EP1901591B1 - Allumage de lampes à décharge dans des conditions environnementales variables - Google Patents

Allumage de lampes à décharge dans des conditions environnementales variables Download PDF

Info

Publication number
EP1901591B1
EP1901591B1 EP07113856A EP07113856A EP1901591B1 EP 1901591 B1 EP1901591 B1 EP 1901591B1 EP 07113856 A EP07113856 A EP 07113856A EP 07113856 A EP07113856 A EP 07113856A EP 1901591 B1 EP1901591 B1 EP 1901591B1
Authority
EP
European Patent Office
Prior art keywords
lamp
voltage
regulation
fluorescent lamp
operating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07113856A
Other languages
German (de)
English (en)
Other versions
EP1901591A1 (fr
Inventor
Dirk Dworatzek
David Dr. Buso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonicatco GmbH and Co KG
Original Assignee
Tridonicatco GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonicatco GmbH and Co KG filed Critical Tridonicatco GmbH and Co KG
Publication of EP1901591A1 publication Critical patent/EP1901591A1/fr
Application granted granted Critical
Publication of EP1901591B1 publication Critical patent/EP1901591B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations

Definitions

  • the present invention relates to the operation of AC powered lamps, in particular fluorescent lamps, e.g. Gas discharge lamps.
  • the invention relates to the control of such lamps, taking into account the ambient conditions, such as the ambient temperature.
  • Such regulations are used in operating devices such as electronic ballasts.
  • fluorescent lamps operated with dimmable electronic ballasts can be operated close to the nominal mode - and thus at nominal power - and on the other hand with dimmed, ie reduced lamp power.
  • the operation with nominal power is relatively unproblematic compared to the operation with reduced, in particular greatly reduced lamp power.
  • the permissible lamp ambient temperatures in dimming operation are specified much narrower compared to the normal power operation. Namely, at low dimming values, the ambient temperature of the lamp plays a greater role for a stable regulation of the dimmed fluorescent lamps, ie a regulation with constant light output and in particular a regulation, which reliably prevents unwanted extinction of the lamp.
  • the stronger lamp ambient temperature dependence at low dimming levels is i.a. caused by the fact that the lamp voltage at low ambient temperatures and small lamp currents (as they occur with dimmed lamp power) increases sharply and may take inadmissibly high values.
  • the temperature in the immediate vicinity of the lamp is crucial, which does not necessarily have to be the ambient temperature of an optionally spatially and thermally separated from the lamp electronic ballast.
  • the temperature of the electronic ballast can not be used directly to assess the lamp ambient temperature.
  • the invention has accordingly set itself the task of providing an improved and simplified technique for controlling a fluorescent lamp, which can reliably prevent the lamp from extinguishing even under extreme conditions.
  • the invention now addresses this problem and proposes already during the ignition of the lamp perform the DC detection and evaluate control technology.
  • a variable DC value can be specified as a setpoint value, wherein the setpoint value can depend on the current operating state of the lamp (for example ignition, combustion mode, etc.).
  • a method for controlling the operation of at least one (typically high-frequency) AC voltage operated fluorescent lamp according to claim 1.
  • the DC control variable may depend on the operating state of the lamp - such as preheating, ignition, or operation - and thus be temporally changeable.
  • the lamp resistance can preferably be kept constant.
  • the DC voltage component can be determined on the basis of a measurement signal derived at a voltage divider.
  • the DC voltage component of the lamp voltage can be determined based on the distances between the zero crossings of the lamp voltage.
  • the regulation of the lamp operation can be digital.
  • An externally specified dimming value can be taken into account for regulating the lamp power.
  • the power of the lamp may be increased to a value higher than the externally set dimming value depending on the value of the DC voltage portion of the lamp voltage.
  • the DC voltage command variable can be specified as a digital value.
  • the lamp control circuit is designed to regulate the lamp power even before the ignition of the fluorescent lamp.
  • the DC voltage command variable may depend on the operating state of the lamp - such as preheating, ignition, or operation - or detected operating parameters and thus be temporally variable.
  • Means may be provided which keep the lamp resistance constant.
  • a voltage divider is provided for determining the DC voltage component.
  • the DC voltage component of the lamp voltage can be determined based on the distances between the zero crossings of the lamp voltage.
