous, unidirectional patterns, this has been done to more clearly illustrate certain features and principles. These features and principles can be used with other pattern features, such as those described in connection with Figs. 7-7G . Where such patterns might include bidirectional longitudinal motions, the principles of the methods of Figs. 9-9M may be the same net longitudinal forward or backward motions to such other patterns or pattern features.
  • Panel cutting can be synchronized with the quilting.
  • the web feed rolls 18 stop the web 12 and the cut is made. Sewing can continue uninterrupted by replacing the upward motion of the web with downward motion of a bridge. This is anticipated by the controller 19, which will cause the web 12 to be advanced by the rollers 18 faster than the sewing is taking place to allow the bridge to move upward enough so it is enough above its lowermost position to allow it to sew downward for the duration of the cutting operation while the web is stopped.
  • the controller can switch the needles on or off.
  • embodiments of the invention produce complex patterns that combine continuous patterns, as for example the zig-zag pattern 550 shown in Fig. 9P , with a TACK AND JUMP pattern, for example, the circle array pattern 552 shown in Fig. 9Q .
  • Such patterns 550 and 552 can be simultaneously sewn on the machine 10 to produce a combination pattern 554 as shown in Fig. 9R .
  • the continuous pattern 550 can be sewn on a continuously advancing web with the heads of the lower bridge 21, preferably in an alternating left and right transverse motion while in a fixed horizontal position, while separate TACK AND JUMP circles of the pattern 552 are sewn with heads of the upper bridge 22 in coordination with the zig-zag pattern 550.
  • the continuous pattern 550 can be sewn with four heads of the lower bridge 21 running continuously as the web feeds downstream at a constant .speed, while 360 degree circles of pattern 552 are being sewn with three heads of the upper bridge 22 sewing intermittently, tacking and cutting threads at the end of each circle pattern.
  • the circles can be sewn using six heads of the upper bridge 22, three simultaneously sewing one row of three circles alternating with three other heads sewing simultaneously an alternating row of circle patterns. Using six heads requires less transverse bridge motion and allows the circles to be more widely spaced.
  • multi-needle quilting machines set forth above provide several axes of motion that differ from those of conventional multi-needle quilting machines.
  • Some embodiments of these quilting machines have two or more bridges that are capable of separate or independent control, each bridge being provided with a row of sewing needles that may be driven together, each separately or independently, or in various combinations.
  • Each bridge may have an independently controllable drive for reciprocating the sewing elements, the needles and loopers.
  • the drive is most practically a rotary input, as from a rotary shaft, that operates the reciprocating elements.
  • Independent operation of the drives on each of the bridges can allow for independent sewing operation of the sewing heads or groups of sewing heads, or the idling of one or more heads, while one or more others is sewing.
  • each sewing head including each needle head and each looper head, can be linked to a common rotary drive through an independently controllable clutch that can be operated by a machine controller to turn the heads on or off, thereby providing pattern flexibility.
  • the heads are typically configured in sewing element pairs, each needle head with a corresponding similarly modular looper head. While the heads of each pair can be individually turned on or off, they are typically turned on and off together, either simultaneously or at different phases in their cycles, as may be most desirable. Alternatively, only the needle heads may be provided with selective drive linkages, while the looper heads may be linked to the output of a drive motor so as to run continuously.
  • This linkage may be direct and permanent, or may be adjustable, switchable or capable of being phased in relation to the needle drive, such as by providing a differential drive mechanism in the looper drive train.
  • the looper head drive may be linked to an input drive shaft through a gear box, rather than a clutch.
  • Each of the looper heads may be further provided with an alignment disk on the looper drive shaft to allow precise phase setting of each looper head relative to the other looper heads or the needle drive when the looper head is installed in the machine.
  • each looper head housing may be provided with adjustments in two dimensions in a plane perpendicular to the needle to facilitate alignment of the looper head with a corresponding needle head upon looper head installation.
  • split-start control method for avoiding missed stitches at startup.
  • the split start feature is one use of a feature that allows the needle and looper drives to be decoupled and moved separately. With the split-start feature, the initial motion of the needle and looper proceed separately upon startup so as to render the pickup of the stitches predictable. This is achieved by insuring that the looper picks up, that is passes through, a top-thread loop before the needle picks up or passes through a bottom thread loop triangle.
  • the elements are unlocked and the looper can be advanced in its cycle.
