EP1938036B1 - Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager - Google Patents

Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager Download PDF

Info

Publication number
EP1938036B1
EP1938036B1 EP06794009A EP06794009A EP1938036B1 EP 1938036 B1 EP1938036 B1 EP 1938036B1 EP 06794009 A EP06794009 A EP 06794009A EP 06794009 A EP06794009 A EP 06794009A EP 1938036 B1 EP1938036 B1 EP 1938036B1
Authority
EP
European Patent Office
Prior art keywords
shell
heat exchanger
tube heat
tube
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06794009A
Other languages
English (en)
French (fr)
Other versions
EP1938036A1 (de
Inventor
Tsung-Chieh Cheng
Gerhard Olbert
Paulus Schmaus
Karl-Heinz Wassmer
Michael Sauer
Rainer Bardon
Bernhard Czauderna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Styrolution Ludwigshafen GmbH
Original Assignee
Styrolution GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Styrolution GmbH filed Critical Styrolution GmbH
Publication of EP1938036A1 publication Critical patent/EP1938036A1/de
Application granted granted Critical
Publication of EP1938036B1 publication Critical patent/EP1938036B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions

Definitions

  • the invention relates to a tube bundle heat exchanger for the removal of solutes from a polymer solution by degassing, a continuous process for the removal of solutes from a polymer solution by degassing in a shell and tube heat exchanger and a use.
  • US-A-3 426 841 describes a tube bundle heat exchanger according to the Oberbergriff of claim 1.
  • An essential process step in the preparation of polymers is the removal of solutes from the solution obtained in the polymerization, in particular unreacted monomers, low molecular weight reaction products (oligomers), decomposition products, excipients and solvents to represent the concentrated polymers in a technically utilizable state ,
  • the isolation of the solutes from polymer solutions is often carried out by degassing, the dissolved substances are converted by heat and optionally pressure reduction in the vapor state and separated in this from the liquid polymers.
  • the degassing of polymer solutions is often carried out in Rohrbündel Anlagenübertragem, with a bundle of parallel and vertically arranged tubes which are fixed at their ends in each case in a tube bottom and wherein a heat carrier is passed through the shell space between the tubes, the polymer solution and the Relaxation product of the polymer solution heated.
  • Another common design consists in the alternating arrangement of annular and disc-shaped baffles, which leave open alternately passage cross-sections for the heat transfer medium in the reactor center or on the reactor inner jacket.
  • the solution consists in a shell and tube heat exchanger for the removal of solutes from a polymer solution by degassing, with a bundle of parallel to each other and vertically arranged tubes, which are fixed at both ends in a tube plate, with an installation in each tube, the free Narrowed passage cross-section through the tube and wherein the tubes are flowed through by the polymer solution, as well as with a jacket space around the tubes, which is flowed through by a liquid heat carrier, with baffles in the shell space, which are each arranged in cross-sectional planes of the tube bundle heat transfer and each a deflection for the Release heat carrier, which is characterized in that in the deflection no pipes are arranged and that all internals are identical.
  • the internals which are arranged in the tubes and narrow the free passage cross section of the same, may preferably be fixed by a threaded screw in the tube plate, wherein the welds of the tubes in the tubesheet below the threaded connection for the internals.
  • the internals are preferably screwed into the tubesheet with a Dahlberg finallyl, preferably a hexagonal Allen key.
  • the insert opening for the multi-tooth key is preferably arranged centrally and continuously in the installation. As a result, it can be advantageously used after screwing in the installation and removing the key for the supply of the polymer solution.
  • the invention is not limited with regard to the specific design of the baffles and the deflection areas released from them.
  • the deflection regions which are released from the baffles for the heat carrier, formed within the shell space of the tube bundle heat exchanger.
  • This may preferably be baffles in the form of circular segments, which leave the deflector for the heat transfer medium alternately on the inner shell of Rohrbündel Anlagenübertragers or to baffles, which are formed alternately in ring or disc shape, such that the baffles release in the form of deflection areas , which are arranged centrally in the tube bundle heat exchanger and the disc-shaped baffles release deflection areas, which are arranged on the inner shell of the tube bundle heat exchanger.
  • one or more chambers may be provided on the outer shell of the tube bundle heat exchanger, through which the heat transfer medium circulates through perforations in the outer jacket of the tube bundle heat exchanger and wherein the deflection regions which are released from the baffles for the heat transfer medium are arranged in the chambers the perforations serve to equalize the flow.
  • the heat carrier is preferably in each case via a ring channel or partial ring channel in the mantle space or removed, wherein the annular channel or partial ring channel has openings, preferably such that their free passage area decreases in the flow direction of the heat carrier.
  • the shell-and-tube heat exchanger is preferably designed in such a way that the heat transfer coefficient heat transfer coefficient is between 500 and 2000 W / m 2 / K, preferably 800 to 1200 W / m 2 / K.
  • a liquid heat transfer medium in particular a heat transfer oil, is used.
  • the tube bundle heat exchanger preferably comprises 100 to 10,000, preferably 450 to 3,500 tubes, in particular a length between 1.0 and 6.0 m, preferably between 1.2 and 2.0 m and an inner diameter between 10 and 25 mm, preferably between 13 and 18 mm.
  • the baffles are preferably formed with a thickness between 6 and 30 mm, in particular between 8 and 16 mm.
  • the tube bundle heat exchanger is designed in such a way that the upper tube sheet is substantially thicker compared to the lower tube plate, in particular five times thicker, preferably that the upper tube plate 150 mm thick and the lower tube plate is 30 mm thick.