  • Means can be used for the digital control of the lamp power.
  • the lamp control circuit may have an input for externally preset dimming values.
  • the control circuit may, depending on the value of the DC voltage component of the lamp voltage, increase the power of the lamp to a value which is above the externally preset dimming value.
  • an electronic ballast according to claim 21.
  • According to another aspect of the present invention is a luminaire according to claim 22.
  • the illustrated dependency of the lamp voltage is due to the fact that the lamp resistance (ie the impedance of the discharge path of the lamp at the respective operating point) has both a dependence on the discharge current V Dis and on the ambient temperature T. In a certain operating point, in which the Lamp current I Dis of the ballast is kept substantially constant, thus there is a dependence of the lamp impedance Z Dis of the ambient temperature T.
  • the present invention proposes to store the usually high-frequency operating voltage for the lamp U HF targeted a DC voltage V DC from a high-impedance source, so that then used the DC component of the voltage applied to the lamp voltage as an indicator for it under which conditions the lamp is currently being operated:
  • the source voltage V DC of the DC source is divided according to the resistance ratio of internal resistance of the DC source Z i to the impedance of the lamp Z l at the current operating point, wherein the lamp resistance Z l et al depends on the ambient temperature of the lamp T. This can also be done via the resistance ratio Z L / Z i + Z L the dependence of the DC component derived from the measurement of the lamp voltage V DC, ZL on the ambient temperature T of the lamp is detected.
  • the electronic ballast can take appropriate countermeasures. It makes sense to detect the DC component of the lamp voltage V DC, ZL over a certain time range and then to average it to take account of temporal compensatory processes in the lamp.
  • the ballast can automatically increase the lamp power, for example, until the DC component of the lamp voltage V DC, ZL returns to permissible values , ie has fallen below the predetermined threshold.
  • the electronic ballast also increases the lamp power over possibly supplied from the outside setpoints (Dimmbetatione, etc.) and thus the stability of the lamp control has a higher priority than the strict compliance specified outside values (dimming commands, etc.) is granted.
  • This increase in lamp power can be restricted according to the invention to the range of low dimming values.
  • the electronic ballast decreases the lamp power again until either the DC power again predetermined threshold value for the DC component of the lamp voltage V DC, ZL is reached, or now correctly the predetermined target value (Dimmbenning, etc.) for the lamp power has been reached.
  • Fig. 1a schematically an embodiment of the present invention is shown.
  • the ballast according to the invention has an inverter 1 with two series-connected, connected to a DC voltage source DC voltage and alternately clocked transistor switches S1 and S2.
  • the switching can be done by a control unit 2, which can be realized as a digital circuit or integrated circuit (IC).
  • a load circuit is connected, which has a resonant load circuit 3 and a lamp 4.
  • the resonant load circuit 3 consists of an inductance L R , a capacitor C R and a coupling capacitor C K.
  • the lamp 4 which is schematically denoted by its internal resistance R disl , is connected to the resonant load circuit 3 and is operated by the provided by the inverter 1 high-frequency AC voltage.
  • the lamp 4 may in particular be a fluorescent lamp such as a gas discharge lamp.
  • a diode D is optionally connected in series with a preferably high-resistance resistor R_DC.
  • Resistor R_DC can also be connected directly to the DC bus voltage.
  • a direct voltage component V DC is selectively added to the alternating operating voltage of the lamp 4.
  • This DC voltage can also be superimposed in an alternative manner to the AC voltage of the fluorescent lamp.
  • a voltage divider with two resistors R1, R2 is connected in parallel to the lamp 4.
  • a measurement signal U L is tapped, which corresponds to the voltage of the lamp 4.
  • This measurement signal U L is the control unit 2 and in particular a circuit 5 and a setpoint generator 6 is supplied. On the basis of this measurement signal U L , the circuit 5 or the setpoint generator 6 can measure the alternating voltage drop across the lamp 4. Since, however, this AC voltage contains a DC voltage component, a value is also evaluated by the circuit 5 or by the setpoint generator 6, which value corresponds to the DC voltage component of the lamp voltage.
  • the measurement signal U L generated by the voltage divider is supplied to one input of a setpoint value transmitter 6.
