CN100576571C - 光伏有源半导体材料、光伏电池、及其制造方法 - Google Patents

光伏有源半导体材料、光伏电池、及其制造方法 Download PDF

Info

Publication number
CN100576571C
CN100576571C CN200680036753A CN200680036753A CN100576571C CN 100576571 C CN100576571 C CN 100576571C CN 200680036753 A CN200680036753 A CN 200680036753A CN 200680036753 A CN200680036753 A CN 200680036753A CN 100576571 C CN100576571 C CN 100576571C
Authority
CN
China
Prior art keywords
under
molecular formula
hour
powder
dopant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200680036753A
Other languages
English (en)
Other versions
CN101278406A (zh
Inventor
H-J·施特策尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN101278406A publication Critical patent/CN101278406A/zh
Application granted granted Critical
Publication of CN100576571C publication Critical patent/CN100576571C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明涉及一种包括光伏有源半导体材料的光伏电池。所述光伏有源半导体材料是分子式(I)、分子式(II)或它们的组合物的材料,包括(I)(Zn1-xMgxTe)1-y(MnTem)y和(II)(ZnTe)1-y(MeaMb)y,其中MnTem和MeaMb为掺杂剂,其中M代表选自Si、Ge、Sn、Pb、Sb和Bi的至少一种元素,而Me代表选自Mg和Zn的至少一种元素,其中x=0-0.5,y=0.0001-0.05,n=1-2,m=0.5-4,a=1-5以及b=1-3。