  • the advance can be, for example, 180 degrees to the looper's retracted position or by some lesser amount that is enough to insure that the looper thread triangle is not in the path of the needle. Fifteen degrees to twenty degrees, for example 17 degrees, can be sufficient.
  • the needle can be advanced a like amount to bring it in phase with the looper, insuring that the needle will miss the looper thread triangle or loop in the looper thread on its first penetration of the material for a pattern.
  • the elements are relocked. Upon further advancing of the elements, the looper will thereupon pick up the needle thread loop before a looper thread loop is picked up by the needle.
  • a split start may be executed using a single drive servo for the needles and loopers.
  • a phase shifting mechanism is provided to accomplish this with both needles and loopers being driven from the same motor.
  • the phase of the loopers may be advanced relative to that of the needles, then the loopers and needles may be moved together while maintaining the phase difference between them, then the loopers and needles may be brought back into phase by retracting the loopers, for example, or by slowing or stopping the loopers relative to the needles while the needles catch up, from which point the cycle can continue with the needles and loopers in phase.
  • a multi-needle quilting machine 10 includes two moveable and independently operable bridges 21 and 22, each having thereon a plurality of separately controllable needle heads 25 and a corresponding plurality of looper heads 26,
  • the speed of the needle heads 25 may be controlled by a controller controlling the operation of a needle drive servo 67 that drives a common needle drive shaft 32 on the bridge 21.
  • the speed of the looper heads 26 may be controlled by the controller controlling the operation of a looper drive servo 69 on the bridge 21, that drives the common looper belt drive systems 37 on one of the bridges.
  • the sewing heads 25,26 on different bridges 21,22 can be driven at different rates by different operation of the two servos 67 and the two servos 69 on the respective bridges.
  • the needle heads 25 and looper heads 26 on the same bridges 21,22 are usually run at the same speed and in synchronism to cooperate in the formation of stitches, although these may be phased slightly with respect to each other for proper loop take-up, needle deflection compensation, or other purposes.
  • each bridge includes a needle drive servo 67, separately controllable by a signal from the controller 19 which drives shaft 32, which, in turn, drives all of the needle head assemblies 25 on the respective bridge, with each needle head assembly 25 being selectively engageable through a clutch 100, also operated by signals from the controller 19.
  • each bridge further includes a looper drive servo 69, also separately controllable by a signal from the controller 19, which drives a belt 37, which, in turn, drives all of the looper head assemblies 26 on the respective bridge, with each looper head assembly 26 being selectively engageable through a similar clutch 210, also operated by signals from the controller 19.
  • the separate drives 67 and 69 can be controlled separately to facilitate the split-start feature, as well as needle deflection compensation, or for other control refinements.
  • the loopers can be advanced with the needles held at top dead center, then the needles operated through a similar portion of a cycle, wherein the needle will miss the triangle or loop in the looper thread upon its descent. Then the needle and looper are resynchronized and driven together, whereupon the looper will pick up the needle thread in the next cycle.
  • the needle and looper drives can be decoupled when at the starting position of Fig. 5P , which is similar to that of Fig. 5L , and the needle can be held in its top dead center position.
  • the looper drive is then advanced one-half cycle, to move the looper 216 to the position illustrated in Fig. 5Q , thereby retracting the looper 216 out of the path of the needle 132.
  • the looper drive is held in its half cycle position while the needle drive is activated to lower the needle 132 to its half cycle position, which leaves the needle 132 clear of the bottom thread 224, as illustrated in Fig. 5R .
  • the needle and looper drives are again coupled together and advanced together in synchronization, whereupon the looper 216 begins to take up the needle loop in approximately the three-quarter position of the stitch cycle, as illustrated in Fig. 5S , and proceeds from there to the full cycle position as illustrated in Fig. 5T . Then the elements continue to move through the next cycle, where the formation of stitches can be seen, as illustrated in Figs. 5U through 5X .
  • Fig. 6H an end portion or tongue 49 of a bridge 21 or 22 is illustrated in which the needle drive motor 67 is linked to drive both the needle head assemblies 25 and looper head assemblies 26 of the same bridge.
  • the servo 67 directly drives the output shaft 32, which is the needle drive input shaft for that bridge.
  • the shaft 32 drives a cog belt 32a that drives a looper drive input shaft 37a, which takes the place of the looper drive belt 37 in previously described embodiments.
  • needles 132 and loopers 216 are driven together, and are not separately controlled or phased. Because the stitching elements are mechanically linked, power failures and other malfunctions are less likely to result in mechanical damage to the machine.
  • the ability to separately control needle and looper heads can be reinstated by retaining the looper drive servo 69 while linking its output to the shaft 37a through a differential drive or phase shifter 69a, which can be added between the belt drive 32a and the looper drive shaft 37a.