  • Preference may be provided in the upper tube sheet or shortly below the same vent holes for the heat transfer medium, via which a pipeline leads to a surge tank or a collecting container.
  • an emptying system for the heat transfer medium can be provided via the lower tube plate or via a bore in the wall of the tube bundle heat exchanger.
  • the baffles are preferably made sealingly to the wall of the Rohrbündeiebenübertragers.
  • baffles may be advantageous not to equidistantly arrange the baffles, but to specifically adjust the distance of the baffles to each other the degassing process in the tubes, in such a way that the heat transfer coefficients in the pipe sections are higher, where this is necessary for procedural reasons.
  • a compensator for the thermal expansion in the shell of the shell and tube heat exchanger is provided.
  • the tube bundle heat exchanger can be formed two or more zonig, such that two or more separate circuits are provided for the heat carrier to achieve a different temperature and thus different Entgasungsstadien.
  • the invention also provides a continuous process for the removal of solutes from a polymer solution by degassing in a shell and tube heat exchanger as described above, wherein the polymer solution is passed from top to bottom through the tubes of Rohrbündel Anlagenübertragers and the heat transfer medium in the cross countercurrent or in the cross-direct current to the polymer solution.
  • the procedure with direct conduction of polymer solution and heat carrier, respectively from top to bottom through the apparatus is particularly suitable when overheating is desired already in the inlet region of the polymer solution in the apparatus, for example in the degassing of polystyrene.
  • the invention also relates to the use of the above-described Rohrbündel Anlagenübertragers for degassing of polystyrene or ABS.
  • tube bundle heat exchanger R has a bundle of tubes 1 through which a polymer solution 4 is passed from top to bottom.
  • the tubes 1 are attached sealingly at their two ends in a tube plate 2.
  • internals 3 are provided, which narrow the passage cross-section for the liquid polymer solution 4. All fittings 3 are identical.
  • baffles 7 are arranged, which are formed in a circle segment and the alternately on the inner wall of the Rohrbündel Anlagenübertragers R deflection 8 for the heat transfer medium 6 release.
  • FIG. 2 shows a further preferred embodiment of a Rohrbündel Anlagenübertragers invention, with radial flow guidance of the heat carrier 6. This is effected by the geometry of the baffles 7, which are formed alternately in ring or disc shape.
  • the lowermost deflection plate is annular, the disc-shaped and the uppermost deflecting plate 7, which is arranged above it, again has a ring shape.
  • FIG. 3 a tube bundle heat exchanger according to the prior art with cross-countercurrent flow of the heat carrier 6 by circular segment deflecting 7.
  • the apparatus is fully drilled.
  • the deflection 8 prevails in the deflection 8 before an undefined flow, in the worst case, a pure longitudinal flow of the heat carrier outside of the tubes and thus significantly lower heat transfer coefficients over a pure Queranströmung the tubes.
  • internals 3 different geometry are required to compensate, with a correspondingly high effort in the design and installation.
  • FIG. 3A The cross-sectional view in FIG. 3A illustrates that the apparatus is fully drilled.
  • FIG. 4 is a further embodiment of an apparatus according to the prior art, shown with radial flow guidance of the heat carrier 6, which is effected by deflecting plates 7 which are formed alternately in ring or disc shape. As illustrated in the figure, it comes in the deflection 8 to recirculation zones and areas of longitudinal flow for the heat carrier 7 according to deteriorated heat transfer, which is compensated for example by an adapted, different design of the fixtures 3, with a correspondingly high design and installation effort.
  • FIG. 4A The cross-sectional view in FIG. 4A illustrates that the apparatus is fully drilled.
  • the area between the two dashed lines corresponds to the overlapping area of the baffles by a pure cross-flow of the tubes is guaranteed safe.
  • FIG. 5 shows a preferred embodiment with chambers 9, which are arranged on the outer jacket of the tube bundle heat exchanger R.
  • the deflection regions 8 are in the chambers 9.
  • the arrangement of the chambers 9 on the outer jacket of the tube bundle heat exchanger R is in the cross-sectional views in the FIGS. 5A and 5B especially clear.
  • FIG. 6 shows another variant of in FIG. 5 shown apparatus, but with DC control of polymer solution 4 and heat transfer. 6
  • FIG. 7 shows a further variant of the in the Figures 5 and 6 apparatus shown, however, the multi-zone, exemplified two-tone, that is with two circuits for the heat transfer medium 6, is equipped.
  • FIG. 8 shows another variant of in FIG. 2 shown Radialstromapparates, but with DC control of polymer solution 4 and heat transfer. 6
  • FIGS. 9A to 9B preferred constructive designs for hoods are shown, which limit the tube bundle heat exchanger R at both ends: accordingly Figure 9A a central displacer is provided in FIG. 9B variant shown, the hood is plate-shaped or in the in FIG. 9C illustrated variant in a pipe shape.
  • FIG. 10 A further preferred embodiment of the tube bundle heat exchanger R limiting hood areas is in FIG. 10 illustrated: In the hoods dummy bodies are provided in the poorly flowed hood areas.
  • Figure 11A schematically shows the configuration of openings 12 in the annular channels 11, which are rectangular in the illustrated variant, with decreasing size of the openings in the flow direction.
  • FIG. 11B Another variant of openings 12 in the annular channels 11 is in FIG. 11B shown.
  • the openings 12 are circular.
  • a double-jacket test tube with an outer diameter of 17.8 mm and a wall thickness of 1.5 mm were by varying the heat transfer Umlaufmenge (Marlotherm® heat transfer oil), the operating conditions of good heat transfer, corresponding to a transverse inflow of the tubes with the heat carrier, that is one Heat transfer coefficient of about 1000 W / m 2 / K and compared for a longitudinal flow, with a poor heat transfer coefficient, of about 200 W / m 2 / K, readjusted.
  • the jacketed test tube had an installation length of 300 mm.
  • the temperature of the Marlotherm® thermal oil was 300 ° C when entering the jacket and the inlet temperature of the polystyrene solution from which the residual monomers styrene and ethylbenzene should be separated by relaxation, 160 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