Description

光伏有源半导体材料、光伏电池、及其制造方法
技术领域
本发明涉及光伏电池以及存在于其中的光伏有源半导体材料。
背景技术
光伏有源材料是将光转化成电能的半导体。其原理已经公知很长时间并且在工业上得到了应用。工业上应用的大多数太阳能电池是基于晶体硅(单晶的或多晶的)的。在p和n导电硅之间的边界层中,入射光子激发半导体的电子,从而将它们从价带跃迁到导带。
价带和导带之间的能隙的量值限定太阳能电池的最大可能效率。就硅而言,此值为日光辐射的约30%。相比而言,因为一些电荷载流子通过各种过程复合且因此不再有效,所以实际上获得约15%的效率。
DE 102 23 744 A1公开了可选的光伏有源材料和其中存在这些材料的光伏电池,其具有将效率降低到更低的程度的损耗机构。
由于约1.1eV的能隙,对于实际应用,硅具有很高的价值。能隙的降低会将更多的电荷载流子推入导带中,但电池电压变低。相似地,更大的能隙会产生更高的电池电压,但由于可得到的被激发光子更少,因此产生的可用电流更低。
已经提出了许多配置以获得更高的效率,例如在串叠型电池中的具有不同能隙的半导体的串联配置。然而,这些由于它们复杂的结构,从而非常难于经济地实现。
一种新的构思包括在能隙内产生中间能级(上转换)。例如在Proceedings of the 14th Workshop on Quantum Solar EnergyConversion-Quantasol 2002,March 17-23,2002,Rauris,Salzburg,Austria;“Improving solar cells efficiencies by the up-conversion”,Tl.Trupke,M.A.Green,P.
Figure C20068003675300071
或者“Increasing the Efficiency of IdealSolar Cells by Photon Induced Transitions at intermediate Levels”,A.Luque and A.Marti,Phys.Rev.Letters,Vol.78,No.26,June 1997,5014-5017中描述了这种构思。在1.995eV的带隙和0.713eV的中间能级的能量的情况下,最大效率计算为63.17%。
已经在例如体系Cd1-yMnyOxTe1-x或者Zn1-xMnxOyTe1-y中利用光谱方法证实了这样的中间能级。在“Band anticrossing in group II-OxVl1-x highlymismatched alloys:Cd1-yMnyOxTe1-x quaternaries synthesized by O ionimplantation”,W.Walukiewicz et al.,Appl.Phys.Letters,Vol 80,No.9,March 2002,1571-1573;以及“Synthesis and optical properties of II-O-VIhighly mismatched alloys”,W.Walukiewicz et al.,Appl.Phys.Vol 95,No.11,June 2004,6232-6238中描述了这一点。按照这些作者的观点,通过以负电性显著更强的氧离子置换阴离子晶格中的部分碲阴离子,而提高带隙中所期望的中间能级。这里,通过薄膜中的离子注入而以氧置换碲。这类材料的显著缺点在于氧在半导体中的溶解度极低。这就形成例如其中y大于0.001且热力学不稳定的化合物Zn1-xMnxTe1-yOy。经过长时间的辐照,其分解成稳定的碲化物和氧化物。期望以氧置换多达10原子%的碲,但是这样的化合物不稳定。
室温下直接带隙为2.25eV的碲化锌由于其大带隙将是用于中间能级技术的理想的半导体。可以以锰连续而容易地替换碲化锌中的锌,其中带隙提高至MnTe的约3.4eV(“Optical Properties of epitaxial ZnMnTe andZnMgTe films for a wide range of alloy compositions”,X.Liu et al.,J.Appl.Phys.Vol.91,No.5,March 2002,2859-2865;“Bandgap of Zn1-xMnxTe:non linear dependence on composition and temperature”,H.C.Mertins etal.,Semicond.Sci.Technol.8(1993)1634-1638)。
