EP1891261A2 - Verfahren zur beschichtung von oberflächen von faserigen substraten - Google Patents

Verfahren zur beschichtung von oberflächen von faserigen substraten

Info

Publication number
EP1891261A2
EP1891261A2 EP06777256A EP06777256A EP1891261A2 EP 1891261 A2 EP1891261 A2 EP 1891261A2 EP 06777256 A EP06777256 A EP 06777256A EP 06777256 A EP06777256 A EP 06777256A EP 1891261 A2 EP1891261 A2 EP 1891261A2
Authority
EP
European Patent Office
Prior art keywords
hydrophobin
hydrophobins
fibrous
proteins
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06777256A
Other languages
English (en)
French (fr)
Inventor
Thorsten Montag
Ulf Baus
Marvin Karos
Thomas Subkowski
Volker Schwendemann
Richard Baur
Christine Mendera
Claus Bollschweiler
Hans-Georg Lemaire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200510026143 external-priority patent/DE102005026143A1/de
Priority claimed from DE200510030786 external-priority patent/DE102005030786A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of EP1891261A2 publication Critical patent/EP1891261A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/15Proteins or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/04Floor or wall coverings; Carpets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2352Coating or impregnation functions to soften the feel of or improve the "hand" of the fabric

Definitions

  • the present invention relates to a process for coating surfaces of fibrous substrates selected from textile substrates and leather, using at least one hydrophobin. Furthermore, the present invention relates to coated fibrous substrates selected from textile substrates and leather, and to processes for the production of garments using fibrous substrates according to the invention.
  • the method defined above is based on one or more surfaces that may be smooth or structured.
  • the surface to be coated belongs to a fibrous substrate selected from textile substrates and leather.
  • textile substrates are to be understood as meaning textile fibers, semi-finished and finished textile products and finished articles made thereof, which, in addition to textiles for the clothing industry, also include, for example, carpets and other home textiles as well as textile structures serving technical purposes. These include unshaped structures such as flakes, linear structures such as twine, threads, yarns, linen, cords, ropes, threads and body structures such as felts, fabrics, knitted fabrics, nonwovens and wadding.
  • Textile substrates may be of materials of natural origin, for example cotton, wool or flax, or blended fabrics, for example cotton / polyester, cotton / polyamide.
  • textile or textiles are preferably polyacrylonitrile, polyamide and in particular polyester or materials of natural origin with polyacrylonitrile, polyamide and especially polyester.
  • leather is preferably understood to mean tanned and finished animal hides and so-called split leather.
  • Coating in the context of the present invention is understood as meaning a monomolecular layer of at least one hydrophobin which covers at least 10%, preferably at least 25% and particularly preferably at least 50% of the surface of the substrate to be coated according to the invention.
  • the degree of covering of fibrous substrate can be determined by methods known per se, for example by microscopic methods.
  • At least one hydrophobin is used to coat surfaces of fibrous substrates. It is possible to use a hydrophobin or a mixture of several different hydrophobins.
  • Hydrophobins are proteins known per se, preferably small peptides that are characteristic of filamentous fungi, for example Schizophyllum commune. They usually have eight cysteine units. Hydrophobins can be isolated from natural sources. However, it is also possible to synthesize non-naturally occurring hydrophobins by means of chemical and / or biotechnological production processes.
  • hydrophobins in the context of this invention is preferably intended to mean proteins of the general structural formula (I)
  • X is for any of the 20 naturally occurring amino acids (Phe, Leu, Ser, Tyr, Cys, Trp, Pro, His, GIn, Arg, He, Met, Thr, Asn, Lys, VaI, Ala, Asp, GIu, GIy) can stand.
  • X may be the same or different.
  • the indices standing at X each represent the number of amino acids, C stands for cysteine, alanine, serine, glycine, methionine or threonine with the proviso that at least four of the amino acids denoted C are cysteine, and the indices n and m are independently of each other for natural numbers in the range of 0 to 500, preferably from 15 to 300.
  • hydrophobins are characterized by the property that, after coating a glass surface, they increase the contact angle of a water droplet (5 ⁇ l) by at least 20 °, preferably at least 25 ° and particularly preferably 30 °, compared with the Cycle angle of an equal drop of water with the uncoated glass surface, wherein each measured at room temperature.
  • the amino acids designated C 1 to C 8 are preferably cysteines; but they can also be replaced by other amino acids of similar space filling, preferably by alanine, serine, threonine, methionine or glycine. However, at least four, preferably at least five, particularly preferably at least six, and in particular at least seven, of the positions C 1 to C 8 should consist of cysteines. Cysteines can be present in reduced amounts in proteins used according to the invention or form disulfide bridges with one another. Particularly preferred is the intramolecular formation of CC bridges, in particular those having at least one, preferably 2, more preferably 3 and most preferably 4 intramolecular disulfide bridges. In the exchange of cysteines described above by amino acids of similar space filling, it is advantageous to exchange in pairs those C positions which are capable of forming intramolecular disulfide bridges with one another.
  • cysteines, serines, alanines, glycines, methionines or threonines are also used in the positions indicated by X, the numbering of the individual C-positions in the general formulas may change accordingly.
  • X, C and the indices standing at X and C are as defined above, however, the indices n and m are numbers in the range of 0 to 300, and the proteins are further characterized by the above-mentioned contact angle change and further at least six of the amino acids named C are cysteine. Most preferably, all of the amino acids named C are cysteine.
  • X, C and the indices standing at X and C are as defined above, however, the indices n and m are numbers ranging from 0 to 200, and the proteins are further characterized by the above-mentioned contact angle change.
  • radicals X n and X m may be peptide sequences which may be naturally linked to a hydrophobin. But it can also be nem or both radicals X n and X m are peptide sequences which are not naturally linked to a hydrophobin. Including such radicals X N and / or X are m to understand, in which a naturally occurring in a hydrophobin peptide sequence is extended by a non-naturally occurring in a hydrophobin peptide sequence.
  • X n and / or X m are naturally non-hydrophobic linked peptide sequences, such sequences are generally at least 20, preferably at least 35, more preferably at least 50, and most preferably at least 100 amino acids in length.
  • Such a residue, which is not naturally linked to a hydrophobin will also be referred to below as a fusion partner part. This is to express that proteins used according to the invention may consist of at least one hydrophobin part and one fusion partner part which do not occur together in nature in this form.
  • the fusion partner portion can be selected from a variety of proteins. It is also possible to combine a plurality of fusion partner parts with a hydrophobin part, for example at the amino terminus (X n ) and at the carboxy terminus (X 171 ) of the hydrophobin part. However, it is also possible, for example, to link two fusion partner parts to one position (X n or X m ) of the protein used according to the invention.
  • fusion partner parts are proteins which occur naturally in microorganisms, in particular in E. coli or Bacillus subtilis.
  • fusion partner parts are the sequences yaad (SEQ ID NO: 15 and 16), yaae (SEQ ID NO: 17 and 18), and thioredoxin.
  • fragments or derivatives of the abovementioned sequences which comprise only a part, preferably 70 to 99%, particularly preferably 80 to 98%, of the said sequences, or in which individual amino acids or nucleotides are changed relative to the abovementioned sequence, where percentages in each case relate to the number of amino acids.
  • Proteins used according to the invention may also be modified in their polypeptide sequence, for example by glycosylation, acetylation or else by chemical crosslinking, for example with glutaric dialdehyde.
  • One property of the proteins used in the invention is the change in surface properties when the surfaces are coated with the proteins.
  • the change in the surface properties can be determined experimentally by measuring the contact angle of a water drop before and after coating a surface with the protein and determining the difference between the two measurements.
  • the implementation of contact angle measurements is known in principle to the person skilled in the art.
  • the exact experimental conditions for an exemplary suitable method for measuring the contact angle are shown in the experimental section.
  • the assembled membranes of class I hydrophobins are highly insoluble (even towards 1 wt .-% aqueous solution of sodium n-dodecyl sulfate (SDS) at elevated temperature such as 80 0 C) and can only by concentrated trifluoroacetic acid (TFA) or formic acid be dissociated again.
  • the assembled forms of class II hydrophobins are less stable. They can already be dissolved by 60% by weight of ethanol or 1% by weight of SDS (in each case in water, at room temperature).
  • a comparison of the amino acid sequences shows that the length of the region between cysteine C 3 and C 4 in class II hydrophobins is significantly shorter than in class I hydrophobins.
  • Class II hydrophobins also have more charged amino acids than class I.
  • hydrophobins for practicing the present invention are the dewA, rodA, hypA, hypB, sc3, basfi, basf2 hydrophobins which are structurally characterized in the Sequence Listing below. It may also be just parts or derivatives thereof. It is also possible to link together a plurality of hydrophobin moieties, preferably 2 or 3, of the same or different structure and to link them to a corresponding suitable polypeptide sequence which is not naturally associated with a hydrophobin.
  • proteins used according to the invention are particularly suitable for carrying out the present invention.
  • the fusion proteins having the polypeptide sequences shown in SEQ ID NO: 20, 22, 24 and the nucleic acid sequences coding for them, in particular the sequences according to SEQ ID NO: 19, 21, 23.
  • proteins which are starting from the sequences shown in SEQ ID NO. 22, 22 or 24 represented by exchange, insertion or deletion of at least one, up to 10, preferably 5, more preferably 5% of all amino acids, and still have the biological property of the starting proteins to at least 50% are particularly preferred Embodiments.
  • the biological property of the proteins used according to the invention is understood here to be the change in the contact angle already described by at least 20 °.
  • Proteins used according to the invention can be prepared chemically by known methods of peptide synthesis, for example by solid phase synthesis according to Merrifield.
  • Naturally occurring hydrophobins can be isolated from natural sources by suitable methods. As an example, let Wösten et. al., Eur. J Cell Bio. 63, 122-129 (1994) or WO 96/41882.
  • fusion proteins can preferably be carried out by genetic engineering methods in which a nucleic acid sequence coding for the fusion partner and a hydrophobin part, in particular DNA sequence, are combined in such a way that the desired protein is produced in a host organism by gene expression of the combined nucleic acid sequence.
  • a nucleic acid sequence coding for the fusion partner and a hydrophobin part, in particular DNA sequence are combined in such a way that the desired protein is produced in a host organism by gene expression of the combined nucleic acid sequence.
  • Suitable host organisms (production organisms) for said production process may be prokaryotes (including archaea) or eukaryotes, especially bacteria including halobacteria and methanococci, fungi, insect cells, plant cells and mammalian cells, more preferably Escherichia coli, Bacillus subtilis, Bacillus. megaterium, Aspergillus oryzea, Aspergillus nidulans, Aspergillus niger, Pichia pastoris, Pseudomonas spec, Lactobacilli, Hansenula polymorpha, Trichoderma reesei, SF9 (or related cells), and the like.
  • prokaryotes including archaea
  • eukaryotes especially bacteria including halobacteria and methanococci, fungi, insect cells, plant cells and mammalian cells, more preferably Escherichia coli, Bacillus subtilis, Bacillus. megaterium,
  • expression constructs as hydrophobins, containing, under the genetic control of regulatory nucleic acid sequences, a nucleic acid sequence coding for a protein used according to the invention, as well as vectors comprising at least one of these expression constructs.
  • expression constructs employed comprise a promoter 5'-upstream of the respective coding sequence and a terminator sequence 3'-downstream, and optionally further conventional regulatory elements, in each case operatively linked to the coding sequence.
