EP1886025B1 - Flügelzellenpumpe - Google Patents
Flügelzellenpumpe Download PDFInfo
- Publication number
- EP1886025B1 EP1886025B1 EP06722822A EP06722822A EP1886025B1 EP 1886025 B1 EP1886025 B1 EP 1886025B1 EP 06722822 A EP06722822 A EP 06722822A EP 06722822 A EP06722822 A EP 06722822A EP 1886025 B1 EP1886025 B1 EP 1886025B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- oil supply
- bore
- radial
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/023—Lubricant distribution through a hollow driving shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C18/3441—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
- F04C18/3442—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2220/00—Application
- F04C2220/10—Vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
Definitions
- the invention relates to a vane pump, in particular a vacuum vane pump for brake booster systems in motor vehicles according to the preamble of claim 1.
- a vane pump in particular a vacuum vane pump for brake booster systems in motor vehicles according to the preamble of claim 1.
- Such a pump is known for example from the DE-A-3730685 ,
- Such vane pumps are known.
- a radial transverse bore is mounted in the rotor bearing portion, which brings the oil supply opening with a bearing pocket, which is opposite to the oil supply port in combination.
- the radial transverse bore in the rotor will establish an oil connection, which may lead to the oil throughput of a vacuum pump being too high.
- the transverse bore can only be produced reliably with not too small transverse bores (for example at least 3 mm in diameter).
- a vane pump in particular vane vacuum pump for brake booster systems in motor vehicles, with a housing, a rotor and at least one wing, wherein the rotor is mounted with a rotor bearing portion in the housing and the housing in the storage area has an example radial oil supply opening, wherein the rotor bearing portion in the Oil supply port of the housing a flattened in secant cut (see DE 37 30 685 ) or a bore in the secant direction or a radial blind bore, which is connected to a second angularly offset radial blind bore, or has a radial countersunk bore.
- a known vane pump is characterized in that the flattening can be formed as a rectangular notch or notch with V-section or notch with a semicircular cross section. This has the advantage that over the size and shape of the notch, the dosage of the amount of oil from the oil supply port to the storage bag can be determined without manufacturing problematic dimensions such as very fine holes are needed.
- the pamphlets WO 2004 083604 and DE 26 22 406 also show oil supply devices.
- a vane pump is shown in which at least one second flattening can be arranged at any angle offset to the first on the circumference of the rotor.
- This has the advantage that you can additionally arrange any second additional oil supply at any rotational angle distance to the first and is not dependent on the 180 degree offset oil supply over the prior art.
- the oil supply can thus be optimally adjusted to the corresponding desired blocking positions in the rotor.
- Another vane pump is characterized in that the flattening can be introduced into a sintering rotor or introduced into a plastic rotor. This has the advantage that without additional holes or thin-walled cores in the corresponding molds to be attached to a cylinder body flattening is very easy to produce in the original molding process.
- a vane pump is shown in which instead of the at least second flattening on the rotor, at least one second supply opening for the oil in the housing can be arranged at any desired angular offset from the first oil supply opening.
- the object is achieved by the features of claim 1, namely by a vane pump, wherein the flattening or the radial countersink hole connects the oil supply opening in the housing and the bearing pocket in the housing in the axial direction.
- the oil supply opening and the bearing pocket are arranged in different axial regions of the housing and can be connected to one another via an axially wide flattening or a correspondingly axially wide countersink bore. This has the advantage that, if necessary, the rotation angle for the oil supply can be severely limited.
- a pot-shaped housing component 1 is shown in three dimensions.
- the pot-shaped housing component 1 has a bearing portion region 3, in which the rotor is mounted.
- a lubricating oil supply port 5 is arranged within the bearing portion portion 3, a lubricating oil supply port 5 is arranged.
- an axially extending bearing pocket 7 is arranged by a certain angular range relative to the oil supply opening 5, which supplies the rotating here in the bearing rotor with lubricating oil and ensures the supply of oil into the pump room.
- FIG. 2 the rotor 9 is shown.
- the rotor 9 has a large cylindrical portion 11 with a slot 13 in which a wing, not shown here, is rotationally driven by the rotor.
- the rotor 9 furthermore has a smaller-diameter bearing section region 15, which is rotatably mounted in the housing bearing section region 3.
