EP1935031A2 - Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial - Google Patents

Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial

Info

Publication number
EP1935031A2
EP1935031A2 EP06793915A EP06793915A EP1935031A2 EP 1935031 A2 EP1935031 A2 EP 1935031A2 EP 06793915 A EP06793915 A EP 06793915A EP 06793915 A EP06793915 A EP 06793915A EP 1935031 A2 EP1935031 A2 EP 1935031A2
Authority
EP
European Patent Office
Prior art keywords
formula
photovoltaic cell
semiconductor material
layer
znte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06793915A
Other languages
English (en)
French (fr)
Inventor
Hans-Josef Sterzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1935031A2 publication Critical patent/EP1935031A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Photovoltaic cell with a photovoltaically active semiconductor material contained therein
  • the invention relates to photovoltaic cells and the photovoltaically active semiconductor material contained therein.
  • Photovoltaically active materials are semiconductors that convert light into electrical energy.
  • the basics have been known for a long time and are used technically.
  • Most of the technically used solar cells are based on crystalline silicon (monocrystalline or polycrystalline).
  • incident photons excite electrons of the semiconductor, so that they are lifted from the valence band into the conduction band.
  • the height of the energy gap between the valence band and the conduction band limits the maximum possible efficiency of the solar cell. For silicon, this is about 30% when exposed to sunlight. In practice, on the other hand, an efficiency of about 15% is achieved because some of the charge carriers are recombined by different processes and thus deprived of their use.
  • silicon With an energy gap around 1, 1 eV, silicon has a fairly good value for use. By reducing the energy gap, more charge carriers are transported into the conduction band, but the cell voltage becomes lower. Correspondingly, higher cell voltages are achieved with larger energy gaps, but since fewer photons are present for excitation, lower usable currents are available.
  • a new concept is to generate an intermediate level within the energy gap (up-conversion). This concept is described, for example, in the Proceedings of the 14th Workshop on Quantum Solar Energy Conversion Quantasol 2002, March, 17-23, 2002, Rauris, Salzburg, Austria, "Improving Solar Cells Efficiencies by the Up-Conversion", T. Trupke, MA Green, P. Würfel or "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at intermediate levels ", A. Luque and A. Marti, Phys. Rev. Letters, Vol. 78, No. 26, June 1997, 5014-5017. For a band gap of 1.995 eV and an energy of the intermediate level at 0.713 eV, a maximum efficiency of 63.17% is calculated.
  • the desired intermediate energy level in the bandgap is increased by replacing some of the tellurane ions in the anion lattice with the much more electronegative oxygen ion.
  • tellurium was replaced by ion implantation in thin films by oxygen.
  • a major disadvantage of this class of substances is that the solubility of the oxygen in the semiconductor is extremely low. It follows that, for example, the compounds Zn 1-x Mn x Tei -y Oy with y greater than 0.001 are not thermodynamically stable. Upon irradiation for a long time, they decompose into the stable tellurides and oxides. Use of up to 10 at% tellurium by oxygen would be desirable, but such compounds are not stable.
  • Zinc telluride which has a direct band gap of 2.25 eV at room temperature, would be an ideal semiconductor for the intermediate level technology because of this large band gap.
  • Zinc is readily substituted by magnesium in zinc telluride, with the band gap increasing to about 3.4 eV in MgTe (Optical Properties of Epitaxial Zn Mn Te and ZnMgTe films for a wide range of alloy compostions, X. Liu et al. , J. Appl. Phys., Vol. 91, No. 5, March 2002, 2859-2865; "Bandgap of Zn 1- JVIn x Te: nonlinear dependence on compostion and temperature", HC Mertins et al., Semicond Technol. 8 (1993) 1634-1638).
  • a photovoltaic cell usually contains a p-type absorber and an n-type transparent layer of, for example, indium-tin oxide, fluorine-doped tin oxide, antimony-doped zinc oxide or aluminum-doped zinc oxide.
  • x 0.01 to 0.7 metal halides of the metals germanium, tin, antimony, bismuth or copper in proportions of preferably 0.005 to 0.05 moles per mole of telluride are introduced.
  • the partial replacement of tellurium in the semiconductor lattice by the electronegative halide ions causes the formation of the desired stable intermediate energy level in the bandgap.
  • the object of the present invention is to provide a photovoltaic cell with high efficiency and high electric power.
  • a further object of the present invention is to provide a photovoltaic cell with an alternative, thermodynamically stable, photovoltaically active semiconductor material, wherein the semiconductor material contains an intermediate level in the energy gap.
  • a photovoltaic cell with a photovoltaically active semiconductor material wherein the photovoltaically active semiconductor material is a material of the formula (I), of the formula (II) or a combination thereof
  • M n Te m and Me a M b are each a dopant in which M is at least one element selected from the group of silicon, germanium, tin, lead, antimony and bismuth and Me for at least one element selected from the group magnesium and zinc
  • n 1 to 2
  • m 0.5 to 4
  • the invention further relates to a photovoltaically active semiconductor material of the formula (I), the formula (II) or a combination thereof, with
  • the doping agent (M n Te m or Me a M b ) at least one compound selected from the group Si 3 Te 3 , GeTe, SnTe, PbTe, Sb 2 Te 3 , Bi 2 Te 3 , Mg 2 Si, Mg 2 Ge, Mg 2 Sn, Mg 2 Pb, Mg 3 Sb 2 , Mg 3 Bi 2 , ZnSb, Zn 3 Sb 2 and Zn 4 Sb 3 .
  • Sb 2 Te 3 has a band gap of 0.3 eV as a pure substance. If ZnTe is doped with 2 mol% of Sb 2 Te 3 , an absorption at 0.8 eV is found in addition to the band gap of the ZnTe at 2.25 to 2.3 eV.
  • the semiconductor materials used in the photovoltaic cell according to the invention have high Seebeck coefficients of up to 100 ⁇ V / degree with high electrical conductivity. This behavior shows that the new semiconductors can be activated not only visually, but also thermally, thus contributing to a better utilization of light quanta.
