EP1922909B1 - Chalumeau a plasma a vapeur d'eau - Google Patents
Chalumeau a plasma a vapeur d'eau Download PDFInfo
- Publication number
- EP1922909B1 EP1922909B1 EP06774764.2A EP06774764A EP1922909B1 EP 1922909 B1 EP1922909 B1 EP 1922909B1 EP 06774764 A EP06774764 A EP 06774764A EP 1922909 B1 EP1922909 B1 EP 1922909B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burner
- cathode
- vapor plasma
- plasma burner
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3457—Nozzle protection devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3489—Means for contact starting
Definitions
- the invention relates to a steam plasma burner with a burner handle and a burner body, wherein in the burner body, a liquid supply, a heater, a combustion chamber, a cathode connected to the cathode holder and a nozzle formed as an anode is arranged with an outlet opening.
- Liquid or water is passed from a tank via a corresponding line to the burner and heated there by means of a heater to steam and passed through corresponding channels in the combustion chamber, where it generates a plasma as a plasma-forming medium.
- the plasma jet exits the nozzle without current, where it can be used to melt workpieces due to the high energy density. Since the plasma jet flows out of the nozzle of the burner without current and no arc is generated between the nozzle to the workpiece to be machined, non-conductive materials can be thermally processed. In addition to the cutting of workpieces can be carried out by means of a steam plasma burner also joining workpieces.
- An arc plasma burner of the objective type, in which the container for the working fluid is integrated in the burner is in the EP 0 640 426 A1 described.
- the EP 1 050 200 B1 describes a steam plasma burner, which is specially designed for the longest possible duration for a cutting process.
- the US 3 242 305 A describes a plasma torch having an axially displaceable electrode. By lifting the electrode from the nozzle, a compact ignition can be made.
- the JP 2004 268089 describes a water vapor plasma burner of the subject type with increased amount of storable liquid for a longer operational readiness.
- the object of the present invention is to provide an above-mentioned water vapor plasma burner, which allows the most accurate ignition of the arc and can be cooled as well as possible for optimal operation.
- the object of the invention is achieved by an abovementioned water vapor plasma burner, in which the liquid supply to the combustion chamber arranged in the burner body is designed such that the supplied liquid is first guided along the cathode holder via a cooling channel, and then runs along the heating device to the combustion chamber.
- a steam plasma burner is provided, the cathode is better cooled by the liquid or the water. Due to the heat absorption of the liquid less energy is needed for the evaporation in the sequence.
- a space bounded by a piston element is arranged around the cathode holder, which space is connected to the liquid feed line, so that the space is filled by supplying liquid and the cathode holder with the cathode lifts off from the nozzle.
- the shape of the tip of the cathode preferably coincides with the shape of the inside of the nozzle.
- sharp edges or corners are preferably avoided.
- sealing rings are preferably arranged on the cathode holder. These sealing rings are formed of elastic material which can withstand the usual temperatures of water vapor plasma torches, for example of silicone compounds or Teflon composites. About the or the sealing rings can also be done centering of the cathode holder in the surrounding cylinder of the water vapor plasma burner.
- the cathode holder has an electrically insulating coating.
- the coating should have a good electrical insulation but also a good heat conduction to dissipate the heat generated.
- a sealing of the insulating coating preferably takes place.
- the cathode of the steam plasma burner according to a further feature of the invention consists of copper or a copper alloy.
- the cathode In order to protect the cathode from the high temperatures that occur, it can be at least partially provided with an electrical insulation, in particular a ceramic coating.
- this is preferably connected to the cathode holder via a thread.
- the thread is relatively long.
- the cathode has a stop flange which prevents the cathode from being turned too far into the cathode holder, which could lead to destruction of the thread.
- the joint between the cathode and cathode holder is sealed via the stop flange and prevents ingress of the working medium.
- a device for preventing rotation is preferably arranged on the cathode holder, which is formed, for example, by an axis which is arranged in a transverse hole of the cathode holder.