  • Figs. 6J-6M in which Fig. 6J is a top view of a bridge 21 with the differential drive 69a included, servo motor 67 directly drives the shaft 32 to operate the needle heads 25.
  • the differential drive 69a includes a transfer drive belt 32a connected between the needle drive shaft 32 and the input shaft 37a of the looper drive belt assembly 37 which drives the looper heads 26.
  • Fig. 6K which is a cross-sectional view through the phase shifter 69a, shows the shifter 69a in its default condition in which the shafts 32 and 37a are synchronized to drive the needle heads 25 and looper heads 26 in phase.
  • the phase shifter 69a is shown in detail in Fig. 6M .
  • a pair of idler pulleys 301 and 302 are mounted between a pair of idler plates 303 and 304 to spread the loop of the belt 32a, to locate less slack in the belt 32a on the higher tension side 305 of a drive pulley 37c on the looper drive shaft 37a than on the low tension side 306.
  • a pneumatic linear actuator 310 is linked between the housing of the phase shifter 69a and the idler plates 303,304 to pivot the plates when actuated to the position shown in Fig. 6L , which moves the slack in the belt 32a to the high tension side 305 of the pulley 37c, which rotates the looper drive shaft 32a forward, advancing the phase of the looper heads 26 in relation to the needle heads 25.
  • This is configured to advance the looper approximately 25 degrees in its cycle.
  • the actuator 310 is actuated to advance the loopers 25 degrees, then the needle and looper are operated through 180 degrees while maintaining the phase shift, then the loopers are resynchronized with the needles by deactuating the actuator 310 and reversing the loopers 25 degrees, whereupon the needles will have descended without picking up the triangle or looper thread loop. Then the needles and loopers are advanced in synch, whereupon the loopers pick up the needle thread loops in the next half cycle.
  • the actuator 310 is a servo motor
  • the loopers can be stopped at the advanced phase angle 180 degrees, for example, as the needles are advancing from 155 degrees to 180 degrees, thereby resynchronizing the needles and loopers without reversing the direction of the loopers 26. While a 25 degree phase shift is suitable for some designs of quilting machines, other shifts might be more appropriate for other machine designs.
  • the splitting of the needle and looper drive upon startup, as described, avoids the missing of stitches upon startup.
  • the splitting of the needle and looper drive cycles has other uses, such as in facilitating thread trimming.
  • the use of the split-start feature can eliminate the need for the thread deflectors 430 shown in Fig. 5Y .
  • the illustrated phase shifting actuator provides a simple and reliable device, which operates to switch the phase relationship of the loopers between an in-phase setting and a setting at which the loopers are a fixed portion of a cycle ahead of the needles.
  • Use of a variable differential drive or separate servo motors for needles and loopers would provide increasing degrees of flexibility in phasing the loopers relative to the needles, and would allow moving both elements simultaneously at different speeds through their cycles.
  • the split-start feature may be combined in different ways with other features when starting to sew a pattern.
  • the wipe cycle described in connection with Figs. 5H-5J is one of them. After jumping to the starting point of a new pattern or pattern element, the needle thread tails are lying on the face of the material, extending from the needles through the holes in the pressure foot plates along the fabric.
  • the wipe cycle is a way to remove these tails by pulling them to the backside of the material.
  • the machine can be made to operate in alternative modes that either employ or omit such a wipe cycle. Where product quality is preferred, the wipe cycle is used to totally remove the needle thread tails from the face of the product. This can increase the quilting time of from 2 to 20 percent, depending on the pattern and the configuration of the machine. Alternatively, a high speed, lower quality mode can be provided for customers or products that can tolerate some thread tails. To reduce quilting time, split start motions can be carried in part while the bridges or web are advancing between patterns.
  • a split start should be carried out after the wipe cycle.
  • an execution of a split-start cycle before a wipe cycle can increase the reliability and predictability of the wipe cycle, but such a wipe cycle should still be followed by a further split-start cycle, since the effect of the first split-start cycle on the thread positions at the beginning the stitch sequence is undone by the wipe cycle.
  • the result of the combination of split-start and wipe cycles is that two cycles of the stitching elements reliably form the first stitch of a sequence without a visible top-thread tail.
  • the first stitch is usually the first stitch of a beginning tack stitch sequence, which may be an intermittent stitch sequence as described above.
  • Such intermittent tack stitches include strings of stitches usually beginning with one or more long stitches then transitioning through progressively shorter stitches into a series of continuous stitches sewn with a standard sinusoidal needle motion.