  • “Operational linkage” is understood to mean the sequential arrangement of promoter, coding sequence, terminator and optionally further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended in the expression of the coding sequence.
  • operably linked sequences are targeting sequences as well as enhancers, polyadenylation signals and the like.
  • Other regulatory elements include selectable markers, amplification signals, origins of replication, and the like. chen. Suitable regulatory sequences are for. As described in Goeddel, Gene Expression Technolgy: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
  • a preferred nucleic acid construct advantageously also contains one or more of the abovementioned "enhancer” sequences, functionally linked to the promoter, which allow increased expression of the nucleic acid sequence, and additional advantageous sequences may also be inserted at the 3 'end of the DNA sequences additional regulatory elements or terminators.
  • the nucleic acids may be contained in one or more copies in the construct.
  • the construct may also contain further markers, such as antibiotic resistances or genes that complement xanthropy, optionally for selection on the construct.
  • Advantageous regulatory sequences for the process are, for example, in promoters such as cos, tac, trp, tet, trp, tet, lpp, lac, lpp-lac, laclq-T7, T5, T3, gal, trc, ara, rhaP (rhaPBAD) SP6, lambda PR or imlambda P promoter, which are advantageously used in gram-negative bacteria.
  • Further advantageous regulatory sequences are contained, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFalpha, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH.
  • the nucleic acid construct, for expression in a host organism is advantageously inserted into a vector, such as a plasmid or a phage, which allows for optimal expression of the genes in the host.
  • a vector such as a plasmid or a phage
  • vectors apart from plasmids and phages, all other vectors known per se, ie z.
  • viruses such as SV40, CMV, baculovirus and adenovirus, Transposons.lS elements, phasmids, cosmids, and linear or circular DNA, as well as the Agrobacterium system to understand.
  • vectors can be replicated autonomously in the host organism or replicated chromosomally. These vectors represent a further embodiment of the invention.
  • Suitable plasmids are described, for example, in E. coli pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pKK223-3, pDHE19.2, pHS2, pPLc236, pMBL24, pLG200, pUR290, plN-IH "3-B1, tgt11 or pBdCI, in Streptomycespl J101, pIJ364, pIJ702 or pIJ361, in Bacillus pUB110, pC194 or pBD214, in Corynebacterium pSA77 or pAJ667, in fungi pALS1, pIL12 or pBB116, in yeasts 2alpha, pAG-1,
  • nucleic acid construct for expression of the further genes contained additionally 3'- and / or ⁇ '-terminal regulatory sequences for increasing the expression, which are selected depending on the selected host organism and gene or genes for optimal expression.
  • genes and protein expression are intended to allow the targeted expression of genes and protein expression. Depending on the host organism, this may mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • the regulatory sequences or factors can thereby preferably influence the gene expression of the introduced genes positively and thereby increase.
  • enhancement of the regulatory elements can advantageously be done at the transcriptional level by using strong transcription signals such as promoters and / or enhancers.
  • an enhancement of the translation is possible by, for example, the stability of the mRNA is improved.
  • the vector containing the nucleic acid construct or the nucleic acid may also advantageously be introduced into the microorganisms in the form of a linear DNA and integrated into the genome of the host organism via heterologous or homologous recombination.
  • This linear DNA may consist of a linearized vector such as a plasmid or only of the nucleic acid construct or the nucleic acid.
  • An expression cassette is produced by fusion of a suitable promoter with a suitable coding nucleotide sequence and a terminator or polyadenylation signal.
  • common recombination and cloning techniques are used, as described, for example, in T. Maniatis, EFFritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Colard Spring Harbor Laboratory, ColD Spring Harbor, NY (1989), and in TJ Silhavy, ML Berman and L W. Enquist, Experiments with Gene Fusions, Col. Spring Harbor Laboratory, ColD Spring Harbor, NY (1984) and in Ausubel, FM et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987).
  • the recombinant nucleic acid construct or gene construct is inserted for expression in a suitable host organism, advantageously into a host-specific vector which enables optimal expression of the genes in the host.
  • Vectors are known per se and can be found, for example, in "Cloning Vectors" (Pouwels P.H. et al., Eds. Elsevier, Amsterdam-New York-Oxford, 1985).
  • recombinant microorganisms can be produced, which are transformed, for example, with at least one vector and can be used to produce the proteins used in the invention.
  • the recombinant expression constructs described above are introduced into a suitable host system and expressed.
  • known conventional cloning and transfection methods such as, for example, co-precipitation, protoplast fusion, electroporation, retroviral transfection and the like, are preferably used in order to express the stated nucleic acids in the respective expression system. Suitable systems are described, for example, in Current Protocols in Molecular Biology, F.Ausubel et al., Ed., Wiley Interscience, New York 1997, or Sambrook et al. Molecular Cloning: A Laboratory Manual. 2nd ed., Colard Spring Harbor Laboratory, Col. Spring Harbor Laboratory Press, Col. Spring Harbor, NY, 1989.
  • Homologously recombined microorganisms can also be produced.
  • a vector is prepared which contains at least a portion of a gene or a coding sequence to be used according to the invention, wherein optionally at least one amino acid deletion, addition or substitution has been introduced to alter the sequence, e.g. B. functionally disrupted ("knockout" - vector).
  • the introduced sequence can, for. Also be a homologue from a related microorganism or be derived from a mammalian, yeast or insect source.
  • the vector used for homologous recombination may be designed such that the endogenous gene is mutated or otherwise altered upon homologous recombination but still encodes the functional protein (eg, the upstream regulatory region may be altered such that expression the endogenous protein is changed).
  • the altered portion of the gene used according to the invention is in the homologous recombination vector.
  • suitable vectors for homologous recombination is z. As described in Thomas, KR and Capecchi, MR (1987) Cell 51: 503. In principle, all prokaryotic or eukaryotic organisms are suitable as recombinant host organisms for the nucleic acid or nucleic acid construct used according to the invention.
  • microorganisms such as bacteria, fungi or yeast are used as host organisms.
  • Gram-positive or gram-negative bacteria preferably bacteria of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Streptomycetaceae or Nocardiaceae, particularly preferably bacteria of the genera Escherichia, Pseudomonas, Streptomyces, Nocardia, Burkholderia, Salmonella, Agrobacterium or Rhodococcus are advantageously used ,
  • the organisms used in the production process for fusion proteins are grown or bred depending on the host organism in a conventional manner.
  • Microorganisms are usually in a liquid medium containing a carbon source usually in the form of sugars, a nitrogen source usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, manganese and magnesium salts and optionally vitamins, at temperatures between 0 and 100 0 C, preferably between 10 to 60 0 C attracted under oxygen fumigation.
  • the pH of the nutrient fluid can be kept at a fixed value, that is, regulated during the cultivation or not.
  • the cultivation can be done batchwise, semi-batchwise or continuously. Nutrients can be presented at the beginning of the fermentation or fed in semi-continuously or continuously.
  • the enzymes may be isolated from the organisms by the method described in the Examples or used as crude extract for the reaction.
  • Proteins or functional, biologically active fragments thereof used according to the invention can be produced by means of a recombinant process, in which a protein-producing microorganism is cultivated, if appropriate, the expression of the proteins is induced and these are isolated from the culture. According to the invention. used proteins can also be produced on an industrial scale, if desired.
  • the recombinant microorganism can be cultured and fermented by known methods. Bacteria can be propagated, for example, in TB or LB medium and at a temperature of 20 to 40 0 C and a pH of 6 to 9. Specifically, suitable culturing conditions are described, for example, in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, ColD Spring Harbor Laboratory, ColD Spring Harbor, NY (1989).
  • the cells are disrupted and the product is recovered from the lysate by known protein isolation methods.
  • the cells can optionally by high-frequency ultrasound, by high pressure, such as. B. in a French pressure cell, by osmolysis, by the action of detergents, lytic enzymes or organic see solvents, be homogenized by homogenizers or by combining several of the listed methods.
  • Purification of protein used according to the invention can be achieved by chromatographic methods known per se, such as molecular sieve chromatography (gel filtration), such as Q-Sepharose chromatography, ion exchange chromatography and hydrophobic chromatography, and by other conventional methods, such as ultrafiltration, crystallization Suitable methods are described, for example, in Cooper, FG, Biochemische Harvey Methoden, Verlag Water de Gruyter, Berlin, New York or in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin described.
  • vector systems or oligonucleotides for the isolation of the recombinant protein, which extend the cDNA by certain nucleotide sequences and thus code for altered polypeptides or fusion proteins which serve, for example, a simpler purification.
  • suitable modifications include so-called "tags" as anchors, such as the modification known as hexa-histidine anchors, or epitopes that can be recognized as antigens of antibodies (described, for example, in Harlow, E. and Lane, D., 1988 , Antibodies: A Laboratory Manual, CoId Spring Harbor (NY) Press).
  • tags are e.g.
  • HA calmodulin BD
  • GST GST
  • MBD Chitin-BD
  • Steptavidin-BD-Avi-Tag Flag-Tag
  • T7 T7 etc.
  • anchors can be used to attach the proteins to a solid support, such as.
  • a polymer matrix serve, which may be filled for example in a chromatography column, or may be used on a microtiter plate or on another carrier.
  • the corresponding purification protocols are available from the commercial affinity tag providers.
  • the proteins prepared as described can be used both directly as fusion proteins and after cleavage and separation of the fusion partner part as "pure" hydrophobins.
  • a potential cleavage site (specific recognition site for proteases) into the fusion protein between the hydrophobin part and the fusion partner part.
  • Suitable cleavage sites are, in particular, those peptide sequences which are otherwise found neither in the hydrophobin part nor in the fusion partner part, which can be easily determined with bioinformatic tools.
  • Particularly suitable are, for example, BrCN cleavage on methionine, or protease-mediated cleavage with factor Xa, enterokinase, thrombin, TEV cleavage (Tobacca etch virus protease).
  • hydrophobins for coating surfaces, it is also possible to use hydrophobins in bulk. However, the hydrophobins are preferably used in aqueous formulation.
  • hydrophobins for carrying out the invention is basically not limited. It is possible to use one hydrophobin or else several different ones. For example, fusion proteins such as yaad-Xa-dewA-his (SEQ ID NO: 19) or yaad-Xa-rodA-his (SEQ ID NO: 21) can be used.
  • hydrophobins as described above are used for coating surfaces of fibrous substrates selected from textile substrates and leather.
  • hydrophobins as described above can be used for coating surfaces of fibrous substrates selected from textile substrates and leather, without having to resort to strongly alkylating compounds such as epichlorohydrin or crosslinkers such as DMDHEU.
  • Another object of the present invention is a process for coating fibrous substrates selected from textile substrates and leather, using at least one hydrophobin.
  • Hydrophobins, fibrous substrates, textile substrates and leather as well as coating are defined as described above.
  • the process according to the invention is carried out by contacting the fibrous substrate to be coated with at least one aqueous formulation, preferably an aqueous liquor, which contains at least one hydrophobin.
  • the fibrous substrate to be coated is contacted with at least one aqueous formulation, preferably an aqueous liquor containing at least one hydrophobin, by the exhaustion process.
  • the fibrous substrate to be coated is contacted with at least one aqueous formulation, preferably an aqueous liquor containing at least one hydrophobin, by a padding process.
