EP1938669B1 - Verfahren zum betreiben einer gasentladungslampe - Google Patents

Verfahren zum betreiben einer gasentladungslampe Download PDF

Info

Publication number
EP1938669B1
EP1938669B1 EP06807211A EP06807211A EP1938669B1 EP 1938669 B1 EP1938669 B1 EP 1938669B1 EP 06807211 A EP06807211 A EP 06807211A EP 06807211 A EP06807211 A EP 06807211A EP 1938669 B1 EP1938669 B1 EP 1938669B1
Authority
EP
European Patent Office
Prior art keywords
current pulse
current
lamp
gas discharge
duration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06807211A
Other languages
English (en)
French (fr)
Other versions
EP1938669A1 (de
Inventor
Martin BRÜCKEL
Simon Lankes
Andre Nauen
Bernhard Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP1938669A1 publication Critical patent/EP1938669A1/de
Application granted granted Critical
Publication of EP1938669B1 publication Critical patent/EP1938669B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2928Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions

Definitions

  • the present invention relates to a method of operating a gas discharge lamp, wherein the shape of at least one electrode of the gas discharge lamp is changed to produce optimum operating conditions, wherein the gas discharge lamp is powered by an AC voltage or an AC current or by a DC or DC.
  • HID High Intensity Discharge
  • HID (High Intensity Discharge) lamps which are used for example for video projections, is that grow on the two electrodes of these lamps in the course of the operating life structures.
  • a burning back of the electrodes increases the electrode spacing and thus also the burning voltage of this HID lamp.
  • the increase in the burning voltage can be about 0.05V per hour to about 1V per hour.
  • the growth of such structures or such a peak growth reduces the electrode spacing and thus also the burning voltage of the HID lamp is reduced.
  • Typical values here are about 1V to about 20V within a period of about 15 minutes to a few hours.
  • a typical course of the burning voltage results from the superposition of these two effects, which on the one hand by the growth these structures and on the other hand given by the back burning of the electrodes.
  • the burning voltage can be about 70V in the usual way for a HID lamp when this HID lamp is new and has no operating hours.
  • a lowering of the burning voltage can be made to about 40V to about 60V.
  • the operating voltage of the electric lamp can increase up to about 130V over the life of the electric lamp. As this example shows, it can happen in particular that the burning voltage in the serious about 300 hours of operation by such. Peak growth or by such grown structures below the value that the electric lamp has in mint condition.
  • HID lamps are approximately temperature-dependent voltage sources, i. the temperature distribution in the so-called burner of the lamp determines the burning voltage.
  • the lamp power is adjusted by the fact that for a given lamp voltage so much power is supplied by an electronic ballast connected to the lamp that the lamp power corresponds to a target value.
  • the lamp power is controlled very accurately and has only a tolerance range lying within a few percent range. This is done in order to control the light output of the projection system.
  • Electronic ballasts for HID lamps usually have a maximum possible output current.
  • the maximum possible RMS (root mean square) value of the output current I RMS_max depends inter alia on the maximum permissible ohmic heating of the components of the electronic ballast itself and of the environment in which the electronic ballast is located. In particular, this maximum permissible ohmic heating is dependent on any existing cooling of the electronic ballast.
  • the short-term possible maximum current (for times smaller than the setting of the thermal equilibrium) is generally higher than the maximum possible current I RMS_max .
  • the short-term possible maximum current usually depends on other component properties than the permanently possible maximum current I RM_ max .
  • the short-term possible maximum current depends on the maximum possible modulation of inductances, without these going into saturation.
  • this short-term maximum possible current may depend on the permissible maximum peak current of semiconductor switches and diodes.
  • the maximum possible lamp power depends on the maximum possible output current I Rms_max of the electronic ballast.
  • the maximum possible lamp power in the first about 300 hours of operation thereby decrease that lowers the burning voltage of the HID lamp by growing structures on the electrodes.
  • Due to the given maximum output current I RMS_max of the electronic ballast thereby decreases the maximum possible lamp power of the system.
  • the HID lamp can no longer be operated at its nominal power.
  • the HID lamp does not reach its nominal operating temperature by operating below its nominal power.
  • the lamp voltage in turn is temperature-dependent. In the usual temperature range, it increases with increasing burner temperature.
  • the effect of the growth of structures on the electrodes and the thus forced operation at too low lamp power can therefore also be reinforced by the thereby adjusting too low temperature in the interior of the lamp.
  • the growth of structures on the electrodes can thus lead to the HID lamp with undesirable operating parameters, in particular to low lamp voltage (depending on burner temperature and distance of grown on the electrodes structures) and therefore due to the limited maximum output current I RMS_max of the electronic Ballast with too low lamp power is running.
  • a method and apparatus for operating a gas discharge lamp in which a desired growth of structures on the electrodes of a gas discharge lamp thereby to achieve, at certain time intervals, the instantaneous power of the lamp is increased, the values of at least one operating time of the lamp changing over time being measured continuously or discontinuously, and the frequency of the AC voltage or AC being chosen in dependence on the measured values ,
  • the transport processes taking place during operation of a gas discharge lamp are to be used in the known method to grow structures in a targeted manner onto the electrodes. This is done in the known method by varying the lamp frequency. By controlling the operating frequency in a controlled manner, the transport phenomena are used to create material on the electrodes.
  • the present invention is therefore based on the object to provide a method for operating a gas discharge lamp, with which the change in the shape of the electrodes of the gas discharge lamp in safer and can be carried out with little effort.
  • an optimal operation of the gas discharge lamp with improved life characteristics is to be made possible.
  • a shaping of at least one electrode of the gas discharge lamp is changed during the operating period of the gas discharge lamp.
  • the gas discharge lamp can be operated with alternating voltage or with alternating current. However, it can also be operated with DC or DC.
  • An essential idea of the invention is that the shaping of at least one electrode is influenced by the fact that at least one current pulse is generated by changing the lamp current for a presettable period of time.
  • the current pulse is generated in such a way that at least some of the structures grown on the at least one electrode of the gas discharge lamp are removed, the current pulse being generated for the duration of at least one complete half cycle of the alternating voltage or the alternating current when the gas discharge lamp is supplied with alternating voltage or alternating current ,
  • the increase of the current and thus the generation of the current pulse is thereby carried out over the duration of an entire half wave, in particular over the duration of several half waves.
  • the current pulse is generated for a period of about 0.1 s to about 5 s.
  • the mean value of the current is increased for the said period of time.
  • an independent current pulse is generated by increasing the lamp current and not as in the prior art of DE 100 21 537 A1 carried out at the end of a half-wave on the alternating current quasi patch short-term increase in current.
  • the invention provides that the current pulse is generated during a startup phase of the gas discharge lamp. This is particularly advantageous, since changes in the emitted light of the gas discharge lamp and thus in the image of the video projection device are not perceived as disturbing, as might be the case, for example, during the actual operation after the run-up.
  • the method according to the invention enables uniform operation over a long period of time. This is a significant advantage, in particular in the case of HID lamps for projection systems, since excessive growth of structures can virtually be prevented continuously and the distance between the electrodes can thus be maintained essentially unchanged. This in turn has an advantageous effect on the continuity of the burning voltage and thus on the entire operation of the gas discharge lamp.
  • the amplitude of the current pulse and / or the course of the current pulse and / or the duration of the current pulse and / or the time of generating the current pulse is generated as a function of at least one operating parameter of the gas discharge lamp.
  • a detected lamp voltage of the gas discharge lamp and / or a detected course of this lamp voltage are used as operating parameters.
  • the amplitude of the current pulse and / or the course of the current pulse and / or the duration of the current pulse and / or the time of generating the current pulse depending on exceeding or falling below the lamp voltage threshold.
  • the amplitude of the current pulse and / or the course of the current pulse and / or the duration of the current pulse and / or the time of generating the current pulse can advantageously also be generated such that the grown on at least one electrode structures are removed and at the same time the current load with the gas discharge lamp connected electronic ballast can be kept low and remains essentially unchanged.
  • the current pulse is thus generated in an advantageous manner such that the grown structures are at least partially removed or grown tips are melted and the current load or the thermal load of the electronic ballast or its components is low.
  • the generation of the current pulse can also be such that the visible effect of the current pulses on the emitted light of the gas discharge lamp or the image of a projection unit is small and in particular imperceptible by an observer.
  • the duration of the current pulse in a time interval is between about 0.1s and 10s.
  • the duration of the current pulse is preferably less than two seconds, in particular less than one second.
  • Such short pulses with increased current can already allow melting of grown structures and thereby cause an increase in the burning voltage by up to about 20V.
  • a peak value of the current pulse is greater than a maximum permissible current value of an electronic ballast, which is electrically connected to the gas discharge lamp, at least for a predefinable period of time.
  • the amplitude of the current pulse and / or the duration of the current pulse and / or the shape of the current pulse can be selected so that the electronic ballast is not heated more than permissible for the application. This can be prevented that components of the electronic ballast overloaded or impaired in their function or even destroyed.
  • the profile of the lamp voltage of the gas discharge lamp is detected during the duration of the current pulse, and the amplitude of the current pulse and / or the course of the current pulse and / or the duration of the current pulse is generated as a function of the detected course of the lamp voltage , whereby, a minimization of the load of a connected to the gas discharge lamp electronic Ballast can be achieved and a visible change in the emitted light of the gas discharge lamp can be minimized.
  • the amplitude of the current pulse and / or the course of the current pulse and / or the time duration of the current pulse and / or the time of generating the current pulse are generated such that the rate of increase of the lamp voltage and / or the value of the lamp voltage after the expiration of the period of the current pulse correspond to desired and required values.
  • the amplitude of the current pulse can only be set so high that a melting of the tips or a removal of the grown-up structures can barely be achieved. This also protects the electronic ballast and the gas discharge lamp and the emitted light of the gas discharge lamp changes in a minimal manner. As a result, a slow and controllable change in the lamp voltage can be achieved. This in turn allows a more targeted control of the lamp voltage, which adjusts after switching off the current pulse or after the end of the duration of the current pulse.
  • the amplitude of the current pulse and / or the course of the current pulse and / or the time of the current pulse and / or the time of generating the current pulse is preferably dependent on a thermal load of an electronic ballast, which is electrically connected to the gas discharge lamp.
  • the electronic ballast detects the lamp voltage and the course stores the lamp voltage in a preferred manner.
  • the course of this lamp voltage can also remain stored in the memory beyond the switching off of the electronic ballast.
  • a storage of the course of the lamp voltage can also take place over several operating cycles of the gas discharge lamp.
  • the course during the run-up phase can be detected as the time course of the lamp voltage. It is also possible to detect the chronological course of the burning voltage after the run-up phase.
  • the course of the lamp voltage during firing phases can be detected prior to a currently performed firing phase when the gas discharge lamp and the electronic ballast have been switched off in the meantime.
  • a current pulse is only generated if the measured lamp voltage is smaller than a predefinable limit value. It can also be provided that the current pulse is generated only if the measured course of the lamp voltage indicates that the lamp voltage could drop below a predefinable limit value due to grown-up structures in the future.
  • the limit value may be chosen such that the probability of a drop in the lamp voltage below a minimum value at which the electronic ballast enters the current limit is less than or equal to a minimum probability value.
  • the electronic ballast connected to the gas discharge lamp generates a desired value for ventilation of the electronic ballast during the generated current pulse, thereby making it possible, if necessary a higher or longer current pulse can be generated with constant ventilation.
  • the current pulse can thus be generated as a function of the ventilation of the electronic ballast.
  • the temperature of the electronic ballast or individual components can be detected for example via one or more temperature sensors.
  • the current pulse is generated and supplied to the electrodes of the gas discharge lamp.
  • that electrode which then has the operating state of an anode, experiences the action of the current pulse and the structures grown on it are at least partially removed or melted off.
  • the current pulse is applied to that electrode, which at this point in the operating state functions as an anode or is operated.
  • the current pulse is then at least for a half-wave always at the first electrode when it is operated as an anode, and is for at least one half-wave always at the second electrode of the gas discharge lamp when the second electrode is operated as an anode.
  • the light output of the electric lamp can be kept essentially constant in the time periods in which no generation of a current pulse is carried out in comparison with the time periods in which a current pulse is generated.
  • substantially no loss of power occurs, as a result of which the luminous flux and thus the light generated by the gas discharge lamp also has no fluctuation which could be perceived by the human eye of an observer.
  • a lower current load of the electronic ballast can be achieved.
  • the duration of a current pulse may be between about 100ms and about 3s.
  • the current pulse is applied to an electrode for about 10 to about 500 halfwaves, wherein the operating frequency of the electric lamp may be between about 50Hz and about 200Hz.
  • FIG. 1 The diagram shown is the course of a lamp voltage U L HID lamp as a function of time. Likewise, the course of a current pulse I RMS_L is shown in the diagram.
  • the HID lamp is supplied with alternating voltage or alternating current.
  • the lamp voltage has a substantially constant value of about 53V up to the time t 1 .
  • the lamp current I RMS_L is also in time until time t 1 Substantially constant and has a value of about 3A in the exemplary embodiment.
  • the lamp current I RMS_L is increased and generates a current pulse.
  • the current pulse has a period t 3 - t 1 . In the exemplary embodiment, this is a period of about 600 ms. As further out FIG. 1 can be seen, the RMS value of the current pulse over the entire time period t 3 - t 1 is substantially constant and has a value of about 4A in the embodiment.
  • the burning voltage or the lamp voltage U L of the HID lamp also increases because the structures grown on the electrodes of the HID lamp are melted by the current pulse.
  • the lamp voltage U L increases relatively strongly only up to a time t 2 and already reaches a value of about 66 V at this time t 2 . In the period between the times t 2 and t 3 , the lamp voltage U L no longer or only insignificantly increases. With the lapse of the duration of the current pulse at time t 3 , and thus reducing the lamp current I RMS_L back to the value of about 3A, the lamp voltage UL rises again in a relatively short period of time. As in FIG. 1 can be seen, a final value of about 70V is achieved in the embodiment.
  • FIG. 2 is a further course of the lamp voltage U L and the lamp current I shown.
  • the lamp current I is in the time interval between the times 0 and t 1 depending on the respective half-wave between the values I 1 and -I 1 of the lamp current is.
  • the lamp current I is increased and generates a current pulse.
  • the current pulse for a period t 2 - t 1 and a plurality of half-waves is generated.
  • the lamp current increase takes place in such a way that the current amplitudes of the current pulse depend on the half-wave I 2 or -I 2 .
  • the current pulse is terminated again and the lamp current is reduced again to the maximum amplitude values I 1 or I 1 .
  • FIG. 3 a further embodiment of the method according to the invention is shown.
  • a current pulse is generated which, for at least one half-cycle, is applied in each case to that electrode of the HID lamp which is operated as an anode at this time and for the corresponding time duration.
  • the lamp current is again set in the time interval between the times 0 and t 1 such that the amplitudes have the values I 1 and -I 1 , depending on the respective half-wave.
  • the lamp current is increased by ⁇ I (current pulse).
  • a current pulse is thus generated over a plurality of half-waves, which is applied to the one electrode (first electrode) of the HID lamp, which is operated as an anode in this period.
  • the lamp current has amplitude values I 1 + ⁇ I and - (I 1 - ⁇ I).
  • the lamp current is set such that the current pulse generated over a plurality of half-waves is applied to the second electrode, which is in this
  • Duration is operated as an anode.
  • the lamp current has amplitude values I 1 - ⁇ I and - (I 1 + ⁇ I).
  • the current pulse is terminated and the lamp current according to the time interval t 1 - 0 set.
  • the invention is not limited to the use of gas discharge lamps powered by AC or AC. Rather, the principle of a sufficiently long generation of a current pulse can also be applied to a gas discharge lamp, which is fed with DC or DC. It is essential that the current pulse for a period of time which is between 0.1 s and 5 s, is generated or the direct current, in particular the average, is increased for such a period of time.