  • Die Erfindung betrifft einen Rohrbündelwärmeübertrager zur Entfernung von gelösten Stoffen aus einer Polymerlösung durch Entgasung, ein kontinuierliches Verfahren zur Entfernung von gelösten Stoffen aus einer Polymerlösung durch Entgasung in einem Rohrbündelwärmeübertrager sowie eine Verwendung. US-A- 3 426 841 beschreibt einen Rohrbündelwärmeübetrager gemäβ dem Oberbergriff des Anspruchs 1.
  • Ein wesentlicher Verfahrensschritt in der Herstellung von Polymeren liegt in der Entfernung von gelösten Stoffen aus der bei der Polymerisation erhaltenen Lösung, insbesondere von nicht umgesetzten Monomeren, niedermolekularen Reaktionsprodukten (Oligomeren), Zersetzungsprodukten, Hilfsstoffen sowie Lösungsmitteln, um die aufkonzentrierten Polymeren in technisch verwertbarem Zustand darzustellen.
  • Die Isolierung der gelösten Stoffe aus Polymerlösungen erfolgt häufig durch Entgasung, wobei die gelösten Stoffe durch Wärmezufuhr und gegebenenfalls Druckabsenkung in den Dampfzustand übergeführt und in diesem von den flüssigen Polymeren abgetrennt werden.
  • Apparativ wird die Entgasung von Polymerlösungen oft in Rohrbündelwärmeübertragem durchgeführt, mit einem Bündel von parallel zueinander und vertikal angeordneten Rohren, die an ihren Enden jeweils in einem Rohrboden befestigt sind und wobei durch den Mantelraum zwischen den Rohren ein Wärmeträger geleitet wird, der die Polymerlösung sowie das Entspannungsprodukt der Polymerlösung erhitzt.
  • Bekannte Rohrbündelwärmeübertrager zur Entgasung von Polymerlösungen können häufig strenge Qualitätsanforderungen bezüglich zulässiger Restgehalte an gelösten Stoffen in der entgasten Polymerlösung nicht erfüllen.
  • Um einen möglichst einheitlichen Wärmeübergangskoeffizient im Apparat vom Wärmeträger durch die Rohrwand in die flüssige Polymerlösung zu gewährleisten, wird eine Queranströmung der Rohre angestrebt, indem die Strömungsrichtung des Wärmeträgers im Mantelraum durch den Einbau von Umlenkblechen gesteuert wird.
  • Diese können beispielsweise in Form von Kreissegmenten ausgebildet sein, die alternierend an den einander gegenüberliegenden Rohrinnenwänden Durchtrittsquerschnitte freilassen.
  • Eine weitere gebräuchliche Bauart besteht in der alternierenden Anordnung von ringförmigen und scheibenförmigen Umlenkblechen, die abwechselnd Durchtrittsquerschnitte für den Wärmeträger in der Reaktormitte bzw. am Reaktorinnenmantel freilassen.
  • Während die im Bereich der Umlenkbleche angeordneten Rohre vom Wärmeträger quer angeströmt werden, liegt für die Rohre in den von Umlenkblechen freien Umlenkbereichen eine überwiegende Längsanströmung durch den Wärmeträger vor. Entsprechend ist der Wärmeübergang in den Rohren mit Längsanströmung schlechter und in der Folge die Produktqualität in den einzelnen Rohren über den Reaktorquerschnitt ungleich.
  • Es ist bekannt, in den einzelnen Rohren Einbauten vorzusehen, die den freien Durchtrittsquerschnitt verengen, um einen Druckabfall aufzubauen sowie einen verbesserten Wärmeübergang vom Wärmeträger auf die zu entgasende Polymerlösung zu bewirken.
  • Aufgrund der oben beschriebenen ungleichen Wärmeübertragung infolge der unterschiedlichen Anströmung der Rohre durch den Wärmeträger sind zur Kompensierung dieses Effektes insbesondere ungleiche Einbauten über den Reaktorquerschnitt erforderlich. Dies erfordert einen erhöhten Aufwand in der Fertigung und insbesondere in der Montage der Einbauten.
  • Es war demgegenüber Aufgabe der Erfindung, ein verbessertes Verfahren zur Entgasung einer flüssigen Polymerlösung in einem Rohrbündeiwärmeübertrager zur Verfügung zu stellen, das niedrigere Restgehalte an gelösten Stoffen bei gleichzeitig einfacherer konstruktiver Ausgestaltung und Montage des Apparates gewährleistet.
  • Die Lösung besteht in einem Rohrbündelwärmeübertrager zur Entfernung von gelösten Stoffen aus einer Polymerlösung durch Entgasung, mit einem Bündel-von parallel zueinander und vertikal angeordneten Rohren, die an beiden Enden jeweils in einem Rohrboden befestigt sind, mit einem Einbau in jedem Rohr, der den freien Durchtrittsquerschnitt durch das Rohr verengt und wobei die Rohre von der Polymerlösung durchströmt werden, sowie mit einem Mantelraum um die Rohre, der von einem flüssigen Wärmeträger durchströmt wird, mit Umlenkblechen im Mantelraum, die jeweils in Querschnittsebenen des Rohrbündelwärmeübertrages angeordnet sind und jeweils einen Umlenkbereich für den Wärmeträger freilassen, der dadurch gekennzeichnet ist, dass in den Umlenkbereichen keine Rohre angeordnet sind und dass alle Einbauten baugleich sind.
  • Druch den Einbau wird ein starker Druckabfall von einem Eingangsdruck von bis zu 50 bar absolut auf ein möglichst niedriges Vakuum, häufig im Bereich zwischen 4 und 200 mbar, insbesondere zwischen 4 und 30 mbar, bewirkt.