- the cathode holder is surrounded by at least one cooling channel, which is in communication with the liquid supply, so that a liquid, in particular water or a corresponding water mixture, is used as a cooling medium.
- the liquid is conveyed from the liquid feed line into a chamber around the cathode holder and conveyed along the at least one cooling channel around the cathode holder, so that the cathode holder is cooled by the liquid. Since the liquid of the steam plasma burner is used as the cooling medium, no separate cooling circuit with its own cooling medium needs to be arranged.
- the at least one cooling channel runs along the cathode holder, preferably in a spiral shape. This guidance of the cooling channel ensures a uniform distribution of the water around the cathode holder. In addition to the cooling channel, it is advantageous if a narrow annular gap remains free around the entire cathode holder into which the cooling medium can penetrate. As a result, a secure wetting of the entire surface of the cathode holder is achieved and prevents local overheating of the cathode holder.
- the heater preferably has a spiral channel for passing the liquid, in which it is evaporated.
- the spiral-shaped channel has the advantage that the liquid vaporized in the heating device, which is usually formed by an electric heater, is swirled and enters the combustion chamber in this swirling state.
- a circuit breaker may be provided which is actuated only when properly arranged housing.
- This circuit breaker may be formed by a micro-button, which is actuated by the properly screwed or plugged housing. First when the circuit breaker is closed, a supply of liquid and switching on the electrical supply is possible.
- the nozzle may also have cooling channels for guiding a cooling fluid.
- a certain cooling of the nozzle can also take place in that the nozzle is connected via a thread to the housing.
- the heat generated at the nozzle can be dissipated via the thread to the housing.
- a spacer can be arranged on the nozzle.
- the spacer is preferably arranged annularly around the outlet opening.
- the spacer may also be made in one piece with the nozzle.
- the spacer may be formed by a clip-on wire hanger. This offers a particularly simple and cost-effective implementation possibility.
- the spacer may be formed by an attachable protective sleeve.
- the spacer is formed from or coated with electrically insulating material. As a result, the current-carrying anode is isolated from the environment in an untransferred arc.
- a steam cutting machine 1 having a base apparatus 1a for a water vapor cutting method.
- the base unit 1a comprises a power source 2, a control device 3 and a blocking element 4 associated with the control device 3.
- the blocking element 4 is connected to a container 5 and a steam plasma burner 6 comprising a burner handle 6a and a burner body 6b via a supply line 7 the steam plasma burner 6 can be supplied with a liquid 8 arranged in the container 5.
- the supply of the steam plasma burner 6 with electrical energy via lines 9, 10 from the power source. 2
- a cooling circuit 11 For cooling the steam plasma burner 6 this is connected via a cooling circuit 11 at best with the interposition of a flow monitor 12 with a liquid container 13.
- the cooling circuit 11 can be started by the control device 3 and thus a cooling of the burner 6 via the cooling circuit 11 can be achieved.
- the burner 6 is connected via cooling lines 14, 15 with the liquid container 13.
- the base unit 1a may have an input and / or display device 16, via which the most different parameters or operating modes of the steam cutting device 1 can be set and displayed.
- the parameters set via the input and / or display device 16 become the control device 3 forwarded, which controls the individual components of the steam cutting device 1 accordingly.
- the steam plasma burner 6 can have at least one operating element 17, in particular a pushbutton 18.
- the user can notify by activating and / or deactivating the button 18 of the control device 3 from the burner 6 that a steam cutting process should be started or performed.
- presettings can be made, for example, at the input and / or display device 16, in particular that the material to be cut, the liquid used and, for example, characteristics of the current and the voltage are predefined.
- further operating elements can be arranged on the burner 6, via which one or more operating parameters of the steam cutting device 1 are set by the burner 6.
- these controls can be connected directly via lines or via a bus system to the base unit 1a, in particular the control device 3.