  • This setpoint generator 6 supplies a setpoint value for the DC voltage component of the lamp voltage as a function of the lamp voltage, that is, on the measurement signal U L and / or as a function of the operating state (for example, unlit / burning mode) of the lamp (variable setpoint value).
  • the actual value or the controlled variable U DC is and the setpoint or the command variable U DC, should be a DC controller 7 is supplied, which supplies depending on the control difference between the setpoint and the actual value a manipulated variable for the regulation of the DC voltage component ,
  • This manipulated variable may relate, for example, to the clock frequency of the two switches S1, S2.
  • Fig. 1 can also be the lamp control circuit further operating parameters such as the lamp current, etc., and externally specified values (Dimmbetatione, etc.) are supplied.
  • the lamp operation can be carried out digitally.
  • Fig. 2 shows a circuit implementation of this embodiment with an up / down counter 107, which receives as a real input signal, a signal UZERO and further as control signals a high-frequency reference clock signal CLK and a reset or reset signal.
  • the signal UZERO assumes a positive and otherwise a negative voltage level during each positive half wave of the voltage applied to the terminal VL and thus detects the zero crossing of the lamp voltage.
  • the counter 107 is started at zero crossing of the lamp voltage and counts during the subsequent half cycle of the lamp voltage either up or down.
  • the counting direction of the counter 107 is reversed.
  • the current count N of the counter 103 is a comparator connected, which may be formed for example by the comparator 103 already described above. This comparator 103 compares the current counter reading N with the initialization value or the original counter reading of the counter 107. If there is no rectification effect, the counter reading N must have reached the output value N 0 again after reaching the next zero crossing of the lamp voltage. On the other hand, if the count N deviates from the output value N 0 , a DC voltage component is present in the lamp voltage.
  • the comparator 103 compares the count N with the output value N 0 within certain tolerance limits, so as not to prematurely infer the presence of a rectifying effect.
  • the output signal of the comparator 103 is fed via a clocked by a latch signal D flip-flop 108 of the measuring phase control 900, which - as described above - evaluates this signal and in particular performs an event filtered score, ie only on the presence of a DC voltage component closes if one of the comparator 103, for example, 32 times in succession each 255. period of the lamp voltage a DC voltage component is reported.
  • the system according to the invention for the reliable ignition of, for example, gas discharge lamps contains two essential components namely a control unit or a controller 11 and a controlled system 12, which comprises the above-mentioned inverter or half-bridge 1, a resonance load circuit 3 and the lamp 4.
  • the control unit 11 essentially controls two switches of the inverter 1 for providing a high-frequency alternating voltage for ignition or for operation of the gas discharge lamp 4.
  • the power P_lamp and / or the voltage V_lamp of the gas discharge lamp 4 are first detected by various known methods.
  • the lamp voltage V_lamp is supplied to a unit 14 for evaluation of the DC voltage component of the lamp voltage. This evaluation can be performed by various methods, such as those discussed above FIGS. 2 and 3 described detection of the zero crossings of the lamp voltage.
  • the actual DC voltage component of the lamp voltage is compared with a nominal value DC target, and the difference V_DC_lamp of both values is supplied to a DC controller 18.
  • a DC controller 18 Proportional controller (P controller), proportional-integral controller (PI controller), proportional-integral-derivative controller (PID controller), proportional-derivative controller (PD controller).
  • P controller Proportional controller
  • PI controller proportional-integral controller
  • PID controller proportional-integral-derivative controller
  • PD controller proportional-derivative controller
  • the DC controller 18 is preferably a PI controller.
  • the output signal of the DC controller 18 is supplied as a setpoint to another control circuit, namely a lamp power control loop.
  • An analog-to-digital converter 13 converts the analogously detected lamp power P_lamp into a digital signal which is compared as an actual value with the manipulated variable of the DC controller 18 as a sol value. The result is supplied as a control difference to a power regulator 17 for regulating the lamp power.
  • the power regulator 17 controls, for example, the frequency of the AC voltage of the lamp. Usually, the frequency of the inverter is accordingly controlled.
  • the outer or first control loop has the DC controller 18 and predetermines the nominal value DC target for the DC component on the lamp 4 depending, for example, on the operating state or also on other parameters from the lamp circuit.