  • Die Einbauten, die in den Rohren angeordnet sind und den freien Durchtrittsquerschnitt derselben verengen, können bevorzugt durch eine Gewindeverschraubung im Rohrboden fixiert sein, wobei die Schweißstellen der Rohre im Rohrboden unterhalb der Gewindeverschraubung für die Einbauten liegen. Dadurch können die Einbauten zwecks Reinigung des Apparates einfach ein- und ausgebaut werden.
  • Die Einbauten werden bevorzugt in den Rohrboden mit einem Vielzahnschlüssel, bevorzugt einem Sechskant-Imbussschlüssel eingedreht. Die Einsatzöffnung für den Vielzahnschlüssel ist bevorzugt zentral und durchgehend im Einbau angeordnet. Dadurch kann sie vorteilhaft nach dem Eindrehen des Einbaus und Entfernen des Schlüssels für die Zuführung der Polymerlösung genutzt werden.
  • Die Erfindung ist nicht eingeschränkt bezüglich der konkreten Ausgestaltung der Umlenkbleche und der hiervon freigelassenen Umlenkbereiche. Bevorzugt sind die Umlenkbereiche, die von den Umlenkblechen für den Wärmeträger freigelassen werden, innerhalb des Mantelraumes des Rohrbündelwärmetauschers ausgebildet. Dabei kann es sich bevorzugt um Umlenkbleche in der Form von Kreissegmenten handeln, die alternierend am Innenmantel des Rohrbündelwärmeübertragers Umlenkbereiche für den Wärmeträger freilassen oder auch um Umlenkbleche, die alternierend in Ring- bzw. Scheibenform ausgebildet sind, dergestalt, dass die Umlenkbleche in Ringform Umlenkbereiche freilassen, die zentral im Rohrbündelwärmeübertrager angeordnet sind und die scheibenförmigen Umlenkbleche Umlenkbereiche freilassen, die am Innenmantel des Rohrbündelwärmeübertragers angeordnet sind.
  • In einer weiteren konstruktiven Variante können am Außenmantel des Rohrbündelwärmeübertragers eine oder mehrere Kammern vorgesehen sein, durch die der Wärmeträger über Perforationen im Außenmantel des Rohrbündelwärmeübertragers zirkuliert und wobei die Umlenkbereiche, die von den Umlenkblechen für den Wärmeträger freigelassen werden, in den Kammern angeordnet sind, wobei die Perforationen zur Vergleichmäßigung der Strömung dienen.
  • Der Wärmeträger wird bevorzugt jeweils über einen Ringkanal oder Teilringkanal in den Mantelraum zu- bzw. abgeführt, wobei der Ringkanal oder Teilringkanal Öffnungen aufweist, bevorzugt dergestalt, dass ihre freie Durchtrittsfläche in Strömungsrichtung des Wärmeträgers abnimmt.
  • Der Rohrbündelwärmeübertrager wird bevorzugt in der Weise ausgelegt, dass der wärmeträgerseitige Wärmeübergangskoeffizient zwischen 500 und 2.000 W/m2/K, bevorzugt 800 bis 1.200 W/m2/K, beträgt.
  • Bevorzugt wird ein flüssiger Wärmeträger, insbesondere ein Wärmeträgeröl, eingesetzt.
  • Der Rohrbündelwärmeübertrager umfasst bevorzugt 100 bis 10.000, bevorzugt 450 bis 3.500 Rohre, die insbesondere eine Länge zwischen 1,0 und 6,0 m, bevorzugt zwischen 1,2 und 2,0 m und einen Innendurchmesser zwischen 10 und 25 mm, bevorzugt zwischen 13 und 18 mm, aufweisen. Die Umlenkbleche sind bevorzugt mit einer Dicke zwischen 6 und 30 mm, insbesondere zwischen 8 und 16 mm ausgebildet.
  • Bevorzugt ist der Rohrbündelwärmeübertrager in der Weise ausgestaltet, dass der obere Rohrboden gegenüber dem unteren Rohrboden wesentlich dicker ist, insbesondere um das fünffache dicker, bevorzugt dass der obere Rohrboden 150 mm dick und der untere Rohrboden 30 mm dick ist.
  • Bevorzugt können im oberen Rohrboden oder kurz unterhalb desselben Entlüftungsbohrungen für den Wärmeträger vorgesehen sein, über die eine Rohrleitung zu einem Ausgleichsgefäß oder einem Sammelbehälter führt.
  • Vorteilhaft kann ein Entleerungssystem für den Wärmeträger über den unteren Rohrboden oder über eine Bohrung in der Wand des Rohrbündelwärmeübertragers vorgesehen sein.
  • Es ist vorteilhaft, die Rohre in den Umlenkblechen nicht anzuwalzen, jedoch in der Fertigung darauf zu achten, dass die Spalte zwischen den Rohren und den Umlenkblechen so klein sind, wie es fertigungstechnisch möglich ist, insbesondere im Bereich zwischen 0,1 bis 0,4 mm, bevorzugt im Bereich zwischen 0,14 und 0,25 mm.
  • Die Umlenkbleche sind bevorzugt zur Wand des Rohrbündeiwärmeübertragers dichtend ausgeführt.
  • Es kann vorteilhaft sein, die Umlenkbleche nicht äquidistant anzuordnen, sondern den Abstand der Umlenkbleche zueinander dem Entgasungsprozess in den Rohren speziell anzupassen, in der Weise, dass die Wärmeübergangskoeffizienten in den Rohrbereichen höher sind, wo dies aus verfahrenstechnischen Gründen geboten ist.
  • Vorteilhaft ist ein Kompensator für die thermische Ausdehnung im Mantel des Rohrbündelwärmeübertragers vorgesehen.
  • Insbesondere für die Entgasung von Mehrkomponentenprodukten, beispielsweise von ABS-Lösungen, kann der Rohrbündelwärmeübertrager zwei- oder mehrzonig ausgebildet sein, dergestalt, dass zwei oder mehrere voneinander getrennte Kreisläufe für den Wärmeträger vorgesehen sind, um eine unterschiedliche Temperierung und somit unterschiedliche Entgasungsstadien zu erreichen.