- the control device 3 activates after pressing the button 18, the individual components required for the steam cutting process. For example, first a pump (not shown), the blocking element 4 and the current source 2 are driven, whereby a supply of the burner 6 with the liquid 8 and electrical energy is introduced. Subsequently, the control device 3 activates the cooling circuit 11, so that a cooling of the burner 6 is made possible. By supplying the burner 6 with the liquid 8 and with energy, in particular with current and voltage, the liquid 8 is now in the burner 6 in a gas 19, in particular in plasma, converted at high temperature, so that by the burner from the sixth outflowing gas 19, a cutting process on a workpiece 20 can be performed.
- the Fig. 2a and 2b show schematic representations of a steam plasma burner 6 according to the invention, in particular the burner nozzle 6b, in the idle state and in the operating state.
- the steam plasma burner 6 has a housing 21 in which a cathode 22 is arranged, which is connected to the power source 2.
- the anode 24 formed as a nozzle 23 is connected to the positive pole of the power source 2.
- the axially displaceable cathode 22 according to the invention is pressed against the nozzle 23. In this mode, no arc can be ignited between the cathode 22 and the anode 24 because of a short circuit.
- the heating device 25 contained in the steam plasma burner 6 for evaporating the water can already be switched on, so that the working medium is already preheated.
- a non-transmitted arc is in accordance with Fig. 2b switched on the supply of the working fluid in the present case, the liquid 8, whereby the axially displaceable cathode 22 lifts from the nozzle 23 and ignited in the presence of a corresponding current, an arc between the cathode 22 and the anode 24.
- the evaporated water in the heater is passed into the combustion chamber 27, where it serves as a medium for a plasma jet.
- the plasma jet is forced out through the opening 25 in the nozzle 23 and, because of its high energy density, can be used for cutting but also for joining workpieces 20.
- Fig. 3a and 3b show an embodiment of a steam plasma burner 6, in particular burner insert, in a sectional view.
- the water vapor plasma burner 6 is at rest, where the cathode 22 is pressed against the anode 23 formed as a nozzle 23.
- the steam plasma burner comprises a housing 21, a heater 26, a combustion chamber 27, in which the vaporized liquid 8 is formed as a medium for the plasma jet, which emerges through the outlet opening 25 of the nozzle 23.
- the cathode 22 is connected to a cathode holder 28, preferably via a screw thread 29.
- the cathode holder 28 is pressed against the nozzle 23 via a spring 30 (shown in dashed lines).
- the steam plasma burner 6 is supplied with the liquid 8.
- the cathode 22 is designed to be axially displaceable with the cathode holder 28.
- the liquid supply line 32 is available the cathode holder 28 in such a way that when the liquid is supplied, the cathode 22 is lifted from the nozzle 23, so that an arc between the cathode 22 and the anode 24 can be ignited. This happens because the liquid 8 is guided by the liquid supply line 32 into a space around the cathode holder 28, which is bounded by a piston element 31. By the water pressure, the piston member 31 is moved together with the cathode holder 28 and the cathode 22 against the force of the spring 30 to the rear, as in Fig. 3b shown.
- the liquid 8 then passes via a cooling channel 33, which is preferably arranged spirally around the cathode holder 28, to a deflecting element 34, which is designed as a sealing ring 35.
- the sealing ring 35 also allows a centered mounting of the axially displaceable cathode holder 28.
- the liquid 8 is returned to the heater 26, where it is evaporated in a spiral channel 37. Due to the helical arrangement of the channel 37, the vaporized liquid 8 in an annulus 38, which merges into the combustion chamber 27, swirled.
- the plasma-capable medium is formed by the arc between the cathode 22 and the anode 24 to a plasma jet, which emerges via the outlet opening 25 of the nozzle.
- the thread 29 for connecting the cathode 22 to the cathode holder 28 is formed as long as possible. So that the cathode 22 is not screwed too far into the cathode holder 28, there is a stop flange 39 at the cathode 22.
- the cathode 22 may be made of copper or a copper alloy at best with a ceramic coating.
- an anti-rotation protection can be arranged, which can be formed, for example, by an axis 40 in a transverse hole 41.