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Gasentladungslampe, bei dem zum Erzeugen optimaler Betriebsbedingungen die Formgebung zumindest einer Elektrode der Gasentladungslampe verändert wird, wobei die Gasentladungslampe durch eine Wechselspannung oder einen Wechselstrom oder durch eine Gleichspannung oder Gleichstrom gespeist wird.
  • Stand der Technik
  • Ein generelles Problem, das sich beim Betrieb von elektrischen Lampen, insbesondere Gasentladungslampen wie. HID (High Intensity Discharge) - Lampen, welche beispielsweise für Videoprojektionen eingesetzt werden, ist, dass auf den zwei Elektroden dieser Lampen im Laufe der Betriebsdauer Strukturen aufwachsen. Dadurch ändert sich die Brennspannung einer derartigen HID-Lampe im Laufe der Lampenlebensdauer. Ein Zurückbrennen der Elektroden vergrößert den Elektrodenabstand und damit auch die Brennspannung dieser HID-Lampe. Die Vergrößerung der Brennspannung kann dabei etwa 0,05V pro Stunde bis etwa 1V pro Stunde sein. Das Aufwachsen derartiger Strukturen bzw. ein derartiges Spitzenwachstum verringert den Elektrodenabstand und damit wird auch die Brennspannung der HID-Lampe verringert. Typische Werte hierbei sind etwa 1V bis etwa 20V innerhalb einer Zeitdauer von etwa 15 Minuten bis hin zu einigen Stunden. Ein typischer Verlauf der Brennspannung ergibt sich durch die Überlagerung dieser beiden Effekte, welche einerseits durch das Aufwachsen dieser Strukturen und andererseits durch das Zurückbrennen der Elektroden gegeben sind.
  • Die Brennspannung kann in üblicher Weise für eine HID-Lampe bei etwa 70V liegen, wenn diese HID-Lampe neu ist und noch keine Betriebsstunden aufweist. Durch das oben erwähnte Aufwachsen derartiger Strukturen auf die Elektroden kann ein Absinken der Brennspannung auf etwa 40V bis etwa 60V erfolgen. Durch den Elektrodenrückbrand kann im Laufe der Lebensdauer der elektrischen Lampe ein Anstieg der Brennspannung bis auf etwa 130V erfolgen. Wie dieses Beispiel zeigt, kann es dabei insbesondere dazu kommen, dass die Brennspannung in den ernsten etwa 300 Betriebsstunden durch ein derartiges. Spitzenwachstum bzw. durch derartige aufgewachsene Strukturen unter den Wert absinkt, den die elektrische Lampe im neuwertigen Zustand aufweist.
  • HID-Lampen sind näherungsweise temperaturabhängige Spannungsquellen, d.h. die Temperaturverteilung im sogenannten Brenner der Lampe bestimmt die Brennspannung. Die Lampenleistung wird dabei dadurch eingestellt, dass bei gegebener Lampenspannung soviel Strom von einem mit der Lampe verbundenen elektronischen Vorschaltgerät geliefert wird, dass die Lampenleistung einem Sollwert entspricht. Bei Lichtquellen für Videoprojektionen wird die Lampenleistung sehr genau geregelt und weist nur einen im wenigen Prozent-Bereich liegenden Toleranzbereich auf. Dies erfolgt deshalb, um die Lichtleistung des Projektionssystems kontrollieren zu können.
  • Elektronische Vorschaltgeräte für HID-Lampen haben in der Regel einen maximal möglichen Ausgangsstrom. Der maximal mögliche RMS (Root mean square) -Wert des Ausgangsstroms IRMS_max hängt unter anderem von der maximal zulässigen ohmschen Erwärmung der Bauteile des elektronischen Vorschaltgeräts selbst und von der Umgebung, in der sich das elektronische Vorschaltgerät befindet, ab. Insbesondere ist diese maximal zulässige ohmsche Erwärmung von einer gegebenenfalls vorhandenen Kühlung des elektronischen Vorschaltgeräts abhängig.
  • Bis sich bei einer Änderung des Ausgangsstroms IRMS ein neues thermisches Gleichgewicht in den Bauteilen eingestellt hat, vergehen typischerweise Zeiträume von einigen Minuten. Wenn sich der Ausgangsstrom für eine kurze Zeit, welche kleiner als die Zeit bis zum Einstellen eines neuen thermischen Gleichgewichts ist, ändert, ist die Erwärmung der Bauteile in diesem Zeitraum geringer als bei dauerhafter Erhöhung des Stromes um denselben Wert. Der kurzzeitig mögliche Maximalstrom (für Zeiten kleiner denen bis zum Einstellen des thermischen Gleichgewichts) ist in der Regel höher als der mögliche Maximalstrom IRMS_max. Der kurzzeitig mögliche Maximalstrom hängt in der Regel von anderen Bauteileigenschaften als der dauerhaft mögliche Maximalstrom IRM_ max ab. Beispielsweise hängt der kurzzeitig mögliche Maximalstrom von der maximal möglichen Aussteuerung von Induktivitäten ab, ohne dass diese in die Sättigung gehen. Darüber hinaus kann dieser kurzzeitig mögliche Maximalstrom vom zulässig Maximalspitzenstrom von Halbleiterschaltern und Dioden abhängen.
  • Bei einer gegebenen Lampenspannung ist die maximal mögliche Lampenleistung abhängig vom maximal möglichen Ausgangsstrom IRms_max des elektronischen Vorschaltgeräts. Bei einem gegebenen System aus einer HID-Lampe und einem elektronischen Vorschaltgerät kann die maximal mögliche Lampenleistung in den ersten etwa 300 Betriebsstunden dadurch absinken, dass sich die Brennspannung der HID-Lampe durch Aufwachsen von Strukturen auf den Elektroden erniedrigt. Durch den gegebenen maximalen Ausgangsstrom IRMS_max des elektronischen Vorschaltgeräts sinkt dadurch die maximal mögliche Lampenleistung des Systems. Dadurch kann es in machen Fällen dazu kommen, dass die HID-Lampe nicht mehr bei ihrer nominalen Leistung betrieben werden kann. Insbesondere kann es passieren, dass die HID-Lampe durch den Betrieb unterhalb ihrer Nominalleistung ihre nominale Betriebstemperatur nicht erreicht. Die Lampenspannung wiederum ist temperaturabhängig. Im üblichen Temperaturbereich steigt sie mit steigender Brennertemperatur. Der Effekt des Aufwachsens von Strukturen auf die Elektroden und des dadurch erzwungenen Betriebs bei zu niedriger Lampenleistung kann sich daher auch noch durch die sich dadurch einstellende zu niedrige Temperatur im Lampeninnenraum verstärken. Insgesamt kann das Aufwachsen von Strukturen auf den Elektroden demnach dazu führen, dass die HID-Lampe mit unerwünschten Betriebsparametern, insbesondere zu niedriger Lampenspannung (abhängig von Brennertemperatur und Abstand der auf den Elektroden aufgewachsenen Strukturen) und daher aufgrund des begrenzten maximalen Ausgangsstroms IRMS_max des elektronischen Vorschaltgeräts mit zu niedriger Lampenleistung läuft.
  • Zur Kontrolle der Elektrodenform ist aus der deutschen Offenlegungsschrift DE 100 21 537 A1 ein Verfahren und eine Vorrichtung zum Betreiben einer Gasentladungslampe bekannt, bei dem ein erwünschtes Aufwachsen von Strukturen auf die Elektroden einer Gasentladungslampe dadurch erreicht werden soll, das in bestimmten Zeitintervallen die Momentanleistung der Lampe erhöht wird, wobei die Werte wenigstens eines sich über die Zeit ändernden Betriebsdatums der Lampe kontinuierlich oder diskontinuierlich gemessen werden, und die Frequenz der Wechselspannung oder des Wechselstrom in Abhängigkeit von dem gemessenen Werten gewählt wird. Die beim Betrieb einer Gasentladungslampe stattfindenden Transportprozesse sollen bei dem bekannten Verfahren dazu verwendet werden, Strukturen in gezielter Weise auf die Elektroden aufzuwachsen. Dies erfolgt bei dem bekannten Verfahren durch Variation der Lampenfrequenz. Durch das kontrollierte Verändern der Betriebsfrequenz werden die Transportphänomene zum Anlagen von Material auf den Elektroden genutzt. Neben dem Unterschied, dass bei der vorliegenden Erfindung gerade das Aufwachsen derartiger Strukturen verhindert werden soll bzw. bereits aufgewachsene Strukturen entfernt werden sollen, ist ein weiterer Nachteil des bekannten Verfahrens darin zu sehen, dass bei einigen Projektionsanwendungen (z.B. DLP) die Lampenfrequenz nicht frei wählbar ist und somit eine derartige Elektrodenformung nicht durchgeführt werden kann.
  • Aus der Schrift EP 1150336 (Ono) ist bekannt, dass ein zeitweises erhöhen des Lampenstroms zur Erhöhung der Lampenspannung führt.
  • Des Weiteren ist es bekannt, eine Selektion von Brennern nach der Herstellung gemäß dem Kriterium durchzuführen, dass die Brennspannung höher als eine bestimmte Untergrenze ist. Die Untergrenze ist dabei jedoch so hoch gewählt, dass das hier vorliegende Problem der aufwachsenden Strukturen nicht auftritt. Ein wesentlicher Nachteil dabei ist jedoch ein höherer Ausschuss bei der Brennerfertigung.
  • Ein weitere Möglichkeit besteht darin, die mittlere Brennspannung eines Lampentyps durch einen höheren Gasdruck der Füllung anzuheben. Nachteilig dabei ist jedoch, dass das Brennergefäß einem höheren Druck standhalten muss und daher entweder ein besseres Gefäß erforderlich ist oder eine höhere Ausschussrate von geplatzten Brennergefäßen bei diesem Lampentyp akzeptiert werden muss.