  • fibrous substrate and in particular textile substrate with hydrophobin are contacted, for example in a vessel or preferably with the aid of a padder.
  • contacted fibrous substrate and in particular textile substrate with hydrophobin at temperatures ranging from 0 0 C to 90 0 C, preferably in the range of room temperature to 85 ° C.
  • fibrous substrate and in particular textile substrate contacts, for example in a boiler or, preferably, by means of a mangle, with hydrophobin, and thereafter dried, for example at temperatures in the range of 20 to 12O 0 C.
  • fibrous substrate, and in particular textile substrate for example, be contacted in a boiler or, preferably, by means of a mangle, with hydrophobin, and dried thereafter, for example at temperatures in the range of 20 to 12O 0 C, for example over a period from 5 seconds to 15 minutes, preferably to 5 minutes.
  • temperatures in the range of 20 ° C to 12O 0 C preferably up to 105 0 C are suitable. The drying time is longer, the lower one chooses the temperature, and vice versa.
  • fibrous substrate and in particular leather with hydrophobin
  • fibrous substrate is contacted by covering fibrous substrate once or several times with an aqueous formulation, for example sprayed, containing at least one hydrophobin.
  • exposure time of aqueous formulation to fibrous substrate can be chosen for example 1 to 24 hours, preferably 12 to 17 hours.
  • water-miscible organic solvents include water-miscible monohydric or polyhydric alcohols, such as methanol, ethanol, n-propanol, i-propanol, ethylene glycol, propylene glycol or glycerol.
  • water-miscible monohydric or polyhydric alcohols such as methanol, ethanol, n-propanol, i-propanol, ethylene glycol, propylene glycol or glycerol.
  • ether alcohols examples include monoalkyl ethers of (poly) ethylene or (poly) ly) propylene glycols such as ethylene glycol monobutyl ether.
  • the nature and amount of the water-soluble, organic solvents are not critical per se and can be, for example, in the range from 1 to 50% by weight, based on the aqueous formulation used according to the invention.
  • aqueous formulations used for carrying out the process according to the invention may contain from 0.1 to 5 wt .-% of inorganic salt, for example NaCl, based on aqueous formulation used according to the invention.
  • the use of strongly alkylating compounds such as epichlorohydrin is dispensed with when carrying out the process according to the invention.
  • crosslinkers such as, for example, N, N-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) is dispensed with in carrying out the process according to the invention.
  • DMDHEU N, N-dimethylol-4,5-dihydroxyethyleneurea
  • the aqueous solutions of the hydrophobins obtained in the synthesis, isolation and / or purification of the hydrophobins can preferably be used. Depending on their purity, they may also contain residues of auxiliaries from the synthesis.
  • the hydrophobins can also initially be isolated as a substance, for example by freeze-drying, and formulated in a second step.
  • the required concentration of hydrophobin of aqueous formulation used in the process of the invention may be determined according to the type of surface to be coated and / or the application. However, relatively low concentrations of hydrophobin are sufficient to achieve the intended effect.
  • the process according to the invention is carried out with at least one aqueous formulation which contains in the range from 1 mg / l to 10 g / l of at least one hydrophobin.
  • aqueous formulation and in particular liquor used in the process according to the invention has a pH in the range from 3 to 9, preferably 4 to 8.
  • the fibrous substrate to be coated is pre-treated prior to contacting with hydrophobin and only thereafter contacted with hydrophobin.
  • pretreat for example by rinsing with water for a few minutes, preferably with demineralized water, more preferably over a period of 5 minutes to 5 hours.
  • the surface of fibrous substrate to be coated is treated according to the invention by contacting it with another aqueous formulation containing at least one active substance.
  • Active substance can be selected from organic chemicals, for example from anionic, cationic or non-ionic detergents, and from enzymes such as proteases or lipases.
  • the present invention is treated by bleaching according to the invention to be coated fibrous substrate.
  • This embodiment is preferred when the fibrous substrate to be coated is cotton or cotton-synthetic fiber blends.
  • An aqueous formulation used according to the invention may optionally further comprise further components, for example additives and / or auxiliaries.
  • additives and / or auxiliaries include acids or bases, for example carboxylic acids or ammonia, buffer systems, polymers, inorganic particles such as SiO 2 or silicates, colorants such as, for example, dyes, fragrances or biocides.
  • additives are listed in DE-A 101 60 993, in particular Sections [0074] to [0131].
  • the inventive method a coated surface of fibrous substrate and preferably coated textile substrate or leather is available, which has a dirt-repellent, at least one hydrophobin comprehensive coating.
  • the coating is usually at least one monomolecular layer of hydrophobin on the coated surface.
  • Dirt is in a known manner to all types of unwanted contamination of hard surfaces with solid and / or liquid substances.
  • Examples of dirt include fats, oils, egg whites, leftovers, dust or soil.
  • Contaminations can also be calcium deposits, such as dried-on traces of water that form due to the hardness of the water.
  • Further Examples include residues of personal care cleaners and conditioners, or insoluble lime soaps which may form from such cleansing and conditioning agents associated with water hardness, and which may deposit on surfaces of fibrous substrates such as textile substrates or leather.
  • the antisoiling effect can be determined by methods which are known in principle, for example by comparing the removability of dirt by rinsing with water from an untreated surface and a surface treated with hydrophobins.
  • Aqueous formulations used according to the invention can be prepared, for example, by mixing one or more hydrophobins with water and / or one or more of the abovementioned solvents. If desired, it is possible to add further components, for example additives and / or auxiliaries, wherein the order of addition of hydrophobin and water, optionally solvent and optionally one or more further components is not critical.
  • Formulations of the invention are generally free of strongly alkylating compounds such as epichlorohydrin or crosslinkers such as DMDHEU and long decomposition storage.
  • fibrous substrates selected from textile substrates and leather, coated according to the inventive method described above. They not only have excellent dirt-repellent properties, but also good washing and rubbing fastness and a pleasant feel. They are suitable, for example, for producing home textiles such as, for example, bed linen, curtains and curtains, bath and sanitary textiles and tablecloths, and also for producing textiles for outdoor use such as awnings, tents, boat covers, truck tarpaulins, convertible roofs and in particular for the manufacture of clothing such as shoes, jackets, coats, pants, pullovers, stockings, belts, home textiles such as bed linen, curtains and curtains, bath and sanitary textiles and tablecloths.
  • Leathers coated according to the invention are particularly suitable for
  • Part A is intended to explain the invention in more detail:
  • oligonucleotides Hal570 and Hal571 (HaI 572 / HaI 573) a polymerase chain reaction was carried out.
  • the PCR fragment obtained contained the coding sequence of the gene yaaD / yaaE from Bacillus subtilis, and at the ends in each case an NcoI or BglII restriction cleavage site.
  • the PCR fragment was purified and cut with the restriction endonucleases NcoI and BglII.
  • This DNA fragment was used as an insert and cloned into the vector pQE60 from Qiagen, previously linearized with the restriction endonucleases NcoI and BglI.
  • the resulting vectors pQE60YAAD # 2 / pQE60YaaE # 5 can be used to express proteins consisting of, YAAD :: HIS 6 and YAAE :: HIS 6
  • Hal570 gcgcgcccatggctcaaacaggtactga
  • Hal571 gcagatctccagccgcgttcttgcatac
  • Hal572 ggccatgggattaacaataggtgtactagg
  • Hal573 gcagatcttacaagtgccttttgcttatattcc
  • the oligonucleotides KaM 416 and KaM 417 Using the oligonucleotides KaM 416 and KaM 417, a polymerase chain reaction was carried out.
  • the template DNA used was genomic DNA of the mold Aspergillus nidulans.
  • the resulting PCR fragment contained the coding sequence of the hydrophobin gene dewA and an N-terminal factor Xa proteinase cleavage site.
  • the PCR fragment was purified and cut with the restriction endonuclease BamHI. This DNA fragment was used as an insert and cloned into the vector pQE60YAAD # 2 previously linearized with the restriction endonuclease BgIII.
  • the resulting vector # 508 can be used to express a fusion protein consisting of, YAAD :: Xa :: dewA :: HIS 6 .
  • KaM416 GCAGCCCATCAGGGATCCCTCAGCCTTGGTACCAGCGC
  • KaM417 CCCGTAG CTAGTG G ATCCATTG AAGG CCG CATGAAGTTCTCCGTCTCCGC
  • plasmid # 513 The cloning of plasmid # 513 was carried out analogously to plasmid # 508 using the oligonucleotides KaM 434 and KaM 435.
  • KaM434 GCTAAGCGGATCCATTGAAGGCCGCATGAAGTTCTCCATTGCTGC KaM435: CCAATGGGGATCCGAGGATGGAGCCAAGGG
  • the cloning of plasmid # 507 was carried out analogously to plasmid # 508 using the oligonucleotides KaM 417 and KaM 418.
  • the template DNA used was an artificially synthesized DNA sequence - hydrophobin BASF1 (see Appendix).
  • KaM417 CCCGTAGCTAGTGGATCCATTGAAGGCCGCATGAAGTTCTCCGTCTCCGC
  • KaM418 CTGCCATTCAGGGGATCCCATATGGAGGAGGGAGACAG
  • Plasmid # 506 The cloning of plasmid # 506 was carried out analogously to plasmid # 508 using the oligonucleotides KaM 417 and KaM 418.
  • Plasmid # 526 was analogous to plasmid # 508 using the oligonucleotides KaM464 and KaM465.
  • Schyzophyllum commune cDNA was used as template DNA (see appendix).
  • KaM464 CGTTAAGGATCCGAGGATGTTGATGGGGGTGC
  • KaM465 GCTAACAGATCTATGTTCGCCCGTCTCCCCGTCGT
  • 100 g cell pellet (100-500 mg hydrophobin) were made up to 200 ml total volume with 50 mM sodium phosphate buffer, pH 7.5 and resuspended.
  • the suspension was treated with an Ultraturrax type T25 (Janke and Kunkel, IKA-Labortechnik) for 10 minutes and then degraded for 1 hour at room temperature with 500 units of benzonase (Merck, Darmstadt, Order No. 1.01697.0001) the nucleic acids are incubated. Before cell disruption, filtration was carried out with a glass cartridge (P1). For homogenization of the cells and for shearing the remaining genomic DNA, two homogenizer runs were carried out at 1500 bar (Microfluidizer M-110EH, Microfluidics Corp.).
  • the homogenate was centrifuged (Sorvall RC-5B, GSA rotor, 250 ml centrifuge beaker, 60 minutes, 4 ° C, 12,000 rpm, 23,000 g), the supernatant placed on ice and the pellet in 100 ml sodium phosphate buffer, pH 7, 5 resuspended. Centrifugation and resuspension were repeated three times with the sodium phosphate buffer containing 1% SDS at the third repetition. After resuspension, stirring was continued for one hour and a final centrifugation performed (Sorvall RC-5B, GSA rotor, 250 ml centrifuge beaker, 60 minutes, 4 ° C, 12,000 rpm, 23,000 g).
  • the hydrophobin is contained in the supernatant after the final centrifugation ( Figure 1).
  • the experiments show that the hydrophobin is probably contained in the form of inclusion bodies in the corresponding E. coli cells.
  • 50 ml of the hydrophobin-containing supernatant was applied to a 50 ml Nickel-Sepharose High Performance 17-5268-02 column (Amersham) equilibrated with 50 mM Tris-Cl pH 8.0 buffer.
  • the column was washed with 50 mM Tris-Cl pH 8.0 buffer and the hydrophobin was subsequently treated with 50 mM Tris-Cl pH 8.0 buffer containing 200 mM imidazole eluted. To remove the imidazole, the solution was dialyzed against 50 mM Tris-Cl pH 8.0 buffer.
  • FIG 1 shows the purification of the hydrophobin HP1 thus prepared:
  • Lanes 3 - 5 OD 280 maxima of the elution fractions
  • the hydrophobin of Figure 1 has a molecular weight of about 53 kD.
  • the smaller bands partially represent degradation products of hydrophobin.
  • Substrate glass (window glass, Süd Weg Glas, Mannheim):
  • the samples thus obtained were dried in air (room temperature) and determined at room temperature, the contact angle (in degrees) of a drop of 5 ul of water.
  • the contact angle measurement was performed on a device Dataphysics Contact Angle System OCA 15+, Software SCA 20.2.0. (November 2002). The measurement was carried out according to the manufacturer's instructions.
  • hydrophobin HP1 for coating surfaces of fibrous
  • hydrophobin HP1 fusion protein
  • White polyester fabric basis weight 226 g / m 2 , was first rinsed for 45 minutes with demineralized water and then immersed in a 0.02 wt .-% aqueous solution of HP1 in water and treated at 80 0 C for 17 hours. Thereafter, the polyester fabric thus treated was rinsed with deionized water for one minute and dried at room temperature. Inventive treated substrate PES-HP1 was obtained. It had a very pleasant grip.
  • the test detergent 1 was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Peptides Or Proteins (AREA)
  • Treatment And Processing Of Natural Fur Or Leather (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Laminated Bodies (AREA)