  • Gegenstand der Erfindung ist auch ein kontinuierliches Verfahren zur Entfernung von gelösten Stoffen aus einer Polymerlösung durch Entgasung in einem wie vorstehend beschriebenen Rohrbündelwärmeübertrager, wobei die Polymerlösung von oben nach unten durch die Rohre des Rohrbündelwärmeübertragers und der Wärmeträger im Kreuzgegenstrom oder im Kreuzgleichstrom zur Polymerlösung geleitet wird.
  • Die Verfahrensweise mit Gleichstromführung von Polymerlösung und Wärmeträger, jeweils von oben nach unten durch den Apparat, ist besonders geeignet, wenn eine Überhitzung bereits im Eintrittsbereich der Polymerlösung in den Apparat erwünscht ist, beispielsweise bei der Entgasung von Polystyrol.
  • Gegenstand der Erfindung ist auch die Verwendung des oben beschriebenen Rohrbündelwärmeübertragers zur Entgasung von Polystyrol oder ABS.
  • Die Erfindung wird im Folgenden anhand einer Zeichnung und eines Ausführungsbeispiels näher erläutert.
  • Es zeigen im Einzelnen:
  • Figur 1
    einen Längsschnitt durch eine bevorzugte Ausführungsform eines erfindungsgemäßen Rohrbündelwärmeübertragers mit Kreuzgegenstromführung von Polymerlösung und Wärmeträger, mit Darstellung eines Querschnittes in der Ebene B-B in Figur 1A,
    Figur 2
    einen Längsschnitt durch eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Rohrbündelwärmeübertragers unter Radialstromführung des Wärmeträgers, mit Querschnittsdarstellung in der Ebene E-E in Figur 2A,
    Figur 3
    einen Längsschnitt durch einen Reaktor mit Kreuzstromführung des Wärmeträgers nach dem Stand der Technik, mit Querschnittsdarstellung in der Ebene A-A in Figur 3A,
    Figur 4
    eine Längsschnittdarstellung durch einen Rohrbündelwärmeübertrager nach dem Stand der Technik, mit Radialstromführung des Wärmeträgers, mit Querschnittsdarstellung in der Ebene E-E in Figur 4A,
    Figur 5
    eine Längsschnittdarstellung durch eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Rohrbündelwärmeübertragers, mit Querschnittsdarstellung in der Ebene C-C in Figur 5A und Querschnittsdarstellung in der Ebene D-D in Figur 5B,
    Figur 6
    einen Längsschnitt durch eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Rohrbündelwärmeübertragers mit Gleichstromführung von Polymerlösung und Wärmeträger,
    Figur 7
    einen Längsschnitt durch eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Rohrbündelwärmeübertragers, der mehrzonig ausgestaltet ist,
    Figur 8
    einen Längsschnitt durch eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Rohrbündelwärmeübertragers mit Radialstromführung des Wärmeträgers und Gleichstromführung von Polymerlösung und Wärmeträger,
    Figuren 9A bis 9C
    bevorzugte Ausführungsformen von Hauben für den Rohrbündelwärmeübertrager,
    Figur 10
    einen Längsschnitt durch eine bevorzugte Ausführungsform eines erfindungsgemäßen Rohrbündelwärmeübertragers mit Dummy-Körpern in den Hauben des Apparates und
    Figuren11A und 11B
    bevorzugte Ausführungsformen für die Öffnungen in den Ringkanälen für die Zu- und Abführung des Wärmeträgers.
  • In den Figuren bezeichnen gleiche Bezugszeichen jeweils gleiche oder entsprechende Merkmale.
  • Der in Figur 1 dargestellte Rohrbündelwärmeübertrager R weist ein Bündel von Rohren 1 auf, durch die von oben nach unten eine Polymerlösung 4 geleitet wird. Die Rohre 1 sind an ihren beiden Enden jeweils in einem Rohrboden 2 dichtend befestigt. In den Rohren 1 sind Einbauten 3 vorgesehen, die den Durchtrittsquerschnitt für die flüssige Polymerlösung 4 verengen. Alle Einbauten 3 sind baugleich.
  • Im Mantelraum 5 zwischen den Rohren 1 sind Umlenkbleche 7 angeordnet, die kreissegmentförmig ausgebildet sind und die alternierend an der Innenwand des Rohrbündelwärmeübertragers R Umlenkbereiche 8 für den Wärmeträger 6 freilassen.
  • Die Querschnittsdarstellung in Figur 1A verdeutlicht, dass die Umlenkbereiche 8 frei von Rohren 1 sind.
  • Figur 2 zeigt eine weitere bevorzugte Ausführungsvariante eines erfindungsgemäßen Rohrbündelwärmeübertragers, mit Radialstromführung des Wärmeträgers 6. Diese wird durch die Geometrie der Umlenkbleche 7 bewirkt, die alternierend in Ring- bzw. Scheibenform ausgebildet sind. In der Figur ist beispielhaft das unterste Umlenkblech ringförmig, das darüber angeordnete scheibenförmig und das oberste Umlenkblech 7 wiederum ringförmig ausgebildet.
  • Wie insbesondere in der Querschnittsdarstellung in Figur 2A verdeutlicht, ist bevorzugt der zentral angeordnete Umlenkbereich 8 frei von Rohren 1.
  • Demgegenüber zeigt die Darstellung in Figur 3 einen Rohrbündelwärmeübertrager nach dem Stand der Technik mit Kreuzgegenstromführung des Wärmeträgers 6 durch kreissegmentförmige Umlenkbleche 7. Der Apparat ist voll berohrt. In der Folge herrscht in den Umlenkbereichen 8 eine undefinierte Strömung vor, im ungünstigsten Fall eine reine Längsströmung des Wärmeträgers außen an den Rohren und damit wesentlich geringere Wärmeübergangskoeffizienten gegenüber einer reinen Queranströmung der Rohre. Zur Kompensation sind beispielsweise Einbauten 3 unterschiedlicher Geometrie erforderlich, mit entsprechend hohem Aufwand in der Konstruktion und Montage.