光伏电池通常包括p导电吸收体以及包括例如氧化铟锡、掺杂氟的氧化锡、掺杂锑的氧化锌或掺杂铝的氧化锌的n导电透明层。
例如,通过将金属锗、锡、锑、铋或铜的金属卤化物引入分子式为ZnTe和/或Zn1-xMnxTe的半导体材料中,获得具有在能隙中的中间能级的吸收体,其中x=0.01-0.7,优选处于每摩尔碲从0.005到0.05摩尔的量。
以负电性更强的卤化物离子对半导体晶格中的碲部分置换,显然导致在带隙中形成所期望的稳定的中间能级。
发明内容
本发明的一个目的是提供一种具有高效率和高电功率的光伏电池。特别地,本发明的另一个目的是提供一种包括可选的热力学稳定的光伏有源半导体材料的光伏电池,该光伏有源半导体材料包括能隙中的中间能级。
根据本发明,通过包括光伏有源半导体材料的光伏电池实现该目的,其中所述光伏有源半导体材料是分子式(I)的、分子式(II)的或它们的组合物的材料:
(I)(Zn1-xMgxTe)1-y(MnTem)y
(II)(ZnTe)1-y(MeaMb)y,其中
MnTem和MeaMb均为掺杂剂,其中M是选自硅、锗、锡、铅、锑和铋的至少一种元素,而Me是选自镁和锌的至少一种元素,并且
x=0至0.5
y=0.0001至0.05
n=1至2
m=0.5至4
a=1至5
b=1至3。
本发明还提供一种分子式(I)的、分子式(II)的或它们的组合物的光伏有源半导体材料:
(I)(Zn1-xMgxTe)1-y(MnTem)y
(II)(ZnTe)1-y(MeaMb)y,其中
MnTem和MeaMb均为掺杂剂,其中M是选自硅、锗、锡、铅、锑和铋的至少一种元素,而Me是选自镁和锌的至少一种元素,并且
x=0至0.5
y=0.0001至0.05
n=1至2
m=0.5至4
a=1至5以及
b=1至3。
具体实施方式
完全令人意外地,发现当使用分子式(I)或(II)或它们的组合物的碲化物时,可以无需卤化物离子的引入。
假设所述的碲化物以这样的方式与晶格中的金属离子M=Si、Ge、Sn、Pb、Sb和/或Bi相互作用,以便它们在Zn2+离子附近被负极性化而在Te2-离子附近被正极性化,例如
2+      δ-         δ+     2-
Zn......Sb          Sb......Te
且结果形成期望的中间能量级。镁似乎增强这种效果,因为其负电性比锌更强。
在本发明的优选实施例中,所述掺杂剂(MnTem或MeaMb)是选自Si3Te3、GeTe、SnTe、PbTe、Sb2Te3、Bi2Te3、Mg2Si、Mg2Ge、Mg2Sn、Mg2Pb、Mg3Sb2、Mg3Bi2、ZnSb、Zn3Sb2和Zn4Sb3的至少一种化合物。
例如,作为纯物质的Sb2Te3具有0.3eV的带隙。如果用2mol%的Sb2Te3掺杂ZnTe,则除了ZnTe的2.25-2.3eV的带隙之外,还在0.8eV处发现吸收。
还可以组合所述掺杂剂。
用于本发明的光伏电池中的半导体材料令人惊讶地具有高达100μV/度的高塞贝克系数和高电导率。这种行为表明该新颖的半导体不仅可以被光激发还可以被热激发,因此有助于光量子的更好利用。
本发明的光伏电池的优点在于,所使用的分子式(I)的、分子式(II)的或它们的组合物的光伏有源半导体材料是热力学稳定的。此外,由于存在于半导体材料中的掺杂剂在光伏有源半导体材料的能隙中产生中间能级,因此本发明的光伏电池具有大于15%的高效率。如果没有中间能级,则只有能量至少为能隙能量的光子才能将电子或电荷载流子由价带跃迁到导带。具有较高能量的光子也有助于提高效率,并产生与损失为热量的带隙相比过剩的能量。对于在根据本发明所采用半导体材料中出现并可被部分占据的中间能级,更多的光子可促进激发。
本发明的光伏电池优选包括p导电吸收层,该p导电吸收层包括分子式(I)的、分子式(II)的或它们的组合物的材料。通过优选不吸收入射光的n导电接触层,优选地通过包括选自氧化铟锡、掺杂氟的氧化锡、掺杂锑的、掺杂镓的、掺杂铟的和掺杂铝的氧化锌的至少一种半导体材料的n导电透明层,邻接包括p导电半导体材料的该吸收层。入射光在p导电半导体层中产生正电荷和负电荷。电荷在p区中扩散。仅当负电荷到达p-n边界时,其才能离开p区。当负电荷已到达施加到接触层的前接触时电流流动。