  • the photovoltaic cell according to the invention has the advantage that the used photovoltaically active semiconductor material of the formula (I), the formula (II) or a combination thereof is thermodynamically stable. Furthermore, the photovoltaic cells according to the invention have high efficiencies of more than 15%, since an intermediate level in the energy level due to the dopants contained in the semiconductor material. bridge of the photovoltaically active semiconductor material is generated. Without an intermediate level, only such photons can lift electrons or charge carriers from the valence band into the conduction band, which have at least the energy of the energy gap. Higher energy photons also contribute to efficiency, with the excess of energy lost to the bandgap as heat. With the intermediate level present in the semiconductor material used for the present invention, which can be partially filled, more photons can contribute to the excitation.
  • the photovoltaic cell of the present invention is preferably constructed to contain a p-type absorber layer of the material of the formula (I), the formula (II) or a combination thereof. Adjacent to this absorber layer of the p-type semiconductor material is an n-conducting contact layer which is as non-absorbent as possible, preferably an n-conducting transparent layer comprising at least one semiconductor material selected from the group consisting of indium tin oxide, fluorine doped tin oxide and antimony doped contains gallium-doped, indium-doped and aluminum-doped zinc oxide. Incident light generates a positive and a negative charge in the p-type semiconductor layer. The charges diffuse in the p-region. Only when the negative charge reaches the p-n interface can it leave the p-region. A current flows when the negative charge has reached the front contact attached to the contact layer.
  • this comprises an electrically conductive substrate, a p-layer of the inventive semiconductor material of the formula (I) and / or (II) with a thickness of 0.1 to 20 .mu.m, preferably of 0 , 1 to 10 microns, more preferably from 0.3 to 3 microns, and an n-layer of an n-type semiconductor material having a thickness of 0.1 to 20 microns, preferably 0.1 to 10 microns, more preferably 0, 3 to 3 ⁇ m.
  • the substrate is preferably a glass pane coated with an electrically conductive material, a flexible metal foil or a flexible metal sheet.
  • the photovoltaic cell according to the invention preferably contains a layer of molybdenum or tungsten having a preferred thickness of between 0.1 and 2 .mu.m, which is used as barrier layer and for facilitating tion of the exit of the electrons in the absorber and is used as the back contact in the case of glass as a substrate.
  • the invention further relates to a method for producing the photovoltaically active semiconductor material according to the invention and / or a photovoltaic cell according to the invention, comprising the steps:
  • the layer formed from the semiconductor material of the formula Zn 1-x Te JVIg or ZnTe preferably has a thickness of 0.1 microns to 20, preferably from 0.1 to 10 .mu.m, particularly preferably from 0.3 to 3 microns.
  • This layer is preferably produced by at least one deposition process selected from the group sputtering, electrochemical deposition and electroless deposition.
  • Sputtering refers to the knocking out of clusters comprising about 10 to 10,000 atoms from an electrode sputtering target by accelerated ions and the deposition of the knocked-out material onto a substrate.
  • the layers of the semiconductor material of the formula (I) and / or (II) produced according to the method according to the invention are particularly preferably produced by sputtering because sputtered layers have increased qualities.
  • the electrochemical deposition of ZnTe for producing a layer and the subsequent doping of this layer with a dopant for producing a semiconductor material of the formula (I) and / or (II) are also suitable.
  • the introduction of the doping metal during the synthesis of the zinc telluride in evacuated quartz vessels is particularly preferred.
  • the quartz vessel is heated in an oven, first rapidly to about 400 ° C, because below the melting points of Zn and Te no reaction takes place.
  • the temperature is increased more slowly with rates of 20 to 100 ° C / h up to 800 to 1200 ° C, preferably to 1000 to 1100 ° C.
  • the formation of the solid state takes place.
  • the time required for this is 1 to 100 hours, preferably 5 to 50 hours.
  • the cooling takes place.
  • the content of the quartz vessel is crushed under moisture exclusion to particle sizes of 0.1 to 1 mm and these particles are then reduced, for example in a ball mill to particle sizes of 1 to 30 microns, preferably 2 to 20 microns.
  • sputtering targets are prepared by hot pressing at 300 to 1200 ° C, preferably 400 to 700 ° C and pressures of 5 to 500 MPa, preferably 20 to 200 MPa. The pressing times are from 0.2 to 10 h, preferably 1 to 3 h.
  • a photovoltaically active semiconductor material and / or a photovoltaic cell is a sputtering target of the formula (Zn 1-x Mg x Te) i -y (M n Te m ) y and / or (ZnTe ) i. y (Me a M b ) y produced by
  • a sputtering target of the formula Zn 1- JVIg x Te and / or ZnTe is prepared by a) reacting Zn, Te and optionally Mg in evacuated Quartz tubes at 800 to 1200 ° C, preferably at 1000 to 1100 ° C, within 1 to 100 h, preferably within 5 to 50 h, to obtain a material, b) grinding the material after cooling with substantial exclusion of atmospheric oxygen and Moisture to a powder with particle sizes of 1 to 30 .mu.m, preferably from 2 to 20 .mu.m, and c) hot pressing of the powder at temperatures of 300 to 1200 ° C, preferably from 400 to 700 ° C, at pressures of 5 to 500 MPa, preferably from 20 to 200 MPa at press times of 0.2 to 10 h, preferably from 1 to 3 h.
  • the dopants M n Te m and Me a M b can be introduced after sputtering in the Zn 1 JVIg x Te and / or ZnTe.
  • the material obtained in step a) is ground in step b) with the dopant M n Te m or Me a M b .
  • part of the dopant can react with the zinc telluride in the form of a reaction grinding and be incorporated into the host lattice.
  • the doped material of the formula (I) or (II) or combinations thereof according to the invention then forms during the hot pressing in step c)
  • the photovoltaic cell according to the invention is completed by the method according to the invention.
  • compositions given in the result table were prepared in evacuated quartz tubes by reaction of the elements in the presence of the doping metals.
  • the elements were weighed in a purity better than 99.99% in quartz tubes, the residual moisture removed by heating in vacuo and the tubes melted in vacuo.
  • the tubes were heated from room temperature to 1 100 ° C within 20 h and the temperature then left at 1100 ° C for 10 h. The oven was then switched off and allowed to cool.
  • the Telluride so prepared were crushed in an agate mortar to powder with particle sizes below 30 microns. This powder was pressed at room temperature under a pressure of 3000 kp / cm 2 to 13 mm diameter disks.
  • compositions from the result table are examples of combinations of semiconductor materials according to the invention of the formula (I) and of the formula (II) and can be described by the formula (III):