  • Darüber hinaus wäre es auch möglich, und ist bereits bekannt, eine Erhöhung des maximal möglichen Ausgangsstroms IRMX_max des elektronischen Vorschaltgeräts durch Verwendung anderer Bauteile zu erhöhen. Beispielsweise werden dabei Transistoren mit niedrigem Drain-Source-Widerstand oder Induktivitäten mit größerem Kupferquerschnitt oder Induktivitäten mit höherer Aussteuerbarkeit oder Bauteile mit besserer Wärmeabfuhr oder größere Kühlkörper verwendet. Ein wesentlicher Nachteil hierbei sind jedoch die erheblichen Kosten und die sehr großen elektronischen Vorschaltgeräte.
  • Darüber hinaus ist es dabei auch erforderlich, eine stärkere Kühlung des Vorschaltgeräts durchzuführen, wodurch größere und teurere Lüfter erforderlich sind, welche ein lauteres Lüftergeräusch erzeugen.
  • Darstellung der Erfindung
  • Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Gasentladungslampe zu schaffen, mit dem die Veränderung der Formgebung der Elektroden der Gasentladungslampe in sicherer und aufwandsarmer Weise durchgeführt werden kann. Insbesondere soll ein optimaler Betrieb der Gasentladungslampe mit verbesserten Lebensdauereigenschaften ermöglicht werden.
  • Die Aufgabe wird durch ein Verfahren, welches die Merkmale von Patentanspruch 1 aufweist, gelöst.
  • Bei einem erfindungsgemäßen Verfahren zum Betreiben einer Gasentladungslampe wird eine Formgebung zumindest einer Elektrode der Gasentladungslampe während der Betriebsdauer der Gasentladungslampe verändert. Die Gasentladungslampe kann mit Wechselspannung oder mit Wechselstrom betrieben. Sie kann jedoch auch mit Gleichspannung oder Gleichstrom betrieben werden. Ein wesentlicher Gedanke der Erfindung besteht darin, dass die Formgebung zumindest einer Elektrode dadurch beeinflusst wird, dass durch Verändern des Lampenstroms für eine vorgebare Zeitdauer zumindest ein Strompuls erzeugt wird. Der Strompuls wird dabei derart generiert, dass auf der zumindest einen Elektrode der Gasentladungslampe aufgewachsenen Strukturen zumindest teilweise entfernt werden, wobei der Strompuls für die Zeitdauer von zumindest einer gesamten Halbwelle der Wechselspannung oder des Wechselstroms erzeugt wird, wenn die Gasentladungslampe mit Wechselspannung oder Wechselstrom gespeist wird. Die Erhöhung des Stroms und somit die Erzeugung des Strompulses wird dabei über die Zeitdauer einer gesamten Halbwelle, insbesondere über die Zeitdauer von mehreren Halbwellen durchgeführt. Wird die Gasentladungslampe mit Gleichspannung oder Gleichstrom gespeist, so wird der Strompuls für eine Zeitdauer von etwa 0,1s bis etwa 5s erzeugt. Der Mittelwert des Stroms wird dabei für die genannte Zeitdauer erhöht. Durch die Erzeugung zumindest eines Strompulses über die entsprechende Zeitdauer einer gesamten Halbwelle durch Verändern des Lampenstroms kann das Abtragen von aufgewachsenen Strukturen auf zumindest einer Elektrode zuverlässig und stetig erfolgen. Die Betriebsbedingungen der Gasentladungslampe und somit auch des gesamten Systems in dem die Gasentladungslampe angeordnet ist, kann dadurch deutlich verbessert werden und die Lebensdauer verlängert werden. In der Erfindung wird somit ein eigenständiger Strompuls durch Erhöhung des Lampenstroms erzeugt und nicht wie im Stand der Technik der DE 100 21 537 A1 am zeitlichen Ende einer Halbwelle eine auf den Wechselstrom quasi aufgesetzte kurzzeitige Stromerhöhung durchgeführt.
  • In vorteilhafter Weise ist erfindungsgemäß vorgesehen, dass der Strompuls während einer Hochlaufphase der Gasentladungslampe erzeugt wird. Dies ist besonders vorteilhaft, da hier Änderungen im emittierten Licht der Gasentladungslampe und damit im Bild des Videoprojektionsgeräts nicht als störend empfunden werden, wie dies beispielsweise während des eigentlichen Betriebs nach dem Hochlauf gegeben sein könnte.
  • Darüber hinaus kann durch das erfindungsgemäße Verfahren ein gleichmäßiger Betrieb über eine lange Zeitdauer ermöglicht werden. Dies ist insbesondere bei HID-Lampen für Projektionssysteme ein wesentlicher Vorteil, da ein übermäßiges Aufwachsen von Strukturen quasi kontinuierlich verhindert werden kann und dadurch der Abstand zwischen den Elektroden im Wesentlichen unverändert beibehalten werden kann. Dies wirkt sich wiederum vorteilhaft auf die Kontinuierlichkeit der Brennspannung aus und somit auf den gesamten Betrieb der Gasentladungslampe.
  • In vorteilhafter Weise wird die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses abhängig von zumindest einem Betriebsparameter der Gasentladungslampe generiert. In bevorzugter Weise werden als Betriebsparameter eine detektierte Lampenspannung der Gasentladungslampe und/oder ein detektierter Verlauf dieser Lampenspannung herangezogen. Darüber hinaus kann in bevorzugter Weise die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses abhängig von einem Überschreiten oder einem Unterschreiten des Lampenspannungsschwellwertes erfolgen.
  • Die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses können vorteilhafterweise auch derart generiert werden, dass die auf zumindest einer Elektrode aufgewachsenen Strukturen entfernt werden und gleichzeitig die Strombelastung eines mit der Gasentladungslampe verbundenen elektronischen Vorschaltgeräts gering gehalten werden kann und im Wesentlichen unverändert bleibt. Der Strompuls wird somit in vorteilhafter Weise derart erzeugt, dass die aufgewachsenen Strukturen zumindest teilweise entfernt werden bzw. aufgewachsene Spitzen geschmolzen werden und die Strombelastung oder die thermische Belastung des elektronischen Vorschaltgeräts oder dessen Bauteile gering ist. Darüber hinaus kann die Erzeugung des Strompulses auch derart erfolgen, dass die sichtbare Auswirkung der Strompulse auf das emittierte Licht der Gasentladungslampe oder das Bild einer Projektionseinheit klein ist und insbesondere durch einen Beobachter nicht wahrnehmbar ist.
  • In bevorzugter Weise ist die Zeitdauer des Strompulses in einem Zeitintervall zwischen etwa 0,1s und 10s. Bevorzugt ist die Zeitdauer des Strompulses kleiner als zwei Sekunden, insbesondere kleiner als eine Sekunde. Derartige kurze Pulse mit erhöhtem Strom können bereits ein Aufschmelzen von aufgewachsenen Strukturen ermöglichen und dadurch einen Anstieg der Brennspannung um bis zu etwa 20V bewirken.
  • Es kann vorgesehen sein, dass ein Spitzenwert des Strompulses zumindest für eine vorgebbare Zeitdauer größer als ein maximal zulässiger Stromwert eines elektronischen Vorschaltgeräts ist, welches mit der Gasentladungslampe elektrisch verbunden ist. Insbesondere können die Amplitude des Strompulses und/oder die Zeitdauer des Strompulses und/oder die Form des Strompulses so gewählt werden, dass sich das elektronische Vorschaltgerät nicht stärker als für die Applikation zulässig erwärmt. Dadurch kann verhindert werden, dass Bauteile des elektronischen Vorschaltgeräts überlastet oder in ihrer Funktion beeinträchtigt oder sogar zerstört werden.
  • In bevorzugter Weise kann vorgesehen sein, dass der Verlauf der Lampenspannung der Gasentladungslampe während der Zeitdauer des Strompulses detektiert wird, und die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses abhängig von dem detektierten Verlauf der Lampenspannung erzeugt wird. Dadurch kann eine Minimierung der Belastung eines mit der Gasentladungslampe verbundenen elektronischen Vorschaltgeräts erreicht werden und eine sichtbare Änderung im emittierten Licht der Gasentladungslampe minimiert werden.
  • In vorteilhafter Weise werden die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses derart generiert, dass die Anstiegsgeschwindigkeit der Lampenspannung und/oder der Wert der Lampenspannung nach Ablauf der Zeitdauer des Strompulses erwünschten und erforderlichen Werten entsprechen. Beispielsweise kann die Amplitude des Strompulses lediglich so hoch eingestellt werden, dass ein Aufschmelzen der Spitzen bzw. ein Entfernen der aufgewachsenen Strukturen gerade noch erreicht werden kann. Auch dadurch wird das elektronische Vorschaltgerät und die Gasentladungslampe geschont und das emittierte Licht der Gasentladungslampe ändert sich in minimaler Weise. Dadurch kann auch eine langsame und kontrollierbare Änderung der Lampenspannung erreicht werden. Dies wiederum ermöglicht ein gezielteres Steuern der Lampenspannung, welche sich nach dem Abschalten des Strompulses bzw. nach Ende der Zeitdauer des Strompulses einstellt.
  • Die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses erfolgt in bevorzugter Weise abhängig von einer thermischen Belastung eines elektronischen Vorschaltgeräts, welches mit der Gasentladungslampe elektrisch verbunden ist.