在本发明的光伏电池的优选实施例中,其包括:导电基底;由本发明的分子式(I)和/或(II)的半导体材料构成的p层,其厚度为0.1至20μm,优选0.1至10μm,特别优选0.3至3μm;以及由n导电半导体材料构成的n层,其厚度为0.1至20μm,优选0.1至10μm,特别优选0.3至3μm。该基底优选为涂敷有导电材料的玻璃板、柔性金属箔或柔性金属片。柔性基底与薄的光伏有源层的组合的优点在于,不必使用复杂且因此昂贵的支撑体用于支持包括本发明的光伏电池的太阳能模块。柔性使得可以弯曲,从而可以使用非常简单且廉价的支撑结构,其不必足够硬以抗弯曲。特别地,为了本发明的目的,使用不锈钢片作为优选的柔性基底。此外,本发明的光伏电池优选包括具有0.1至2μm的优选厚度的钼或钨层,该钼或钨层被用作阻挡层且用于帮助电子出射到吸收体中并在玻璃作为基底的情况下用作后接触。
本发明还提供一种用于制造本发明的光伏有源半导体材料和/或根据本发明的光伏电池的方法,其包括以下步骤:
制造分子式为Zn1-xMgxTe或ZnTe的半导体材料的层,以及
将掺杂剂MnTem或MeaMb引入到所述层中,
其中M是选自Si、Ge、Sn、Pb、Sb和Bi的至少一种元素,而Me是选自Mg和Zn的至少一种元素,其中
x=0至0.5
y=0.0001至0.05
n=1至2
m=0.5至4
a=1至5,且
b=1至3。
由分子式为Zn1-xMgxTe或ZnTe的半导体材料制造的该层的厚度优选为0.1至20μm、更优选0.1至10μm、特别优选0.3至3μm。优选通过选自溅射、电化学沉积或无电沉积的至少一种沉积方法来制造该层。术语溅射是指通过加速离子由用作电极的溅射靶喷射包括约10至10000个原子的原子团且在基底上沉积喷射的材料。因为溅射层具有更高的品质,所以特别优选地通过溅射来制造由本发明的方法制造的由分子式(I)和/或(II)的半导体材料构成的层。然而,在合适的基底上沉积锌和掺杂剂M,以及如果合适Mg,随后在存在氢的条件下与Te蒸气在低于400℃的温度下相互作用也是可能的。另一种适合的方法是电化学沉积ZnTe以制造一层,随后用掺杂剂对该层进行掺杂以制造分子式(I)和/或(II)的半导体材料。
特别优选在碲化锌合成期间将掺杂剂金属引入排空的熔融石英容器中。在这种情况下,将锌,如果合适镁、碲和掺杂金属或掺杂金属的混合物引入熔融石英容器中,将熔融石英容器排空且在减小的压力下将其火焰密封。然后在炉中加热熔融石英容器,因为在Zn和Te的熔点以下不发生反应,因此首先迅速达到约400℃。然后以20至100℃/h的速度将温度缓慢增加到800至1200℃,优选增加到1000至1100℃。在该温度下进行固态结构的形成。为此所需要的时间为1至100h,优选5至50h。然后进行冷却。在排除湿气的条件下将熔融石英容器中的物质打碎成0.1至1mm的颗粒尺寸,且然后例如在球磨机中将这些颗粒磨碎成1至30μm,优选2至20μm的颗粒尺寸。然后通过在300至1200℃下、优选在400至700℃下,以及5至500MPa、优选20至200MPa的压力下的热压,由产生的粉末制造溅射靶。施压时间为0.2至10h,优选为1至3h。
在本发明用于制造光伏有源半导体材料和/或光伏电池的方法的优选实施例中,通过以下步骤制造分子式(Zn1-xMgxTe)1-y(MnTem)y和/或(ZnTe)1-y(MeaMb)y的溅射靶:
a)Zn、Te、M,如果合适与Mg在抽空的熔融石英管中在800至1200℃下、优选1000至1100℃下,反应1至100小时、优选5至50小时,以给出材料,
b)在基本上排除大气中的氧和湿气的条件下冷却之后,磨碎材料以给出具有1至30μm、优选2至20μm的颗粒尺寸的粉末,以及
c)在300至1200℃、优选400至700℃的温度下,在5至500MPa、优选20至200MPa的压力下,以及0.2至10小时、优选1至3小时的施压时间下,热压粉末。
在本发明用于制造光伏有源半导体材料和/或光伏电池的方法的另一实施例中,通过以下步骤制造分子式Zn1-xMgx’Te和/或ZnTe的溅射靶:
a)Zn、Te,如果合适与Mg在抽空的熔融石英管中在800至1200℃下、优选1000至1100℃下,反应1至100小时、优选5至50小时,以给出材料,
b)在基本上排除大气中的氧和湿气的条件下冷却之后,磨碎材料以给出具有1至30μm、优选2至20μm的颗粒尺寸的粉末,以及
c)在300至1200℃、优选400至700℃的温度下,在5至500MPa、优选20至200MPa的压力下,以及0.2至10小时、优选1至3小时的施压时间下热压粉末。