- the nozzle 23 forms a further wearing part which can be exchanged, for example via a thread 42, with the housing 21 or another. Part of the steam plasma burner 6 may be connected. About a sealing ring 43 is a seal of the Nozzle 23 opposite the combustion chamber 27. At the nozzle 23, a spacer 44 may be arranged, which is arranged around the outlet opening 25 and the nozzle 23 from damage by contact of the workpiece 20 (not shown) protects.
- the spacer 44 which may be formed by a clip-on wire hanger or an attachable protective sleeve, is preferably formed from or coated with an electrically insulating material.
- a circuit breaker 45 may be arranged, which is operable in a properly arranged housing 21. This ensures that operation of the steam plasma burner 6 is possible only when the housing 21 is properly fastened. As a result, injuries are effectively prevented by, for example, touching the heater 26.
- Fig. 4 is now the entire steam burner 6, so the burner handle 6a and the burner body 6b, shown schematically and partially cut, wherein schematically the connection of a hose assembly 46, in which all lines are summarized, indicated.
- a closed cooling circuit 11 has been created in the burner handle 6a by connecting the cooling circuit feed line 47 to the cooling circuit return line 48, for example via a connecting element 49.
- the connecting element 49 has a bypass line 50, which is connected to the liquid supply line 32 in the burner body 6b, as indicated schematically.
- the bypass line 50 preferably has a smaller cross section than the cooling circuit feed line 47 and the cooling circuit return line 48, so that only a small proportion of liquid 8 is taken from the closed cooling circuit 11 in the burner handle 6a.
- a corresponding element or valve in the connecting element 49 is arranged, via which the amount of liquid to be removed can be adjusted electronically or mechanically, so that only a certain amount or a certain volume is passed into the burner body 6b.
- This configuration of the steam burner 6 now ensures that the user finds optimal cooling of the burner handle 6a and thus it can not happen that the heat transferred back from the burner body 6b heats the burner handle 6a to such an extent that the user can cause burns Handle of the torch handle 6a becomes so hot that the user can no longer pick it up.
- a much higher flow velocity in the cooling circuit is made possible because a larger cross-section of the cooling circuit supply line 47 and the cooling circuit return line 48 can be used as if the cooling circuit 11 would be performed on the burner body 6b, as in the burner body 6a less space is available. This can also be transported away more heat returned.
- this also ensures that when terminating a cutting process, the liquid 8 can be better recycled from the burner body 6b, as a Durckabfall arises and thus the liquid 8 is automatically withdrawn into the cooling circuit, ie, that when finishing the process, the pressure in the Cooling circuit inlet 47 and cooling circuit return line 48 is reduced, but in the burner body 6b, in particular in the liquid supply 32 due to the smaller cross section is still upright, so that the liquid 8 from the burner body 6b, in particular the liquid supply line 32, now in the cooling circuit 11, ie in the cooling circuit supply line 47 or cooling circuit return line 48, flows back and the hot liquid 8 is immediately removed via the cooling circuit 11 in the burner handle 6a.
- overheating of the torch body 6b after completion of the cutting process is prevented.
- bypass line 50 may have the same cross-section or diameter as the cooling circuit feed line 47 and the cooling circuit return line 48, since in the burner body 6b, in particular in the liquid feed line 32, a reduction in diameter or diameter reduction is performed, so that only as much liquid 8 to the combustion chamber 27, which is necessary for a cutting or welding process, wherein a Control of the amount of liquid 8, however, can be done via the pressure.
- the button 18 is designed as a safety switch 51, which ensures that when storing the steam burner 6, this safety switch 51 can not be activated.
- the safety switch 51 has a safety bar 52, which is arranged via a switching element 53.
- the safety latch 52 is a release device, which may be executed for example by a micro-switch (not shown), activated, whereby a signal is sent to the control device 3 by pressing the switching element 53.
- a release device ensures that only when you press the safety bar 52, the switching element 53 can be activated so that when a broken safety bar 52, the switching element 53 can not be activated.
- the cathode 22 is designed accordingly, so that the heat from the region of the combustion chamber 27 can be passed into the underlying region of the cathode holder 28.