Abstract

Verfahren zur Beschichtung von faserigen Substraten, ausgewählt aus textilen Substraten und Leder, unter Verwendung von mindestens einem Hydrophobin.

Description

Verfahren zur Beschichtung von Oberflächen von faserigen Substraten
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Beschichtung von Oberflächen von faserigen Substraten, ausgewählt aus textilen Substraten und Leder, unter Verwendung von mindestens einem Hydrophobin. Weiterhin betrifft die vorliegende Erfindung beschichtete faserige Substrate, ausgewählt aus textilen Substraten und Leder, und Verfahren zur Herstellung von Kleidungsstücken unter Verwendung von erfindungsge- mäßen faserigen Substraten.
Aus WO 02/59413 ist bekannt, Textil, beispielsweise Polyester, Polyacryl, Polyamid, mit Proteinen oder Polypeptiden, insbesondere oxidierter in Wasser gelöster Wolle zu behandeln, um sie mit einem flauschigen Griff zu verwenden. Dabei beobachtet man häufig, dass nach WO 02/59413 ausgerüstete Textilien zunächst einen sehr unangenehmen Griff aufweisen. Auch wird beobachtet, dass ein gleichmäßiger Auftrag im Einstufenverfahren schwierig sein kann (S: 10). Um dies zu vermeiden, wird ein mehrstufiges sehr umständliches Verfahren vorgeschlagen, das unter anderem auf die Verwendung von Epichlorhydrin zurückgreift. Die Verwendung von Epichlorhydrin ist je- doch im Allgemeinen unerwünscht.
Es bestand also die Aufgabe, ein Verfahren bereit zu stellen, mit dem die aus dem Stand der Technik bekannten Nachteile vermieden werden können.
Demgemäß wurde das eingangs definierte Verfahren gefunden.
Das eingangs definierte Verfahren geht aus von einer oder mehreren Oberflächen, die glatt oder strukturiert sein können. Die zu beschichtende Oberfläche gehört zu einem faserigen Substrat, ausgewählt aus textilen Substraten und Leder.
Unter textilen Substraten sind im Rahmen der vorliegenden Erfindung Textilfasem, textile Halb- und Fertigfabrikate und daraus hergestellte Fertigwaren zu verstehen, die neben Textilien für die Bekleidungsindustrie beispielsweise auch Teppiche und andere Heimtextilien sowie technischen Zwecken dienende textile Gebilde umfassen. Dazu gehören auch ungeformte Gebilde wie beispielsweise Flocken, linienförmige Gebilde wie Bindfäden, Fäden, Garne, Leinen, Schnüre, Seile, Zwirne sowie Körpergebilde wie beispielsweise Filze, Gewebe, Gewirke, Vliesstoffe und Watten. Textile Substrate können aus Materialien natürlichen Ursprungs sein, beispielsweise Baumwolle, Wolle oder Flachs, oder Mischgewebe, beispielsweise mit Baumwolle/Polyester, Baumwol- Ie/Polyamid. Bevorzugt handelt es sich bei Textil bzw. Textilien im Rahmen der vorliegenden Erfindung um Polyacrylnitril, Polyamid und insbesondere Polyester bzw. Mi- schungen von Materialien natürlichen Ursprungs mit Polyacrylnitril, Polyamid und insbesondere Polyester.
Unter Leder sind im Rahmen der vorliegenden Erfindung vorzugsweise gegerbte und gefinishte Tierhäute sowie sogenanntes Spaltleder zu verstehen.
Unter Beschichtung wird im Rahmen der vorliegenden Erfindung eine monomolekulare Schicht von mindestens einem Hydrophobin verstanden, die mindestens 10%, bevorzugt mindestens 25% und besonders bevorzugt mindestens 50% der Fläche des erfin- dungsgemäß zu beschichtenden Substrates bedeckt. Den Grad der Bedeckung von faserigem Substrat kann man nach an sich bekannten Methoden, beispielsweise durch mikroskopische Methoden ermitteln.
Erfindungsgemäß verwendet man zur Beschichtung von Oberflächen von faserigen Substraten mindestens ein Hydrophobin. Man kann ein Hydrophobin oder ein Gemisch mehrerer verschiedener Hydrophobine eingesetzen.
Hydrophobine sind an sich bekannte Proteine, vorzugsweise kleine Peptide, die charakteristisch für filamentöse Pilze, beispielsweise Schizophyllum commune, sind. Sie weisen in aller Regel acht Cystein-Einheiten auf. Hydrophobine können aus natürlichen Quellen isoliert werden. Es können aber auch natürlich nicht vorkommende Hydrophobine mittels chemischer und/oder biotechnologischer Herstellverfahren synthetisiert werden.
Unter dem Begriff „Hydrophobine" im Sinne dieser Erfindung sollen vorzugsweise Proteine der allgemeinen Strukturformel (I)
Xn-C -Xi-50"C -XQ-S-C -XI-IQQ-C -XI-10Q-C -X1.50-C -XQ-S-C -X-I-5Q-C -Xn (I)
verstanden werden, wobei X für jede beliebige der 20 natürlich vorkommenden Aminosäuren (Phe, Leu, Ser, Tyr, Cys, Trp, Pro, His, GIn, Arg, He, Met, Thr, Asn, Lys, VaI, AIa, Asp, GIu, GIy) stehen kann. Dabei können X jeweils gleich oder verschieden sein. Die bei X stehenden Indices stellen jeweils die Anzahl an Aminosäuren dar, C steht für Cystein, Alanin, Serin, Glycin, Methionin oder Threonin mit der Maßgabe, dass mindes- tens vier der mit C benannten Aminsäuren für Cystein stehen, und die Indices n und m stehen unabhängig voneinander für natürliche Zahlen im Bereich von 0 bis 500, bevorzugt von 15 bis 300.
In einer Ausführungsform der vorliegenden Erfindung sind Hydrophobine durch die Eigenschaft charakterisiert, dass sie nach Beschichten einer Glasoberfläche eine Vergrößerung des Kontaktwinkels eines Wassertropfens (5 μl) von mindestens 20°, bevorzugt mindestens 25° und besonders bevorzugt 30° bewirken, verglichen mit dem Kon- taktwinkel eines gleich großen Wassertropfens mit der unbeschichteten Glasoberfläche, wobei jeweils bei Zimmertemperatur gemessen wird.
Die mit C1 bis C8 benannten Aminosäuren sind bevorzugt Cysteine; sie können aber auch durch andere Aminosäuren ähnlicher Raumerfüllung, bevorzugt durch Alanin, Serin, Threonin, Methionin oder Glycin ersetzt werden. Allerdings sollen mindestens vier, bevorzugt mindestens fünf, besonders bevorzugt mindestens sechs und insbesondere mindestens sieben der Positionen C1 bis C8 aus Cysteinen bestehen. Cysteine können in erfindungsgemäß verwendeten Proteinen reduziert vorliegen oder miteinan- der Disulfidbrücken ausbilden. Besonders bevorzugt ist die intramolekulare Ausbildung von C-C Brücken, insbesondere die mit mindestens einer, bevorzugt 2, besonders bevorzugt drei und ganz besonders bevorzugt vier intramolekularen Disulfidbrücken. Bei dem oben beschriebenen Austausch von Cysteinen durch Aminosäuren ähnlicher Raumerfüllung werden vorteilhaft solche C-Positionen paarweise ausgetauscht, die intramolekulare Disulfidbrücken untereinander ausbilden können.
Falls in den mit X bezeichneten Positionen auch Cysteine, Serine, Alanine, Glycine, Methionine oder Threonine verwendet werden, kann sich die Nummerierung der einzelnen C-positionen in den allgemeinen Formeln entsprechend verändern.
Bevorzugt verwendet man Proteine der allgemeinen Formel (II)
Xn-C -X3..25-C -Xo-2-C -X5..50-C -X2..35-C -X2-15-C -Xo-2-C -X3-35-C -Xm (II)
wobei X, C und die bei X und C stehenden Indizes die obige Bedeutung haben, jedoch stehen die Indizes n und m für Zahlen im Bereich von 0 bis 300, und sich die Proteine weiterhin durch die oben erwähnte Kontaktwinkeländerung auszeichnen und es sich weiterhin bei mindestens sechs der mit C benannten Aminosäuren um Cystein handelt. Besonders bevorzugt handelt es sich bei allen mit C benannten Aminosäuren um Cystein.
Bevorzugt verwendet man Proteine der allgemeinen Formel (III)
Xn-C -Xö-g-C -C -X-|-|.3g-C -X2-23-C -Xs-g-C -C -Xβ-18-C -Xm (III)
eingesetzt, wobei X, C und die bei X und C stehenden Indizes die obige Bedeutung haben, jedoch stehen die Indizes n und m für Zahlen im Bereich von 0 bis 200, und sich die Proteine weiterhin durch die oben erwähnte Kontaktwinkeländerung auszeichnen.
Bei den Resten Xn und Xm kann es sich um Peptidsequenzen handeln, die natürlicherweise mit einem Hydrophobin verknüpft sein können. Es kann sich aber auch bei ei- nem oder beiden Resten Xn und Xm um Peptidsequenzen handeln, die natürlicherweise nicht mit einem Hydrophobin verknüpft sind. Darunter sind auch solche Reste Xn und/oder Xm zu verstehen, bei denen eine natürlicherweise in einem Hydrophobin vorkommende Peptidsequenz durch eine nicht natürlicherweise in einem Hydrophobin vorkommende Peptidsequenz verlängert ist.
Falls es sich bei Xn und/oder Xm um natürlicherweise nicht mit Hydrophobinen verknüpfte Peptidsequenzen handelt, sind derartige Sequenzen in der Regel mindestens 20, bevorzugt mindestens 35, besonders bevorzugt mindestens 50 und ganz beson- ders bevorzugt mindestens 100 Aminosäuren lang. Ein derartiger, natürlicherweise nicht mit einem Hydrophobin verknüpfter Rest soll im Folgenden auch als Fusionspartnerteil bezeichnet werden. Damit soll ausgedrückt werden, dass erfindungsgemäß verwendete Proteine aus mindestens einem Hydrophobinteil und einem Fusionspartnerteil bestehen können, die in der Natur nicht zusammen in dieser Form vorkommen.
Der Fusionspartnerteil kann aus einer Vielzahl von Proteinen ausgewählt werden. Es können auch mehrere Fusionspartnerteile mit einem Hydrophobinteil verknüpft werden, beispielsweise am Aminoterminus (Xn) und am Carboxyterminus (X171) des Hydropho- binteils. Es können aber auch beispielsweise zwei Fusionspartnerteile mit einer Positi- on (Xn oder Xm) des erfindungsgemäß verwendeten Proteins verknüpft werden.
Besonders geeignete Fusionspartnerteile sind Proteine, die natürlicherweise in Mikroorganismen, insbesondere in E. coli oder Bacillus subtilis vorkommen. Beispiele für solche Fusionspartnerteile sind die Sequenzen yaad (SEQ ID NO: 15 und 16), yaae(SEQ ID NO:17 und 18 ), und Thioredoxin. Gut geeignet sind auch Fragmente oder Derivate der vorstehend genannten Sequenzen, die nur einen Teil, bevorzugt 70 bis 99%, besonders bevorzugt 80 bis 98% der genannten Sequenzen umfassen, oder bei denen einzelne Aminosäuren, bzw. Nukleotide gegenüber der genannten Sequenz verändert sind, wobei sich Angaben in Prozent jeweils auf die Anzahl der Aminosäuren beziehen.
Erfindungsgemäß verwendete Proteine können auch noch in ihrer Polypeptidsequenz modifiziert sein, beispielsweise durch Glycosilierung, Acetylierung oder auch durch chemische Quervernetzung beispielsweise mit Glutardialdehyd.
Eine Eigenschaft der erfindungsgemäß verwendeten Proteine ist die Änderung von Oberflächeneigenschaften, wenn die Oberflächen mit den Proteinen beschichtet werden. Die Änderung der Oberflächeneigenschaften lässt sich experimentell dadurch bestimmen, dass der Kontaktwinkel eines Wassertropfens vor und nach der Beschich- tung einer Oberfläche mit dem Protein gemessen wird und die Differenz der beiden Messungen ermittelt wird. Die Durchführung von Kontaktwinkelmessungen ist dem Fachmann prinzipiell bekannt. Die genauen experimentellen Bedingungen für eine beispielhafte geeignete Methode zur Messung des Kontaktwinkels sind im experimentellen Teil dargestellt.
Im Hydrophobinteil der bisher bekannten Hydrophobine sind die Positionen der polaren und unpolaren Aminosäuren konserviert, was sich in einem charakteristischen Hydrophobizitätsplot äußert. Unterschiede in den biophysikalischen Eigenschaften und in der Hydrophobizität führten zur Einteilung der bisher bekannten Hydrophobine in zwei Klassen, I und Il (Wessels et al., Ann. Rev. Phytopathol., 1994, 32, 413-437).
Die assemblierten Membranen aus Klasse I Hydrophobinen sind hochgradig unlöslich (selbst gegenüber 1 Gew.-% wässriger Lösung von Natrium-n-dodecylsulfat (SDS) bei erhöhter Temperatur wie beispielsweise 800C) und können nur durch konzentrierte Trifluoressigsäure (TFA) bzw. Ameisensäure wieder dissoziiert werden. Im Gegensatz dazu sind die assemblierten Formen von Klasse Il Hydrophobinen weniger stabil. Sie können bereits durch 60 Gew.-% Ethanol bzw. 1 Gew.-% SDS (jeweils in Wasser, bei Raumtemperatur) aufgelöst werden.
Ein Vergleich der Aminosäuresequenzen zeigt, dass die Länge des Bereichs zwischen Cystein C3 und C4 bei Klasse Il Hydrophobinen deutlich kürzer ist als bei Hydrophobinen der Klasse I. Klasse Il Hydrophobine weisen weiterhin mehr geladene Aminosäuren als Klasse I auf.
Besonders bevorzugte Hydrophobine zur Ausführung der vorliegenden Erfindung sind die Hydrophobine des Typs dewA, rodA, hypA, hypB, sc3, basfi , basf2, die im nachfolgenden Sequenzprotokoll strukturell charakterisiert sind. Es kann sich auch nur um Teile oder Derivate davon handeln. Es können auch mehrere Hydrophobinteile, bevorzugt 2 oder 3, gleicher oder unterschiedlicher Struktur miteinander verknüpft und mit einer entsprechenden geeigneten Polypeptidsequenz, die natürlicherweise nicht mit einem Hydrophobin verbunden ist, verknüpft werden.