可以在溅射之后将掺杂剂MnTem和MeaMb引入Zn1-xMgx’Te和/或ZnTe中。然而,优选在步骤b)中利用掺杂剂MnTem和MeaMb来研磨在步骤a)中获得的材料。这里,部分掺杂剂可以与碲化锌以反应研磨的形式反应且被引入到主晶格中。然后在步骤c)中的热压期间形成分子式(I)或(II)或它们的组合物的本发明的掺杂的材料。
在本领域技术人员公知的进一步的工艺步骤中,通过本发明的方法完成本发明的光伏电池。
实例
使用粉末而不是薄层来实施实例。包括掺杂剂的半导体材料的所测量的特性,例如,能隙、电导率或塞贝克系数,与厚度无关且因此同等地有效。
在存在掺杂金属的条件下通过元素的反应来在抽空的熔融石英管中制造结果表中所显示的成分。为此,将在每一种情况下纯度都高于99.99%的元素称重加到熔融石英管中,通过在减小的压力下加热来除去残留水分且在减小的压力下火焰密封该管。在20h的时间内在倾斜的管炉中将管从室温加热到1100℃,且然后将温度保持在1100℃下持续10h。然后切断该炉且允许冷却。
冷却后,将如此制造的碲化物在玛瑙研钵中粉碎以制造具有小于30μm的颗粒尺寸的粉末。在3000kp/cm2的压力下,在室温下对这些粉末施压,以制造具有13mm的直径的圆盘。
在每一种情况下获得具有浅灰色且略带微红色光泽的圆盘。
在塞贝克实验中,在一侧上将材料加热到130℃,而将另一侧保持在30℃。借助伏特表测量断路电压。该值除以100得到结果表中所显示的平均塞贝克系数。
在第二实验中,测量电导率。在光学反射光谱中的吸收显示价带和导带之间的带隙值为2.2至2.3eV,且在每一情况下中间能级在0.8至1.3eV处。
结果表
  成分   塞贝克系数μV/℃   电导率S/cm
  (Zn<sub>0.97</sub>Mg<sub>0.03</sub>Te)<sub>0.99</sub>(Sb<sub>2</sub>Te<sub>3</sub>)<sub>0.01</sub>   220   1
  (Zn<sub>0.98</sub>Mg<sub>0.02</sub>Te)<sub>0.96</sub>(GeTe)<sub>0.04</sub>   160   0.1
  (Zn<sub>0.96</sub>Mg<sub>0.04</sub>Te)<sub>0.98</sub>(PbTe)<sub>0.02</sub>   200   0.3
  (ZnTe)<sub>0.98</sub>(Sb<sub>2</sub>Te<sub>3</sub>)<sub>0.02</sub>   100   2.5
  (ZnTe)<sub>0.98</sub>(GeTe)<sub>0.02</sub>   220   0.2
  (ZnTe)<sub>0.98</sub>(SnTe)<sub>0.02</sub>   170   0.5
  (ZnTe)<sub>0.995</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>0.005</sub>   120   0.1
  (ZnTe)<sub>0.99</sub>(Mg<sub>3</sub>Sb<sub>2</sub>)<sub>0.01</sub>   90   4
  (ZnTe)<sub>0.99</sub>(Mg<sub>3</sub>Bi<sub>2</sub>)<sub>0.01</sub>   70   3
  (ZnTe)<sub>0.98</sub>(Sb<sub>2</sub>Te<sub>3</sub>)<sub>0.01</sub>(Mg<sub>3</sub>Sb<sub>2</sub>)<sub>0.01</sub>   80   0.4
  (ZnTe)<sub>0.98</sub>(Sb<sub>2</sub>Te<sub>3</sub>)<sub>0.01</sub>(Zn<sub>3</sub>Sb<sub>2</sub>)<sub>0.01</sub>   70   0.2
在结果表中的后两种成分是根据本发明的分子式(I)的和分子式(II)的半导体材料构成的组合物的实例,且可以通过分子式(III)来描述:
(Zn1-xMgxTe)1-u-v(MnTem)u(MeaMb)v               (III)
其中u+v=y。