- a flattened secant in the slot 17 is arranged, in which a vent hole 19 opens.
- FIG. 2b It can be seen that the vent hole 19 opens on the end face 21 of the rotor bearing portion 15. Through the vent hole 19, the flattening 17 can be connected to the atmospheric pressure of the crankcase of an internal combustion engine.
- the rotor 9 is arranged in the housing part 1, so that the function of the flattening 17 is clearly visible.
- the flattening 17 connects the oil feed opening 5 with the bearing pocket 7, so that the bearing pocket 7 can be supplied with lubricating oil once per revolution via the oil feed opening 5 in this angular position.
- the duration of the oil supply and thus the dosage of the amount of oil can be made.
- the vent hole 19 ensures that the residual vacuum in the vacuum pump does not continue to suck lubricating oil through the bearing pocket 7 in the pump, but that degrades the vacuum through the vent 19.
- an oil overfilling is avoided at standstill and ensures accurate oil dosage during rotation of the rotor on the dimensioning of the flattening 17.
- FIGS. 4 to 8 continue to be presented ways to realize an oil supply in the lubricating oil groove of the rotor only once per revolution.
- FIG. 4 a cut rotor 22 is shown in a cut housing part 20.
- the housing 20 opens an oil supply line 24, wherein the direction of oil flow is represented by an arrow 26.
- a radial blind bore 30 which opens into a radial blind bore 32, which is mounted at an angle to the blind bore 30, a connection to a Schmierölnut 28 is shown.
- the blind bore 30 can be connected to a lubricating oil groove 34 via a right-angled blind bore 36.
- the shows FIG. 4 in that also by the arrangement of two angular offset blind bores in the rotor an oil supply can be limited to one revolution of the rotor.
- the dosage of the lubricating oil quantity can be realized via the diameter of the holes.
- FIG. 5 is another possibility of a once per revolution realizable oil supply shown.
- a secantially guided bore 42 is arranged, which connects a opening in a housing part 44 lubricating oil line 46 with a Schmierölnut 48.
- the oil dose can be determined by the diameter of the bore 42.
- FIG. 6 is in a rotor 50, a recessed bore 52 is introduced, which connects a lubricating oil bore 54 within a housing 56 with a Schmierölnut 58.
- the dimensioning of the oil supply takes place, for example, over the diameter of the countersink bore 52.
- FIG. 7 a connection between an oil supply hole 64 and a lubricating oil groove 68 is shown in the axial direction.
- a rotor 60 has a countersink bore 62, which connects an oil feed bore 64 within a housing 66 with a lubricating oil groove 68.
- the Schmierölnut 68 and the oil supply hole 64 are here separated from each other in the axial direction by a web 70 and are connected only once per revolution through the Ansenkbohrung 62.
- About the dosage of the oil supply by the dimensioning of the countersink 62 has already been spoken in the previous descriptions.
- FIG. 8 Another possibility of oil supply is shown once per revolution.
- the oil supply line is arranged here axially as a bore 80 in a rotor 82 and opens into a radial blind bore 84.
- the radial blind bore 84 opens into a Schmierölnut 86 of a housing portion 88.
- the oil metering over the dimension of the bore 84 can be realized.
- the duration of the oil supply over a certain range of angles can be influenced, as in FIG. 8a can be seen. Either the angular range in which the supply line 84 is connected to the Schmierölnut 86, determined by the width of the Schmierölnut 86 in the direction of rotation or by an additional counterbore 90 at the mouth of the lubricating oil bore 84.
- the intermittent lubrication of a vacuum pump is based on the idea of a passage and a blocking position.
- the design is realized as a continuous transverse bore in the rotor with an oil supply 2x per revolution.
- this design is only possible with reliable cross-bores (at least 3 mm in diameter).
- the idea of the invention is the transverse bore, which is continuous in the rotor represented in the prior art, for example, to replace by a lateral flattening on the rotor.
- this lateral flattening may be completely sintered. Due to the flattening, the oil supply can be reduced to once per revolution.
- the supplied amount of oil is controlled by the size of the flattening or the dimensioning of the other possibilities by means of special holes, as described above. If an oil quantity supplied once per revolution is too small, the feed is to be distributed flexibly around the circumference of the bearing and thus also possible several times. With the flexible distribution can be optimally responded to the locked positions of the rotor, with blocking position means that an oil supply from the engine to the pump room is not possible (should be at standstill of the internal combustion engine the case). Thus, the amount of residual oil in the pump can be reduced to a low volume.