- the cathode 22 has a plane or planar end face which, when screwed into the cathode holder 28, preferably has a full surface connection with the material of the cathode holder 28. This ensures that the rear stop of the cathode 22 with the cathode holder 28 is used for optimal heat dissipation and thus more heat energy via the screw thread 29 and the rear stop of the cathode 22 can be discharged.
- the cathode holder 28 has a coating, in particular a ceramic coating with additional sealing layer, whereby an even better heat dissipation from the cathode holder 28 is given to the liquid 8 of the parallel running cooling channel.
- the sealing layer is formed of resin base, whereby high temperature resistance is given.
- the Kermik layer preferably has a thickness of between 100 ⁇ m and 400 ⁇ m, in particular 200 ⁇ m.
- the surface of the ceramic coating may have a certain structure, in particular the largest possible surface roughness (roughness depth), so that the surface is enlarged and thus more heat can be dissipated.
- a roughness depth in the region of the seal of the cathode holder 28, a roughness depth of 0.2 .mu.m to 1 .mu.m, preferably 0.5 .mu.m, on, so that a permanent seal is given.
- this at the threaded neck has a cylindrical portion which is between 2mm to 5mm in length, and whose outer diameter corresponds to the inner diameter of the screw thread 29 in the cathode holder 28.
- a centering and alignment is achieved, so that by a simple rotational movement and pressure, the cathode can be easily screwed into the cathode holder 28.
- the cathode 22 in the region of the thread on a centering surface which is arranged in the end region of the thread in the direction of the combustion chamber 27, that is, that the thread between the cylindrical portion and the centering surface is formed.
- the centering surface has a certain length between 2mm and 8mm, preferably 4.5mm.
- transverse hole 40 not only serves as torsion protection, but also as a defined stop when lifting the cathode 22, in particular of the cathode holder 22, is responsible.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Arc Welding Control (AREA)
Claims (17)
- Chalumeau à plasma à vapeur d'eau (6) avec un manche de chalumeau (6a) et un corps de chalumeau (6b), une conduite d'alimentation en liquide (32), un dispositif de chauffage (26), une chambre de combustion (27), une cathode (22) raccordée à un support de cathode (28) et une anode (24) constituée en tant que buse (23) avec une ouverture de sortie (25) étant disposés dans le corps de chalumeau (6b), caractérisé en ce que la conduite d'alimentation en liquide (32) disposée dans le corps de chalumeau (6b) et conduisant à la chambre de combustion (27) est constituée de telle sorte que le liquide (8) acheminé est d'abord conduit le long du support de cathode (28) par le biais d'un canal de refroidissement (33), et puis s'écoule le long du dispositif de chauffage (26) vers la chambre de combustion (27).
- Chalumeau à plasma à vapeur d'eau (6) selon la revendication 1, caractérisé en ce que, autour du support de cathode (28), il est disposé un espace, limité par un élément de piston (31), qui est raccordé à la conduite d'alimentation en liquide (32) de telle sorte que l'espace est rempli par l'amenée de liquide (8), et le support de cathode (28) avec la cathode (22) se soulève de la buse (23).
- Chalumeau à plasma à vapeur d'eau (6) selon la revendication 1 ou 2, caractérisé en ce que la forme de la pointe de la cathode (22) coïncide avec la forme du côté intérieur de la buse (23).
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 3, caractérisé en ce que des bagues d'étanchéité (35) sont disposées sur le support de cathode (28).
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 4, caractérisé en ce que le support de cathode (28) présente un revêtement électriquement isolant et de préférence un scellement.
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 5, caractérisé en ce que la cathode (22) se compose de cuivre ou d'un alliage de cuivre.
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 6, caractérisé en ce que la cathode (22) est munie au moins partiellement d'une isolation électrique, en particulier d'un revêtement céramique.
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 7, caractérisé en ce que la cathode (22) est raccordée au support de cathode (28) par le biais d'un filetage (29).
- Chalumeau à plasma à vapeur d'eau (6) selon la revendication 8, caractérisé en ce que la cathode (22) présente une bride de butée (39).