Claims (17)

1.一种光伏有源半导体材料,其是分子式(I)的、分子式(II)的或它们的组合物的材料:
(I)(Zn1-xMgxTe)1-y(MnTem)y
(II)(ZnTe)1-y(MeaMb)y,其中
MnTem和MeaMb均为掺杂剂,其中M是选自硅、锗、锡、铅、锑和铋的至少一种元素,而Me是选自镁和锌的至少一种元素,且
x=0至0.5
y=0.0001至0.05
n=1至2
m=0.5至4
a=1至5,以及
b=1至3。
2.一种包括光伏有源半导体材料的光伏电池,其中所述光伏有源半导体材料是分子式(I)的、分子式(II)的或它们的组合物的材料:
(I)(Zn1-xMgxTe)1-y(MnTem)y
(II)(ZnTe)1-y(MeaMb)y,其中
MnTem和MeaMb均为掺杂剂,其中M是选自硅、锗、锡、铅、锑和铋的至少一种元素,而Me是选自镁和锌的至少一种元素,且
x=0至0.5
y=0.0001至0.05
n=1至2
m=0.5至4
a=1至5,以及
b=1至3。
3.根据权利要求2的光伏电池,其中所述掺杂剂是选自Si3Te3、GeTe、SnTe、PbTe、Sb2Te3、Bi2Te3、Mg2Si、Mg2Ge、Mg2Sn、Mg2Pb、Mg3Sb2、Mg3Bi2、ZnSb、Zn3Sb2和Zn4Sb3的至少一种化合物。
4.根据权利要求2的光伏电池,其包括所述分子式(I)的、所述分子式(II)的或它们的组合物的材料的至少一个p导电吸收层。
5.根据权利要求2的光伏电池,包括n导电透明层,所述n导电透明层包括选自氧化铟锡、掺杂氟的氧化锡、掺杂锑的氧化锌、掺杂镓的氧化锌、掺杂铟的氧化锌和掺杂铝的氧化锌的至少一种半导体材料。
6.根据权利要求2的光伏电池,其包括至少一个p导电层、至少一个n导电层、以及基底,所述至少一个p导电层包括所述分子式(I)的、所述分子式(II)的或它们的组合物的材料,所述基底为涂敷有导电材料的玻璃板、柔性金属箔或柔性金属片。
7.一种用于制造根据权利要求1的光伏有源半导体材料或者根据权利要求2至6中任何一项的光伏电池的方法,其包括制造分子式Zn1-xMgxTe或ZnTe的半导体材料的层以及将掺杂剂MnTem或MeaMb引入到所述层中。
8.根据权利要求7的方法,其中制造具有0.1至20μm的厚度的所述半导体材料的层。
9.根据权利要求7的方法,其中通过选自溅射、电化学沉积和无电沉积的至少一种沉积工艺来制造所述层。
10.根据权利要求7的方法,其中通过以下步骤制造分子式Zn1-xMgxTe的溅射靶,其中0<x≤0.5:
a)Zn、Te和Mg在抽空的熔融石英管中在800至1200℃下,反应1至100小时,以给出材料,
b)在基本上排除大气中的氧和湿气的条件下冷却之后,磨碎所述材料,以给出具有1至30μm的颗粒尺寸的粉末,以及
c)在300至1200℃的温度下,在5至500MPa的压力下,以及0.2至10小时的施压时间下,热压所述粉末。
11.根据权利要求7的方法,其中通过以下步骤制造分子式ZnTe的溅射靶:
a)Zn和Te在抽空的熔融石英管中在800至1200℃下,反应1至100小时,以给出材料,
b)在基本上排除大气中的氧和湿气的条件下冷却之后,磨碎所述材料,以给出具有1至30μm的颗粒尺寸的粉末,以及
c)在300至1200℃的温度下,在5至500MPa的压力下,以及0.2至10小时的施压时间下,热压所述粉末。
12.根据权利要求7的方法,其中通过以下步骤制造分子式(Zn1-xMgxTe)1-y(MnTem)y的溅射靶,其中0<x≤0.5:
a)Zn、Te、Mg和M在抽空的熔融石英管中在800至1200℃下,反应1至100小时,以给出材料,
b)在基本上排除大气中的氧和湿气的条件下冷却之后,磨碎所述材料,以给出具有1至30μm的颗粒尺寸的粉末,以及
c)在300至1200℃的温度下,在5至500MPa的压力下,以及0.2至10小时的施压时间下,热压所述粉末。
13.根据权利要求7的方法,其中通过以下步骤制造分子式(ZnTe)1-y(MnTem)y的溅射靶:
a)Zn、Te和M在抽空的熔融石英管中在800至1200℃下,反应1至100小时,以给出材料,
b)在基本上排除大气中的氧和湿气的条件下冷却之后,磨碎所述材料,以给出具有1至30μm的颗粒尺寸的粉末,以及
c)在300至1200℃的温度下,在5至500MPa的压力下,以及0.2至10小时的施压时间下,热压所述粉末。
14.根据权利要求7的方法,其中通过以下步骤制造分子式(ZnTe)1-y(MeaMb)y的溅射靶:
a)Zn、Te、Me和M在抽空的熔融石英管中在800至1200℃下,反应1至100小时,以给出材料,
b)在基本上排除大气中的氧和湿气的条件下冷却之后,磨碎所述材料,以给出具有1至30μm的颗粒尺寸的粉末,以及
c)在300至1200℃的温度下,在5至500MPa的压力下,以及0.2至10小时的施压时间下,热压所述粉末。
15.根据权利要求10或11的方法,其中在所述步骤b)中,使得在所述步骤a)中获得的所述材料与掺杂剂MnTem一起研磨。
16.根据权利要求11的方法,其中在所述步骤b)中,使得在所述步骤a)中获得的所述材料与掺杂剂MeaMb一起研磨。
17.根据权利要求10至14中任何一项的方法,其中在400至700℃的温度下执行所述步骤c)。
CN200680036753A 2005-10-06 2006-09-29 光伏有源半导体材料、光伏电池、及其制造方法 Expired - Fee Related CN100576571C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005047907A DE102005047907A1 (de) 2005-10-06 2005-10-06 Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
DE102005047907.3 2005-10-06