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung bezieht sich auf eine photovoltaische Zelle mit einem photovoltaisch aktiven Halbleitermaterial, wobei das photovoltaisch aktive Halbleitermaterial ein Material der Formel (I), der Formel (II) oder einer Kombination daraus ist, mit (I) (Zn<SUB>1-x</SUB>Mg<SUB>x</SUB>Te)<SUB>1-y</SUB>(M<SUB>n</SUB>Te<SUB>m</SUB>)<SUB>y</SUB> und (II) (ZnTe)<SUB>1-y</SUB>(Me<SUB>a</SUB>M<SUB>b</SUB>)<SUB>y</SUB>, wobei M<SUB>n</SUB>Te<SUB>m</SUB> und Me<SUB>a</SUB>M<SUB>b</SUB> jeweils ein Dotiermittel ist, in dem M für mindestens ein Element ausgewählt aus der Gruppe Si, Ge, Sn, Pb, Sb und Bi steht und Me für mindestens ein Element ausgewählt aus der Gruppe Mg und Zn steht, mit x = 0 bis 0,5 y = 0,0001 bis 0,05 n = 1 bis 2 m = 0,5 bis 4 a = 1 bis 5 und b = 1 bis 3.

Description

Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
Beschreibung
Die Erfindung betrifft photovoltaische Zellen und das darin enthaltene photovoltaisch aktive Halbleitermaterial.
Photovoltaisch aktive Materialien sind Halbleiter, welche Licht in elektrische Energie umsetzen. Die Grundlagen hierzu sind lange bekannt und werden technisch genutzt. Die meisten der technisch genutzten Solarzellen basieren auf kristallinem Silizium (ein- oder polykristallin). In einer Grenzschicht zwischen p- und n-leitendem Silizium regen einfallende Photonen Elektronen des Halbleiters an, so dass sie vom Valenzband in das Leitungsband gehoben werden.
Die Höhe der Energielücke zwischen dem Valenzband und dem Leitungsband limitiert den maximal möglichen Wirkungsgrad der Solarzelle. Beim Silizium ist dies circa 30% bei Bestrahlung mit Sonnenlicht. In der Praxis erreicht man dagegen einen Wirkungsgrad von circa 15%, weil ein Teil der Ladungsträger durch verschiedene Prozesse re- kombiniert und so der Nutzung entzogen wird.
Aus DE 102 23 744 A1 sind alternative photovoltaisch aktive Materialien und diese enthaltende Photovoltaikzellen bekannt, die den Wirkungsgrad herabsetzende Verlustmechanismen in einem verringerten Maße aufweisen.
Mit einer Energielücke um 1 ,1 eV weist Silizium einen für die Nutzung recht guten Wert auf. Durch ein Verkleinern der Energielücke werden zwar mehr Ladungsträger ins Leitungsband befördert, die Zellspannung wird jedoch niedriger. Entsprechend werden bei größeren Energielücken zwar höhere Zellspannungen erreicht, da aber weniger Photo- nen zur Anregung vorhanden sind, stehen niedrigere nutzbare Ströme zur Verfügung.
Viele Anordnungen wie die Serienanordnung von Halbleitern mit verschiedenen Energielücken in so genannten Tandemzellen wurden vorgeschlagen, um höhere Wirkungsgrade zu erreichen. Diese sind wegen ihres komplexen Aufbaus jedoch wirt- schaftlich kaum zu realisieren.
Ein neues Konzept besteht darin, innerhalb der Energielücke ein Zwischenniveau zu generieren (Up-Conversion). Dieses Konzept ist beispielsweise beschrieben in Pro- ceedings of the 14th Workshop on Quantum Solar Energy Conversion-Quantasol 2002, March, 17-23, 2002, Rauris, Salzburg, Österreich, "Improving solar cells efficiencies by the up-conversion", Tl. Trupke, M.A. Green, P. Würfel oder "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at intermediate Levels", A. Luque and A. Marti, Phys. Rev. Letters, Vol. 78, Nr. 26, June 1997, 5014-5017. Für eine Bandlü- cke von 1 ,995 eV und eine Energie des Zwischenniveaus bei 0,713 eV ergibt sich rechnerisch ein maximaler Wirkungsgrad von 63,17%.
Spektroskopisch wurden derartige Zwischenniveaus beispielsweise am System Cdi.yMnyOχTei-x oder an Zn1-xMnxOyTei-y nachgewiesen. Dies ist beschrieben in "Band anticrossing in group II-OXVI1-X highly mismatched alloys: Cdi.yMnyOxTei-x quaternaries synthesized by O ion implantation", W. Walukiewicz et al., Appl. Phys. Letters, VoI 80, Nr. 9, March 2002, 1571-1573 und in "Synthesis and optical properties of M-O-Vl highly mismatched alloys", W. Walukiewicz et al., J. Appl. Phys. Vol. 95, Nr. 11 , June 2004, 6232-6238. Demnach wird das erwünschte energetische Zwischenniveau in der Band- lücke dadurch erhöht, dass im Anionengitter ein Teil der Telluranionen durch das wesentlich elektronegativere Sauerstoffion ersetzt wird. Dabei wurde Tellur durch Ionenimplantation in dünnen Filmen durch Sauerstoff ersetzt. Ein wesentlicher Nachteil dieser Stoffklasse besteht darin, dass die Löslichkeit des Sauerstoffs im Halbleiter äußerst gering ist. Daraus folgt, dass beispielsweise die Verbindungen Zn1-xMnxTei-yOy mit y größer als 0,001 thermodynamisch nicht stabil sind. Bei Bestrahlung über längere Zeit zerfallen sie in die stabilen Telluride und Oxide. Ein Einsatz von bis zu 10 At-% Tellur durch Sauerstoff wäre erwünscht, wobei solche Verbindungen jedoch nicht stabil sind.
Zinktellurid, das bei Raumtemperatur eine direkte Bandlücke von 2,25 eV aufweist, wäre wegen dieser großen Bandlücke ein idealer Halbleiter für die Zwischenniveau- technologie. Zink lässt sich gut in Zinktellurid kontinuierlich durch Magnesium substituieren, wobei die Bandlücke auf circa 3,4 eV bei MgTe anwächst („Optical Properties of epitaxial Zn Mn Te and ZnMgTe films for a wide ränge of alloy compostions", X. Liu et al., J. Appl. Phys. Vol. 91 , Nr. 5, March 2002, 2859-2865; „Bandgap of Zn1-JVInxTe: non linear dependence on compostion and temperature", H. C. Mertins et al., Semicond. Sei. Technol. 8 (1993) 1634-1638).