  • Es kann vorgesehen sein, dass das elektronische Vorschaltgerät die Lampenspannung detektiert und den Verlauf der Lampenspannung in bevorzugter Weise abspeichert. Der Verlauf dieser Lampenspannung kann auch über das Abschalten des elektronischen Vorschaltgeräts hinaus in dem Speicher abgelegt bleiben. Ein Abspeichern des Verlaufs der Lampenspannung kann auch über mehrere Betriebeszyklen der Gasentladungslampe erfolgen. Als zeitlicher Verlauf der Lampenspannung kann einerseits der Verlauf während der Hochlaufphase detektiert werden. Es kann auch der zeitliche Verlauf der Brennspannung nach der Hochlaufphase detektiert werden. Ebenso kann der Verlauf der Lampenspannung während Brennphasen vor einer gegenwärtig durchgeführten Brennphase, wenn die Gasentladungslampe und das elektronische Vorschaltgerät zwischenzeitlich ausgeschaltet waren, detektiert werden.
  • Es kann vorgesehen sein, dass ein Strompuls nur dann generiert wird, wenn die gemessene Lampenspannung kleiner als ein vorgebbarer Grenzwert ist. Es kann auch vorgesehen sein, dass der Strompuls nur dann generiert wird, wenn der gemessene Verlauf der Lampenspannung darauf hindeutet, dass die Lampenspannung durch aufgewachsene Strukturen in der Zukunft unter einen vorgebbaren Grenzwert absinken könnte. Der Grenzwert kann dabei so gewählt sein, dass die Wahrscheinlichkeit eines Abfalls der Lampenspannung unter einen Minimalwert, bei dem das elektronische Vorschaltgerät in die Strombegrenzung geht, kleiner gleich einem minimalen Wahrscheinlichkeitswert ist.
  • In vorteilhafter Weise kann auch vorgesehen sein, dass das mit der Gasentladungslampe verbundene elektronische Vorschaltgerät während des generierten Strompulses einen Sollwert für eine Belüftung des elektronischen Vorschaltgeräts erzeugt, wodurch ermöglicht wird, dass gegebenenfalls ein höherer oder längerer Strompuls bei gleichbleibender Belüftung erzeugt werden kann. Der Strompuls kann somit in Abhängigkeit von der Belüftung des elektronischen Vorschaltgeräts generiert werden. Die Temperatur des elektronischen Vorschaltgeräts oder einzelner Bauteile kann dabei beispielsweise über einen oder mehrere Temperatursensoren erfasst werden.
  • Wird die Gasentladungslampe mit Wechselspannung oder Wechselstrom gespeist, wird der Strompuls erzeugt und den Elektroden der Gasentladungslampe zugeführt. Jeweils diejenige Elektrode, welche dann den Betriebszustand einer Anode aufweist, erfährt die Einwirkung des Strompulses und die darauf aufgewachsenen Strukturen werden zumindest teilweise entfernt bzw. abgeschmolzen. Sozusagen liegt der Strompuls an derjenigen Elektrode an, welche zu diesem Zeitpunkt im Betriebszustand als Anode funktioniert bzw. betrieben wird. Der Strompuls liegt dann zumindest für eine Halbwelle immer an der ersten Elektrode an, wenn diese als Anode betrieben wird, und liegt für zumindest eine Halbwelle immer an der zweiten Elektrode der Gasentladungslampe an, wenn die zweite Elektrode als Anode betrieben wird. Dadurch kann erreicht werden, dass die Lichtleistung der elektrischen Lampe in den Zeitabschnitten, in denen keine Erzeugung eines Strompulses durchgeführt wird im Vergleich zu den Zeitabschnitten, in denen eine Strompuls erzeugt wird, im Wesentlichen konstant gehalten werden kann. Dadurch tritt im Wesentlichen keine Leistungseinbuße auf, wodurch auch der Lichstrom und somit das von der Gasentladungslampe erzeugte Licht keine Schwankung aufweist, welche durch das menschliche Auge eines Betrachters wahrgenommen werden könnte. Darüber hinaus kann auch eine geringere Strombelastung des elektronischen Vorschaltgerät erreicht werden. Die Zeitdauer eines Strompulses kann zwischen etwa 100ms und etwa 3s liegen. Bevorzugt wird der Strompuls für etwa 10 bis etwa 500 Halbwellen an eine Elektrode angelegt, wobei die Betriebsfrequenz der elektrischen Lampe zwischen etwa 50Hz und etwa 200Hz liegen kann.
  • Kurze Beschreibung der Zeichnungen
  • Im Nachfolgenden wird die vorliegende Erfindung unter Bezugnahme auf die beigefügte Zeichnungen näher beschrieben. Es zeigen:
    • Figur 1 einen Verlauf einer Lampenspannung und eines Lampenstroms in Ab- hängigkeit von der Zeit;
    • Figur 2 einen zweiten Verlauf einer Lampenspannung und eines Lampenstroms in Abhängigkeit von der Zeit; und
    • Figur 3 einen dritten Verlauf einer Lampenspannung und eines Lampen- stroms in Abhängigkeit von der Zeit.
    Bevorzugte Ausführung der Erfindung
  • In dem in Figur 1 gezeigten Diagramm ist der Verlauf einer Lampenspannung UL einer HID-Lampe in Abhängigkeit von der Zeit dargestellt. Ebenso ist in dem Diagramm der Verlauf eines Strompulses IRMS_L gezeigt. Im gezeigten Ausführungsbeispiel wird die HID-Lampe mit Wechselspannung oder Wechselstrom gespeist. Wie in dem Diagramm zu erkennen ist, weist die Lampenspannung bis zum Zeitpunkt t1 einen im Wesentlichen konstanten Wert von etwa 53V auf. Der Lampenstrom IRMS_L ist bis zum Zeitpunkt t1 ebenfalls im Wesentlichen konstant und weist im Ausführungsbeispiel einen Wert von etwa 3A auf. Zum Zeitpunkt t1 wird der Lampenstrom IRMS_L erhöht und ein Strompuls erzeugt. Wie dazu aus der Darstellung in Figur 1 zu erkennen ist, weist der Strompuls eine Zeitdauer t3 - t1 auf. Im Ausführungsbeispiel ist dies eine Zeitdauer von etwa 600 ms. Wie des Weiteren aus Figur 1 zu erkennen ist, ist der RMS-Wert des Strompulses über die gesamte Zeitdauer t3 - t1 im Wesentlichen konstant und weist einen Wert von etwa 4A im Ausführungsbeispiel auf.
  • Mit Beginn des Strompulses zum Zeitpunkt t1 steigt auch die Brennspannung bzw. die Lampenspannung UL der HID-Lampe an, da durch den Strompuls die auf den Elektroden der HID-Lampe aufgewachsenen Strukturen aufgeschmolzen werden.
  • Wie zu erkennen ist, steigt die Lampenspannung UL lediglich bis zu einem Zeitpunkt t2 relativ stark an und erreicht bereits zu diesem Zeitpunkt t2 einen Wert von etwa 66V. In der Zeitdauer zwischen den Zeitpunkten t2 und t3 steigt die Lampenspannung UL nicht mehr bzw. nur unwesentlich an. Mit dem Ablauf der Zeitdauer des Strompulses zum Zeitpunkt t3, und somit das Reduzieren des Lampenstroms IRMS_L wieder auf den Wert von etwa 3A, steigt die Lampenspannung UL in relativer kurzer Zeitdauer nochmals an. Wie in Figur 1 zu erkennen ist, wird im Ausführungsbeispiel dabei ein Endwert von etwa 70V erreicht.
  • In Figur 2 ist ein weitere Verlauf der Lampenspannung UL und des Lampenstroms I dargestellt. In Figur ist in beispielhafter Weise eine Darstellung mit mehreren Halbwellen gezeigt, wobei dabei der Lampenstrom I in dem Zeitintervall zwischen den Zeitpunkten 0 und t1 abhängig von der jeweiligen Halbwelle zwischen den Werten I1 und -I1 des Lampenstroms liegt. Zum Zeitpunkt t1 wird der Lampenstrom I erhöht und eine Strompuls erzeugt. Es ist in Figur 2 zu erkennen, dass der Strompuls für eine Zeitdauer t2 - t1 und über eine Mehrzahl an Halbwellen generiert wird. Die Lampenstromerhöhung erfolgt derart, dass die Stromamplituden des Strompulses abhängig von der Halbwelle I2 bzw. -I2 sind. Zum Zeitpunkt t2 wird der Strompuls wieder beendet rund der Lampenstrom wieder auf die maximalen Amplitudenwerte I1 bzw. - I1 reduziert.
  • In Figur 3 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens gezeigt. Dort wird ein Strompuls erzeugt, welcher für zumindest eine Halbwelle jeweils an derjenigen Elektrode der HID-Lampe anliegt, welche zu diesem Zeitpunkt und für die entsprechende Zeitdauer als Anode betrieben wird. Wie dazu in Figur 3 gezeigt ist, wird der Lampenstrom in dem Zeitintervall zwischen den Zeitpunkten 0 und t1 wieder derart eingestellt, dass die Amplituden abhängig von der jeweiligen Halbwelle die Werte I1 bzw. -I1 aufweisen. Zum Zeitpunkt t2 wird der Lampenstrom um ΔI erhöht (Strompuls). Zwischen den Zeitpunkten t1 und t2 wird somit ein Strompuls über eine Mehrzahl an Halbwellen erzeugt, welcher an derjenige Elektrode (erste Elektrode) der HID-Lampe anliegt, welche in dieser Zeitdauer als Anode betrieben wird. In dieser Zeitdauer weist der Lampenstrom Amplitudenwerte I1 + ΔI und -(I1 - ΔI) auf. In der Zeitdauer zwischen den Zeitpunkten t2 und t3 wird der Lampenstrom derart eingestellt, dass der über eine Mehrzahl an Halbwellen erzeugte Strompuls an der zweiten Elektrode anliegt, welche in dieser
  • Zeitdauer als Anode betrieben wird. In dieser Zeitdauer t3 - t2 weist der Lampenstrom Amplitudewerte I1 - ΔI und - (I1 + ΔI) auf. Wie zu erkennen ist, ist die Lampenleistung (P=U*I) in den Zeitdauern t2 - t1 und t3 - t2 in etwa gleich groß, wobei die genannten Zeitintervalle in etwa gleich lang sind. Zum Zeitpunkt t3 wird der Strom puls beendet und der Lampenstrom gemäß dem Zeitintervall t1 - 0 eingestellt.
  • Die Erfindung ist jedoch nicht auf die Anwendung von Gasentladungslampen, welche mit Wechselspannung oder Wechselstrom gespeist werden, beschränkt. Vielmehr kann das Prinzip einer ausreichend langen Erzeugung eines Strompulses auch auf eine Gasentladungslampe angewendet werden, welche mit Gleichspannung oder Gleichstrom gespeist wird. Wesentlich dabei ist, dass der Strompuls für eine Zeitdauer, welche zwischen 0,1s und 5s liegt, erzeugt wird bzw. der Gleichstrom, insbesondere der Mittelwert, für eine derartige Zeitdauer erhöht wird.