  • the preferred tack stitch sequence may differ for different quilted products. The difference may be in the number of stitches in the tack sequence as well as in the combination of different stitches that make up a particular tack stitch sequence. For example, stiffer or thicker quilted products may call for a different tack stitch sequence than more flexible or thinner quilted products.
  • the type of tack stitch to be applied to a particular product may be applied by the controller in response to information stored in the product database. Data in the product database may directly specify the tack stitch needed or the controller may apply a lookup scheme or algorithm to derive or otherwise determine the tack stitch sequence for which the particular product calls.
  • the product database may also contain other product-based parameters.
  • the desired wipe cycle path or distance may differ from product to product, and the controller may base the wipe cycle to be executed on data read from or derived from the product record.
  • the product records in the product database typically include the identification of the pattern to be quilted, the material combination that will make up the material web, and the size of the panels. To this information may be added, or from this information may be derived, the product-based features set forth above and below.
  • Another product-based parameter may include the positioning of the thread for thread trimming at the end of a pattern.
  • a bridge movement may be executed that moves the bridges in a particular direction relative to the stitching elements.
  • Such a movement may, for example, move the bridges up a predetermined distance. This movement would pull the stitch hole down relative to the needle plate and position the threads against a particular spot on the lower edge of the needle hole in the needle plate. These threads would extend directly from this spot to the looper, making their location predictable and making the proper contact of the threads with the cutting element reliable.
  • the amount of bridge motion desired to accomplish this may depend on the product being quilted. For example, a bridge movement of a greater distance is required with thicker material than with thinner material to position the thread in the best position for cutting. Such distance can be read or derived from data in the product database.
  • Another product-based feature is one that modifies thread pull-off so as to prevent the needle thread from being pulled from the needle under certain conditions.
  • the material does not provide enough friction on the thread tail to insure that needle thread is pulled from the needle thread supply spool upon startup. Therefore, for products formed of such material, extra bridge motion is added to the thread pull-off. This leaves additional needle thread slack at the needle, reducing the drag caused by the needle thread spool on the needle thread. The addition of this extra bridge movement is added based on data read from or derived from the product database.
  • the sewing of extra stitch lines to provide material stability is also a product-based feature that can be read from or derived from the product database.
  • a series of stitches referred to herein as a "stabilization line”
  • Such a stabilization line would be sewn along an edge of the material for patterns in which the sewing heads might move off that edge.
  • the stitch line would guard against head catching or snagging the edge of one or more material layers as the head moves back onto the material.
  • the need to sew a stabilization line can arise where a web is registered to the left side of the machine (facing downstream from the front).
  • the leftmost head of a bridge will move close to, but not off of, the left edge of the material as the bridge shifts transversely.
  • the rightmost head can, however, move off the right edge of the material when the bridge shifts to the right.
  • the heads that moved off the material can snag the material.
  • the sewing of a stabilization line longitudinally along the right edge of the web to join the loose layers of material together can avoid the snagging of the material.
  • the line of stitches along the right edge of the web holds the layers together so the top layer or layers of material aren't free to be caught by the returning head.
  • This feature is only needed on certain types of patterns, namely tack and jump pattern arrays in which the heads move transversely off the edge of the web when the head is not sewing.
  • the feature is product based, and involves sewing pattern logic that adds the longitudinal stabilization line to be sewn when the web is advancing downstream relative to the bridges, including when the bridges are descending on the frame and moving upstream relative to the web, and the pattern is one that takes the rightmost head or heads off the edge of the machine.
  • the stabilization line sewing feature is normally turned off, but is automatically enabled from the product database for products needing the stabilization line.
  • the stabilization line feature When the stabilization line feature is on, whenever the bottom-most or upstream bridge is moving below or upstream of the leading end of the sewn stabilization line or the sewn pattern, which is usually when the web is moving up relative to the bridge in the illustrated embodiments, a head at the right end of the bridge is caused by the controller to sew the stabilization line along the right edge of the web.
  • the line can be sewn between pattern components and from the end of the last pattern until the bridges and material are repositioned to the next pattern zero.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sewing Machines And Sewing (AREA)
  • Treatment Of Fiber Materials (AREA)