- the targeted position of the blocking position can be reacted to the position of the wing, for example, when turning off the vacuum pump and thus to the oil distribution on the wing at a standstill so that the restart of the wing is not overloaded by displacing too large an amount of oil.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
- Die Erfindung betrifft eine Flügelzellenpumpe, insbesondere eine Vakuumflügelzellenpumpe für Bremskraftverstärkersysteme in Kraftfahrzeugen nach dem oberbegriff des Anspruchs 1. Eine solche Pumpe ist bekannt z.B. aus der
DE-A-3730685 . - Derartige Flügelzellenpumpen sind bekannt. Dabei wird im Rotorlagerabschnitt eine radiale Querbohrung angebracht, welche die Ölzufuhröffnung mit einer Lagertasche, welche der Ölzufuhröffnung gegenüber liegt, in Verbindung bringt. Dadurch wird zweimal pro Umdrehung, also nach 180 Grad, die radiale Querbohrung im Rotor eine Ölverbindung herstellen, was dazu führen kann, dass der Öldurchsatz einer Vakuumpumpe zu hoch ist. Das führt zu dem Nachteil, dass die in der Pumpe befindliche Restölmenge zu hoch wird. Die Querbohrung ist aus Fertigungsgründen prozesssicher nur mit nicht zu kleinen Querbohrungen (beispielsweise mindestens 3 mm Durchmesser) herstellbar.
- Bekannt ist eine Flügelzellenpumpe, insbesondere Flügelzellenvakuumpumpe für Bremskraftverstärkersysteme in Kraftfahrzeugen, mit einem Gehäuse, einem Rotor und mindestens einem Flügel, wobei der Rotor mit einem Rotorlagerabschnitt im Gehäuse gelagert ist und das Gehäuse im Lagerbereich eine beispielsweise radiale Ölzufuhröffnung aufweist, wobei der Rotorlagerabschnitt im Bereich der Ölzufuhröffnung des Gehäuses einen in Sekantenrichtung abgeflachten Einschnitt (siehe
DE 37 30 685 ) oder eine Bohrung in Sekantenrichtung oder eine radiale Sackbohrung, die mit einer zweiten, winklig versetzten radialen Sackbohrung verbunden ist, oder eine radiale Ansenkbohrung aufweist. Das hat den Vorteil, dass nur einmal pro Umdrehung über die Abflachung oder die vorher genannten Bohrungen die radiale Ölzufuhrleitung mit einer Lagertasche im Gehäuse im Rotorlagerbereich verbunden und somit die Lagertasche mit Öl gefüllt wird und weiterhin eine Ölzufuhr in die Pumpe gewährleistet ist. - Bekannt ist aus
EP 1 108 892 auch eine Flügelzellenpumpe, bei welcher das Gehäuse im Bereich der Rotorlagerung eine axial verlaufende Lagertasche aufweist, welche über die Abflachung im Rotorlagerabschnitt oder die Bohrung in Sekantenrichtung oder die zweite, winklig versetzte radiale Sackbohrung oder die radiale Ansenkbohrung mit der Ölzufuhröffnung in Verbindung gebracht werden kann. - Eine bekannte Flügelzellenpumpe zeichnet sich dadurch aus, dass die Abflachung als Rechteckkerbe oder Kerbe mit V-Querschnitt oder Kerbe mit Halbkreisquerschnitt ausgebildet sein kann. Das hat den Vorteil, dass über Größe und Form der Kerbe die Dosierung der Ölmenge von der Ölzufuhröffnung zur Lagertasche bestimmt werden kann, ohne dass fertigungstechnisch problematische Dimensionen wie sehr feine Bohrungen benötigt werden.