Publications (2)

Publication Number Publication Date
CN101278406A CN101278406A (zh) 2008-10-01
CN100576571C true CN100576571C (zh) 2009-12-30

Family

ID=37499579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200680036753A Expired - Fee Related CN100576571C (zh) 2005-10-06 2006-09-29 光伏有源半导体材料、光伏电池、及其制造方法

Country Status (9)

Country Link
US (1) US20080210304A1 (zh)
EP (1) EP1935031A2 (zh)
JP (1) JP4954213B2 (zh)
KR (1) KR101312202B1 (zh)
CN (1) CN100576571C (zh)
AU (1) AU2006298686A1 (zh)
DE (1) DE102005047907A1 (zh)
TW (1) TW200733404A (zh)
WO (1) WO2007039562A2 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037242A2 (en) * 2010-09-14 2012-03-22 E. I. Du Pont De Nemours And Company Glass-coated flexible substrates for photovoltaic cells
US20120064352A1 (en) * 2010-09-14 2012-03-15 E. I. Du Pont De Nemours And Company Articles comprising a glass - flexible stainless steel composite layer
CN102674696B (zh) * 2011-03-17 2015-08-26 比亚迪股份有限公司 一种玻璃粉及其制备方法和一种导电银浆及其制备方法
US8361651B2 (en) * 2011-04-29 2013-01-29 Toyota Motor Engineering & Manufacturing North America, Inc. Active material for rechargeable battery
JP6546791B2 (ja) * 2015-06-16 2019-07-17 地方独立行政法人東京都立産業技術研究センター 光電変換装置
KR101778941B1 (ko) 2015-10-02 2017-09-15 한국세라믹기술원 전기화학적 리튬화를 이용한 ZnSb 나노시트의 제조방법
CN115108831B (zh) * 2022-06-15 2023-10-10 先导薄膜材料(广东)有限公司 一种碲化锌掺杂靶材及其制备方法与应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428921A1 (fr) * 1978-06-12 1980-01-11 Commissariat Energie Atomique Procede de realisation de diodes electroluminescentes et/ou photodetectrices
JPS5831584A (ja) * 1981-08-19 1983-02-24 Matsushita Electric Ind Co Ltd 太陽電池の製造方法
US4710589A (en) * 1986-10-21 1987-12-01 Ametek, Inc. Heterojunction p-i-n photovoltaic cell
JP2771414B2 (ja) * 1992-12-28 1998-07-02 キヤノン株式会社 太陽電池の製造方法
JPH088461A (ja) * 1994-06-22 1996-01-12 Sony Corp 発光受光素子
US6239453B1 (en) * 1996-06-19 2001-05-29 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same, and method for manufacturing optoelectronic material
US5863398A (en) * 1996-10-11 1999-01-26 Johnson Matthey Electonics, Inc. Hot pressed and sintered sputtering target assemblies and method for making same
CN1196208C (zh) * 1997-10-24 2005-04-06 株式会社新王磁材 硅基导电材料及其制造方法
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
JP2003179243A (ja) * 2001-08-31 2003-06-27 Basf Ag 光電池活性材料およびこれを含む電池
US7605327B2 (en) * 2003-05-21 2009-10-20 Nanosolar, Inc. Photovoltaic devices fabricated from nanostructured template
JP2007535129A (ja) * 2003-12-01 2007-11-29 ザ レジェンツ オブ ザ ユニバーシティー オブ カリフォルニア 光起電装置用の多重帯域半導体組成物