Claims (4)

  1. Verfahren zum Nähen einer Kettenstichfolge in einem Steppvorgang durch Betreiben einer Kettenstichsteppmaschine mit einem oder mehreren Stichelementpaaren (90) umfassend eine Nadel (132) und einen Greifer (216), wobei jedes Stichelementpaar (90) von einem Stichelementantrieb angetrieben wird und die Aufgabe hat, sich in einer Serie von Zyklen zu bewegen, um in einem mehrlagigen Material eine Doppelkettenstichsequenz mit einem Nadelfaden von der Nadel (132) und einem Greiferfaden vom Greifer (216) zu nähen, wobei das Verfahren Folgendes beinhaltet:
    Antreiben der ein oder mehreren Stichelementpaare (90) mit dem Stichelementantrieb durch mehrere Zyklen, um eine Doppelkettenstichsequenz in dem mehrlagigen Material mit jedem der ein oder mehreren Stichelementpaare (90) zu nähen,
    dadurch gekennzeichnet, dass das Verfahren nach dem Starten der Kettenstichsequenz für jedes Stichelementpaar (90) Folgendes umfasst:
    Antreiben entweder der Nadel (132) oder des Greifers (216) separat vom anderen in eine Position in einem Stichzyklus, ohne das andere in seine entsprechende Position in dem Stichzyklus anzutreiben, um dadurch die Nadel (132) und den Greifer (216) weg von einer maschenbildenden Beziehung eines Stichzyklus zu bewegen; dann
    Antreiben des jeweils anderen aus Nadel (132) und Greifer (216) in die genannte entsprechende Position in dem Stichzyklus; dann
    Antreiben der Nadel (132) und des Greifers (216) in Koordination durch das Ende des Stichzyklus, so dass eine Schlaufe in einem Nadelfaden vom Greifer (216) aufgenommen wird, bevor die Nadel (132) in eine Greiferfadenschlaufe eintritt.
  2. Verfahren nach Anspruch 1, das ferner das Starten jeder Kettenstichsequenz durch Vorbewegen der Phase jedes Greifers (216) jedes Stichelementpaares (90) vor der Nadel (132) davon beinhaltet, so dass die Nadel (132) in eine Nadelposition durch das mehrlagige Material vorbewegt wird, ohne eine Schlaufe in einem Greiferfaden aufzunehmen, dann phasengleiches Antreiben der Nadel (132) und des Greifers (216) und Aufnehmen einer Nadelfadenschlaufe mit dem Greifer (216).
  3. Mehrnadel-Kettenstichsteppvorrichtung, die Folgendes umfasst: einen Stichelementantrieb, mehrere Nadeln (132) und mehrere Greifer (216), wobei die Nadeln (132) und die Greifer (216) in mehreren Stichelementpaaren (90) angeordnet sind, die jeweils vom Stichelementantrieb angetrieben werden, um die Paare (90) jeweils in einer Serie von Zyklen zu bewegen, um mehrere Doppelkettenstichsequenzen zu nähen, einen Phasenverschiebungsmechanismus und eine Steuerung zum Steuern des Phasenverschiebungsmechanismus (67), dadurch gekennzeichnet, dass der Phasenschieber (67) mit dem Stichelementantrieb verknüpft ist und die Aufgabe hat, das Timing der mehreren Nadeln (132) relativ zum Timing der mehreren Greifer (216) zu verändern, und die Steuerung (19) die Aufgabe hat, den Phasenverschiebungsmechanismus (67) zu steuern, um entweder die mehreren Nadeln (132) oder die mehreren Greifer (216) separat von den anderen in Positionen in einem Stichzyklus anzutreiben, ohne die anderen in entsprechende Positionen in dem Stichzyklus anzutreiben, um dadurch die Nadeln (132) und Greifer (216) weg von einer maschenbildenden Beziehung zu bewegen, dann die Nadeln (132) oder den Greifer (216) in die entsprechende Position im Stichzyklus anzutreiben und dann die Nadeln (132) und Greifer (216) in Koordination antreiben, so dass eine Schlaufe in jedem Nadelfaden von einem Greifer (216) aufgenommen wird, bevor die Nadel (132) in eine Greifernadelschlaufe eintritt.
  4. Vorrichtung nach Anspruch 3, wobei die Steuerung ferner die Vorrichtung zum Starten der Kettenstichsequenzen durch Vorbewegen der Phase der Greifer (216) vor den Nadeln (132) steuert; dann Antreiben der Nadeln (132) in Nadelpositionen durch das mehrlagige Material, ohne Schlaufen in den Greiferfäden aufzunehmen; dann phasengleiches Antreiben der Nadeln (132) und der Greifer (216), Aufnehmen von Nadelfadenschlaufen mit jedem der Greifer (216).
EP06803304.2A 2005-09-09 2006-09-08 Horizontale stepmaschine mit mehreren nadeln sowie verfahren Active EP1943382B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US71542305P 2005-09-09 2005-09-09
US76247106P 2006-01-26 2006-01-26
US76317206P 2006-01-27 2006-01-27
PCT/US2006/035233 WO2007030809A2 (en) 2005-09-09 2006-09-08 Horizontal-multi-needle quilting machine and method