Eine photovoltaische Zelle enthält üblicherweise einen p-leitenden Absorber und eine n-leitende transparente Schicht zum Beispiel aus Indium-Zinn-Oxid, fluordotiertem Zinnoxid, antimondotiertem Zinkoxid oder aluminiumdotiertem Zinkoxid.
Ein Absorber mit einem Zwischenniveau in der Energielücke wird zum Beispiel erhalten, indem in ein Halbleitermaterial der Formel ZnTe und/oder Zn1-xMnxTe mit x = 0,01 bis 0,7 Metallhalogenide der Metalle Germanium, Zinn, Antimon, Bismut oder Kupfer in Anteilen von bevorzugt 0,005 bis 0,05 Mol pro Mol Tellurid eingebracht werden. Offensichtlich bewirkt der teilweise Ersatz von Tellur im Halbleitergitter durch die elekt- ronegativeren Halogenidionen die Ausbildung des gesuchten stabilen Zwischenener- gieniveaus in der Bandlücke.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine photovoltaische Zelle mit einem hohen Wirkungsgrad und einer hohen elektrischen Leistung bereitzustellen. Weiterhin ist es Aufgabe der vorliegenden Erfindung, insbesondere eine photovoltaische Zelle mit einem alternativen, thermodynamisch stabilen, photovoltaisch aktiven Halbleitermaterial bereitzustellen, wobei das Halbleitermaterial ein Zwischenniveau in der Energielücke enthält.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine photovoltaische Zelle mit einem photovoltaisch aktiven Halbleitermaterial, wobei das photovoltaisch aktive Halblei- termaterial ein Material der Formel (I), der Formel (II) oder einer Kombination daraus ist, mit
(I) (Zn1-xMgxTe)i-y(MnTem)y und
(II) (ZnTe)i-y(MeaMb)y, wobei
MnTem und MeaMb jeweils ein Dotiermittel ist, in dem M für mindestens ein Element ausgewählt aus der Gruppe Silizium, Germanium, Zinn, Blei, Antimon und Bismut steht und Me für mindestens ein Element ausgewählt aus der Gruppe Magnesium und Zink steht, mit x = 0 bis 0,5 y = 0,0001 bis 0,05 n = 1 bis 2 m = 0,5 bis 4 a = 1 bis 5 b = 1 bis 3.
Die Erfindung bezieht sich weiterhin auf ein photovoltaisch aktives Halbleitermaterial der Formel (I), der Formel (II) oder einer Kombination daraus, mit
(I) (Zn1-xMgxTe)i-y(MnTem)y und
(II) (ZnTe)i.y(MeaMb)y, wobei
MnTem und MeaMb jeweils ein Dotiermittel ist, in dem M für mindestens ein Element ausgewählt aus der Gruppe Silizium, Germanium, Zinn, Blei, Antimon und Bismut steht und Me für mindestens ein Element ausgewählt aus der Gruppe Magnesium und Zink steht, mit x = 0 bis 0,5 y = 0,0001 bis 0,05 n = 1 bis 2 m = 0,5 bis 4 a = 1 bis 5 und b = 1 bis 3.
Völlig überraschend wurde gefunden, dass auf den Einbau von Halogenidionen verzichtet werden kann, wenn man Telluride der Formel (I) oder (II) oder Kombinationen daraus einsetzt.
Es wird vermutet, dass sich die genannten Telluride mit den Metallionen M = Si, Ge, Sn, Pb, Sb und/oder Bi im Kristallgitter so verhalten, dass sie in der Nähe von Zn2+- lonen negativ und in der Nähe von Te2~lonen positiv polarisiert werden, wie beispielsweise
2+ δ - δ+ 2-
Zn Sb Sb Te
und dass sich dadurch das gesuchte Zwischenenergieniveau ausbildet. Magnesium scheint diesen Effekt noch zu verstärken, weil es elektronegativer als Zink ist.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Do- tiermittel (MnTem oder MeaMb) mindestens eine Verbindung ausgewählt aus der Gruppe Si3Te3, GeTe, SnTe, PbTe, Sb2Te3, Bi2Te3, Mg2Si, Mg2Ge, Mg2Sn, Mg2Pb, Mg3Sb2, Mg3Bi2, ZnSb, Zn3Sb2 und Zn4Sb3.
Sb2Te3 weist als reiner Stoff beispielsweise eine Bandlücke von 0,3 eV auf. Dotiert man ZnTe mit 2 Mol-% Sb2Te3, so findet man zusätzlich zu der Bandlücke des ZnTe bei 2,25 bis 2,3 eV eine Absorption bei 0,8 eV.
Es sind auch Kombinationen der genannten Dotiermittel möglich.
Die in der erfindungsgemäßen photovoltaischen Zelle eingesetzten Halbleitermaterialien weisen überraschenderweise bei hoher elektrischer Leitfähigkeit hohe Seebeck- Koeffizienten bis zu 100 μV/Grad auf. Dieses Verhalten zeigt, dass die neuen Halbleiter nicht nur optisch, sondern auch thermisch aktiviert werden können und damit zur besseren Nutzung von Lichtquanten beitragen.
Die erfindungsgemäße photovoltaische Zelle hat den Vorteil, dass das verwendete photovoltaisch aktive Halbleitermaterial der Formel (I), der Formel (II) oder einer Kombination daraus thermodynamisch stabil ist. Ferner weisen die erfindungsgemäßen photovoltaischen Zellen hohe Wirkungsgrade oberhalb von 15 % auf, da durch die in dem Halbleitermaterial enthaltenen Dotiermittel ein Zwischenniveau in der Energielü- cke des photovoltaisch aktiven Halbleitermaterials erzeugt wird. Ohne Zwischenniveau können nur solche Photonen Elektronen oder Ladungsträger vom Valenzband in das Leitungsband heben, die mindestens die Energie der Energielücke aufweisen. Photonen höherer Energie tragen auch zum Wirkungsgrad bei, wobei der Überschuss an Energie bezüglich der Bandlücke als Wärme verloren geht. Mit dem Zwischenniveau, das bei dem für die vorliegende Erfindung verwendeten Halbleitermaterial vorhanden ist und das teilweise besetzt werden kann, können mehr Photonen zur Anregung beitragen.
