EP1899313A1 - Verfahren zur herstellung von enantiomerenreinen epoxiden durch adh-reduktion von alpha-abgangsgruppen-substituierten ketonen und cyclisierung - Google Patents

Verfahren zur herstellung von enantiomerenreinen epoxiden durch adh-reduktion von alpha-abgangsgruppen-substituierten ketonen und cyclisierung

Info

Publication number
EP1899313A1
EP1899313A1 EP06754193A EP06754193A EP1899313A1 EP 1899313 A1 EP1899313 A1 EP 1899313A1 EP 06754193 A EP06754193 A EP 06754193A EP 06754193 A EP06754193 A EP 06754193A EP 1899313 A1 EP1899313 A1 EP 1899313A1
Authority
EP
European Patent Office
Prior art keywords
epoxides
reduction
oso
substituted
cofactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06754193A
Other languages
German (de)
English (en)
French (fr)
Inventor
Andreas Meudt
Richard Wisdom
Claudius BÖHM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euticals GmbH
Original Assignee
Archimica GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Archimica GmbH filed Critical Archimica GmbH
Publication of EP1899313A1 publication Critical patent/EP1899313A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/24Synthesis of the oxirane ring by splitting off HAL—Y from compounds containing the radical HAL—C—C—OY
    • C07D301/26Y being hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals

Definitions

  • the invention relates to a process for the preparation of enantiomerically pure epoxides by (R) - or (S) -alkanol dehydrogenase reduction of ⁇ -leaving group-substituted ketones to the corresponding enantiomerically pure alcohols and subsequent base-induced cyclization to the corresponding enantiomerically pure epoxides (EQUATION 1 ).
  • Catalytic enantioselective standard chemical processes for the enantioselective reduction of ketones include asymmetric hydrogenation with homogeneous noble metal catalysts, reduction by organoboranes [H. C. Brown, G.G. Pai, J. Org. Chem. 1983, 48, 1784; ] derived from borohydrides and chiral diols or aminoalcohols [K. Soai, T. Yamanoi, H. Hikima, J. Organomet. Chem. 1985, 290; H.C. Brown, B.T. Cho, W.S. Park, J. Org. Chem. 1987, 52, 4020], the reduction by reagents prepared from borane and aminoalcohols [S.
  • the catalytic enantioselective standard biochemical processes for the preparation of enantiomerically pure epoxides use fermentatively baker's yeast (Saccharomyces cerevisiae) [M. de Carvalho, MT Okamoto, PJS Moran, JAR Rodrigues, Tetrahedron 1991, 47, 2073] or other microorganisms [EP 0 198 440 B1] in the so-called "whole cell method", Cryptococcus macerans [M.Imuta, KI Kawai, H. Par., J. Org. Chem. 1980, 45, 3352], or a combination from NADH2 and horse liver ADH [DD Tanner, AR Stein, J. Org. Chem. 1988, 53, 1642.].
  • the present process solves all of these problems and relates to a process for preparing enantiomerically pure epoxides by reducing ⁇ -leaving group substituted ketones with an (R) or (S) alcohol dehydrogenase (ADH) enzyme in the presence of a cofactor and optionally a suitable one
  • a system for regenerating the oxidized cofactor to the corresponding enantiomerically pure alcohols and subsequent base-induced cyclization to the corresponding enantiomerically pure epoxides (EQUATION 1), wherein
  • Suitable ADH enzymes are (R) - or (S) -alcohol dehydrogenases.
  • isolated (cell-free) ADH enzymes are used with an enzyme activity of
  • Enzyme activity per mole of substrate most preferably 1 to 50 kU of enzyme activity per mole of substrate.
  • the enzyme is preferably used catalytically to superstoichiometrically with respect to the starting compound.
  • Suitable cofactors are NADPH 2 , NADH 2 , NAD or NADP, more preferably NAD or NADP are used. Preference is given to loading with 0.1 to 10 g of cofactor per 10 mol of substrate, more preferably 0.5 to 1.5 g of cofactor per 10 mol of substrate.
  • the inventive method is carried out so that in the presence of a suitable system for Regeneration of the oxidizing cofactor worked and this is continuously recycled during the process.
  • a suitable system for Regeneration of the oxidizing cofactor typically enzymatic or other methods known to those skilled in the art are used.
  • the cofactor is recycled continuously and can thus be used in several oxidation / reduction cycles.
  • Another common method is the use of a second enzyme system in the reactor.
  • Two methods described in detail include the use of formate dehydrogenase for the oxidation of formic acid to carbon dioxide, or the use of glucose dehydrogenase for the oxidation of glucose, to name only a few.
  • the reaction is carried out in a solvent.
  • suitable solvents for the ADH reduction are those which do not give rise to side reactions, these are organic solvents such as e.g. Methanol, ethanol, isopropanol, linear and branched alcohols, ligroin, butane, pentane, hexane, heptane, octane, cyclopentane, cyclohexane, cycloheptane,
  • Cyclooctane dichloromethane, chloroform, carbon tetrachloride, 1, 2-dichloroethane, 1, 1, 2,2-tetrachloroethane, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, diethyl ether, diisopropyl ether, tert-butyl methyl ether, THF, dioxane, acetonitrile or mixtures of these.
  • Methanol, ethanol, isopropanol, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran (THF), dioxane, or mixtures thereof very particularly preferred are ethanol, isopropanol, linear and branched alcohols, diethyl ether, diisopropyl ether, tert-butyl methyl ether, THF , Dioxane, or mixtures of these.
  • the process can also be carried out without addition of solvent.
  • a buffer to the reaction solution in order to stabilize the pH and to ensure that the enzyme can react in the optimum pH range for it.
  • the optimum pH range differs from enzyme to enzyme and is usually in the range of pH 3 to 11. Suitable buffer systems are known to the person skilled in the art, so that it is not necessary to discuss this further here.
  • the reduction to the alcohols (IIa) or (IIb) can be carried out generally at temperatures ranging from -100 to +120 C c, are preferred temperatures in the range of -30 to +50 0 C, more preferably temperatures in the range from 0 to +40 0 C, with lower temperatures generally correlated with higher selectivities.
  • the reaction time depends on the temperature used and is generally 1 to 72 hours, especially 4 to 45 hours.
  • the ee values of the intermediately produced alcohols are significantly> 95% ee, in most cases> 99% with simultaneously very high tolerance to functional groups in the substrate.
  • the cyclization of the alcohols (IIa) or (IIb) to the epoxides can be carried out generally at temperatures in the range of -100 to +120 0 C, preferred are temperatures in the range of -30 to +50 0 C, more preferably temperatures in the range of 0 to + 4O 0 C.
  • the reaction time depends on the temperature used, and is generally 1 to 72 hours, especially 24 to 60 hours. Sufficient conversion can be ensured here, for example, by GC or HPLC reaction control.
  • the reaction solution is heated to the reaction temperature before addition of the ADH enzyme.
  • Amine bases carbonates, bicarbonates, hydroxides, hydrides, alcoholates, phosphates, hydrogen phosphates, more preferably tertiary amines, most preferably sodium hydroxide, potassium hydroxide, triethylamine or pyridine.
  • the base is preferably used stoichiometrically or superstoichiometrically with respect to the compound (Ia) or (IIb).
  • the isolation of the products is preferably carried out either by distillation or by crystallization.
  • the ee values are significantly greater than 99%, which means that no further purification is necessary.
  • the substrate breadth of this new technology is very high. It is possible to use ⁇ -leaving group-substituted ketones with aryl radicals of different substitution pattern as well as aliphatic halomethyl ketones. Chloroacetyl ketones react in particularly good yields and high ee values.
  • the new process provides a very wide range of enantiomerically pure epoxides in very high yields of> 85%, usually> 90%, and very high ee values, whereby both enantiomers can be obtained depending on the enzyme used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Epoxy Compounds (AREA)
EP06754193A 2005-06-18 2006-06-07 Verfahren zur herstellung von enantiomerenreinen epoxiden durch adh-reduktion von alpha-abgangsgruppen-substituierten ketonen und cyclisierung Withdrawn EP1899313A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005028312A DE102005028312B4 (de) 2005-06-18 2005-06-18 Verfahren zur Herstellung von enantiomerenreinen Epoxiden durch ADH-Reduktion von α-Abgangsgruppen-substituierten Ketonen und Cyclisierung
PCT/EP2006/005437 WO2006136289A1 (de) 2005-06-18 2006-06-07 Verfahren zur herstellung von enantiomerenreinen epoxiden durch adh-reduktion von alpha-abgangsgruppen-substituierten ketonen und cyclisierung

Publications (1)

Publication Number Publication Date
EP1899313A1 true EP1899313A1 (de) 2008-03-19

Family

ID=36997479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754193A Withdrawn EP1899313A1 (de) 2005-06-18 2006-06-07 Verfahren zur herstellung von enantiomerenreinen epoxiden durch adh-reduktion von alpha-abgangsgruppen-substituierten ketonen und cyclisierung

Country Status (7)