Publications (3)

Publication Number Publication Date
EP1943382A2 EP1943382A2 (de) 2008-07-16
EP1943382A4 EP1943382A4 (de) 2015-01-21
EP1943382B1 true EP1943382B1 (de) 2018-04-04

Family

ID=37836571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06803304.2A Active EP1943382B1 (de) 2005-09-09 2006-09-08 Horizontale stepmaschine mit mehreren nadeln sowie verfahren

Country Status (5)

Country Link
EP (1) EP1943382B1 (de)
JP (1) JP4944114B2 (de)
CA (1) CA2622004C (de)
TR (1) TR201807133T4 (de)
WO (1) WO2007030809A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130369A1 (de) * 2021-08-03 2023-02-08 Andritz Asselin-Thibeau Nadelmaschine zum verfestigen eines vlieses oder eines faservlieses, insbesondere von vliesstoffen, anordnung mit einem vlies oder einem faservlies und einer solchen nadelmaschine und verfahren zum betreiben einer solchen nadelmaschine oder anordnung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH700745A1 (de) * 2009-04-09 2010-10-15 Giuseppe Alfier Mehrnadelige Steppvorrichtung.
ITAN20090025U1 (it) * 2009-07-23 2011-01-24 Teknomac S R L Macchina trapuntatrice a doppio ponte
KR101218240B1 (ko) * 2010-04-23 2013-01-04 김시진 멀티형 고메즈 자수기
DE102015223592A1 (de) * 2015-11-27 2017-06-01 Pfaff Industriesysteme Und Maschinen Gmbh Nähanlage
DE102019219814A1 (de) * 2019-12-17 2021-06-17 Pfaff Industriesysteme Und Maschinen Gmbh Stichbildungswerkzeug-Baugruppe für eine Nähanlage sowie Nähanlage mit einer derartigen Baugruppe