Die erfindungsgemäße photovoltaische Zelle ist vorzugsweise so aufgebaut, dass sie eine p-leitende Absorberschicht aus dem Material der Formel (I), der Formel (II) oder einer Kombination daraus enthält. An diese Absorberschicht aus dem p-leitenden Halbleitermaterial grenzt eine n-leitende, das einfallende Licht möglichst nicht absorbierende Kontaktschicht, vorzugsweise eine n-leitende transparente Schicht, die mindestens ein Halbleitermaterial ausgewählt aus der Gruppe Indium-Zinn-Oxid, fluordotiertes Zinnoxid, antimondotiertes, galliumdotiertes, indiumdotiertes und aluminiumdotiertes Zinkoxid enthält. Einfallendes Licht erzeugt eine positive und eine negative Ladung in der p-leitenden Halbleiterschicht. Die Ladungen diffundieren im p-Gebiet. Nur wenn die negative Ladung die p-n-Grenzschicht erreicht, kann sie das p-Gebiet verlassen. Ein Strom fließt, wenn die negative Ladung den an der Kontaktschicht angebrachten Frontkontakt erreicht hat.
Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen photovoltaischen Zelle umfasst diese ein elektrisch leitfähiges Substrat, eine p-Schicht aus dem erfin- dungsgemäßen Halbleitermaterial der Formel (I) und/oder (II) mit einer Dicke von 0,1 bis 20 μm, bevorzugt von 0,1 bis 10 μm, besonders bevorzugt von 0,3 bis 3 μm, und eine n-Schicht aus einem n-leitenden Halbleitermaterial mit einer Dicke von 0,1 bis 20 μm, bevorzugt 0,1 bis 10 μm, besonders bevorzugt 0,3 bis 3 μm. Vorzugsweise ist das Substrat eine mit einem elektrisch leitfähigen Material beschichtete Glasscheibe, eine flexible Metallfolie oder ein flexibles Metallblech. Durch eine Kombination aus einem flexiblen Substrat mit dünnen photovoltaisch aktiven Schichten ergibt sich der Vorteil, dass keine aufwändigen und damit teuren Auflager zur Halterung der die erfindungsgemäßen photovoltaischen Zellen enthaltenden Solarmodule eingesetzt werden müssen. Durch die Flexibilität ist eine Verwindung möglich, so dass sehr einfache und preiswerte Tragekonstruktionen eingesetzt werden können, die nicht verwindungssteif sein müssen. Als bevorzugtes flexibles Substrat wird bei der vorliegenden Erfindung insbesondere ein Edelstahlblech verwendet. Ferner enthält die erfindungsgemäße photovoltaische Zelle vorzugsweise eine Schicht aus Molybdän oder Wolfram mit einer bevorzugten Dicke zwischen 0,1 und 2 μm, die als Barriereschicht und zur Erleichte- rung des Austritts der Elektronen in den Absorber und als Rückkontakt im Fall von Glas als Substrat verwendet wird.
Die Erfindung bezieht sich weiterhin auf ein Verfahren zur Herstellung des erfindungsgemäßen photovoltaisch aktiven Halbleitermaterials und/oder einer erfindungsgemä- ßen photovoltaischen Zelle umfassend die Schritte:
Erzeugen einer Schicht aus einem Halbleitermaterial der Formel Zn1-xMgxTe oder
ZnTe und
Einbringen eines Dotiermittels MnTem bzw. MeaMb in die Schicht,
wobei M für mindestens ein Element ausgewählt aus der Gruppe Si, Ge, Sn, Pb, Sb und Bi steht und Me für mindestens ein Element ausgewählt aus der Gruppe Mg und Zn steht, mit x = 0 bis 0,5 y = 0,0001 bis 0,05 n = 1 bis 2 m = 0,5 bis 4 a = 1 bis 5 und b = 1 bis 3.
Die aus dem Halbleitermaterial der Formel Zn1-JVIgxTe oder ZnTe erzeugte Schicht weist dabei vorzugsweise eine Dicke von 0,1 bis 20 μm, bevorzugt von 0,1 bis 10 μm, besonders bevorzugt von 0,3 bis 3 μm auf. Diese Schicht wird vorzugsweise durch mindestens ein Abscheidungsverfahren ausgewählt aus der Gruppe Sputtern, elektro- chemisches Abscheiden und stromloses Abscheiden erzeugt. Sputtern bezeichnet das Herausschlagen von Clustern, die etwa 10 bis 10.000 Atome umfassen, aus einem als Elektrode dienenden Sputtertarget durch beschleunigte Ionen und die Deposition des herausgeschlagenen Materials auf einem Substrat. Die gemäß dem erfindungsgemäßen Verfahren hergestellten Schichten aus dem Halbleitermaterial der Formel (I) und/oder (II) werden besonders bevorzugt durch Sputtern hergestellt, weil gesputterte Schichten erhöhte Qualitäten aufweisen. Möglich ist aber auch die Abscheidung von Zink und dem Dotiermetall M und gegebenenfalls Mg auf einem geeigneten Substrat und die nachträgliche Reaktion mit einem Te-Dampf bei Temperaturen unterhalb von 400°C und in Gegenwart von Wasserstoff. Ferner ist auch die elektrochemische Ab- Scheidung von ZnTe zum Erzeugen einer Schicht und das nachträgliche Dotieren dieser Schicht mit einem Dotiermittel zum Erzeugen eines Halbleitermaterials der Formel (I) und/oder (II) geeignet.