Besonders geeignet zur Durchführung der vorliegenden Erfindung sind weiterhin die Fusionsproteine mit den in SEQ ID NO: 20, 22, 24 dargestellten Polypeptidsequenzen sowie den dafür codierenden Nukleinsäuresequenzen, insbesondere den Sequenzen gemäss SEQ ID NO: 19, 21 , 23. Auch Proteine, die sich ausgehend von den in SEQ ID NO. 22, 22 oder 24 dargestellten Polypeptidsequenzen durch Austausch, Insertion oder Deletion von mindestens einer, bis hin zu 10. bevorzugt 5, besonders bevorzugt 5% aller Aminosäuren ergeben, und die die biologische Eigenschaft der Ausgangsproteine noch zu mindestens 50% besitzen, sind besonders bevorzugte Ausführungsfor- men. Unter biologischer Eigenschaft der erfindungsgemäß verwendeten Proteine wird hierbei die bereits beschriebene Änderung des Kontaktwinkels um mindestens 20° verstanden. Erfindungsgemäß verwendete Proteine lassen sich chemisch durch bekannte Verfahren der Peptidsynthese herstellen, beispielsweise durch Festphasensynthese nach Merrifield.
Natürlich vorkommende Hydrophobine lassen sich aus natürlichen Quellen mittels geeigneter Methoden isolieren. Beispielhaft sei auf Wösten et. al., Eur. J Cell Bio. 63, 122-129 (1994) oder WO 96/41882 verwiesen.
Die Herstellung von Fusionsproteinen kann bevorzugt durch gentechnische Verfahren erfolgen, bei denen eine für den Fusionspartner und eine für den Hydrophobinteil codierende Nukleinsäuresequenz, insbesondere DNA-Sequenz, so kombiniert werden, dass in einem Wirtsorganismus durch Genexpression der kombinierten Nukleinsäuresequenz das gewünschte Protein erzeugt wird. Ein derartiges Herstellverfahren ist in unserer älteren Anmeldung DE 102005007480.4 offenbart.
Geeignete Wirtsorganismen (Produktionsorganismen) für das genannte Herstellverfahren können dabei Prokaryonten (einschließlich der Archaea) oder Eukaryonten sein, besonders Bakterien einschliesslich Halobacterien und Methanococcen, Pilze, Insektenzellen, Pflanzenzellen und Säugerzellen, besonders bevorzugt Escherichia coli, Bacillus subtilis, Bacillus. megaterium, Aspergillus oryzea, Aspergillus nidulans, Aspergillus niger, Pichia pastoris, Pseudomonas spec, Lactobacillen, Hansenula poly- morpha, Trichoderma reesei, SF9 (bzw. verwandte Zellen) u.a.
Im Rahmen der vorliegenden Erfindung kann man außerdem Expressionskonstrukte als Hydrophobine verwenden, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäß verwendetes Protein kodierende Nukleinsäuresequenz, sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte.
Vorzugsweise umfassen eingesetzte Expressionskonstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz.
Unter einer "operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie En- hancer, Polyadenylierungssignale und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und derglei- chen. Geeignete regulatorische Sequenzen sind z. B. beschrieben in Goeddel, Gene Expression Techno- logy : Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
Zusätzlich zu diesen Regulationssequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde.
Ein bevorzugtes Nukleinsäurekonstrukt enthält vorteilhaft auch eine oder mehrere der schon erwähnten "Enhancer'-Sequenzen, funktionell verknüpft mit dem Promotor, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren.
Die Nukleinsäuren können in einer oder mehreren Kopien im Konstrukt enthalten sein. Im Konstrukt können noch weitere Marker, wie Antibiotikaresistenzen oder Au- xotrophien komplementierende Gene, gegebenenfalls zur Selektion auf das Konstrukt enthalten sein.
Vorteilhafte Regulationssequenzen für das Verfahren sind beispielsweise in Promotoren wie cos-, tac-, trp-, tet-, trp-, tet-, Ipp-, lac-,lpp-lac-,laclq-T7- , T5-, T3-, gal-, trc-, ara-, rhaP(rhaPBAD) SP6-, lambda-PR-oder imlambda-P-Promotor enthalten, die vorteilhaft in gram-negativen Bakterien Anwendung finden. Weitere vorteilhafte Regulati- onssequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02, in den Hefe-oder Pilzpromotoren ADC1 ,MFalpha, AC, P-60, CYC1 , GAPDH, TEF, rp28, ADH enthalten.
Es können auch künstliche Promotoren für die Regulation verwendet werden.
Das Nukleinsäurekonstrukt wird zur Expression in einem Wirtsorganismus vorteilhafterweise in einen Vektor, wie beispielsweise einem Plasmid oder einem Phagen inseriert, der eine optimale Expression der Gene im Wirt ermöglicht. Unter Vektoren sind außer Plasmiden und Phagen auch alle anderen an sich bekannten Vektoren, also z. B. Viren, wie SV40, CMV, Baculovirus und Adenovirus, Transposons.lS- Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA, sowie das Agrobacterium-System zu verstehen.
Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal rep- liziert werden. Diese Vektoren stellen eine weitere Ausgestaltung der Erfindung dar. Geeignete Plasmide sind beispielsweise in E. coli pLG338, pACYC184, pBR322, pUC18,pUC19, pKC30, pRep4, pHS1 , pKK223-3, pDHE19.2, pHS2, pPLc236, pMBL24, pLG200, pUR290,plN-IH"3-B1 , tgt11 oder pBdCI, in StreptomycesplJ101 , plJ364,plJ702 oderplJ361 , in Bacillus pUB110, pC194 oder pBD214, in Corynebacteri- um pSA77 oder pAJ667, in Pilzen pALS1 , plL2 oder pBB116, in Hefen 2alpha, pAG-1 , YEp6, YEp13 oder pEMBLYe23 oder in Pflanzen pLGV23,pGHIac+, pBIN19, pAK2004 oder pDH51. Die genannten Plasmide stellen eine kleine Auswahl der möglichen Plasmide dar. Weitere Plasmide sind an sich bekannt und können beispielsweise aus dem Buch Cloning Vectors (Eds. Pouwels P. H. et al. Elsevier, Ams- terdam-New York- Oxford, 1985, ISBN 0 444 904018) entnommen werden.
Vorteilhaft enthält das Nukleinsäurekonstrukt zur Expression der weiteren enthaltenen Gene zusätzlich noch 3'-und/oder δ'-terminale regulatorische Sequenzen zur Steigerung der Expression, die je nach ausgewähltem Wirtorganismus und Gen oder Gene für eine optimale Expression ausgewählt werden.
Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.
In einer weiteren Ausgestaltungsform des Vektors kann der das Nukleinsäurekonstrukt oder die Nukleinsäure enthaltende Vektor auch vorteilhaft in Form einer linearen DNA in die Mikroorganismen eingeführt werden und über heterologe oder homologe Re- kombination in das Genom des Wirtsorganismus integriert werden. Diese lineare DNA kann aus einem linearisierten Vektor wie einem Plasmid oder nur aus dem Nukleinsäurekonstrukt oder der Nukleinsäure bestehen.
Für eine optimale Expression heterologer Gene in Organismen ist es vorteilhaft die Nukleinsäuresequenzen entsprechend des im Organismus verwendeten spezifischen "codon usage"zu verändern. Der "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene des betreffenden Organismus leicht ermitteln.
Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Pro- motors mit einer geeigneten kodierenden Nukleotidsequenz sowie einem Terminatoroder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E. F.Fritsch und J. Sambrook, Molecular Cloning : A Laboratory Manual, CoId Spring Harbor Laboratory, CoId Spring Harbor, NY (1989) sowie in T. J. Silhavy, M. L. Berman und L W. Enquist, Experiments with Gene Fusions, CoId Spring Harbor Laboratory, CoId Spring Harbor, NY (1984) und in Ausubel, F. M. etal., Current Protocols in Molecular Biology, Greene Publishing Assoc. andWiley Interscience (1987) beschrieben sind.
Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus, vorteilhaft in einen wirtsspezifischen Vektor inser- tiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind an sich bekannt und können beispielsweise aus "Cloning Vectors" (Pouwels P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden.
Mit Hilfe der Vektoren sind rekombinante Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem Vektor transformiert sind und zur Produktion der erfindungsgemäß verwendeten Proteine eingesetzt werden können. Vorteilhafterweise werden die oben beschriebenen rekombinanten Expressionskonstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise an sich bekannte geläufige Klonierungs- und Transfektionsmethoden, wie beispielsweise Co- Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und derglei- chen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression zu bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Molecular Biology, F.Ausubel etal., Hrsg., Wiley Interscience, New York 1997, oder Sambrook et al. Molecular Cloning : A Laboratory Manual. 2. Aufl., CoId Spring Harbor Laboratory, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989 beschrieben.
Es sind auch homolog rekombinierte Mikroorganismen herstellbar. Dazu wird ein Vektor hergestellt, der zumindest einen Abschnitt eines erfindungsgemäß zu verwendenden Gens oder einer kodierenden Sequenz enthält, worin gegebenenfalls wenigstens eine Aminosäure-Deletion, -Addition oder -Substitution eingebracht worden ist, um die Sequenz zu verändern, z. B. funktionell zu disruptieren ("Knockout"- Vektor). Die eingebrachte Sequenz kann z. B. auch ein Homologes aus einem verwandten Mikroorganismus sein oder aus einer Säugetier-, Hefe- oder Insektenquelle abgeleitet sein. Der zur homologen Rekombination verwendete Vektor kann alternativ derart ausgestaltet sein, dass das endogene Gen bei homologer Rekombination mutiert oder anderweitig verändert ist, jedoch noch das funktionelle Protein kodiert (z. B. kann der stromaufwärts gelegene regulatorische Bereich derart verändert sein, dass dadurch die Expression des endogenen Proteins verändert wird). Der veränderte Abschnitt des erfindungsgemäß verwendeten Gens ist im homologen Rekombinationsvektor. Die Kon- struktion geeigneter Vektoren zur homologen Rekombination ist z. B. beschrieben in Thomas, K. R. und Capecchi, M. R. (1987) Cell 51 : 503. Als rekombinante Wirtsorganismen für die erfindungsgemäß verwendete Nukleinsäure oder dem Nukleinsäurekonstrukt kommen prinzipiell alle prokaryontischen oder euka- ryontischen Organismen in Frage. Vorteilhafterweise werden als Wirtsorganismen Mikroorganismen wie Bakterien, Pilze oder Hefen verwendet. Vorteilhaft werden gram- positive oder gram-negative Bakterien, bevorzugt Bakterien der Familien Enterobacte- riaceae, Pseudomonadaceae, Rhizobiaceae, Streptomycetaceae oder Nocardiaceae, besonders bevorzugt Bakterien der Gattungen Escherichia, Pseudomonas, Streptomy- ces, Nocardia, Burkholderia, Salmonella, Agrobacterium oder Rhodococcus verwendet.
Die im Herstellverfahren für Fusionsproteine verwendeten Organismen werden je nach Wirtsorganismus in an sich bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan- und Magnesiumsalze sowie gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0 und 100 0C, bevorzugt zwischen 10 bis 60 0C unter Sauerstoffbegasung angezogen. Dabei kann der pH-Wert der Nährflüssigkeit auf einem festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann "batch"-weise, "semi-batch"-weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Die Enzyme können nach dem in den Beispielen beschriebenen Verfahren aus den Organismen isoliert werden oder als Rohextrakt für die Reaktion verwendet werden.
Erfindungsgemäß verwendete Proteine oder funktionelle, biologisch aktive Fragmente davon können mittels eines rekombinanten Verfahrens hergestellt werden, bei dem man einen Proteine-produzierenden Mikroorganismus kultiviert, gegebenenfalls die Expression der Proteine induziert und diese aus der Kultur isoliert. Erfindungsgemäß . verwendete Proteine können so auch in großtechnischem Maßstab produziert werden, falls dies erwünscht ist. Der rekombinante Mikroorganismus kann nach bekannten Verfahren kultiviert und fermentiert werden. Bakterien können beispielsweise in TB-oder LB-Medium und bei einer Temperatur von 20 bis 400C und einem pH-Wert von 6 bis 9 vermehrt werden. Im Einzelnen werden geeignete Kultivierungsbedingungen beispielsweise in T. Maniatis, E. F. Fritsch and J. Sambrook, Molecular Cloning : A Labo- ratory Manual, CoId Spring Harbor Laboratory, CoId Spring Harbor, NY (1989) beschrieben.
Die Zellen werden dann, falls erfindungsgemäß verwendetes Protein nicht in das Kulturmedium sezemiert wird, aufgeschlossen und das Produkt nach bekannten Protein- isolierungsverfahren aus dem Lysat gewonnen. Die Zellen können wahlweise durch hochfrequenten Ultraschall, durch hohen Druck, wie z. B. in einer French-Druckzelle, durch Osmolyse, durch Einwirkung von Detergenzien, lytischen Enzymen oder organi- sehen Lösungsmitteln, durch Homogenisatoren oder durch Kombination mehrerer der aufgeführten Verfahren aufgeschlossen werden.
Eine Aufreinigung von erfindungsgemäß verwendetem Protein kann mit an sich be- kannten, chromatographischen Verfahren erzielt werden, wie Molekularsieb- Chromatographie (Gelfiltration), wie Q- Sepharose-Chromatographie, lonenaustausch- Chromatographie und hydrophobe Chromatographie, sowie mit anderen üblichen Verfahren wie Ultrafiltration, Kristallisation, Aussalzen, Dialyse und nativerGelelektrophore- se. Geeignete Verfahren werden beispielsweise in Cooper, F. G., Biochemische Ar- beitsmethoden, Verlag Water de Gruyter, Berlin, New York oder in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin beschrieben.