  • an inner or second control loop with the power regulator 17 is provided, which then regulates the lamp operation to the (variably predetermined) DC component.
  • the rectifier effect may e.g. on older fluorescent lamps and lead to overload of the ballast.
  • the fluorescent lamp then acts in a similar way to a rectifier, preferentially passing the lamp current in one direction while being less well transmitted in the opposite direction.
  • Such a current shift between individual lamp branches can be detected by the evaluation of the impedance i. the DC voltage component of the lamp voltage can be detected.
  • the power of the lamp 4 can thus be regulated accordingly.
  • Fig. 7 shows how the DC component can be made dependent on the operating state of the lamp 4.
  • the control unit 11 lowers the frequency of the inverter 1. As a result, the voltage at the terminals of the lamp 4 increases. As long as this lamp voltage increases regularly, the DC component setpoint is reduced accordingly on a regular basis. This phase is up Fig. 7 between t2 and t3.
  • the activation of the control circuit thus ignites the lamp and keeps it safely in operation in the critical phase after ignition.
  • the inner loop detects the lamp power and thus provides the opportunity to set a defined power. Furthermore, the inner loop is designed so that it can stabilize unstable operating points of the outer circle. This is necessary when operating at low temperatures and destabilized lamps (deposition of mercury).
  • the outer control loop keeps the DC voltage of the lamp constant, which corresponds to their resistance.
  • the nominal value of the DC control loop is set to the 1% nominal power of a new lamp at nominal temperature.
  • the initial conditions here are a maximum frequency for the output of the power controller 17 and a minimum power for the output of the DC controller 18.
  • the DC control loop will now reduce the existing control difference and ignite the lamp. After being ignited, the controls are used to set the DC setpoint.
  • the evaluation of the lamp voltage is, as shown, the evaluation of the lamp voltage.
  • the prerequisite for this, however, is a constant DC current that must be supplied to the lamp.
  • the evaluation of the zeros more precisely the ratio between T_pos, time during which the signal is positive, and T_neg, time during which the signal is negative, includes information about the lamp current, as well as the information of the lamp voltage.
  • N_D ⁇ c C ⁇ 1 ⁇ * arcsin - C Irms * 2 .
  • C and C1 are each a constant
  • N_D ⁇ c C ⁇ 2 ⁇ * arcsin - C Vrms * 2 .
  • C and C2 are each a constant.
  • the always activated power control loop keeps the system stable. This means that even if the operating points are not always stable (for example, active - passive dipole, lamp - output circuit), the system is kept stable. Due to the high demands on the Ausregel mecanic of the inner control loop ensures that the inner loop is not a bottleneck with respect to settling time.
  • Another advantage is the permanently switched on power control even before the ignition of the lamp, since the system already works completely and is initialized. There are no switching and initialization must be made. The ignition timing is no longer important in this system. It can vary greatly due to the lamp and the environment, which would be a disadvantage for an optimal start.
  • the electrical properties of gas discharge lamps can vary widely under variable environmental conditions such as ambient temperature, aging state and burning time (mercury ionization).
  • a change in the electrical properties of the gas discharge lamp means a change in the voltage / current characteristic of the lamp.
  • the inventive method or operating device avoids extinction of the gas discharge lamp, by falling below the ambient condition-dependent minimum lamp current prevented.
  • the method according to the invention makes use of the determination of the environment-dependent electrical parameters and thus of the minimum current, the lamp resistance being the electrical parameter permitting this inference.
  • This lamp resistance can be determined by measurement using various known methods and forms the constant to be measured.
  • a control loop is provided according to the invention in order to keep the lamp resistance constant (constant DC current, measurement of the DC lamp voltage).
  • the activation of the control circuit ignites the lamp and keeps it safely in operation in the critical phase after ignition. Thereby, a control of the lamp is achieved, which is applied in different operating conditions of the lamp (such as preheating, ignition, operation), wherein the DC component of the lamp voltage is evaluated.
  • the control parameters adapt to the lamp condition, which is made possible by the combination of control loops.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Claims (22)