Claims (11)

  1. Verfahren zum Betreiben einer Gasentladungslampe bei dem eine Formgebung zumindest einer Elektrode der Gasentladungslampe verändert wird,
    wobei bei diesem Verfahren durch Verändern des Lampenstroms(I, IrmsL) für eine vorgebare Zeitdauer (t3-t1, t2-t1) zumindest ein Strompuls derart erzeugt wird, dass auf der zumindest einen Elektrode aufgewachsene Strukturen zumindest teilweise entfernt werden, wobei der Strompuls für die Zeitdauer zumindest einer gesamten Halbwelle der Wechselspannung oder des Wechselstroms (I) erzeugt wird, wenn die Gasentladungslampe mit Wechselspannung oder Wechselstrom gespeist wird, oder der Strompuls mit einer Pulsdauer zwischen etwa 0,1s bis etwa 5s erzeugt wird, wenn die Gasentladungslampe mit Gleichspannung oder Gleichstrom gespeist wird,
    wobei das Verfahren dadurch gekennzeichnet ist, dass der Strompuls während einer Hochlaufphase der Gasentladungslampe erzeugt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses abhängig von zumindest einem Betriebsparameter der Gasentladungslampe generiert wird.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet, dass
    als Betriebsparameter eine detektierte Lampenspannung (U) der Gasentladungslampe und/oder ein detektierter Verlauf dieser Lampenspannung herangezogen werden.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, dass
    die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses abhängig von einem Überschreiten oder einem Unterschreiten eines Lampenspannungsschwellwertes erfolgt.
  5. Verfahren nach einem der vorhergehenden Ansprüche,