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 9, caractérisé en ce que, sur le support de cathode (28), il est disposé un dispositif de protection anti-torsion qui est par exemple formé d'un axe (40) qui est disposé dans un trou transversal (41) du support de cathode (28).
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 10, caractérisé en ce que le support de cathode (28) est entouré d'au moins un canal de refroidissement (33) qui est en liaison avec la conduite d'alimentation en liquide (32) de telle sorte que de l'eau peut être utilisée en tant qu'agent de refroidissement.
- Chalumeau à plasma à vapeur d'eau (6) selon la revendication 11, caractérisé en ce que le canal de refroidissement (33) au moins au nombre de un est placé le long du support de cathode (28), de préférence en forme de spirale.
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 12, caractérisé en ce qu'il est disposé un canal de retour (36) pour le retour du liquide vers le dispositif de chauffage (26).
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 13, caractérisé en ce que le dispositif de chauffage (26) présente un canal (37) spiralé pour le passage du liquide.
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 14, caractérisé en ce qu'il est prévu un coupe-circuit qui peut être actionné quand le boîtier (21) est disposé de façon conforme.
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 15, caractérisé en ce que la buse (23) présente des canaux de refroidissement pour conduire un fluide de refroidissement.
- Chalumeau à plasma à vapeur d'eau (6) selon l'une des revendications 1 à 16, caractérisé en ce que la buse (23) est raccordée au boîtier (21) par le biais d'un filetage (42).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0147705A AT502448B1 (de) | 2005-09-09 | 2005-09-09 | Wasserdampfplasmabrenner |
PCT/AT2006/000366 WO2007028183A2 (fr) | 2005-09-09 | 2006-09-06 | Chalumeau a plasma a vapeur d'eau |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1922909A2 EP1922909A2 (fr) | 2008-05-21 |
EP1922909B1 true EP1922909B1 (fr) | 2016-11-16 |
Family
ID=37395990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06774764.2A Not-in-force EP1922909B1 (fr) | 2005-09-09 | 2006-09-06 | Chalumeau a plasma a vapeur d'eau |
Country Status (6)
Country | Link |
---|---|
US (1) | US8212172B2 (fr) |
EP (1) | EP1922909B1 (fr) |
JP (1) | JP2009507347A (fr) |
CN (1) | CN101258785B (fr) |
AT (1) | AT502448B1 (fr) |
WO (1) | WO2007028183A2 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8975555B2 (en) | 2010-07-16 | 2015-03-10 | Hypertherm, Inc. | Protective shell for a hand held plasma cutting torch |
AT510012B1 (de) | 2010-12-29 | 2012-01-15 | Fronius Int Gmbh | Heizelement, wasserdampf-schneidgerät und brenner einer stromerzeugungsvorrichtung |
DE102014117860B4 (de) * | 2014-12-04 | 2016-09-01 | Jochen Zierhut | Verfahren zum Zünden eines Plasmabrenners und Plasmabrenner |
FR3132408A1 (fr) * | 2022-01-31 | 2023-08-04 | Akryvia | Torche de coupage plasma avec refroidissement indirect des consommables |
FR3132413A1 (fr) * | 2022-01-31 | 2023-08-04 | Akryvia | Électrode ameliorée pour une torche de coupage plasma |
CN115625471B (zh) * | 2022-10-31 | 2024-05-28 | 陕西风润智能制造研究院有限公司 | 一种利用齿轮齿条实现大型工件升降翻转的装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3501665A (en) * | 1967-01-20 | 1970-03-17 | Leitz Ernst Gmbh | Plasma torch |
US4775774A (en) * | 1985-11-29 | 1988-10-04 | Caneer Jr Clifford | Plasma arc welding apparatus |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3004189A (en) | 1959-10-05 | 1961-10-10 | Plasmadyne Corp | Combination automatic-starting electrical plasma torch and gas shutoff valve |