  1. Procédé pour la régulation du fonctionnement d'au moins une lampe fluorescente (4) alimentée par une tension alternative, présentant les étapes suivantes :
    - superposition (RDC, D) ciblée d'une tension continue à la lampe fluorescente (4),
    - estimation (5) de la part de tension continue de la tension de la lampe fluorescente, et
    - régulation (7, 8) du fonctionnement de la lampe fluorescente (4) au moins avant l'allumage de la lampe fluorescente (4) en prenant comme grandeur commandée l'estimation de la part de tension continue.
  2. Procédé selon la revendication 1,
    présentant les étapes suivantes avant l'allumage de la lampe fluorescente (4) :
    - superposition (D, RDC) ciblée d'une tension continue à la lampe fluorescente,
    - acquisition (5) de la part de tension continue de la tension de la lampe fluorescente, et
    - évaluation (7) de la part de tension continue de la lampe fluorescente comme grandeur d'entrée de la régulation (8) de la puissance de la lampe.
  3. Procédé selon l'une des revendications précédentes,
    la tension continue comme grandeur de réglage dépendant de l'état de fonctionnement de la lampe - comme par exemple pré-chauffage, allumage, ou fonctionnement.
  4. Procédé selon l'une des revendications précédentes,
    la résistance de la lampe étant maintenu constante.
  5. Procédé selon l'une des revendications précédentes,
    la part de tension continue étant estimée à l'aide d'un signal de mesure émanant d'un diviseur de tension (R1, R2).
  6. Procédé selon l'une des revendications précédentes,
    la part de tension continue de la tension de la lampe étant estimée à l'aide de la distance entre les passage par la valeur zéro de la tension de la lampe.
  7. Procédé selon l'une des revendications précédentes,
    la régulation (7, 8) de la puissance de la lampe s'effectuant de manière numérique.
  8. Procédé selon l'une des revendications précédentes,
    la régulation de la tension continue DC de la lampe s'effectuant de manière numérique.
  9. Procédé selon l'une des revendications précédentes,
    une valeur externe et fixée de variation d'intensité lumineuse étant prise en compte pour la régulation de la puissance de la lampe.
  10. Procédé selon la revendication 9,
    dans lequel, en fonction de la valeur de la part de tension continue de la tension de la lampe, la puissance de la lampe est augmentée à une valeur supérieure à la valeur externe et fixée de variation d'intensité lumineuse.
  11. Appareil d'alimentation pour commander au moins une lampe fluorescente (4) alimentée par une tension alternative, présentant :
    - un circuit (RDC, D) pour une superposition ciblée d'une tension continue à la lampe fluorescente (4),
    - un circuit (R1, R2, 5) pour une estimation de la tension de la lampe fluorescente (4), et
    - un circuit de régulation de la lampe (7, 8) pour une régulation du fonctionnement de la lampe fluorescente (4) au moins avant l'allumage de la lampe fluorescente (4) en prenant comme grandeur commandée l'estimation de la part de tension continue.
  12. Appareil d'alimentation selon la revendication 1,
    présentant :
    - un circuit (RDC, D) pour une superposition ciblée d'une tension continue à la lampe fluorescente,
    - un circuit pour une acquisition de la tension de la lampe fluorescente, et
    - un circuit de régulation de la lampe pour une régulation de la puissance de la lampe fluorescente, ledit circuit ayant comme grandeur d'entrée la part de tension continue de la lampe fluorescente,
    le circuit de régulation de la lampe étant configurer pour régler la puissance de la lampe déjà avant l'allumage de la lampe fluorescente.
  13. Appareil d'alimentation selon l'une des revendications 11 à 12,
    la tension continue comme grandeur de réglage dépendant de l'état de fonctionnement de la lampe (4) - comme par exemple pré-chauffage, allumage, ou fonctionnement.
  14. Appareil d'alimentation selon l'une des revendications 11 à 13,
    où des moyens maintiennent constante la résistance de la lampe.
  15. Appareil d'alimentation selon l'une des revendications 11 à 14,
    présentant un diviseur de tension (R1, R2) pour l'estimation de la part de tension continue.
  16. Appareil d'alimentation selon l'une des revendications 12 à 15,
    la part de tension continue de la tension de la lampe étant estimée à l'aide de la distance entre les passage par la valeur zéro de la tension de la lampe.
  17. Appareil d'alimentation selon l'une des revendications 12 à 16,
    présentant des moyens (8) pour une régulation numérique de la puissance de la lampe.
  18. Appareil d'alimentation selon l'une des revendications 12 à 17,
    présentant des moyens (8) pour une régulation numérique de la tension continue DC de la lampe.
  19. Appareil d'alimentation selon l'une des revendications 12 à 18,
    le circuit de régulation de la lampe présentant une entrée pour une valeur externe et fixée de variation d'intensité lumineuse.
  20. Appareil d'alimentation selon l'une des revendications 12 à 19,
    dans lequel, en fonction de la valeur de la part de tension continue de la tension de la lampe, le circuit de régulation augmente la puissance de la lampe (4) à une valeur supérieure à la valeur externe et fixée de variation d'intensité lumineuse.
  21. Ballast électronique,
    présentant un appareil d'alimentation selon l'une des revendications 12 à 20.
  22. Moyen d'éclairage,
    présentant un ballast électronique selon la revendication 21.
EP07113856A 2006-09-13 2007-08-06 Allumage de lampes à décharge dans des conditions environnementales variables Not-in-force EP1901591B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006042954A DE102006042954A1 (de) 2006-09-13 2006-09-13 Zündung von Gasentladungslampen unter variablen Umgebungsbedingungen