    dadurch gekennzeichnet, dass
    die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses derart generiert werden, dass die auf zumindest einer Elektrode aufgewachsenen Strukturen entfernt werden und die Strombelastung eines mit der Gasentladungslampe verbundenen elektronischen Vorschaltgeräts im Wesentlichen unverändert bleibt.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Zeitdauer des Strompulses (t3-t1, t2-t1) kleiner als zwei Sekunden, insbesondere kleiner als eine Sekunde ist.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    ein Spitzenwert des Strompulses zumindest für eine vorgebbare Zeitdauer größer als ein maximal zulässiger Stromwert eines elektronischen Vorschaltgeräts ist, welches mit der Gasentladungslampe elektrisch verbunden ist.
  8. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Verlauf der Lampenspannung (U) der Gasentladungslampe während der Zeitdauer des Strompulses detektiert wird und die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses abhängig von dem detektierten Verlauf der Lampenspannung (U) erzeugt wird.
  9. Verfahren nach einem der vorhergehenden Ansprüchen,
    dadurch gekennzeichnet, dass
    die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses derart generiert werden, dass die Anstiegsgeschwindigkeit der Lampenspannung und/oder der Wert der Lampenspannung nach Ablauf der Zeitdauer (t3-t1, t2-t1) des Strompulses vorgebbaren Werten entsprechen.
  10. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Amplitude des Strompulses und/oder der Verlauf des Strompulses und/oder die Zeitdauer (t3-t1, t2-t1) des Strompulses und/oder der Zeitpunkt des Erzeugens des Strompulses abhängig von einer thermischen Belastung eines elektronischen Vorschaltgeräts, welches mit der Gasentladungslampe elektrisch verbunden ist, erfolgt.
  11. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Gasentladungslampe mit Wechselspannung oder Wechselstrom gespeist wird und der Strompuls für die Zeitdauer von jeweils zumindest einer Halbwelle ein Aufschmelzen von aufgewachsenen Strukturen an derjenigen Elektrode bewirkt, welche als Anode betrieben wird.
EP06807211A 2005-10-17 2006-10-12 Verfahren zum betreiben einer gasentladungslampe Not-in-force EP1938669B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005049582A DE102005049582A1 (de) 2005-10-17 2005-10-17 Verfahren zum Betreiben einer Gasentladungslampe
PCT/EP2006/067346 WO2007045599A1 (de) 2005-10-17 2006-10-12 Verfahren zum betreiben einer gasentladungslampe