Also Published As

Publication number Publication date
WO2007039562A3 (de) 2008-01-17
KR20080066756A (ko) 2008-07-16
DE102005047907A1 (de) 2007-04-12
TW200733404A (en) 2007-09-01
JP2009512181A (ja) 2009-03-19
JP4954213B2 (ja) 2012-06-13
KR101312202B1 (ko) 2013-09-27
AU2006298686A1 (en) 2007-04-12
WO2007039562A2 (de) 2007-04-12
US20080210304A1 (en) 2008-09-04
EP1935031A2 (de) 2008-06-25
CN101278406A (zh) 2008-10-01

Similar Documents

Publication Publication Date Title
US20080163928A1 (en) Photovoltaic Cell Containing a Semiconductor Photovoltaically Active Material
CN100576571C (zh) 光伏有源半导体材料、光伏电池、及其制造方法
Saha et al. Boosting the efficiency of single junction kesterite solar cell using Ag mixed Cu 2 ZnSnS 4 active layer
CN101351894B (zh) 光电有源半导体材料以及光电池
US8084682B2 (en) Multiple band gapped cadmium telluride photovoltaic devices and process for making the same
KR20090096637A (ko) 투명한 전도성 필름의 반응성 스퍼터 증착 방법
US20130213478A1 (en) Enhancing the Photovoltaic Response of CZTS Thin-Films
CN102453863B (zh) 溅射基于碲化镉的薄膜光伏器件中使用的硫化镉层的方法
JP2017507872A (ja) 新規な化合物半導体及びその活用
Hovel Photovoltaic materials and devices for terrestrial solar energy applications
Lee et al. Sputtered Cd1− xZnxTe films for top junctions in tandem solar cells
US20140291147A1 (en) Target materials for fabricating solar cells
JP6359525B2 (ja) 太陽光発電モジュール
EP2708500B1 (en) Novel compound semiconductor and usage for same
US20120125425A1 (en) Compound semiconductor solar cell and method of manufacturing the same
EP2708501B1 (en) Novel compound semiconductor and usage for same
US20150357496A1 (en) Core-shell particle, upconversion layer, and photoelectric conversion device
JP6539541B2 (ja) 太陽光発電モジュール
Tikkiwal et al. A review on sputter deposited CZTS based thin film solar cells
EP3447812B1 (en) Novel compound semiconductor and use thereof
Shovan et al. Maximizing the solar output power using hybrid (CdS/ZnSe) buffer for CIGS thin film solar cell
Palekis Cadmium Telluride/Cadmium Sulfide Thin Film Solar Cells Fabricated on Flexible Substrates
Schock Prospects of thin film solar cells: Towards competitive efficiencies
Chinnaiyah et al. Characterization of Thermally Evaporated Cu2. 2Zn1Sn0. 8S4. Thin Film for Solar Cell Applications
KEY et al. ITY O

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091230

Termination date: 20140929

EXPY Termination of patent right or utility model