Publications (2)

Publication Number Publication Date
EP1901591A1 EP1901591A1 (fr) 2008-03-19
EP1901591B1 true EP1901591B1 (fr) 2009-07-29

Family

ID=37434189

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07113856A Not-in-force EP1901591B1 (fr) 2006-09-13 2007-08-06 Allumage de lampes à décharge dans des conditions environnementales variables

Country Status (4)

Country Link
EP (1) EP1901591B1 (fr)
CN (1) CN101146393B (fr)
AT (1) ATE438286T1 (fr)
DE (2) DE102006042954A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063867A1 (de) 2010-12-22 2012-06-28 Tridonic Gmbh & Co Kg Zündregelung und Zünderkennung von Gasentladungslampen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032028A1 (de) * 2009-07-07 2011-01-13 Tridonicatco Gmbh & Co. Kg Verfahren zum Betrieb von Gasentladungslampen bei niedrigen Außentemperaturen und dafür ausgelegtes Betriebsgerät
US20110241561A1 (en) * 2010-04-06 2011-10-06 Lutron Electronics Co., Inc. Method of Controlling an Electronic Dimming Ballast During Low Temperature Conditions
DE102010063989A1 (de) * 2010-12-22 2012-06-28 Tridonic Gmbh & Co. Kg Verfahren und Vorrichtung zum Betreiben einer Gasentladungslampe
AT16238U1 (de) * 2018-02-06 2019-05-15 Tridonic Gmbh & Co Kg Verfahren zum Betrieb von Leuchtmitteln bei niedrigen Außentemperaturen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4039161C2 (de) * 1990-12-07 2001-05-31 Zumtobel Ag Dornbirn System zur Steuerung der Helligkeit und des Betriebsverhaltens von Leuchtstofflampen
JP3324270B2 (ja) * 1993-04-23 2002-09-17 松下電工株式会社 放電灯点灯装置
US5559395A (en) * 1995-03-31 1996-09-24 Philips Electronics North America Corporation Electronic ballast with interface circuitry for phase angle dimming control
US6218787B1 (en) * 1998-04-20 2001-04-17 Jrs Technology Inc. Remote dimming control system for a fluorescent ballast utilizing existing building wiring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063867A1 (de) 2010-12-22 2012-06-28 Tridonic Gmbh & Co Kg Zündregelung und Zünderkennung von Gasentladungslampen
WO2012083324A1 (fr) 2010-12-22 2012-06-28 Tridonic Gmbh & Co. Kg Réglage d'allumage et détection d'allumage de lampes à décharge