Publications (2)

Publication Number Publication Date
EP1938669A1 EP1938669A1 (de) 2008-07-02
EP1938669B1 true EP1938669B1 (de) 2011-04-06

Family

ID=37440675

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06807211A Not-in-force EP1938669B1 (de) 2005-10-17 2006-10-12 Verfahren zum betreiben einer gasentladungslampe

Country Status (10)

Country Link
US (1) US8456099B2 (de)
EP (1) EP1938669B1 (de)
JP (1) JP2009512170A (de)
KR (1) KR101358175B1 (de)
CN (1) CN101288344B (de)
AT (1) ATE505064T1 (de)
CA (1) CA2625059C (de)
DE (2) DE102005049582A1 (de)
TW (1) TW200740302A (de)
WO (1) WO2007045599A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438826B2 (ja) * 2007-06-04 2010-03-24 セイコーエプソン株式会社 プロジェクタ及びプロジェクタ用光源装置の駆動方法
JP5313243B2 (ja) * 2007-07-10 2013-10-09 コーニンクレッカ フィリップス エヌ ヴェ ガス放電ランプを駆動するための方法及び駆動ユニット
WO2009041367A1 (ja) * 2007-09-27 2009-04-02 Iwasaki Electric Co., Ltd. 高圧放電灯点灯装置、高圧放電灯の点灯方法及びプロジェクタ
JP4470985B2 (ja) * 2007-09-28 2010-06-02 セイコーエプソン株式会社 光源装置、及びプロジェクタ
JP4548519B2 (ja) 2007-10-16 2010-09-22 セイコーエプソン株式会社 光源装置
WO2010007557A1 (en) * 2008-07-14 2010-01-21 Philips Intellectual Property & Standards Gmbh Method of driving a gas-discharge lamp
DE102009006339A1 (de) 2009-01-27 2010-09-16 Osram Gesellschaft mit beschränkter Haftung Verfahren und elektronisches Betriebsgerät zum Betreiben einer Gasentladungslampe sowie Projektor
DE102009006338B4 (de) 2009-01-27 2018-06-28 Osram Gmbh Verfahren zum Betreiben einer Gasentladungslampe mit Gleichspannungsphasen und elektronisches Betriebsgerät zum Betreiben einer Gasentladungslampe sowie Projektor, welche dieses Verfahren nutzen
JP4697326B2 (ja) * 2009-04-01 2011-06-08 ウシオ電機株式会社 高圧放電ランプ点灯装置
GB2521666A (en) * 2013-12-27 2015-07-01 Digital Projection Ltd Extended life discharge lamp