Besonders bevorzugt ist das Einbringen des Dotiermetalls während der Synthese des Zinktellurids in evakuierten Quarzgefäßen. Dabei werden Zink, ggf. Magnesium, Tellur sowie das Dotiermetall oder Mischungen der Dotiermetalle in das Quarzgefäß eingefüllt, das Quarzgefäß evakuiert und im Vakuum abgeschmolzen. Danach wird das Quarzgefäß in einem Ofen erhitzt, zunächst rasch auf ca. 400°C, weil unterhalb der Schmelzpunkte von Zn und Te keine Reaktion stattfindet. Sodann wird die Temperatur langsamer erhöht mit Raten von 20 bis 100°C/h bis auf 800 bis 1200°C, vorzugsweise auf 1000 bis 1100°C. Bei dieser Temperatur findet die Ausbildung des Festkörpergefü- ges statt. Die dazu notwendige Zeit beträgt 1 bis 100 h, bevorzugt 5 bis 50 h. Danach findet das Erkalten statt. Der Inhalt des Quarzgefäßes wird unter Feuchteausschluss auf Teilchengrößen von 0,1 bis 1 mm zerbrochen und diese Teilchen werden dann zum Beispiel in einer Kugelmühle auf Teilchengrößen von 1 bis 30 μm, bevorzugt 2 bis 20 μm verkleinert. Aus dem so erhaltenen Pulver werden durch Heißpressen bei 300 bis 1200°C, bevorzugt bei 400 bis 700°C und Drucken von 5 bis 500 MPa, vorzugsweise bei 20 bis 200 MPa Sputtertargets hergestellt. Die Presszeiten betragen 0,2 bis 10 h, bevorzugt 1 bis 3 h.
Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung eines photovoltaisch aktiven Halbleitermaterials und/oder einer photovol- taischen Zelle wird ein Sputtertarget der Formel (Zn1-xMgxTe)i-y(MnTem)y und/oder (ZnTe)i.y(MeaMb)y hergestellt durch
a) Umsetzung von Zn, Te, M und ggf. Mg in evakuierten Quarzröhren bei 800 bis 1200°C, bevorzugt bei 1000 bis 1 1000C, innerhalb von 1 bis 100 h, bevorzugt innerhalb von 5 bis 50 h, zum Erhalt eines Materials, b) Mahlen des Materials nach dem Erkalten unter weitgehendem Ausschluss von Luftsauerstoff und Feuchte zu einem Pulver mit Teilchengrößen von 1 bis 30 μm, bevorzugt von 2 bis 20 μm, und c) Heißpressen des Pulvers bei Temperaturen von 300 bis 1200°C, bevorzugt von 400 bis 700°C, bei Drucken von 5 bis 500 MPa, bevorzugt von 20 bis 200 MPa, bei Presszeiten von 0,2 bis 10 h, bevorzugt von 1 bis 3 h.
Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung eines photovoltaisch aktiven Halbleitermaterials und/oder einer photovoltai- schen Zelle wird ein Sputtertarget der Formel Zn1-JVIgxTe und/oder ZnTe hergestellt durch a) Umsetzung von Zn, Te und gegebenenfalls Mg in evakuierten Quarzröhren bei 800 bis 1200°C, bevorzugt bei 1000 bis 1100°C, innerhalb von 1 bis 100 h, bevorzugt innerhalb von 5 bis 50 h, zum Erhalt eines Materials, b) Mahlen des Materials nach dem Erkalten unter weitgehendem Ausschluss von Luftsauerstoff und Feuchte zu einem Pulver mit Teilchengrößen von 1 bis 30 μm, bevorzugt von 2 bis 20 μm, und c) Heißpressen des Pulvers bei Temperaturen von 300 bis 1200°C, bevorzugt von 400 bis 700°C, bei Drucken von 5 bis 500 MPa, bevorzugt von 20 bis 200 MPa bei Presszeiten von 0,2 bis 10 h, bevorzugt von 1 bis 3 h.
Die Dotiermittel MnTem bzw. MeaMb können nach dem Sputtern in das Zn1-JVIgxTe und/oder ZnTe eingebracht werden. Vorzugsweise wird jedoch das in Schritt a) erhaltene Material in Schritt b) mit dem Dotiermittel MnTem bzw. MeaMb vermählen. Dabei kann ein Teil des Dotiermittels mit dem Zinktellurid in Form einer Reaktionsmahlung abreagieren und in das Wirtsgitter eingebaut werden. Das erfindungsgemäße dotierte Material gemäß Formel (I) oder (II) oder Kombinationen daraus bildet sich dann während des Heißpressens in Schritt c) aus
In weiteren, dem Fachmann bekannten Verfahrensschritten wird die erfindungsgemäße photovoltaische Zelle durch das erfindungsgemäße Verfahren fertiggestellt.
Beispiele
Die Beispiele wurden nicht an dünnen Schichten, sondern an Pulvern durchgeführt. Die gemessenen Eigenschaften der Halbleitermaterialien mit Dotiermitteln wie Energielü- cke, Leitfähigkeit oder Seebeck-Koeffizient sind nicht dickeabhängig und deshalb genauso aussagekräftig.
Die in der Ergebnistabelle angegebenen Zusammensetzungen wurden in evakuierten Quarzröhren durch Reaktion der Elemente in Gegenwart der Dotiermetalle hergestellt. Dazu wurden die Elemente in einer Reinheit jeweils besser als 99,99 % in Quarzröhren eingewogen, die Restfeuchte durch Erwärmen im Vakuum entfernt und die Röhren im Vakuum abgeschmolzen. In einem schräg stehenden Rohrofen wurden die Röhren innerhalb von 20 h von Raumtemperatur auf 1 100°C erwärmt und die Temperatur sodann 10 h lang bei 1 100°C belassen. Danach wurde der Ofen abgeschaltet und abküh- len gelassen.
Nach dem Erkalten wurden die so hergestellten Telluride in einem Achatmörser zu Pulver mit Korngrößen unterhalb 30 μm zerkleinert. Dieses Pulver wurde bei Raumtemperatur unter einem Druck von 3000 kp/cm2 zu Scheiben mit 13 mm Durchmesser gepresst.
Es wurde jeweils eine Scheibe von grauschwarzer Farbe erhalten, die einen schwachen rötlichen Schimmer aufwies. In einem Seebeck-Experiment wurden die Materialien auf der einen Seite auf 130°C erhitzt, die andere Seite wurde auf 30°C gehalten. Mit einem Voltmeter wurde die Leerlaufspannung gemessen. Dieser Wert dividiert durch 100 ergibt den mittleren in der Ergebnistabelle angegebenen Seebeck-Koeffizienten.
In einem zweiten Experiment wurde die elektrische Leitfähigkeit gemessen. Aus den Absorptionen im optischen Reflexionsspektrum ergaben sich die Werte der Bandlücke zwischen Valenz- und Leitungsband zu 2,2 bis 2,3 eV und jeweils ein Zwischenniveau bei 0,8 bis 1 ,3 eV.
Ergebnistabelle
Die letzten beiden Zusammensetzungen aus der Ergebnistabelle sind Beispiele für Kombinationen von erfindungsgemäßen Halbleitermaterialien der Formel (I) und der Formel (II) und lassen sich mit der Formel (IM) beschreiben:
(Zn1-xMgxTe)i-u-v(MnTem)u(MeaMb)v (III)
mit u + v = y