  • Die Querschnittsdarstellung in Figur 3A verdeutlicht, dass der Apparat voll berohrt ist.
  • In Figur 4 ist eine weitere Ausführungsform eines Apparates nach dem Stand der Technik, mit Radialstromführung des Wärmeträgers 6 dargestellt, die durch Umlenkscheiben 7 bewirkt wird die alternierend in Ring- bzw. Scheibenform ausgebildet sind. Wie in der Figur verdeutlicht kommt es in den Umlenkbereichen 8 zu Rezirkulationszonen und Bereichen einer Längsströmung für den Wärmeträger 7 entsprechend verschlechtertem Wärmeübergang, der beispielsweise durch eine angepasste, unterschiedliche Ausgestaltung der Einbauten 3, mit entsprechend hohem konstruktiven und Montage-Aufwand kompensiert wird.
  • Die Querschnittsdarstellung in Figur 4A verdeutlicht, dass der Apparat voll berohrt ist. Der Bereich zwischen den beiden gestrichelten Linien entspricht dem überlappenden Bereich der Umlenkbleche indem eine reine Queranströmung der Rohre sicher gewährleistet ist.
  • Figur 5 zeigt eine bevorzugte Ausführungsform mit Kammern 9, die am Außemantel des Rohrbündelwärmeübertragers R angeordnet sind. Die Umlenkbereiche 8 liegen in den Kammern 9. Die Anordnung der Kammern 9 am Außenmantel des Rohrbündelwärmeübertragers R ist in den Querschnittsdarstellungen in den Figuren 5A und 5B besonders verdeutlicht.
  • Figur 6 zeigt eine weitere Variante des in Figur 5 dargestellten Apparates, jedoch mit Gleichstromführung von Polymerlösung 4 und Wärmeträger 6.
  • Figur 7 zeigt eine weitere Variante des in den Figuren 5 und 6 dargestellten Apparates, der jedoch mehrzonig, beispielhaft zweizonig, das heißt mit zwei Kreisläufen für den Wärmeträger 6, ausgestattet ist.
  • Die Figur 8 zeigt eine weitere Variante des in Figur 2 dargestellten Radialstromapparates, jedoch mit Gleichstromführung von Polymerlösung 4 und Wärmeträger 6.
  • In den Figuren 9A bis 9B sind bevorzugte konstruktive Ausgestaltungen für Hauben dargestellt, die den Rohrbündelwärmeübertrager R an beiden Enden begrenzen: Entsprechend Figur 9A ist ein zentraler Verdrängerkörper vorgesehen, der in Figur 9B dargestellten Variante ist die Haube tellerförmig bzw. in der in Figur 9C dargestellten Variante in Pfeifenform.
  • Eine weitere bevorzugte Ausgestaltung der den Rohrbündelwärmeübertrager R begrenzenden Haubenräume ist in Figur 10 dargestellt: In den Hauben sind Dummy-Körper in den schlecht durchströmten Haubenbereichen vorgesehen.
  • Figur 11A zeigt schematisch die Ausgestaltung von Öffnungen 12 in den Ringkanälen 11, die in der dargestellten Variante rechteckig sind, mit abnehmender Größe der Öffnungen in Strömungsrichtung.
  • Eine weitere Variante von Öffnungen 12 in den Ringkanälen 11 ist in Figur 11B dargestellt. In dieser Ausführungsform sind die Öffnungen 12 kreisförmig.
  • Ausführungsbeispiel
  • In einem Doppelmantelversuchsrohr mit einem Außendurchmesser von 17,8 mm und einer Wandstärke von 1,5 mm wurden durch Variation der Wärmeträger-Umläufmenge (Marlotherm®-Wärmeträgeröl) die Betriebsbedingungen einer guten Wärmeübertragung, entsprechend einer Quereinströmung der Rohre mit dem Wärmeträger, das heißt einem Wärmeübergangskoeffizienten von etwa 1000 W/m2/K und im Vergleich für eine Längsanströmung, mit schlechtem Wärmeübergangskoeffizienten, von etwa 200 W/m2/K, nachgestellt. Im Doppelmantelversuchsrohr war ein Einbau mit 300 mm Länge angeordnet. Die Temperatur des Marlotherm®-Wärmeträgeröls betrug beim Eintritt in den Doppelmantel 300°C und die Eintrittstemperatur der Polystyrol-Lösung aus der die Restmonomere Styrol und Ethylbenzol durch Entspannung abgetrennt werden sollten, 160°C.
  • Die Versuchsergebnisse sind in der nachfolgenden Tabelle zusammengefasst.
  • Wie aus der nachstehenden Tabelle zu entnehmen ist, wurden bei einem Wärmeübergangskoeffizienten von 200 W/m2/K, entsprechend einer Längsanströmung des Rohres (Versuch Nr. V1, zum Vergleich) höhere Restkonzentrationen an den Monomeren Styrol und Ethylbenzol im Vergleich zu den Versuchen mit gutem Wärmeübergangskoeffizienten, entsprechend einer Queranströmung oder überwiegenden Queranströmung (Versuche E1 bzw. bzw. E2 nach der Erfindung) erhalten.
    Versuchs-Nr. Wärmeübergangskoeffizient [W/m2/K] Temperatur am Ort der Entspannung [°C] cStyrol [ppm] cEthylbenzol [ppm]
    V1 200 203,5 442 499
    E1 600 211,3 377 423
    E2 1000 213,1 363 407
  • Bezugszeichenliste
  • R
    Rohrbündelwärmeübertrager
    1
    Rohre
    2
    Rohrboden
    3
    Einbau
    4
    Polymerlösung
    5
    Mantelraum um die Rohre
    6
    Wärmeträger
    7
    Umlenkbleche
    8
    Umlenkbereich
    9
    Kammern am Außenmantel
    10
    Perforationen im Außenmantel
    11
    Ringkanal
    12
    Öffnungen im Ringkanal
    S1-S4
    Spalte