- Die Druckschriften
WO 2004 083604 undDE 26 22 406 zeigen ebenfalls Ölzufuhrvorrichtungen. - Weiterhin ist eine Flügelzellenpumpe dargestellt, bei welcher mindestens eine zweite Abflachung im beliebigen Winkelversatz zur ersten am Umfang des Rotors angeordnet sein kann. Das hat den Vorteil, dass man eine beliebige zweite zusätzliche Ölzufuhr in einem beliebigen Drehwinkelabstand zur ersten zusätzlich anordnen kann und nicht gegenüber dem Stand der Technik auf die 180 Grad versetzte Ölzufuhr angewiesen ist. Die Ölzufuhr kann damit optimal auf die entsprechend gewünschten Sperrstellungen im Rotor eingestellt werden.
- Auch ist aus
EP 1 108 892 bekannt eine Flügelzellenpumpe, bei welcher der Rotor eine Belüftungsbohrung aufweist, welche die Abflachung oder die Bohrung in Sekantenrichtung oder die radiale Sackbohrung oder die radiale Ansenkbohrung anschneidet. Damit kann im Stillstand der Vakuumpumpe, wenn keine Ölzufuhr mehr benötigt wird, der Unterdruck der Vakuumpumpe abgebaut werden und damit verhindert werden, dass durch den Restunterdruck der stillstehenden Vakuumpumpe noch zusätzliches, überflüssiges Öl in die Vakuumpumpe gesaugt wird. - Eine weitere Flügelzellenpumpe zeichnet sich dadurch aus, dass die Abflachung in einem Sinterrotor eingebracht oder in einem Kunststoffrotor eingebracht werden kann. Das hat den Vorteil, dass ohne zusätzliche Bohrungen oder dünnwandige Kerne in den entsprechenden Formwerkzeugen eine an einem Zylinderkörper anzubringende Abflachung sehr einfach im Urformverfahren herstellbar ist.
- Weiterhin wird eine Flügelzellenpumpe dargestellt, bei welcher statt der mindestens zweiten Abflachung am Rotor mindestens eine zweite Zufuhröffnung für das Öl im Gehäuse im beliebigen Winkelversatz zur ersten Ölzufuhröffnung angeordnet sein kann. Das hat den Vorteil, dass über die zweite Ölzufuhrleitung ebenfalls noch mal eine zusätzliche Schmierung in die Lagertasche eingebracht werden kann, sobald die zweite Ölzufuhröffnung über die Abflachung mit der Lagertasche verbindbar ist.
- Es ist Aufgabe der Erfindung, eine Flügelzellenpumpe darzustellen, die eine andersartige Ölzufuhr aufweist.
- Die Aufgabe wird gelöst durch die Merkmale des Anspruchs 1, nämlich durch eine Flügelzellenpumpe, bei welcher die Abflachung oder die radiale Ansenkbohrung die Ölzufuhröffnung im Gehäuse und die Lagertasche im Gehäuse in axialer Richtung verbindet. Das wird dadurch realisiert, dass die Ölzufuhröffnung und die Lagertasche in unterschiedlichen axialen Bereichen des Gehäuses angeordnet sind und über eine axial breite Abflachung oder eine entsprechend axial breite Ansenkungbohrung miteinander verbunden werden können. Das hat den Vorteil, dass gegebenenfalls der Drehwinkel für die Ölzufuhr stark eingeschränkt werden kann.
- Die Erfindung wird nun anhand der Figuren beschrieben, wobei nur
Figur 7 eine erfindungsgemäße Pumpe darstellt. - Figur 1
- zeigt einen Gehäuseteil einer Flügelzellenpumpe.
- Figur 2
- zeigt einen Rotor einer Flügelzellenpumpe.
- Figur 3
- zeigt den Zusammenbau von Rotor und dem Gehäuseteil einer Flügelzellenpumpe.
- Figur 4
- zeigt einen Rotorquerschnitt mit mindestens zwei radialen, miteinander verbundenen Sackbohrungen.
- Figur 5
- zeigt einen Querschnitt durch einen Rotor mit einer sekantial verlaufenden Bohrung.
- Figur 6
- zeigt den Querschnitt durch einen Rotor mit einer radialen Ansenkungbohrung.
- Figur 7
- zeigt erfindungsgemäß im Querschnitt einen Rotor mit einer radialen Ansenkbohrung, welche axial voneinander getrennte Ölzufuhrleitung und Lagernut verbindet.
- Figur 8
- zeigt eine winklig im Rotor verlaufende Ölzufuhrleitung, welche auch nur einmal pro Umdrehung mit der Lagertasche verbunden wird.