Claims

Patentansprüche
1. Photovoltaisch aktives Halbleitermaterial der Formel (I), der Formel (II) oder einer Kombination daraus, mit
(I) (Zn1-xMgxTe)i-y(MnTem)y und
(II) (ZnTe)i-y(MeaMb)y, wobei
MnTem und MeaMb jeweils ein Dotiermittel ist, in dem M für mindestens ein EIe- ment ausgewählt aus der Gruppe Silizium, Germanium, Zinn, Blei, Antimon und
Bismut steht und Me für mindestens ein Element ausgewählt aus der Gruppe Magnesium und Zink steht, mit
x = 0 bis 0,5 y = 0,0001 bis 0,05 n = 1 bis 2 m = 0,5 bis 4 a = 1 bis 5 und b = 1 bis 3.
2. Photovoltaische Zelle mit einem photovoltaisch aktiven Halbleitermaterial, wobei das photovoltaisch aktive Halbleitermaterial ein Material der Formel (I), der Formel (II) oder einer Kombination daraus ist, mit
(I) (Zn1-xMgxTe)i-y(MnTem)y und
(II) (ZnTe)i.y(MeaMb)y, wobei
MnTem und MeaMb jeweils ein Dotiermittel ist, in dem M für mindestens ein Element ausgewählt aus der Gruppe Silizium, Germanium, Zinn, Blei, Antimon und Bismut steht und Me für mindestens ein Element ausgewählt aus der Gruppe
Magnesium und Zink steht, mit
x = 0 bis 0,5 y = 0,0001 bis 0,05 n = 1 bis 2 m = 0,5 bis 4 a = 1 bis 5 und b = 1 bis 3.
3. Photovoltaische Zelle gemäß Anspruch 2, dadurch gekennzeichnet, dass das Dotiermittel mindestens eine Verbindung ausgewählt aus der Gruppe Si3Te3, GeTe, SnTe, PbTe, Sb2Te3, Bi2Te3, Mg2Si Mg2Ge, Mg2Sn, Mg2Pb, Mg3Sb2, Mg3Bi2, ZnSb Zn3Sb2 und Zn4Sb3 ist.
4. Photovoltaische Zelle gemäß einem der Ansprüche 2 oder 3, gekennzeichnet durch mindestens eine p-leitende Absorberschicht aus dem Material der Formel (I), der Formel (II) oder einer Kombination daraus.
5. Photovoltaische Zelle gemäß einem der Ansprüche 2 bis 4, umfassend eine n- leitende transparente Schicht, die mindestens ein Halbleitermaterial ausgewählt aus der Gruppe Indium-Zinn-Oxid, fluordotiertes Zinnoxid, antimondotiertes Zinkoxid, galliumdotiertes Zinkoxid, indiumdotiertes Zinkoxid und aluminiumdotiertes Zinkoxid enthält.
6. Photovoltaische Zelle gemäß einem der Ansprüche 2 bis 5, gekennzeichnet durch mindestens eine p-leitende Schicht aus dem Material der Formel (I), der Formel (II) oder einer Kombination daraus, mindestens eine n-leitende Schicht und ein Substrat, wobei das Substrat eine mit einem elektrisch leitfähigen Mate- rial beschichtete Glasscheibe, eine flexible Metallfolie oder ein flexibles Metallblech ist.
7. Verfahren zur Herstellung eines photovoltaisch aktiven Halbleitermaterials gemäß Anspruch 1 oder einer photovoltaischen Zelle gemäß einem der Ansprüche 2 bis 6, gekennzeichnet durch das Erzeugen einer Schicht aus einem Halbleitermaterial der Formel Zn1-JVIgxTe oder ZnTe und Einbringen eines Dotiermittels MnTem bzw. MeaMb in die Schicht.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass eine Schicht aus dem Halbleitermaterial erzeugt wird, die eine Dicke von 0,1 bis 20 μm aufweist.
9. Verfahren gemäß einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die Schicht durch mindestens ein Abscheidungsverfahren ausgewählt aus der Gruppe Sputtern, elektrochemisches Abscheiden und stromloses Abscheiden er- zeugt wird.
10. Verfahren gemäß einem der Ansprüche 7 bis 9, gekennzeichnet durch Herstellen eines Sputter-Targets der Formel Zn1-xMgxTe, ZnTe, (Zn1-xMgxTe)i-y(MnTem)y oder (ZnTe)i.y(MeaMb)y durch a) Umsetzung von Zn, Te und gegebenenfalls Mg und M in evakuierten Quarzröhren bei 800 bis 1200°C innerhalb von 1 bis 100 h zum Erhalt eines Materials, b) Mahlen des Materials nach dem Erkalten unter weitgehendem Ausschluss von Luftsauerstoff und Feuchte zu einem Pulver mit Teilchengrößen von 1 bis 30 μm und c) Heißpressen des Pulvers bei Temperaturen von 300 bis 1200°C, bevorzugt von 400 bis 700°C, bei Drucken von 5 bis 500 MPa bei Presszeiten von 0,2 bis 10 h.
1. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass das in Schritt a) durch Umsetzung von Zn, Te und gegebenenfalls Mg erhaltene Material in Schritt b) mit dem Dotiermittel MnTem bzw. MeaMb vermählen wird.
EP06793915A 2005-10-06 2006-09-29 Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial Withdrawn EP1935031A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005047907A DE102005047907A1 (de) 2005-10-06 2005-10-06 Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
PCT/EP2006/066895 WO2007039562A2 (de) 2005-10-06 2006-09-29 Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial

Publications (1)

Publication Number Publication Date
EP1935031A2 true EP1935031A2 (de) 2008-06-25

Family

ID=37499579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06793915A Withdrawn EP1935031A2 (de) 2005-10-06 2006-09-29 Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial

Country Status (9)