Claims (23)

  1. Rohrbündelwärmeübertrager (R) zur Entfernung von gelösten Stoffen aus einer Polymerlösung (4) durch Entgasung, mit einem Bündel von parallel zueinander und vertikal angeordneten Rohren (1), die an beiden Enden jeweils in einem Rohrboden (2) befestigt sind, und wobei die Rohre (1) von der Polymerlösung (4) durchströmt werden, sowie mit einem Mantelraum (5) um die Rohre (1), der von einem flüssigen Wärmeträger (6) durchströmt wird, mit Umlenkblechen (7) im Mantelraum (5), die jeweils in Querschnittsebenen des Rohrbündetwärmeübertrages (R) angeordnet sind und jeweils einen Umlenkbereich (8) für den Wärmeträger (6) freilassen, wobei in den Umlenkbereichen (8) keine Rohre (1) angeordnet sind; dadurch gekennzeichnet, daβ ein Einbau in jedem Rohr (1), der den freien Durchtrittsquerschnitt durch das Rohr verengt, angeordnet ist und dass alle Einbauten (3) baugleich sind, sowie dass die Einbauten (3) durch eine Gewindeverschraubung im Rohrboden (2) fixiert sind und dass die Schweißstellen der Rohre (1) unterhalb der Gewindeverschraubung für die Einbauten (3) liegen, und dass die Einbauten (3) eine zentrale, durch die Einbauten (3) durchgehende Öffnung aufweisen, die zur Einsetzung eines Vielzahnschlüssels für die Eindrehung der Einbauten in den Rohrboden (2) mit einem Vielzahnschlüssel und nach Entfernen des Vielzahnschlüssels für die Zuführung der Polymerlösung (4) nutzbar sind.
  2. Rohrbündelwärmeübertrager (R) nach Anspruch 1, dadurch gekennzeichnet, dass die Umlenkbleche (8), die von den Umlenkblechen (7) für den Wärmeträger (6) freigelassen werden, innerhalb des Mantelraumes (5) des Rohrbündelwärmeübertragers (R) ausgebildet sind.
  3. Rohrbündelwärmeübertrager (R) nach Anspruch 2, dadurch gekennzeichnet, dass die Umlenkbleche (6) in Form von Kreissegmenten ausgebildet sind, die alternierend am Innenmantel des Rohrbündelwärmeübertragers (R) Umlenkbereiche (8) für den Wärmeträger (6) freilassen
  4. Rohrbündelwärmeübertrager (R) nach Anspruch 2, dadurch gekennzeichnet, dass die Umlenkbleche (7) alternierend in Ringform bzw. in Scheibenform ausgebildet sind, dergestalt, dass die Umlenkbleche (7) in Ringform Umlenkberei- che (8) freilassen, die zentral im Rohrbündelwärmeübertrager (R) angeordnet sind und die scheibenförmigen Umlenkbleche (7) Umlenkbereiche (8) freilassen, die am Innenmantel des Rohrbündelwärmeübertagers (R) angeordnet sind.
  5. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umlenkbereiche (8), die von den Umlenkblechen (7) freigelassen sind, jeweils 5 bis 20 %, bevorzugt 8 bis 14 %, der gesamten Querschnittsfläche des Rohrbündelwärmeübertragers (R) annehmen.
  6. Rohrbündelwärmeübertrager (R) nach Anspruch 1 bis 3 oder 5, dadurch gekennzeichnet, dass am Außenmantel des Rohrbündelwärmeübertragers (R) eine oder mehrere Kammern (9) vorgesehen sind, durch die der Wärmeträger (6) über Perforationen (10) im Außenmantel des Rohrbündelwärmeübertragers (R) zirkuliert und dass die Umlenkbereiche (8), die von den Umlenkblechen (7) für den Wärmeträger (6) freigelassen werden, in den Kammern (9) angeordnet sind.
  7. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Wärmeträger (6) jeweils über einen Ringkanal oder Teilringkanal (11) in den Mantelraum (4) zu- bzw. abgeführt wird, wobei der Ringkanal oder Teilringkanal (11) Öffnungen (12) aufweist, deren freie Durchtrittsfläche in Strömungsrichtung des Wärmeträgers (6) abnimmt.
  8. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der wärmeträgerseitige Wärmeübergangskoeffizient 500 bis 2000 W/m2/K, bevorzugt 800 bis 1200 W/m2/K, beträgt.
  9. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Wärmeträger (6) flüssig ist, bevorzugt ein Wärmeträgeröl.
  10. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Bündel von parallel zueinander und vertikal angeordneten Rohren (1) 100 bis 10.000, bevorzugt 450 bis 3.500 Rohre (1) umfasst.
  11. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Rohre (1) eine Länge von 1,0 bis 6,0 m, bevorzugt von 1,2 bis 2,0 m, aufweisen.
  12. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Innendurchmesser der Rohre (1) 10 bis 25 mm, bevorzugt 13 bis 18 mm, beträgt.
  13. Rohrbündehmärmeübertrager (R) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Dicke der Umlenkbleche (7) 6 bis 30 mm, bevorzugt 8 bis 16 mm, beträgt.
  14. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der obere Rohrboden (2) gegenüber dem unteren Rohrboden (2) wesentlich dicker ist, insbesondere um das fünffache dicker ist, bevorzugt dass der obere Rohrboden (2) 150 mm dick und der untere Rohrboden (2) 30 mm dick ist.
  15. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass im oberen Rohrboden (2) oder kurz unterhalb desselben Entlüftungsbohrungen für den Wärmeträger (6) vorgesehen sind, über die Rohrleitung zu einem Ausgleichsgefäß oder Sammelbehälter führt.
  16. Rohrbündetwärmeübertrager (R) nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass ein Entleerungssystem für den Wärmeträger (6) über den unteren Rohrboden (2) oder über eine Bohrung in der Wand des Rohrbündelwärmeübertragers (R) vorgesehen ist.
  17. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass zwischen den Rohren (1) und den Umlenkblechen (7) Spalte mit einer Spaltweite im Bereich von 0,1 bis 0,4 mm, bevorzugt im Bereich zwischen 0,14 und 0,25 mm, vorhanden sind.
  18. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Umlenkbleche (7) dichtend zur Wand desselben ausgeführt sind.
  19. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass ein Kompensator für die thermische Ausdehnung im Mantel desselben vorgesehen ist.
  20. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass der Rohrbündelwärmeübertrager (R) zwei- oder mehrzonig ausgebildet ist, dergestalt, dass zwei oder mehrere voneinander getrennte Kreisläufe für den Wärmeträger (6) vorgesehen sind.
  21. Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass der Abstand der Umlenkbleche (7) zueinander dem Entgasungsprozess in den Rohren angepasst ist.
  22. Kontinuierliches Verfahren zur Entfernung von gelösten Stoffen aus einer Polymerlösung (4) durch Entgasung in einem Rohrbündelwärmeübertrager (R) nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass die Polymerlösung (4) von oben nach unten durch die Rohre (1) des Rohrbündelwärmeübertragers (R) und der Wärmeträger (6) im Kreuzgegenstrom oder im Kreuzgleichstrom zur Polymerlösung (4) geleitet wird.
  23. Verwendung des Rohrbündelwämeübertragers (R) nach einem der Ansprüche 1. bis 21 oder des Verfahrens nach Anspruch 22 zur Entgasung von Polystyrol oder ABS.
EP06794009A 2005-10-13 2006-10-11 Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager Active EP1938036B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005049067A DE102005049067A1 (de) 2005-10-13 2005-10-13 Rohrbündelwärmeübertrager und Verfahren zur Entfernung von gelösten Stoffen aus einer Polymerlösung durch Entgasung in einem Rohrbündelwärmeübertrager
PCT/EP2006/067266 WO2007042529A1 (de) 2005-10-13 2006-10-11 Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager

Publications (2)

Publication Number Publication Date
EP1938036A1 EP1938036A1 (de) 2008-07-02
EP1938036B1 true EP1938036B1 (de) 2012-04-18

Family

ID=37638637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06794009A Active EP1938036B1 (de) 2005-10-13 2006-10-11 Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager

Country Status (6)

Country Link
EP (1) EP1938036B1 (de)
KR (1) KR101412305B1 (de)
AT (1) ATE554359T1 (de)
DE (1) DE102005049067A1 (de)
ES (1) ES2385380T3 (de)
WO (1) WO2007042529A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015102312A1 (de) * 2015-02-18 2016-08-18 HUGO PETERSEN GmbH Rohrbündelwärmeübertrager mit sequentiell angeordneten Rohrbündelkomponenten
DE102015102311A1 (de) * 2015-02-18 2016-08-18 HUGO PETERSEN GmbH Rohrbündelwärmeübertrager
CN110100142A (zh) * 2016-12-20 2019-08-06 东京滤器株式会社 热交换装置
DE102020002040A1 (de) 2020-04-01 2021-10-07 JULABO GmbH Wärmetauschvorrichtung und Verfahren zum Aufheizen oder Abkühlen eines Fluids

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2156128B1 (de) * 2007-05-31 2012-04-04 Shell Internationale Research Maatschappij B.V. Wärmetauschergehäuseanordnung und montageverfahren
DE102008011341A1 (de) * 2008-02-27 2009-09-03 Evonik Röhm Gmbh Wärmetauscher zur Erwärmung von Temperatur- und Verweilzeitempfindlichen Produkten
US8657921B2 (en) * 2009-04-29 2014-02-25 Styrolution GmbH Shell and tube heat exchanger and method for removing volatile substances from a polymer solution
US9222733B2 (en) * 2011-02-03 2015-12-29 Memc Electronic Materials S.P.A. Reactor apparatus and methods for reacting compounds
KR101280453B1 (ko) * 2011-05-20 2013-07-01 조승범 열교환기
DE202012104507U1 (de) 2012-11-21 2013-01-17 Deller Gmbh Wärmeübertrager mit Innenrohr
KR101447894B1 (ko) * 2013-11-01 2014-10-08 손정열 염색기용 염액 열교환장치
DE102014201908A1 (de) * 2014-02-03 2015-08-06 Duerr Cyplan Ltd. Verfahren zur Führung eines Fluidstroms, Strömungsapparat und dessen Verwendung
US10006369B2 (en) 2014-06-30 2018-06-26 General Electric Company Method and system for radial tubular duct heat exchangers
US9777963B2 (en) 2014-06-30 2017-10-03 General Electric Company Method and system for radial tubular heat exchangers
US9835380B2 (en) 2015-03-13 2017-12-05 General Electric Company Tube in cross-flow conduit heat exchanger
US10378835B2 (en) 2016-03-25 2019-08-13 Unison Industries, Llc Heat exchanger with non-orthogonal perforations
PL3255370T3 (pl) * 2016-06-06 2020-05-18 Aerco International, Inc. Radialny wymiennik ciepła z optymalizacją fibonnaciego
US11454452B2 (en) * 2017-12-11 2022-09-27 John Cockerill S.A. Heat exchanger for a molten salt steam generator in a concentrated solar power plant (III)
FR3137752A1 (fr) * 2022-07-07 2024-01-12 Valeo Systemes Thermiques Dispositif de régulation thermique, notamment de refroidissement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3426841A (en) * 1966-05-18 1969-02-11 Herbert G Johnson Heat exchangers having plastic components
US4163474A (en) * 1976-03-10 1979-08-07 E. I. Du Pont De Nemours And Company Internally finned tube
FR2542437B1 (fr) * 1983-03-08 1988-04-08 Commissariat Energie Atomique Echangeur de chaleur entre deux fluides
US5653282A (en) * 1995-07-19 1997-08-05 The M. W. Kellogg Company Shell and tube heat exchanger with impingement distributor
US6779594B1 (en) * 1999-09-27 2004-08-24 York International Corporation Heat exchanger assembly with enhanced heat transfer characteristics
JP3631406B2 (ja) * 1999-12-28 2005-03-23 株式会社日本触媒 接触気相酸化反応用の多管式反応器
DE10032302A1 (de) * 2000-07-04 2001-10-25 Basf Ag Rohrreaktor mit Einrichtungen zur Wärmeübertragung
JP3774843B2 (ja) * 2001-05-25 2006-05-17 マルヤス工業株式会社 多管式熱交換器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015102312A1 (de) * 2015-02-18 2016-08-18 HUGO PETERSEN GmbH Rohrbündelwärmeübertrager mit sequentiell angeordneten Rohrbündelkomponenten
DE102015102311A1 (de) * 2015-02-18 2016-08-18 HUGO PETERSEN GmbH Rohrbündelwärmeübertrager
DE102015102312A8 (de) * 2015-02-18 2016-10-13 HUGO PETERSEN GmbH Rohrbündelwärmeübertrager mit sequentiell angeordneten Rohrbündelkomponenten
DE102015102311A8 (de) * 2015-02-18 2016-12-01 HUGO PETERSEN GmbH Rohrbündelwärmeübertrager
CN110100142A (zh) * 2016-12-20 2019-08-06 东京滤器株式会社 热交换装置
DE102020002040A1 (de) 2020-04-01 2021-10-07 JULABO GmbH Wärmetauschvorrichtung und Verfahren zum Aufheizen oder Abkühlen eines Fluids

Also Published As

Publication number Publication date
EP1938036A1 (de) 2008-07-02
ES2385380T3 (es) 2012-07-24
ATE554359T1 (de) 2012-05-15
DE102005049067A1 (de) 2007-04-19
WO2007042529A1 (de) 2007-04-19
KR20080065289A (ko) 2008-07-11
KR101412305B1 (ko) 2014-06-25

Similar Documents

Publication Publication Date Title
EP1938036B1 (de) Rohrbündelwärmeübertrager und verfahren zur entfernung von gelösten stoffen aus einer polymerlösung durch entgasung in einem rohrbündelwärmeübertrager
EP1656396B1 (de) Verfahren und vorrichtung zur entfernung von flüchtigen substanzen aus hochviskosen medien
EP1485195B1 (de) Verfahren zur herstellung von phosgen
EP0417428B1 (de) Rohrbündel-Wärmetauscher
DE10233506B4 (de) Mischer/Wärmeaustauscher
EP2052199B1 (de) Apparat zur kombinierten durchführung von wärmeübertragung und statischem mischen mit einer flüssigkeit
EP2379216B1 (de) Reaktor und verfahren zur herstellung von phosgen
EP2234713B1 (de) Verwendung eines Wärmetauschers zur Durchführung chemischer Reaktionen
DE69003404T2 (de) Mehrrohrtypwärmetauscher.
EP2379217A1 (de) Reaktor und verfahren zur herstellung von phosgen
EP2526365B1 (de) Leitscheibenanordnung für einen wärmetauscher, wärmetauscher, verfahren zum herstellen eines wärmetauschers sowie aus- oder nachrüstkit für einen wärmetauscher
WO2005016512A1 (de) Verfahren zur entfernung von flüchtigen verbindungen aus stoffgemischen mittels mikroverdampfer
EP0151933A2 (de) Spiralwärmetauscher
EP3585509A1 (de) Wärmeübertrager und reaktor
EP0810414B1 (de) Wärmetauscher zum Kühlen von Spaltgas
EP2425194B1 (de) Rohrbündelwärmeüberträger und verfahren zur entfernung von flüchtigen stoffen aus einer polymerlösung
WO2017032880A1 (de) Reaktor und verfahren zur katalytischen umsetzung eines gasgemisches
WO2002093099A1 (de) Wärmetauscher zum erwärmen eines produktes, insbesondere einer masse zur herstellung von süsswaren
EP0394758B1 (de) Wärmetauscher
DE2102976C3 (de) Als Verdampfungskondensator ausgebildeter Plattenwärmetauscher
DE2630808A1 (de) Waermeaustauscher
DE2742462C3 (de) Zylindrischer Wärmetauscher mit mehreren ineinander angeordneten Hohlzylindern
DE102004012607B4 (de) Vorrichtung und Verfahren zur thermischen Behandlung von Süßwarenmassen
WO2010017946A1 (de) Vertikaler zylindrischer reaktor mit dünnem katalysatorbett
DE19622139A1 (de) Wärmetauscher zum Kühlen von Spaltgas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080513

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20101117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STYROLUTION GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 554359

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006011330

Country of ref document: DE

Effective date: 20120614

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2385380

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120724

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: STYROLUTION GMBH

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120719

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006011330

Country of ref document: DE

Effective date: 20130121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121011

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121011

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120718

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121011

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 554359

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061011

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011330

Country of ref document: DE

Representative=s name: PATENTANWAELTE ISENBRUCK BOESL HOERSCHLER LLP, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006011330

Country of ref document: DE

Owner name: STYROLUTION EUROPE GMBH, DE

Free format text: FORMER OWNER: STYROLUTION GMBH, 67063 LUDWIGSHAFEN, DE

Effective date: 20141216

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011330

Country of ref document: DE

Representative=s name: PATENTANWAELTE ISENBRUCK BOESL HOERSCHLER LLP, DE

Effective date: 20141216

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: STYROLUTION EUROPE GMBH

Effective date: 20150317

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: STYROLUTION EUROPE GMBH, DE

Effective date: 20150421

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151026

Year of fee payment: 10

Ref country code: ES

Payment date: 20151023

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: STYROLUTION EUROPE GMBH; DE

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: STYROLUTION GMBH

Effective date: 20151029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191022

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191030

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201011

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231030

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231023

Year of fee payment: 18