- In
Figur 1 ist ein topfförmiges Gehäusebauteil 1 dreidimensional dargestellt. Das topfförmige Gehäusebauteil 1 besitzt einen Lagerabschnittsbereich 3, in welchem der Rotor gelagert wird. Innerhalb des Lagerabschnittbereichs 3 ist eine Schmierölzufuhröffnung 5 angeordnet. Weiterhin ist um einen gewissen Winkelbereich gegenüber der Ölzufuhröffnung 5 eine axial verlaufende Lagertasche 7 angeordnet, welche den hier im Lager drehenden Rotor mit Schmieröl versorgt und die Ölzufuhr in den Pumpenraum sicherstellt. - In
Figur 2 ist der Rotor 9 dargestellt. Der Rotor 9 weist einen großen zylindrischen Teil 11 mit einem Schlitz 13 auf, in welchem ein hier nicht dargestellter Flügel durch den Rotor drehangetrieben wird. Der Rotor 9 weist weiterhin einen durchmesserkleineren Lagerabschnittsbereich 15 auf, welcher in dem Gehäuselagerabschnittsbereich 3 drehbar gelagert ist. In dem Rotorlagerabschnitt 15 ist ein in Sekantenrichtung abgeflachter Einschnitt 17 angeordnet, in welchen eine Entlüftungsbohrung 19 einmündet. InFigur 2b ist zu erkennen, dass die Entlüftungsbohrung 19 auf der Abschlussfläche 21 des Rotorlagerabschnitts 15 mündet. Durch die Entlüftungsbohrung 19 kann die Abflachung 17 mit dem Atmosphärendruck des Kurbelgehäuses eines Verbrennungsmotors verbunden werden. - In der
Figur 3 ist der Rotor 9 im Gehäuseteil 1 angeordnet, so dass die Funktion der Abflachung 17 gut zu erkennen ist. Die Abflachung 17 verbindet in dieser Position die Ölzufuhröffnung 5 mit der Lagertasche 7, so dass über die Ölzufuhröffnung 5 in dieser Winkelposition die Lagertasche 7 einmal pro Umdrehung mit Schmieröl versorgt werden kann. Über die Größe und Dimensionierung der Abflachung 17 bzw. über deren Winkelausdehnung oder Länge kann die Zeitdauer der Ölzufuhr und damit die Dosierung der Ölmenge vorgenommen werden. Im Stillstand der Vakuumpumpe sorgt dann die Entlüftungsbohrung 19 dafür, dass das Restvakuum in der Vakuumpumpe nicht weiterhin Schmieröl über die Lagertasche 7 in die Pumpe saugt, sondern dass sich das Vakuum über die Entlüftungsöffnung 19 abbaut. Somit wird eine Ölüberbefüllung bei Stillstand vermieden und eine genaue Öldosierung bei Rotation des Rotors über die Dimensionierung der Abflachung 17 gewährleistet. - In den
Figuren 4 bis 8 sind weiterhin Möglichkeiten dargestellt, eine Ölzufuhr in die Schmierölnut des Rotors nur einmal pro Umdrehung zu realisieren. - In
Figur 4 ist in einem geschnittenen Gehäuseteil 20 ein geschnittener Rotor 22 dargestellt. In das Gehäuse 20 mündet eine Ölzufuhrleitung 24, wobei die Ölflussrichtung durch einen Pfeil 26 dargestellt wird. Über eine radiale Sackbohrung 30, welche in einer radialen Sackbohrung 32 mündet, welche winklig zu der Sackbohrung 30 angebracht ist, wird eine Verbindung zu einer Schmierölnut 28 dargestellt. Ebenso kann über eine rechtwinklige Sackbohrung 36 die Sackbohrung 30 mit einer Schmierölnut 34 verbunden werden. Prinzipiell zeigt dieFigur 4 , dass auch durch die Anordnung von zwei winklig versetzten Sackbohrungen im Rotor eine Ölzufuhr auf eine Umdrehung des Rotors beschränkt werden kann. Die Dosierung der Schmier-ölmenge kann über den Durchmesser der Bohrungen realisiert werden. - In
Figur 5 ist eine weitere Möglichkeit einer einmal pro Umdrehung realisierbaren Ölzufuhr dargestellt. In einem Rotor 40 ist eine sekantial geführte Bohrung 42 angeordnet, welche eine in einem Gehäuseteil 44 mündende Schmierölleitung 46 mit einer Schmierölnut 48 verbindet. Auch hier kann die Öldosis durch den Durchmesser der Bohrung 42 bestimmt werden. - In