Vorteilhaft kann es sein, zur Isolierung des rekombinanten Proteins Vektorsysteme oder Oligonukleotide zu verwenden, die die cDNA um bestimmte Nukleotidsequenzen verlängern und damit für veränderte Polypeptide oder Fusionsproteine kodieren, die beispielsweise einer einfacheren Reinigung dienen. Derartige geeignete Modifikationen umfassen als Anker fungierende sogenannte "Tags", wie beispielsweise die als Hexa- Histidin-Anker bekannte Modifikation oder Epitope, die als Antigene von Antikörpern erkannt werden können (beschrieben zum Beispiel in Harlow, E. and Lane, D., 1988, Antibodies : A Laboratory Manual. CoId Spring Harbor (N. Y. ) Press). Weitere geeignete Tags sind z.B. HA, Calmodulin-BD, GST, MBD; Chitin-BD, Steptavidin-BD-Avi- Tag, Flag-Tag, T7 etc. Diese Anker können zur Anheftung der Proteine an einen festen Träger, wie z. B. einer Polymermatrix, dienen, die beispielsweise in einer Chromatographiesäule eingefüllt sein kann, oder an einer Mikrotiterplatte oder an einem sons- tigen Träger verwendet werden kann. Die entsprechenden Reinigungsprotokolle sind von den kommerziellen Affinitäts-Tag-Anbietern erhältlich.
Die wie beschrieben hergestellten Proteine können sowohl direkt als Fusionsproteine als auch nach Abspaltung und Abtrennung des Fusionspartnerteils als „reine" Hydrophobine verwendet werden.
Wenn eine Abtrennung des Fusionspartnerteils vorgesehen ist, empfiehlt es sich eine potentielle Spaltstelle (spezifische Erkennungsstelle für Proteasen) in das Fusionsprotein zwischen Hydrophobinteil und Fusionspartnerteil einzubauen. Als Spaltstelle ge- eignet sind insbesondere solche Peptidsequenzen geeignet, die ansonsten weder im Hydrophobinteil noch im Fusionspartnerteil vorkommen, was sich mit bioinformatischen Tools leicht ermitteln lässt. Besonders geeignet sind beispielsweise BrCN-Spaltung an Methionin, oder durch Protease vermittelte Spaltlung mit Faktor Xa-, Enterokinase-, Thrombin, TEV-Spaltung (Tobacca etch virus Protease). Zur erfindungsgemäßen Verwendung von Hydrophobinen zur Beschichtung von Oberflächen kann man Hydrophobine auch in Substanz verwenden. Bevorzugt werden die Hydrophobine aber in wässriger Formulierung eingesetzt.
Die Auswahl der Hydrophobine zur Ausführung der Erfindung ist im Grunde nicht beschränkt. Es können ein Hydrophobin oder auch mehrere verschiedene eingesetzt werden. Beispielsweise können Fusionsproteine, wie beispielsweise yaad-Xa-dewA-his (SEQ ID NO: 19) oder yaad-Xa-rodA-his (SEQ ID NO: 21 ) eingesetzt werden.
Erfindungsgemäß verwendet man wie vorstehend beschriebene Hydrophobine zur Beschichtung von Oberflächen von faserigen Substraten, ausgewählt aus textilen Substraten und Leder.
Erfindungsgemäß kann man wie vorstehend beschriebene Hydrophobine zur Be- Schichtung von Oberflächen von faserigen Substraten, ausgewählt aus textilen Substraten und Leder, verwenden, ohne auf stark alkylierend wirkenden Verbindungen wie Epichlorhydrin oder auf Vernetzer wie beispielsweise DMDHEU zurückgreifen zu müssen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Beschichtung von faserigen Substraten, ausgewählt aus textilen Substraten und Leder, unter Verwendung von mindestens einem Hydrophobin. Dabei sind Hydrophobine, faserige Substrate, textile Substrate und Leder sowie Beschichtung wie vorstehend beschrieben definiert.
In einer Ausführungsform der vorliegenden Erfindung führt man das erfindungsgemäße Verfahren so durch, dass man zu beschichtendes faseriges Substrat mit mindestens einer wässerigen Formulierung, bevorzugt einer wässrigen Flotte kontaktiert, die mindestens ein Hydrophobin enthält.
Es ist beispielsweise möglich, mit einem Flottenverhältnis im Bereich von 1 :10 bis 1 : 1000, bevorzugt 1 : 70 bis 1 : 500 zu arbeiten.
In einer Ausführungsform der vorliegenden Erfindung kontaktiert man zu beschichten- des faseriges Substrat mit mindestens einer wässerigen Formulierung, bevorzugt einer wässrigen Flotte kontaktiert, die mindestens ein Hydrophobin enthält, nach dem Ausziehverfahren.
In einer anderen Ausführungsform der vorliegenden Erfindung kontaktiert man zu be- schichtendes faseriges Substrat mit mindestens einer wässerigen Formulierung, bevorzugt einer wässrigen Flotte kontaktiert, die mindestens ein Hydrophobin enthält, nach einem Klotzverfahren. In einer Ausführungsform der vorliegenden Erfindung kontaktiert man faseriges Substrat und insbesondere textiles Substrat mit Hydrophobin beispielsweise in einem Kessel oder bevorzugt mit Hilfe eines Foulards.
In einer Ausführungsform der vorliegenden Erfindung kontaktiert man faseriges Substrat und insbesondere textiles Substrat mit Hydrophobin bei Temperaturen im Bereich von O0C bis 900C, bevorzugt im Bereich von Zimmertemperatur bis 85°C.
In einer Ausführungsform der vorliegenden Erfindung kontaktiert man faseriges Sub- strat und insbesondere textiles Substrat beispielsweise in einem Kessel oder bevorzugt mit Hilfe eines Foulards, mit Hydrophobin, und trocknet danach, beispielsweise bei Temperaturen im Bereich von 20 bis 12O0C.
In einer Ausführungsform der vorliegenden Erfindung kontaktiert man faseriges Sub- strat und insbesondere textiles Substrat beispielsweise in einem Kessel oder bevorzugt mit Hilfe eines Foulards, mit Hydrophobin, und trocknet danach, beispielsweise bei Temperaturen im Bereich von 20 bis 12O0C, beispielsweise über einen Zeitraum von 5 Sekunden bis 15 Minuten, bevorzugt bis 5 Minuten. Für die Trocknung sind beispielsweise Temperaturen im Bereich von 20°C bis 12O0C, bevorzugt bis 1050C geeignet. Dabei ist die Trocknungszeit um so länger, je niedriger man die Temperatur wählt, und umgekehrt.
Wünscht man erfindungsgemäß faseriges Substrat mit Hydrophobin mit Hilfe eines Foulards zu kontaktieren, so kann man beispielsweise Auftragsgeschwindigkeiten im Bereich von 0,1 bis 10 m/min, bevorzugt 1 bis 5 m/min wählen und einen Anpressdruck der Walzen im Bereich von 0,5 bis 4 bar, bevorzugt 1 bis 3 bar.
In einer Ausführungsform der vorliegenden Erfindung kontaktiert man faseriges Substrat und insbesondere Leder mit Hydrophobin, indem man faseriges Substrat einmal oder mehrmals mit einer wässrigen Formulierung bedeckt, beispielsweise besprüht, die mindestens ein Hydrophobin enthält.
Als Einwirkzeit von wässriger Formulierung auf faseriges Substrat kann man beispielsweise 1 bis 24 Stunden wählen, bevorzugt 12 bis 17 Stunden.
Bevorzugt setzt man zur Herstellung von im erfindungsgemäßen Verfahren eingesetzter wässriger Formulierung Wasser als Lösungsmittel ein oder Gemische aus Wasser und mit Wasser mischbaren, organischen Lösungsmitteln. Beispiele für mit Wasser mischbaren, organischen Lösemittel umfassen mit Wasser mischbare einwertige oder mehrwertige Alkohole, wie beispielsweise Methanol, Ethanol, n-Propanol, i-Propanol, Ethylenglykol, Propylenglykol oder Glycerin. Weiterhin kann es sich auch um Etheral- kohole handeln. Beispiele umfassen Monoalkylether von (Poly)ethylen- oder (Po- ly)propylenglykolen wie Ethylenglykolmonobutylether. Art und Menge der wasserlöslichen, organischen Lösungsmittel sind an sich unkritisch und können beispielsweise im Bereich von 1 bis 50 Gew.-% liegen, bezogen auf erfindungsgemäß eingesetzte wäss- rige Formulierung.
Auch können zur Durchführung des erfindungsgemäßen Verfahrens eingesetzten wässrigen Formulierungen noch 0,1 bis 5 Gew.-% anorganisches Salz, beispielsweise NaCI enthalten, bezogen auf erfindungsgemäß eingesetzte wässrige Formulierung.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung verzichtet man bei der Durchführung des erfindungsgemäßen Verfahrens auf die Verwendung von stark alkylierend wirkenden Verbindungen wie Epichlorhydrin.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung verzichtet man bei der Durchführung des erfindungsgemäßen Verfahrens auf die Verwendung von Vernetzern wie beispielsweise N, N-Dimethylol-4,5-dihydroxyethylenhamstoff (DMDHEU).
Zur Herstellung von im erfindungsgemäßen Verfahren verwendeter wässriger Formulierung und vorzugsweise Flotte können bevorzugt die bei der Synthese, Isolierung und/oder Reinigung der Hydrophobine erhaltenen wässrigen Lösungen der Hydrophobine eingesetzt werden. Diese können je nach Reinheit noch Reste von Hilfsstoffen aus der Synthese enthalten. Selbstverständlich können die Hydrophobine aber auch zunächst als Substanz isoliert werden, beispielsweise durch Gefriertrocknen, und erst in einem zweiten Schritt formuliert werden.
Die erforderliche Konzentration an Hydrophobin von im erfindungsgemäßen Verfahren verwendeter wässriger Formulierung kann man je nach der Art der zu beschichtenden Oberfläche und/oder der Anwendung bestimmt werden. Es sind aber schon relativ geringe Konzentrationen an Hydrophobin ausreichend, um eine die beabsichtigte Wir- kung zu erzielen.
In einer Ausführungsform der vorliegenden Erfindung führt man das erfindungsgemäße Verfahren mit mindestens einer wässrigen Formulierung durchführt, die im Bereich von 1 mg/l bis 10 g/l mindestens eines Hydrophobins enthält.
In einer Ausführungsform der vorliegenden Erfindung hat im erfindungsgemäßen Verfahren verwendete wässrige Formulierung und insbesondere Flotte einen pH-Wert im Bereich von 3 bis 9, bevorzugt 4 bis 8.
In einer Ausführungsform der vorliegenden Erfindung behandelt man zu beschichtendes faseriges Substrat vor dem Kontaktieren mit Hydrophobin vor und kontaktiert erst danach mit Hydrophobin. Beispielsweise kann man beispielsweise durch mehrminütiges Spülen mit Wasser, bevorzugt mit vollentsalztem Wasser, besonders bevorzugt über einen Zeitraum von 5 Minuten bis 5 Stunden vorbehandeln.
In einer Ausführungsform der vorliegenden Erfindung behandelt man erfindungsgemäß zu beschichtende Oberfläche von faserigem Substrat vor, indem man mit einer anderen wässrigen Formulerung kontaktiert, die mindestens eine Aktivsubstanz enthält. Aktivsubstanz kann man aus organischen Chemikalien wählen, beispielsweise aus anionischen, kationischen oder nicht-ionischen Detergenzien, und aus Enzymen wie beispielsweise Proteasen oder Lipasen.
In einer Ausführungsform der vorliegenden Erfindung behandelt man erfindungsgemäß vor, indem man erfindungsgemäß zu beschichtendes faseriges Substrat bleicht. Diese Ausführungsform ist dann bevorzugt, wenn es sich bei zu beschichtendem faserigem Substrat um Baumwolle oder Baumwolle-Synthesefaser-Mischungen handelt.
Erfindungsgemäß eingesetzte wässrige Formulierung kann optional darüber hinaus noch weitere Komponenten, beispielsweise Zusatzstoffe und/oder Hilfsmittel umfassen. Beispiele derartiger Komponenten umfassen Säuren oder Basen, beispielsweise Car- bonäuren oder Ammoniak, Puffersysteme, Polymere, anorganische Partikel wie SiO2 oder Silikate, Farbmittel wie beispielsweise Farbstoffe, Duftstoffe oder Biozide. Weitere Beispiele von Zusatzstoffen sind in DE-A 101 60 993, insbesondere Abschnitte [0074] bis [0131] aufgeführt.
Durch das erfindungsgemäße Verfahren ist eine beschichtete Oberfläche von faserigem Substrat und bevorzugt beschichtetem textilem Substrat oder Leder erhältlich, die eine schmutzabweisende, mindestens ein Hydrophobin umfassende Beschichtung aufweist.
Bei der Beschichtung handelt es sich in der Regel mindestens um eine monomolekulare Schicht von Hydrophobin auf der beschichteten Oberfläche.
Erfindungsgemäß behandelte Oberflächen von faserigen Substraten, ausgewählt aus textilen Substraten und Leder, weisen nicht nur einen verbesserten flauschigen Griff und eine optisch gleichmäßige Beschichtung auf, sondern sind auch Schmutz abweisend.
Bei Schmutz handelt es sich in bekannter Art und Weise um alle Arten unerwünschter Kontamination von harten Oberflächen mit festen und/oder flüssigen Stoffen. Beispiele von Schmutz umfassen Fette, Öle, Eiweiße, Speisereste, Staub oder Erde. Bei Verschmutzungen kann es sich auch um Kalkablagerungen wie beispielsweise eingetrocknete Wasserspuren handeln, die sich aufgrund der Wasserhärte bilden. Weitere Beispiele umfassen Reste von Reinigungs- und Pflegemitteln zur Körperpflege oder auch unlösliche Kalkseifen, die sich aus derartigen Reinigungs- und Pflegemitteln in Verbindung mit Wasserhärte bilden können, und die sich auf Oberflächen von faserigen Substraten wie beispielsweise textilen Substraten oder Leder niederschlagen kön- nen.