Also Published As

Publication number Publication date
CN101146393B (zh) 2011-07-06
EP1901591A1 (fr) 2008-03-19
CN101146393A (zh) 2008-03-19
DE502007001177D1 (de) 2009-09-10
DE102006042954A1 (de) 2008-03-27
ATE438286T1 (de) 2009-08-15

Similar Documents

Publication Publication Date Title
EP1103165B1 (fr) Ballast electronique destine a au moins une lampe a decharge basse tension
EP1519638B1 (fr) Méthode pour commander une lampe à décharge basse pression
EP0422255B1 (fr) Ballast électronique
DE19707986B4 (de) Schaltungsanordnung zum Betreiben einer Entladungslampe
EP1901591B1 (fr) Allumage de lampes à décharge dans des conditions environnementales variables
EP1103166B1 (fr) Ballast electronique destine a au moins une lampe a decharge basse tension
EP2377372B1 (fr) Méthode, appareil et système d'éclairage
EP2258149B1 (fr) Détection du type d'une lampe hid par un ballast pour lampes multiples et système d'éclairage
EP2408272A2 (fr) Agencement de commutation et procédé de fonctionnement d'au moins une lampe à décharge
EP2208403B1 (fr) Appareil de commande pour commander le processus d'amorçage d'une lampe
EP1843645B1 (fr) Circuit pour lampes à décharge haute pression
EP1424881B1 (fr) Dispositif et méthode pour commander une lampe fluorescente
DE10209620A1 (de) EOL-Erkennung mit integrieter Wendelabfrage
EP1872635B1 (fr) Dispositifs a regulation de tube par evaluation de la temperature de tube
WO1999034650A1 (fr) Ballast electronique
EP1732365A2 (fr) Circuit et méthode pour détecter le facteur de forme d' un courant à travers une lampe ou d' une tension aux bornes d' une lampe
EP2796012B1 (fr) Procédé, appareillage d'alimentation et système d'éclairage, avec détection d'effet de redressement de lampes
EP1048190B1 (fr) Ballast electronique pour lampe a decharge
EP1040732B1 (fr) Procede de detection de changement de lampe et ballast electronique destine au fonctionnement de lampes a decharge a l'aide d'un tel procede de detection de changement de lampe
WO2013067562A2 (fr) Équipement à mode d'éclairage de secours
DE19934687A1 (de) Elektronisches Vorschaltgerät für mindestens eine Niederdruck-Entladungslampe
EP2529599A2 (fr) Appareil pour faire fonctionner des lampes à décharge de gaz
EP2119324A1 (fr) Procédé pour déterminer un facteur de crête d'un courant de lampe d'une lampe électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080404

17Q First examination report despatched

Effective date: 20080625

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007001177

Country of ref document: DE

Date of ref document: 20090910

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

BERE Be: lapsed

Owner name: TRIDONICATCO GMBH & CO. KG

Effective date: 20090831

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091029

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

26N No opposition filed

Effective date: 20100503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090806

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140626

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150901

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150831

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151029

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 438286

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150806

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007001177

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160806

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806