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5181161A (ja) * 1975-01-13 1976-07-15 Suwa Seikosha Kk Keitaidokei
JPS52148352A (en) * 1976-06-03 1977-12-09 Tokyo Juki Industrial Co Ltd Yarn cutting mechanism for sewing machine
US5154130A (en) * 1991-09-30 1992-10-13 Leggett & Platt, Incorporated Multi-needle double lock chain stitch tack, jump and thread trimming quilting method and apparatus
US5505150A (en) * 1994-06-14 1996-04-09 L&P Property Management Company Method and apparatus for facilitating loop take time adjustment in multi-needle quilting machine
US5839382A (en) * 1994-09-15 1998-11-24 Tice Engineering And Sales, Inc. Electronically geared sewing machine
US5509365A (en) * 1995-05-12 1996-04-23 James Cash Machine Co., Inc. Multi-needle quilter with component drive assemblies
US5603270A (en) * 1995-05-15 1997-02-18 L&P Property Management Company Quilting material handling and feeding method and apparatus
JP3449588B2 (ja) * 1996-03-11 2003-09-22 ブラザー工業株式会社 ミシン
US7191718B1 (en) * 1997-04-01 2007-03-20 L&P Property Management Company Servo driven quilter
US6435117B2 (en) 1998-05-01 2002-08-20 L&P Property Management Company Printing and quilting method and apparatus
US6263816B1 (en) 1998-05-01 2001-07-24 L&P Property Management Company Mattress cover printing and quilting system and method
US6026756A (en) 1999-02-26 2000-02-22 L&P Property Management Company Composite pattern multiple needle quilting method and apparatus
JP2000271370A (ja) * 1999-03-23 2000-10-03 Brother Ind Ltd 多針ミシン
JP2000271361A (ja) * 1999-03-25 2000-10-03 Brother Ind Ltd ミシン
JP2002166082A (ja) * 2000-12-05 2002-06-11 Brother Ind Ltd ミシン
US6895878B2 (en) * 2001-02-14 2005-05-24 Nahmaschinenfabrik Emil Stutznacker Gmbh & Co. Kg Chain stitch multi-needle quilting machine and method to create a pattern in a quilting material
US6736078B2 (en) 2002-03-01 2004-05-18 L&P Property Management Company Soft goods slitter and feed system for quilting
US7143705B2 (en) * 2002-03-06 2006-12-05 L & P Property Management Company Multiple horizontal needle quilting machine and method
WO2003076707A2 (en) * 2002-03-06 2003-09-18 L & P Property Management Company Multiple horizontal needle quilting machine and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130369A1 (de) * 2021-08-03 2023-02-08 Andritz Asselin-Thibeau Nadelmaschine zum verfestigen eines vlieses oder eines faservlieses, insbesondere von vliesstoffen, anordnung mit einem vlies oder einem faservlies und einer solchen nadelmaschine und verfahren zum betreiben einer solchen nadelmaschine oder anordnung
FR3126008A1 (fr) * 2021-08-03 2023-02-10 Andritz Asselin-Thibeau Aiguilleteuse pour consolider un voile ou une nappe de fibres, notamment de non tissé, assemblage comportant un voile ou une nappe de fibres et une aiguilleteuse de ce genre et procédé pour faire fonctionner une aiguilleteuse ou un assemblage de ce genre
US12012683B2 (en) 2021-08-03 2024-06-18 Andritz Asselin-Thibeau Needle loom for consolidating a web or lap of fibres, particularly nonwoven, assembly comprising a web or lap of fibres and a needle loom of this type and method for operating a needle loom or an assembly of this type

Also Published As

Publication number Publication date
CA2622004C (en) 2012-11-13
EP1943382A2 (de) 2008-07-16
WO2007030809A2 (en) 2007-03-15
EP1943382A4 (de) 2015-01-21
JP4944114B2 (ja) 2012-05-30
TR201807133T4 (tr) 2018-06-21
JP2009507564A (ja) 2009-02-26
CA2622004A1 (en) 2007-03-15
WO2007030809A3 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
USRE45791E1 (en) Multi-needle chain stitch quilting apparatus and method
US7789028B2 (en) Chain-stitch quilting with separate needle and looper drive
US7073453B2 (en) Multiple horizontal needle quilting machine and method
EP1943382B1 (de) Horizontale stepmaschine mit mehreren nadeln sowie verfahren
US7347151B1 (en) Control assembly for tufting machine
DE69937902T2 (de) Einnadelsteppdeckenmaschiene für kettenstich mit korrektur der nadeldrängung
US5832849A (en) Web-fed chain-stitch single-needle mattress cover quilter with needle deflection compensation
US7597059B2 (en) Method and apparatus for manufacturing a sewing product
CN103469496B (zh) 多水平针绗缝机和绗缝方法
MXPA06010688A (es) Maquina de acolchado de agujas multiples horizontal y metodo.
CN101583750A (zh) 水平多针绗缝机及绗缝方法
JP2000202179A (ja) ミシン
JP2004321493A (ja) 縫製機及び糸切り装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080327

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCOTT, DAVID, BRIAN

Inventor name: KELLER, ROLAND

Inventor name: VILLACIS, RICHARD

Inventor name: MYERS, TERRANCE, L.

Inventor name: JAMES, MICHAEL, A.

Inventor name: KAETTERHENRY, JEFF

Inventor name: FRAZER, JAMES, T.

R17D Deferred search report published (corrected)

Effective date: 20080925

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20141218

RIC1 Information provided on ipc code assigned before grant

Ipc: D05B 69/28 20060101ALI20141212BHEP

Ipc: D05B 11/00 20060101AFI20141212BHEP

17Q First examination report despatched

Effective date: 20151119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 985706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006055080

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180404

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180705

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 985706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006055080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200826

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006055080

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230907

Year of fee payment: 18

Ref country code: IT

Payment date: 20230810

Year of fee payment: 18