Die schmutzabweisende Wirkung kann mittels prinzipiell bekannter Methoden bestimmt werden, beispielsweise, indem man die Ablösbarkeit von Schmutz durch Abspülen mit Wasser von einer unbehandelten und einer mit Hydrophobinen behandelten Oberflä- che vergleicht.
Erfindungsgemäß eingesetzte wässrige Formulierungen kann man beispielsweise herstellen durch Vermischen von einem oder mehreren Hydrophobinen mit Wasser und/oder einem oder mehreren der vorstehend genannten Lösungsmittel. Wenn man es wünscht, so kann man weitere Komponenten, beispielsweise Zusatzstoffe und/oder Hilfsmittel, zusetzen, wobei die Reihenfolge der Zugabe von Hydrophobin und Wasser, gegebenenfalls Lösungsmittel sowie gegebenenfalls einer oder mehreren weiteren Komponenten unkritisch ist.
Erfindungsgemäße Formulierungen sind in der Regel frei von stark alkylierend wirkenden Verbindungen wie Epichlorhydrin oder Vemetzern wie beispielsweise DMDHEU und lange zersetzungsfrei lagerbar.
Ein weiterer Gegenstand der vorliegenden Erfindung sind faserige Substrate, ausge- wählt aus textilen Substraten und Leder, beschichtet nach dem vorstehend beschriebenen erfindungsgemäßen Verfahren. Sie weisen nicht nur vorzügliche Schmutz abweisende Eigenschaften auf, sondern auch gute Wasch- und Reibechtheiten sowie einen angenehmen Griff. Sie eignen sich beispielsweise zur Herstellung von Heimstextilien wie beispielsweise Bettwäsche, Vorhänge und Gardinen, Bad- und Sanitärtexti- Nen sowie Tischdecken, weiterhin zur Herstellung von Textlien für den Outdoor-Bereich wie beispielsweise Markisen, Zelten, Bootüberzügen, LKW-Planen, Cabrioletdächern und insbesondere zur Herstellung von Bekleidungsstücken wie beispielsweise Schuhen, Jacken, Mänteln, Hosen, Pullovern, Strümpfen, Gürteln, weiterhin Heimtextilien wie beispielsweise Bettwäsche, Vorhänge und Gardinen, Bad- und Sanitärtextilien so- wie Tischdecken. Erfindungsgemäß beschichtete Leder eignen sich besonders zur
Herstellung von Bekleidungsstücken wie Stiefel, weiterhin zur Herstellung von Lederartikeln für den technischen Gebrauch.
Die folgenden Beispiele sollen die Erfindung näher erläutern: Teil A:
Herstellung und Test der erfindunqsqemäß verwendeten Hvdrophobine
Beispiel 1 Vorarbeiten für die Klonierung von vaad-Hisg/ vaaE-Hisg
Mit Hilfe der Oligonukleotide Hal570 und Hal571 (HaI 572/ HaI 573) wurde eine Polymerase Kettenreaktion durchgeführt. Als Template DNA wurde genomische DNA des Bakteriums Bacillus subtilis verwendet. Das erhaltene PCR Fragment enthielt die co- dierende Sequenz des Gens yaaD / yaaE aus Bacillus subtilis, und an den Enden je eine Ncol bzw. BgIII Restriktionsschnittstelle. Das PCR Fragment wurde gereinigt und mit den Restriktionsendonukleasen Ncol und BgIII geschnitten. Dieses DNA Fragment wurde als Insert verwendet, und in den zuvor mit den Restriktionsendonukleasen Ncol und BgIII linearisierten Vektor pQE60 der Firma Qiagen kloniert. Die so enstandenen Vektoren pQE60YAAD#2 / pQE60YaaE#5 können zur Expression von Proteinen bestehend aus, YAAD::HIS6 bzw. YAAE::HIS6 verwendet werden.
Hal570: gcgcgcccatggctcaaacaggtactga Hal571 : gcagatctccagccgcgttcttgcatac Hal572: ggccatgggattaacaataggtgtactagg Hal573: gcagatcttacaagtgccttttgcttatattcc
Beispiel 2
Klonierung von vaad-Hvdrophobin DewA-HisR
Mit Hilfe der Oligonukleotide KaM 416 und KaM 417 wurde eine Polymerase Kettenreaktion durchgeführt. Als Template DNA wurde genomische DNA des Schimmelpilzes Aspergillus nidulans verwendet. Das erhaltene PCR Fragment enthielt die codierende Sequenz des Hydrophobin Gens dewA und einer N-Terminalen FaktorXa Proteinase Schnittstelle. Das PCR Fragment wurde gereinigt und mit der Restriktionsendonuklea- se BamHI geschnitten. Dieses DNA Fragment wurde als Insert verwendet, und in den zuvor mit der Restriktionsendonuklease BgIII linearisierten Vektor pQE60YAAD#2 kloniert.
Der so enstandene Vektor #508 kann zur Expressions eines Fusionsproteins bestehend aus, YAAD::Xa::dewA::HIS6 verwendet werden.
KaM416: GCAGCCCATCAGGGATCCCTCAGCCTTGGTACCAGCGC KaM417: CCCGTAG CTAGTG G ATCCATTG AAG G CCG CAT- GAAGTTCTCCGTCTCCGC Beispiel 3
Klonierunq von vaad-Hvdrophobin RodA-Hisg
Die Klonierung des Plasmids #513 erfolgte analog zu Plasmid #508 unter Verwendung der Oligonukleotide KaM 434 und KaM 435.
KaM434: GCTAAGCGGATCCATTGAAGGCCGCATGAAGTTCTCCATTGCTGC KaM435: CCAATGGGGATCCGAGGATGGAGCCAAGGG
Beispiel 4
Klonierung von vaad-Hvdrophobin BASF1-HisR
Die Klonierung des Plasmids #507 erfolgte analog zu Plasmid #508 unter Verwendung der Oligonukleotide KaM 417 und KaM 418. Als Template DNA wurde ein künstlich synthetisierte DNA Sequenz - Hydrophobin BASF1 -eingesetzt (siehe Anhang).
KaM417:CCCGTAGCTAGTGGATCCATTGAAGGCCGCAT- GAAGTTCTCCGTCTCCGC KaM418: CTGCCATTCAGGGGATCCCATATGGAGGAGGGAGACAG
Beispiel 5
Klonierunq von vaad-Hvdrophobin BASF2-Hisfi
Die Klonierung des Plasmids #506 erfolgte analog zu Plasmid #508 unter Verwendung der Oligonukleotide KaM 417 und KaM 418.
Als Template DNA wurde ein künstlich synthetisierte DNA Sequenz - Hydrophobin BASF2 -eingesetzt (siehe Anhang).
KaM417!CCCGTAGCTAGTGGATCCATTGAAGGCCGCAT- GAAGTTCTCCGTCTCCGC KaM418: CTGCCATTCAGGGGATCCCATATGGAGGAGGGAGACAG
Beispiel 6 Klonierung von vaad-Hvdrophobin SC3-Hisfi
Die Klonierung des Plasmids #526 erfolgte analog zu Plasmid #508 unter Verwendung der Oligonukleotide KaM464 und KaM465.
Als Template DNA wurde cDNA von Schyzophyllum commune eingesetzt (siehe An- hang).
KaM464: CGTTAAGGATCCGAGGATGTTGATGGGGGTGC KaM465: GCTAACAGATCTATGTTCGCCCGTCTCCCCGTCGT
Beispiel 7
Fermentation des rekombinanten E. coli Stammes vaad-Hvdrophobin DewA-HiSg
Inokulation von 3ml LB Flüssigmedium mit einem yaad-Hydrophobin DewA-His6 expri- mierenden E.coli Stamm in 15ml Greiner Röhrchen. Inkubation für 8h bei 37°C auf einem Schüttler mit 200 UpM. Je 2 11 Erlenmeyer Kolben mit Schikanen und 250ml LB Medium (+ 100μg/ml Ampicillin) wurden mit jeweils 1ml der Vorkultur angeimpft und 9h bei 37°C auf einem Schüttler mit 180 UpM inkubiert.
13.51 LB-Medium (+100μg/ml Ampicillin) in einem 2Ol Fermenter mit 0,5! Vorkultur (OD600nπi 1 :10 gegen H2O gemessen) animpfen. Bei einer OD60nm von -3.5 Zugabe von 140ml 10OmM IPTG. Nach 3h Fermenter auf 100C abkühlen und Fermentationsbrühe abzentrifugieren. Zellpellet zur weiteren Aufreinigung verwenden.
Beispiel 8
Reinigung des rekombinanten Hydrophobin-Fusionsproteins
(Reinigung von Hydrophobin-Fusionsproteinen, die ein C-terminales His6-tag besitzen)
100 g Zellpellet (100 - 500 mg Hydrophobin) wurden mit 50 mM Natriumphosphatpuffer, pH 7,5 auf 200 ml Gesamtvolumen aufgefüllt und resuspendiert. Die Suspension wurde mit einem Ultraturrax Typ T25 (Janke und Kunkel; IKA-Labortechnik) für 10 Minuten behandelt und anschliessend für 1 Stunde bei Raumtemperatur mit 500 Einhei- ten Benzonase (Merck, Darmstadt; Best.-Nr. 1.01697.0001 ) zum Abbau der Nukleinsäuren inkubiert. Vor dem Zellaufschluss wurde mit einer Glaskartusche (P1 ) filtriert. Zum Zellaufschluß und für das Scheren der restlichen genomischen DNA wurden zwei Homogenisatorläufe bei 1.500 bar durchgeführt (Microfluidizer M-110EH; Microfluidics Corp.). Das Homogenisat wurde zentrifugiert (Sorvall RC-5B, GSA-Rotor, 250 ml Zent- rifugenbecher, 60 Minuten, 4°C, 12.000 Upm, 23.000 g), der Überstand auf Eis gestellt und das Pellet in 100 ml Natriumphosphatpuffer, pH 7,5 resuspendiert. Zentrifugation und Resuspendieren wurden dreimal wiederholt, wobei der Natriumphosphatpuffer bei der dritten Wiederholung 1 % SDS enthält. Nach der Resuspension wurde für eine Stunde gerührt und eine abschliessende Zentrifugation durchgeführt (Sorvall RC-5B, GSA-Rotor, 250 ml Zentrifugenbecher, 60 Minuten, 4°C, 12.000 Upm, 23.000 g). Gemäß SDS-PAGE Analyse ist das Hydrophobin nach der abschließenden Zentrifugation im Überstand enthalten (Abbildung 1 ). Die Versuche zeigen, dass das Hydrophobin wahrscheinlich in Form von Einschlusskörpern in den entsprechenden E.coli Zellen enthalten ist. 50 ml des Hydrophobin-enthaltenden Überstandes wurden auf eine 50 ml Nickel-Sepharose High Performance 17-5268-02 Säule aufgetragen (Amersham), die mit 50 mM Tris-Cl pH 8,0 Puffer äquilibriert wurde. Die Säule wurde mit 50 mM Tris-Cl pH 8,0 Puffer gewaschen und das Hydrophobin anschliessend mit 50 mM Tris-Cl pH 8,0 Puffer, der 200 mM Imidazol enthält, eluiert. Zur Entfernung des Imidazols wurde die Lösung gegen 50 mM Tris-Cl pH 8,0 Puffer dialysiert.
Abbildung 1 zeigt die Reinigung des so hergestellten Hydrophobins HP1:
Spur 1 : Auftrag Nickel-Sepharose Säule (1 :10 Verdünnung)
Spur 2: Durchlauf = Eluat Waschschritt
Spuren 3 - 5: OD 280 Maxima der Elutionsfraktionen
Das Hydrophobin der Abbildung 1 besitzt ein Molekulargewicht von ca. 53 kD. Die kleineren Banden repräsentieren zum Teil Abbauprodukte des Hydrophobins.
Beispiel 9 Technische Prüfung; Charakterisierung des Hydrophobins HP1 durch Kontaktwinkeländerung eines Wassertropfens auf Glas
Substrat: Glas (Fensterglas, Süddeutsche Glas, Mannheim):
Konzentration Hydrophobin: 100 mg/l
Inkubation von Glasplättchen über 15 Stunden (Temperatur 800C) in 5OmM Na-Acetat
(pH-Wert 4) + 0,1 Gew.-% Polyoxyethylen(20)-sorbitanmonolaurat in Wasser danach Beschichtung waschen in destilliertem Wasser danach Inkubation 10min / 8O0C / 1 Gew.-% wässrige Natrium-n-dodecylsulfat-Lösung
(SDS)
Waschen in destiliertem Wasser
Die so erhältlichen Proben wurden an der Luft getrocknet (Zimmertemperatur) und bei Zimmertemperatur der Kontaktwinkel (in Grad) eines Tropfens von 5 μl Wasser bestimmt.
Die Kontaktwinkelmessung wurde auf einem Gerät Dataphysics Contact Angle System OCA 15+, Software SCA 20.2.0. (November 2002) bestimmt. Die Messung erfolgte gemäß den Herstellerangaben.
Unbehandeltes Glas ergab einen Kontaktwinkel von 30 ± 5°; eine Beschichtung mit dem funktionellen Hydrophobin gemäss Beispiel 8 (yaad-dewA-his6) ergab Kontaktwinkel von 67 ± 5°. Teil B:
Verwendung des Hydrophobins HP1 zur Beschichtunq von Oberflächen von faserigem
Substrat
Für die anwendungstechnischen Versuche wurde eine Lösung des gemäß Beispiel 8 hergestellten Hydrophobins (Fusionsprotein) HP1 (yaad-Xa-dewA-his) (SEQ ID NO: 19) in Wasser eingesetzt. Konzentration des Hydrophobins HP1 in Lösung: 100 mg/l (0,02 Gew.-%).
B.1 Erfindungsgemäße Beschichtunq von textilem Substrat:
Weißes Polyestergewebe, Flächengewicht 226 g/m2, wurde zunächst 45 Minuten mit vollentsalztem Wasser gespült und danach in eine 0,02 Gew.-% wässrige Lösung von HP1 in Wasser getaucht und 17 Stunden bei 800C behandelt. Danach wurde das so behandelte Polyestergewebe eine Minute mit vollentsalztem Wasser gespült und bei Zimmertemperatur getrocknet. Man erhielt erfindungsgemäßes behandeltes Substrat PES-HP1. Es wies einen sehr angenehmen Griff auf.
B.2 Erfindungsgemäße Beschichtung von textilem Substrat
Der Versuch nach B.1 wurde wiederholt, jedoch wurde bei Zimmertemperatur statt bei 800C behandelt.
Man erhielt erfindungsgemäßes behandeltes Substrat PES-HP2. Es wies einen sehr angenehmen Griff auf.
Verwendeter Schmutz: Für die Tests wurde als Schmutz verwendet: Triolein Lippenstift Gebrauchtes Motoröl
Mehrere erfindungsgemäß behandelte Substrate PES-HP1 wurden mit je einem der oben genannten Schmutze 18 Stunden lang angeschmutzt, wobei etwa 0,1 g Schmutz pro dm2 verwendet wurden.
Herstellung eines Testwaschmittels und Waschen von erfindungsgemäßem PES-HP1
Es wurden miteinander vermischt:
5 g n-Dodecylbenzolsulfonsäure Natriumsalz
5 g eines Ci3-C15-Oxoalkoholgemischs, ethoxyliert mit im Mittel 7 Äquivalenten
Ethylenoxid/mol 5,8 g 40 Gew.-% wässrige Lösung eines statistischen Copolymers von Acrylsäure (70
Gew.-%) and Maleinsäure (30 Gew.-%), neutralisiert with NaOH, pH-Wert 7.9, Mw
70,000 g/mol. 1 ,4 g Kernseife
1 ,2 g Carboxymethylcellulose (Tylose CR 1500 p) 14 g Na2CO3 30 g Zeolith A 21 g Natriumperborat Tetrahydrat
6 g Ethylendiamintetraessigsäure Tetranatriumsalz 3,6 g Natriummetasilikat Pentahydrat
7 g Na2SO4
Man erhielt das Testwaschmittel 1.
In einer Waschmaschine des Typs Launder-O-Meter der Fa. Atlas, USA, wurden erfindungsgemäß behandelte und danach angeschmutzte PES-HP1 gewaschen, und zwar mit 3 Vorwaschzyklen und einem Hauptwaschzyklus. Es wurde Wasser mit einer Härte von 3 mmol/l (Ca : Mg : HCO3 wie 4 : 1 : 8) eingesetzt, Flottenverhältnis 1 : 12,5, Do- sierung 4,5 g Testwaschmittel 1/1, Wassertemperatur 400C. Gesamte Waschzeit: 30 Minuten.
Triolein und Motorölanschmutzung waren vollständig beseitigt, Lippenstiftreste waren nur noch äußerst schwach und unter der Lupe zu erkennen.
Zuordnung der Sequenznamen zu DNA- und Polypeptidsequenzen im Sequenzprotokoll