Figur 6 ist in einem Rotor 50 eine Ansenkbohrung 52 eingebracht, welche eine Schmierölbohrung 54 innerhalb eines Gehäuses 56 mit einer Schmierölnut 58 verbindet. Hier erfolgt die Dimensionierung der Ölzufuhr beispielsweise über den Durchmesser der Ansenkbohrung 52. - In
Figur 7 wird erfindungsgemäß eine Verbindung zwischen einer Ölzuführbohrung 64 und einer Schmierölnut 68 in axialer Richtung dargestellt. Ein Rotor 60 weist hier wiederum eine Ansenkbohrung 62 auf, welche eine Ölzufuhrbohrung 64 innerhalb eines Gehäuses 66 mit einer Schmierölnut 68 verbindet. Die Schmierölnut 68 und die Ölzufuhrbohrung 64 sind hier in axialer Richtung durch einen Steg 70 voneinander getrennt und werden nur einmal pro Umdrehung durch die Ansenkbohrung 62 verbunden. Über die Dosierung der Ölzufuhr durch die Dimensionierung der Ansenkung 62 ist schon in den vorigen Beschreibungen gesprochen worden. - In
Figur 8 ist eine weitere Möglichkeit einer Ölzufuhr einmal pro Umdrehung dargestellt. Die Ölzufuhrleitung ist hier axial als Bohrung 80 in einem Rotor 82 angeordnet und mündet in eine radiale Sackbohrung 84. Die radiale Sackbohrung 84 mündet in eine Schmierölnut 86 eines Gehäuseabschnittes 88. Auch hier kann die Öldosierung über die Dimension der Bohrung 84 realisiert werden. Weiterhin kann die Dauer der Ölzufuhr über einen gewissen Winkelbereich beeinflusst werden, wie inFigur 8a zu erkennen ist. Entweder wird der Winkelbereich, in welchem die Zufuhrleitung 84 mit der Schmierölnut 86 verbunden ist, durch die Breite der Schmierölnut 86 in Drehrichtung oder durch eine zusätzliche Ansenkung 90 an der Mündung der Schmierölbohrung 84 bestimmt. - Die intermittierende Schmierung einer Vakuumpumpe geht von der Idee einer Durchgangs-und einer Sperrstellung aus. Im Stand der Technik ist die Auslegung als durchgehende Querbohrung im Rotor mit einer Ölversorgung 2x pro Umdrehung realisiert. Diese Auslegung ist aus Fertigungsgründen prozesssicher nur mit nicht zu kleinen Querbohrungen (mindestens 3 mm Durchmesser) möglich. Die Erfindungsidee ist, die Querbohrung, die durchgängig im Rotor im Stand der Technik dargestellt ist, beispielsweise durch eine seitliche Abflachung am Rotor zu ersetzten. Bei quergesinterten Rotoren ist diese seitliche Abflachung evtl. fertig gesintert beziehbar. Durch die Abflachung kann die Ölzufuhr auf einmal pro Umdrehung reduziert werden. Die zugeführte Menge an Öl wird durch die Größe der Abflachung oder die Dimensionierung der anderen Möglichkeiten mittels besonderer Bohrungen, wie vorab beschrieben, gesteuert. Sollte eine einmal pro Umdrehung zugeführte Ölmenge zu gering sein, ist die Zuführung flexibel am Umfang des Lagers zu verteilen und somit auch mehrfach möglich. Mit der flexiblen Verteilung kann optimal auf die Sperrstellungen des Rotors reagiert werden, wobei Sperrstellung bedeutet, dass eine Ölzufuhr vom Motor zum Pumpenraum nicht möglich ist (soll im Stillstand des Verbrennungsmotors der Fall sein). Damit kann die Restölmenge in der Pumpe auf ein geringes Volumen reduziert werden. Mit der gezielt angebrachten Position der Sperrstellung kann auch auf die Position des Flügels beispielsweise beim Abstellen der Vakuumpumpe und damit auf die Ölverteilung am Flügel bei Stillstand reagiert werden, damit beim Neustart der Flügel nicht durch Verdrängen einer zu großen Ölmenge überlastet wird.