Country Link
US (1) US20080206826A1 (ja)
EP (1) EP1899313A1 (ja)
JP (1) JP2008543293A (ja)
CN (1) CN101184742A (ja)
CA (1) CA2612407A1 (ja)
DE (1) DE102005028312B4 (ja)
WO (1) WO2006136289A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056526A1 (de) * 2006-11-30 2008-06-05 Archimica Gmbh Verfahren zur stereoselektiven Synthese von chiralen Epoxiden durch ADH-Reduktion von alpha-Abgangsgruppen-substituierten Ketonen und Cyclisierung
DK3409765T3 (da) 2009-06-22 2021-09-27 Codexis Inc Ketoreduktase-medieret stereoselektiv rute til alpha-chloralkoholer
WO2011100265A2 (en) 2010-02-10 2011-08-18 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
DE102012017026A1 (de) 2012-08-28 2014-03-06 Forschungszentrum Jülich GmbH Sensor für NADP(H) und Entwicklung von Alkoholdehydrogenasen
CN113831218B (zh) * 2020-06-23 2023-11-28 利尔化学股份有限公司 一种制备4-氟苯基环氧乙烷的方法
CN114317620B (zh) * 2020-09-29 2024-02-02 上海医药工业研究院 一种(r)-2-(2-氯苯基)环氧乙烷的生物制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1893H (en) * 1996-07-23 2000-10-03 Bristol-Myers Squibb Company Enzymatic reduction method for the preparation of halohydrins
DE10105866A1 (de) * 2001-02-09 2002-08-29 Forschungszentrum Juelich Gmbh Verfahren zur Herstellung von optisch aktiven, propargylischen, terminalen Epoxiden
US20060177913A1 (en) * 2005-02-08 2006-08-10 Consortium Fur Elektrochemische Industrie Gmbh Process for enantioselective enzymatic reduction of keto compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006136289A1 *

Also Published As

Publication number Publication date
JP2008543293A (ja) 2008-12-04
CN101184742A (zh) 2008-05-21
WO2006136289A1 (de) 2006-12-28
DE102005028312A1 (de) 2006-12-28
US20080206826A1 (en) 2008-08-28
CA2612407A1 (en) 2006-12-28
DE102005028312B4 (de) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2008064817A2 (de) Verfahren zur stereoselektiven synthese von chiralen epoxiden durch adh-reduktion von alpha-abgangsgruppen-substituierten ketonen und cyclisierung
DE102005028312B4 (de) Verfahren zur Herstellung von enantiomerenreinen Epoxiden durch ADH-Reduktion von α-Abgangsgruppen-substituierten Ketonen und Cyclisierung
WO2009077550A1 (de) Verfahren zur herstellung von cis-rosenoxid
AT501928B1 (de) Verfahren zur herstellung von chiralen alkoholen
EP2089530B1 (de) Verfahren zur herstellung von (4s)-3,4-dihydroxy-2,6,6-trimethyl-cyclohex-2-enon und derivaten davon unter verwendung der azoarcus phenylethanol dehydrogenase
EP1797191A2 (de) Verfahren zur herstellung eines optisch aktiven 2-methylalkan-1-ols aus dem entsprechenden 2-methylalk-2-en-1-al, umfassend eine carbonylselektive reduktion, eine enantioselektive hydrierung und eine lipase-katalysierte, stereoselektive acylierung zwecks anreicherung des gewünschten enatiomers
EP1175382B1 (de) Verfahren zur dihydroxylierung von olefinen mittels übergangsmetall-katalysatoren
EP1969133B1 (de) Verfahren zur herstellung von optisch aktivem (1s)-3-chlor-1-(2-thienyl)-propan-1-ol
US7294492B2 (en) Process for the manufacture of spiroketals
DE102006055047A1 (de) Verfahren zur Herstellung von Dihydroxy-Verbindungen aus Diketo-Verbindungen durch enzymkatalysierte enantioselektive Reduktion
EP1163206B1 (de) Verfahren zur hydrolyse von optisch aktiven amiden
EP1786913A2 (de) Verfahren zur herstellung von diarylcycloalkylderivaten
DE10152113C1 (de) Verfahren zur Herstellung von (R)- und (S)-8-Chlor-6-hydroxy-octansäurealkylestern durch enzymatische Reduktion
DE102013211075B9 (de) Biotechnologisches Verfahren zur Herstellung von substituierten oder unsubstituierten Phenylessigsäuren und Ketonen mit Enzymen des mikrobiellen Styrolabbaus
Motallebi et al. Saccharomyces cerevisiae as a biocatalyst for different carbonyl group under green condition
Francis The Synthesis and Biocatalytic Reduction of Beta-keto Alkynes
EP1175379B1 (de) Verfahren zur asymmetrischen dihydroxylierung von olefinen mittels osmium-katalysatoren
EP1358173A1 (de) Verfahren zur herstellung von optisch aktiven, propargylischen, terminalen epoxiden
CN104263776A (zh) 一种生物催化生产手性吡啶乙醇的方法
Karabacak Aspergillus niger mediated a-hydroxylation of cyclic ketones
CN104313075A (zh) 一种光活性溴吡啶乙醇的细胞生产方法
CN104313062A (zh) 一种细胞催化生产光活性苯乙醇的方法
CN104263773A (zh) 一种生物法生产二氧基庚烯醇的方法
CN104293852A (zh) 一种细胞催化生产异喹啉甲醇的方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080826

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120424