Claims

Patentansprüche
1. Verfahren zur Beschichtung von faserigen Substraten, ausgewählt aus textilen Substraten und Leder, unter Verwendung von mindestens einem Hydrophobin.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man es durch Kontaktieren von faserigem Material mit mindestens einer wässrigen Formulierung durchführt, die mindestens ein Hydrophobin enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man es mit einem Foulard durchführt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man es mit mindestens einer wässrigen Formulierung durchführt, die mindes- tens ein Hydrophobin im Bereich von 1 mg/l bis 10 g/l enthält.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man faseriges Substrat vorbehandelt und danach mit Hydrophobin kontaktiert.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man nach dem Kontaktieren von faserigem Substrat mit Hydrophobin bei Temperaturen im Bereich von 20 bis 120 0C trocknet.
7. Faserige Substrate, beschichtet nach mindestens einem der Ansprüche 1 bis 6.
8. Bekleidungsstücke, Heimtextilien, technische Textilien, Lederartikel zur Bekleidung oder zu technischem Gebrauch, hergestellt unter Verwendung von mindestens einem faserigem Substrat nach Anspruch 7.
9. Verwendung von Hydrophobinen zur Beschichtung von Oberflächen von faserigen Substraten, ausgewählt aus textilen Substraten und Leder.
EP06777256A 2005-06-06 2006-05-31 Verfahren zur beschichtung von oberflächen von faserigen substraten Withdrawn EP1891261A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200510026143 DE102005026143A1 (de) 2005-06-06 2005-06-06 Verfahren zur Beschichtung von Oberflächen von faserigen Substraten
DE200510030786 DE102005030786A1 (de) 2005-06-29 2005-06-29 Verfahren zur Beschichtung von Oberflächen von faserigen Substraten
PCT/EP2006/062785 WO2006131478A2 (de) 2005-06-06 2006-05-31 Verfahren zur beschichtung von oberflächen von faserigen substraten

Publications (1)

Publication Number Publication Date
EP1891261A2 true EP1891261A2 (de) 2008-02-27

Family

ID=36997255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06777256A Withdrawn EP1891261A2 (de) 2005-06-06 2006-05-31 Verfahren zur beschichtung von oberflächen von faserigen substraten

Country Status (10)

Country Link
US (1) US20090117796A1 (de)
EP (1) EP1891261A2 (de)
JP (1) JP2008545895A (de)
KR (1) KR20080014034A (de)
AU (1) AU2006256765A1 (de)
BR (1) BRPI0611240A2 (de)
CA (1) CA2610785A1 (de)
MX (1) MX2007014908A (de)
TW (1) TW200702518A (de)
WO (1) WO2006131478A2 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2596661C (en) * 2005-02-07 2013-12-10 Basf Aktiengesellschaft Novel hydrophobin fusion products, production and use thereof
EP1848734A2 (de) * 2005-02-07 2007-10-31 Basf Aktiengesellschaft Verfahren zum beschichten von oberflächen mit hydrophobinen
US8859106B2 (en) * 2005-03-31 2014-10-14 Basf Se Use of polypeptides in the form of adhesive agents
DE102005033002A1 (de) * 2005-07-14 2007-01-18 Basf Ag Wässrige Monomeremulsionen enthaltend Hydrophobin
JP5444007B2 (ja) * 2007-03-06 2014-03-19 ビーエーエスエフ ソシエタス・ヨーロピア ヒドロホビンで変性された連続気泡フォーム
WO2008110456A2 (en) * 2007-03-12 2008-09-18 Basf Se Method of treating cellulosic materials with hydrophobins
CA2698293A1 (en) * 2007-09-13 2009-03-26 Thomas Subkowski Use of hydrophobin polypeptides as penetration intensifiers
EP2042155A1 (de) * 2007-09-28 2009-04-01 Basf Se Verfahren zum Entfernen von wasserunlöslichen Substanzen von Substratoberflächen
CN102186455A (zh) * 2008-08-18 2011-09-14 巴斯夫欧洲公司 疏水蛋白在角蛋白非永久性染色中的用途
WO2010072665A1 (de) 2008-12-23 2010-07-01 Basf Se Modifizierung von nano- oder mesofasern oder textilen flächengebilden hergestellt mittels elektrospinnen mit amphiphilen proteinen
WO2010092088A2 (de) * 2009-02-10 2010-08-19 Basf Se Verwendung von hydrophobin als spreitmittel
CA2752808A1 (en) * 2009-03-09 2010-09-16 Basf Se Use of a synergistic mixture of water-soluble polymers and hydrophobins for thickening aqueous phases
KR101254294B1 (ko) 2011-06-14 2013-04-12 대구보건대학교산학협력단 병원균에 작용하는 바이오신소재와 이를 이용한 보건위생용품

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1141711A1 (de) * 1999-01-05 2001-10-10 Unilever Plc Binden von antikörperfragmenten an festphasen
GB0002661D0 (en) * 2000-02-04 2000-03-29 Biomade B V Method of stabilizing a hydrophobin-containing solution and a method of coating a surface with a hydrophobin
DE10342794A1 (de) * 2003-09-16 2005-04-21 Basf Ag Sekretion von Proteinen aus Hefen
US7241734B2 (en) * 2004-08-18 2007-07-10 E. I. Du Pont De Nemours And Company Thermophilic hydrophobin proteins and applications for surface modification

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006131478A3 *

Also Published As

Publication number Publication date
CA2610785A1 (en) 2006-12-14
TW200702518A (en) 2007-01-16
JP2008545895A (ja) 2008-12-18
AU2006256765A1 (en) 2006-12-14
BRPI0611240A2 (pt) 2016-11-16
MX2007014908A (es) 2008-03-27
WO2006131478A2 (de) 2006-12-14
KR20080014034A (ko) 2008-02-13
US20090117796A1 (en) 2009-05-07
WO2006131478A3 (de) 2007-03-22

Similar Documents

Publication Publication Date Title
EP1891261A2 (de) Verfahren zur beschichtung von oberflächen von faserigen substraten
EP1913123B1 (de) Verwendung von grenzflächenaktiven, nicht-enzymatischen proteinen für die textilwäsche
EP1866401B1 (de) Verwendung von hydrophobinen zur schmutzabweisenden behandlung von harten oberflächen
EP1848733B1 (de) Neue hydrophobinfusionsproteine, deren herstellung und verwendung
EP1848734A2 (de) Verfahren zum beschichten von oberflächen mit hydrophobinen
WO2006131564A2 (de) Neue cystein-verarmte hydrophobinfusionsproteine, deren herstellung und verwendung
EP1866106B1 (de) Verwendung von hydrophobinen zur oberflächenbehandlung von gehärteten mineralischen baustoffen, naturstein, kunststein und keramiken
EP1904534B1 (de) Wässrige monomeremulsionen enthaltend hydrophobin
EP1941009A2 (de) Verwendung von proteinen als antischaum-komponente in kraftstoffen
EP1893675B9 (de) Hydrophobin als beschichtungsmittel für expandierbare oder expandierte, thermoplastische polymerpartikel
WO2006128877A1 (de) Verfahren zur verringerung der verdunstungsgeschwindigkeit von flüssigkeiten
DE102005030786A1 (de) Verfahren zur Beschichtung von Oberflächen von faserigen Substraten
DE102005026143A1 (de) Verfahren zur Beschichtung von Oberflächen von faserigen Substraten
DE102005007480A1 (de) Neue Hydrophobinfusionsproteine, deren Herstellung und Verwendung
DE102005005737A1 (de) Neue Hydrophobinfusionsproteine, deren Herstellung und Verwendung
DE102005051515A1 (de) Verfahren zum Beschichten von Oberflächen mit Hydrophobinen
DE102005036341A1 (de) Verwendung von Hydrophobinen zur schmutzabweisenden Behandlung von harten Oberflächen
DE102005014844A1 (de) Verwendung von Hydrophobinen zur schmutzabweisenden Behandlung von harten Oberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080107

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100831

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110111