FR1322260A (fr) * | 1962-02-14 | 1963-03-29 | Saint Gobain | Chalumeau à flamme de plasma |
US3242305A (en) * | 1963-07-03 | 1966-03-22 | Union Carbide Corp | Pressure retract arc torch |
CH493183A (de) * | 1969-06-05 | 1970-06-30 | Lonza Ag | Verfahren zur Regelung der Strömung in einem flüssigkeitsstabilisierten Plasmagenerator |
US4791268A (en) | 1987-01-30 | 1988-12-13 | Hypertherm, Inc. | Arc plasma torch and method using contact starting |
US4902871A (en) * | 1987-01-30 | 1990-02-20 | Hypertherm, Inc. | Apparatus and process for cooling a plasma arc electrode |
JPH0688597B2 (ja) * | 1988-09-12 | 1994-11-09 | 松下電器産業株式会社 | カートリッジタンク |
IT1243170B (it) * | 1990-11-29 | 1994-05-24 | Trafimet Trafilerie Metalliche | Torcia per taglio al plasma con innesco per contatto |
EP0640426B1 (fr) | 1993-02-23 | 1997-05-02 | APUNEVICH, Alexandr Ivanovich | Pistolet a plasma a arc electrique |
JP3390788B2 (ja) * | 1993-09-13 | 2003-03-31 | 独立行政法人産業技術総合研究所 | 高周波誘導熱プラズマ発生方法および有機ハロゲン化合物の分解方法 |
AUPM470994A0 (en) * | 1994-03-25 | 1994-04-21 | Commonwealth Scientific And Industrial Research Organisation | Plasma torch condition monitoring |
US6084199A (en) * | 1997-08-01 | 2000-07-04 | Hypertherm, Inc. | Plasma arc torch with vented flow nozzle retainer |
AT406559B (de) * | 1998-01-23 | 2000-06-26 | Fronius Schweissmasch | Brenner für schneidverfahren |
DE19825555A1 (de) * | 1998-06-08 | 1999-12-09 | Plasma Scorpion Schneiden Und | Lichtbogen-Plasmagenerator |
DE10008255A1 (de) | 1999-08-03 | 2001-02-15 | Peter Puschner | Plasmabrenner |
AT411442B (de) * | 2001-02-09 | 2004-01-26 | Fronius Schweissmasch Prod | Verfahren zum löten von werkstücken |
CN2544872Y (zh) | 2002-03-25 | 2003-04-16 | 上海波宝仟赫科技有限公司 | 手持式等离子切焊机 |
JP2004111137A (ja) * | 2002-09-17 | 2004-04-08 | Fujimura Tadamasa | プラズマ反応法による水素の製造方法及び装置 |
ITBO20030016A1 (it) * | 2003-01-14 | 2004-07-15 | Cebora Spa | Torcia al plasma ad accensione per contatto. |
JP3883005B2 (ja) | 2003-03-07 | 2007-02-21 | 株式会社レイテック | スチームプラズマトーチ |
-
2005
- 2005-09-09 AT AT0147705A patent/AT502448B1/de not_active IP Right Cessation
-
2006
- 2006-09-06 WO PCT/AT2006/000366 patent/WO2007028183A2/fr active Application Filing
- 2006-09-06 JP JP2008529412A patent/JP2009507347A/ja active Pending
- 2006-09-06 EP EP06774764.2A patent/EP1922909B1/fr not_active Not-in-force
- 2006-09-06 US US11/990,814 patent/US8212172B2/en not_active Expired - Fee Related
- 2006-09-06 CN CN2006800326531A patent/CN101258785B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3501665A (en) * | 1967-01-20 | 1970-03-17 | Leitz Ernst Gmbh | Plasma torch |
US4775774A (en) * | 1985-11-29 | 1988-10-04 | Caneer Jr Clifford | Plasma arc welding apparatus |
Also Published As
Publication number | Publication date |
---|---|
EP1922909A2 (fr) | 2008-05-21 |
WO2007028183A2 (fr) | 2007-03-15 |
US20090230096A1 (en) | 2009-09-17 |
CN101258785B (zh) | 2012-10-24 |
US8212172B2 (en) | 2012-07-03 |
JP2009507347A (ja) | 2009-02-19 |
WO2007028183A3 (fr) | 2007-07-26 |
AT502448A1 (de) | 2007-03-15 |
AT502448B1 (de) | 2007-06-15 |
CN101258785A (zh) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1922909B1 (fr) | Chalumeau a plasma a vapeur d'eau | |
AT502423B1 (de) | Vorrichtung zum wechsel einer düse eines wasserdampfplasmabrenners | |
DE2025368C3 (de) | Elektrischer Lichtbogenbrenner | |
DE102008018530B4 (de) | Düse für einen flüssigkeitsgekühlten Plasmabrenner, Anordnung aus derselben und einer Düsenkappe sowie flüssigkeitsgekühlter Plasmabrenner mit einer derartigen Anordnung | |