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583396A (en) 1993-03-18 1996-12-10 Matsushita Electric Industrial Co., Ltd. Optical device with metal halide discharge lamp having enhanced starting property
TW339496B (en) * 1994-06-22 1998-09-01 Philips Electronics Nv Method and circuit arrangement for operating a high-pressure discharge lamp
JP4508425B2 (ja) * 1998-12-17 2010-07-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 回路装置
JP3327895B2 (ja) * 2000-04-28 2002-09-24 松下電器産業株式会社 高圧放電ランプ、当該ランプの製造方法および当該ランプの点灯方法並びに点灯装置
DE10021537A1 (de) * 2000-05-03 2001-11-08 Philips Corp Intellectual Pty Verfahren und Vorrichtung zum Betreiben einer Gasentladungslampe
JP4223760B2 (ja) * 2001-08-28 2009-02-12 フェニックス電機株式会社 放電灯の点灯方法、放電灯の点灯回路及び該回路を利用した光源装置並びに該光源装置を具備した光学機器
JP3893042B2 (ja) * 2001-10-26 2007-03-14 松下電器産業株式会社 高圧放電ランプの点灯方法、点灯装置及び高圧放電ランプ装置
JP4186578B2 (ja) * 2002-10-09 2008-11-26 ウシオ電機株式会社 高圧放電ランプ点灯装置
JP2004296427A (ja) 2003-03-13 2004-10-21 Ushio Inc 超高圧水銀ランプ発光装置
US7323824B2 (en) 2004-08-03 2008-01-29 Matsushita Electric Works Ltd. Methods and apparatus for operating very high pressure short arc discharge lamps
US7250732B2 (en) * 2004-09-30 2007-07-31 General Electric Company High pressure discharge lamp control system and method
JP2006173022A (ja) * 2004-12-17 2006-06-29 Sharp Corp 光源装置及びプロジェクタ
US7443103B2 (en) * 2005-06-24 2008-10-28 General Electric Company High pressure lamp with lamp flicker suppression and lamp voltage control
JP4637675B2 (ja) * 2005-07-27 2011-02-23 三菱電機株式会社 ランプ点灯装置

Also Published As

Publication number Publication date
CA2625059A1 (en) 2007-04-26
US20090256491A1 (en) 2009-10-15
CN101288344B (zh) 2012-07-18
TW200740302A (en) 2007-10-16
ATE505064T1 (de) 2011-04-15
KR101358175B1 (ko) 2014-02-07
CA2625059C (en) 2017-03-07
DE502006009277D1 (de) 2011-05-19
EP1938669A1 (de) 2008-07-02
CN101288344A (zh) 2008-10-15
US8456099B2 (en) 2013-06-04
DE102005049582A1 (de) 2007-04-19
WO2007045599A1 (de) 2007-04-26
JP2009512170A (ja) 2009-03-19
KR20080067349A (ko) 2008-07-18

Similar Documents

Publication Publication Date Title
EP1938669B1 (de) Verfahren zum betreiben einer gasentladungslampe
EP2382847B1 (de) Verfahren und elektronisches betriebsgerät zum betreiben einer gasentladungslampe sowie projektor
DE3432266A1 (de) Elektronisches vorschaltgeraet fuer fluoreszenzlampen sowie verfahren zu dessen betrieb
EP3262896B1 (de) Schaltregler zum betreiben von leuchtmitteln mit spitzenstromwertsteuerung und mittelstromwerterfassung
DE19708783C1 (de) Verfahren und Vorrichtung zum Regeln des Betriebsverhaltens von Gasentladungslampen
EP2559322B1 (de) Verfahren zur steuerung eines lichtstroms einer leuchteinrichtung mit einer anzahl von halbleiterleuchtmitteln, die zur kennzeichnung und markierung von verkehrsflächen von flughäfen eingerichtet ist
DE4301276A1 (de) Verfahren und Stromversorgungseinheit zum stabilisierten Betrieb einer Natrium-Hochdruckentladungslampe
DE60215542T2 (de) Verfahren und vorrichtung zum steuern einer entladungslampe
WO2008071232A1 (de) Schaltungsanordnung zum betrieb von entladungslampen und verfahren zum betrieb von entladungslampen
DE602004012450T2 (de) Verfahren und schaltungsanordnung zum betrieb einer entladungslampe
EP1476003B1 (de) Betriebsgerät und Verfahren zum Betreiben von Gasentladungslampen
DE102007057772A1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen und Verfahren zum Betrieb von Entladungslampen
DE102013210581A1 (de) Schaltungsanordnung und Verfahren zum Betreiben und Dimmen mindestens einer LED
DE60308149T2 (de) Einrichtung und verfahren zur steuerung einer gasentladungslampe und beleuchtungssystem mit gasentladungslampe und steuereinrichtung
DE102017119999B4 (de) Verfahren zur Vermeidung des Überschreitens von Stromgrenzwerten in einer lichtemittierenden Diode sowie Steuereinrichtung zur Durchführung des Verfahrens
WO2016058819A1 (de) Verfahren zum betreiben einer entladungslampe einer projektionsanordnung und projektionsanordnung
DE102015219760B4 (de) Projektionsvorrichtung zum Projizieren mindestens eines Bildes auf eine Projektionsfläche und Verfahren dazu
EP1670294B1 (de) Betriebsgerät und Verfahren zum Betreiben von Gasentladungslampen
DE102016107578B4 (de) Betriebsschaltung und Verfahren zum Betreiben wenigstens eines Leuchtmittels
DE60115292T2 (de) Ballastschaltung und verfahren zur versorgung einer leuchtstofflampe
DE602004012135T2 (de) Beleuchtungseinrichtung und verfahren zu ihrem betrieb
DE10340198B4 (de) Schaltungsanordnung zum Dimmen von Gasentladungslampen und Verfahren zu ihrem Betrieb
DE102013104202B4 (de) Verfahren zum Dimmen eines Leuchtmittels gemäß dem Phasenanschnittsverfahren
DE102005013308A1 (de) Vorschaltgerät mit einer Dimmvorrichtung
DE102005022272A1 (de) Verfahren zur Dimmung von Gasentladungslampen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081106

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006009277

Country of ref document: DE

Date of ref document: 20110519

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009277

Country of ref document: DE

Effective date: 20110519

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110406

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110806

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006009277

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

26N No opposition filed

Effective date: 20120110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009277

Country of ref document: DE

Effective date: 20120110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 505064

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006009277

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006009277

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171024

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171019

Year of fee payment: 12

Ref country code: BE

Payment date: 20171019

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181012

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211020

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006009277

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230821