Country Link
US (1) US20080210304A1 (de)
EP (1) EP1935031A2 (de)
JP (1) JP4954213B2 (de)
KR (1) KR101312202B1 (de)
CN (1) CN100576571C (de)
AU (1) AU2006298686A1 (de)
DE (1) DE102005047907A1 (de)
TW (1) TW200733404A (de)
WO (1) WO2007039562A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120064352A1 (en) * 2010-09-14 2012-03-15 E. I. Du Pont De Nemours And Company Articles comprising a glass - flexible stainless steel composite layer
WO2012037242A2 (en) * 2010-09-14 2012-03-22 E. I. Du Pont De Nemours And Company Glass-coated flexible substrates for photovoltaic cells
CN102674696B (zh) * 2011-03-17 2015-08-26 比亚迪股份有限公司 一种玻璃粉及其制备方法和一种导电银浆及其制备方法
US8361651B2 (en) * 2011-04-29 2013-01-29 Toyota Motor Engineering & Manufacturing North America, Inc. Active material for rechargeable battery
JP6546791B2 (ja) * 2015-06-16 2019-07-17 地方独立行政法人東京都立産業技術研究センター 光電変換装置
KR101778941B1 (ko) 2015-10-02 2017-09-15 한국세라믹기술원 전기화학적 리튬화를 이용한 ZnSb 나노시트의 제조방법
CN115108831B (zh) * 2022-06-15 2023-10-10 先导薄膜材料(广东)有限公司 一种碲化锌掺杂靶材及其制备方法与应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428921A1 (fr) * 1978-06-12 1980-01-11 Commissariat Energie Atomique Procede de realisation de diodes electroluminescentes et/ou photodetectrices
JPS5831584A (ja) * 1981-08-19 1983-02-24 Matsushita Electric Ind Co Ltd 太陽電池の製造方法
US4710589A (en) * 1986-10-21 1987-12-01 Ametek, Inc. Heterojunction p-i-n photovoltaic cell
JP2771414B2 (ja) * 1992-12-28 1998-07-02 キヤノン株式会社 太陽電池の製造方法
JPH088461A (ja) * 1994-06-22 1996-01-12 Sony Corp 発光受光素子
CN1146060C (zh) * 1996-06-19 2004-04-14 松下电器产业株式会社 光电子材料、使用该材料的器件
US5863398A (en) * 1996-10-11 1999-01-26 Johnson Matthey Electonics, Inc. Hot pressed and sintered sputtering target assemblies and method for making same
AU8649798A (en) * 1997-10-24 1999-05-17 Sumitomo Special Metals Co., Ltd. Silicon based conductive material and process for production thereof
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
JP2003179243A (ja) * 2001-08-31 2003-06-27 Basf Ag 光電池活性材料およびこれを含む電池
US7605327B2 (en) * 2003-05-21 2009-10-20 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
CN101853889B (zh) * 2003-12-01 2012-07-04 加利福尼亚大学董事会 用于光伏器件的多频带半导体组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007039562A2 *

Also Published As

Publication number Publication date
CN100576571C (zh) 2009-12-30
JP2009512181A (ja) 2009-03-19
TW200733404A (en) 2007-09-01
WO2007039562A3 (de) 2008-01-17
AU2006298686A1 (en) 2007-04-12
DE102005047907A1 (de) 2007-04-12
CN101278406A (zh) 2008-10-01
KR101312202B1 (ko) 2013-09-27
WO2007039562A2 (de) 2007-04-12
KR20080066756A (ko) 2008-07-16
JP4954213B2 (ja) 2012-06-13
US20080210304A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
DE102005010790A1 (de) Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
DE2639841C3 (de) Solarzelle und Verfahren zu ihrer Herstellung
EP1972014A1 (de) Photovoltaisch aktives halbleitermaterial und photovoltaische zelle
US4947219A (en) Particulate semiconductor devices and methods
EP2617689A1 (de) Leitfähige dicke Filmpaste für Solarzellenkontakte und Solarzelle
EP1935031A2 (de) Photovoltaische zelle mit einem darin enthaltenen photovoltaisch aktiven halbleitermaterial
DE102011054716A1 (de) Gemischtes Sputtertarget aus Cadmiumsulfid und Cadmiumtellurid und Verfahren zu ihrer Verwendung
DE202008009492U1 (de) Halbleitermaterial und dessen Verwendung als Absorptionsmaterial für Solarzellen
DE112012003057T5 (de) Verfahren zum Stabilisieren von hydriertem, amorphem Silicium und amorphen, hydrierten Siliciumlegierungen
DE102012218265B4 (de) Rückseitenfeld-Strukturen für Mehrfachübergang-III-V-Photovoltaikeinheiten und Verfahren zum Herstellen einer Mehrfachübergang-III-V-Photovoltaikeinheit
JP2010219084A (ja) (Zn,Al)O系透明電極層を構成層とする太陽電池および前記(Zn,Al)O系透明電極層の形成に用いられるZnO−Al2O3系スパッタリングターゲット
DE102012104616B4 (de) Verfahren zum Bilden einer Fensterschicht in einer Dünnschicht-Photovoltaikvorrichtung auf Cadmiumtelluridbasis
EP1807872B1 (de) Photovoltaische zelle mit einem photovoltaisch aktiven halbleitermaterial
EP2865011B1 (de) Schichtsystem für dünnschicht-solarzellen mit einer naxinisyclz-pufferschicht
EP2921467B1 (de) Oxidsinter, sputtertarget damit und oxidfolie
CN101383384A (zh) 光电半导体银铜复合氧化物薄膜材料
DE102011054794A1 (de) Gemischte Sputtertargets und ihre Verwendung in Cadmiumsulfidschichten von Cadmiumtelluriddünnschichtphotovoltaikeinrichtungen
DE3049226A1 (de) &#34;solarzelle&#34;
WO2005114756A2 (de) Antimonide mit neuen eigenschaftskombinationen
EP2865012A1 (de) Schichtsystem für dünnschichtsolarzellen
DE102004052014A1 (de) Photovoltaische Zelle
JP2010238894A (ja) (Zn,In,Al)O系透明電極層を構成層とする太陽電池および前記(Zn,In,Al)O系透明電極層の形成に用いられるZnO−In2O3−Al系スパッタリングターゲット
EP0173641A2 (de) Halbleiterschicht auf einem Übergangsmetalldichalcogenid, Verfahren zu deren Herstellung und Verwendung derartiger Halbleiterschichten für Solarzellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080717

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091211

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 31/072 20120101ALI20140702BHEP

Ipc: H01L 31/0296 20060101AFI20140702BHEP

Ipc: H01L 31/032 20060101ALI20140702BHEP

INTG Intention to grant announced

Effective date: 20140721

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141202