EP2465334B1 (fr) | Capot de protection de buse et porte-capot de protection de buse ainsi que torche à plasma équipée de l'un et/ou de l'autre | |
EP2804450B1 (fr) | Pièce isolante en plusieurs parties pour une torche à arc plasma, torche et agencements associés dotés de celle-ci et procédé associé | |
EP2849542B1 (fr) | Structure d'électrodes pour torches de coupage au plasma | |
AT406559B (de) | Brenner für schneidverfahren | |
EP2449862A1 (fr) | Tuyère pour une torche à plasma refroidie par liquide ainsi que tête de torche à plasma munie de celle-ci | |
EP2855071B1 (fr) | Chalumeau pour le soudage au tungstène et au gaz inerte | |
EP2366485A1 (fr) | Appareil de soudage à l'arc muni d'une torche à refroidissement liquide controllé | |
DE102017121722B4 (de) | Brennerkörper zum thermischen Fügen, Brenner mit Brennerkörper und Fügevorrichtung | |
WO2021063670A1 (fr) | Dispositif de projection arc-fil | |
DE102006041514B4 (de) | Energiespardüse für eine Warmkammer-Druckgießmaschine | |
DE102009031857A1 (de) | Düse für einen flüssigkeitsgekühlten Plasmabrenner sowie Plasmabrennerkopf mit derselben | |
AT503647B1 (de) | Düse für einen wasserdampfplasmabrenner | |
DE4314097C2 (de) | Lichtbogenschweiß- oder -schneidbrenner | |
AT504409B1 (de) | Schutzring für einen wasserdampfplasmabrenner | |
EP1168896B1 (fr) | Dispositif, notamment torche, pour la production de plasma | |
EP4029356A2 (fr) | Pièce d'usure pour chalumeau à arc et chalumeau à plasma et chalumeau à arc et chalumeau à plasma comprenant cette pièce d'usure et procédé de découpage au plasma et procédé de fabrication d'une électrode pour un chalumeau à arc et un chalumeau à plasma | |
DE1806858C (de) | Mikroplasmabrenner | |
AT3421U1 (de) | Kaltgaskanäle | |
DE9218876U1 (de) | Plasmaspritzgerät | |
DE202006014254U1 (de) | Energiespardüse für eine Warmkammer-Druckgießmaschine | |
DE202009012491U1 (de) | Düse für einen flüssigkeitsgekühlten Plasmabrenner sowie Plasmabrennerkopf mit derselben |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080226 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: STOEGER, MAX Inventor name: SILBERMAYR, FLORIAN Inventor name: LANGEDER, HARALD Inventor name: HEINRICH, MICHAL Inventor name: HABERLER, WOLFGANG Inventor name: PAUSER, HERIBERT |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150611 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160419 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FRONIUS INTERNATIONAL GMBH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 846979 Country of ref document: AT Kind code of ref document: T Effective date: 20161215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006015243 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006015243 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170216 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
26N | No opposition filed |
Effective date: 20170817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170906 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 846979 Country of ref document: AT Kind code of ref document: T Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170316 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200925 Year of fee payment: 15 Ref country code: FR Payment date: 20200928 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200923 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201127 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006015243 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210906 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210906 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210930 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210906 |