-
- 1.
- Topfförmiges Gehäusebauteil der Vakuumpumpe
- 3.
- Lagerabschnittsbereich des Gehäuses
- 5.
- Schmierölzufuhröffnung
- 7.
- Lagertasche im Gehäuse
- 9.
- Rotor
- 11.
- Großer zylindrischer Teil des Rotors
- 13.
- Rotorschlitz
- 15.
- Durchmesserkleinerer Lagerabschnittsbereich des Rotors
- 17.
- Abgeflachter Einschnitt
- 19.
- Entlüftungsbohrung
- 21.
- Abschlussfläche des Rotorlagerabschnitts 15
- 20.
- Querschnitt durch Gehäuseteil
- 22.
- Querschnitt durch Rotor
- 24.
- Ölzufuhrleitung
- 26.
- Pfeil für Ölflussrichtung
- 30.
- Radiale Sackbohrung
- 32.
- Zweite radiale Sackbohrung
- 28.
- Schmierölnut
- 36.
- Rechtwinklige Sackbohrung
- 34.
- Schmierölnut
- 40.
- Rotor
- 42.
- Sekantialgeführte Bohrung
- 44.
- Gehäuseteil
- 46.
- Schmierölleitung
- 48.
- Schmierölnut
- 50.
- Rotor
- 52.
- Ansenkbohrung
- 54.
- Schmierölbohrung
- 56.
- Gehäuse
- 58.
- Schmierölnut
- 64.
- Ölzufuhrbohrung
- 68.
- Schmierölnut
- 60.
- Rotor
- 62.
- Ansenkbohrung
- 66.
- Gehäuse
- 70.
- Steg
- 80.
- Ölzufuhrbohrung
- 82.
- Rotor
- 84.
- Radiale Sackbohrung
- 86.
- Schmierölnut
- 88.
- Gehäuseabschnitt
Claims (5)
- Flügelzellenpumpe, insbesondere Vakuumflügelzellenpumpe für Bremskraftverstärkersysteme in Kraftfahrzeugen, mit einem Gehäuse (1, 20, 44, 56, 66, 88), einem Rotor (9, 22, 40, 50, 60, 82) und mindestens einem Flügel, wobei der Rotor (9, 22, 40, 50, 60, 82) mit einem Rotorlagerabschnitt (15) im Gehäuse (1, 20, 44, 56, 66, 88) gelagert ist und das Gehäuse (1, 20, 44, 56, 66, 88) im Lagerbereich (3) eine beispielsweise radiale Ölzufuhröffnung (5, 26, 46, 54, 64, 80) aufweist, wobei der Rotorlagerabschnitt (15) im Bereich der Ölzufuhröffnung (5, 26, 46, 54, 64, 80) einen in Sekantenrichtung abgeflachten Einschnitt (17) oder eine radiale Ansenkbohrung (52, 62) aufweist und das Gehäuse (1, 20, 44, 56, 66, 88) im Bereich der Rotorlagerung (3) eine Lagertasche (7, 28, 34, 48, 58, 68, 86) aufweist, welche über die Abflachung (17) oder Ansenkbohrung (52, 62) im Rotorlagerabschnitt (15) mit der Ölzufuhröffnung einmal pro Umdrehung in Verbindung gebracht wird, dadurch gekennzeichnet, dass die Abflachung oder die radiale Ansenkbohrung (52, 62) die Ölzufuhröffnung (64) und die Lagertasche (68) in axialer Richtung verbindet, indem die Abflachung bzw. die radiale Ansenkbohrung (52, 62) eine entsprechend große axiale Ausdehnung besitzt und die Ölzufuhröffnung (64) und die Lagertasche (68) in unterschiedlichen axialen Bereichen angeordnet sind.
- Flügelzellenpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Abflachung (17) als Rechteckkerbe oder Kerbe mit v-förmigem Querschnitt oder Kerbe mit halbkreisförmigem Querschnitt ausgebildet sein kann.
- Flügelzellenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Rotor (11) eine Belüftungsbohrung (19) aufweist, welche die Abflachung (17) oder die Bohrung (42) in Sekantenrichtung oder die radiale Sackbohrung (30, 32, 34) oder die radiale Ansenkbohrung (52, 62) anschneidet.
- Flügelzellenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abflachung (17) in einem Sinterrotor eingebracht oder in einem Kunststoffrotor eingebracht ist.
- Flügelzellenpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abflachung oder die radiale Ansenkbohrung (62) die Ölzufuhröffnung (64) und die Lagertasche (68) in axialer Richtung verbindet, indem die Abflachung bzw. die radiale Ansenkbohrung (62) eine entsprechend große axiale Ausdehnung besitzt und die Ölzufuhröffnung (64) und die Lagertasche (68) in unterschiedlichen axialen Bereichen angeordnet sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005022907 | 2005-05-19 | ||
PCT/DE2006/000704 WO2006122516A1 (de) | 2005-05-19 | 2006-04-22 | Flügelzellenpumpe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1886025A1 EP1886025A1 (de) | 2008-02-13 |
EP1886025B1 true EP1886025B1 (de) | 2012-03-07 |
Family
ID=36675894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06722822A Not-in-force EP1886025B1 (de) | 2005-05-19 | 2006-04-22 | Flügelzellenpumpe |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1886025B1 (de) |
AT (1) | ATE548566T1 (de) |
DE (1) | DE112006002033A5 (de) |
WO (1) | WO2006122516A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112009001966A5 (de) * | 2008-09-05 | 2011-07-14 | ixetic Hückeswagen GmbH, 42499 | Rotor für eine Pumpe |
JP5589532B2 (ja) * | 2010-04-27 | 2014-09-17 | 大豊工業株式会社 | ベーンポンプ |
DE102010044898A1 (de) * | 2010-09-09 | 2012-03-15 | Schwäbische Hüttenwerke Automotive GmbH | Vakuumpumpe mit Lüftungseinrichtung |
EP2559903A1 (de) * | 2011-08-17 | 2013-02-20 | Wabco Automotive UK Limited | Verbesserte Vakuumpumpe |
ITTO20111112A1 (it) * | 2011-12-05 | 2013-06-06 | Vhit Spa | Sistema, pompa e metodo per la generazione di vuoto per applicazioni nel settore degli autoveicoli |
JP6210859B2 (ja) * | 2013-11-22 | 2017-10-11 | 三桜工業株式会社 | 負圧ポンプ及びシリンダヘッドカバー |
EP3032105B1 (de) * | 2014-12-12 | 2021-05-19 | Pierburg Pump Technology GmbH | Mechanische kfz-vakuumpumpe |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4025242A (en) | 1975-10-20 | 1977-05-24 | Gca Corporation | Vacuum pump oiling |
US4283167A (en) * | 1979-04-26 | 1981-08-11 | Varian Associates, Inc. | Cooling structure for an oil sealed rotary vacuum pump |
DD256540A1 (de) | 1986-12-30 | 1988-05-11 | Medizin Labortechnik Veb K | Druckoelschmierung fuer drehschieber-vakuumpumpen |
JPH02298688A (ja) * | 1989-05-11 | 1990-12-11 | Toyoda Mach Works Ltd | ベーンポンプ |
JPH1162864A (ja) * | 1997-08-22 | 1999-03-05 | Sanwa Seiki Co Ltd | 自動車用真空ポンプ |
DE19961317C1 (de) | 1999-12-18 | 2001-06-28 | Bayerische Motoren Werke Ag | Vakuumpumpe, insbesondere Flügelzellenvakuumpumpe |
DE10194275B4 (de) * | 2000-10-11 | 2015-09-03 | Magna Powertrain Hückeswagen GmbH | Vakuumpumpe für einen Servoantrieb in einem Kraftfahrzeug |
WO2004083604A1 (de) | 2003-03-21 | 2004-09-30 | Luk Automobiltechnik Gmbh & Co. Kg | Pumpenrotor |
-
2006
- 2006-04-22 WO PCT/DE2006/000704 patent/WO2006122516A1/de active Application Filing
- 2006-04-22 DE DE112006002033T patent/DE112006002033A5/de not_active Withdrawn
- 2006-04-22 EP EP06722822A patent/EP1886025B1/de not_active Not-in-force
- 2006-04-22 AT AT06722822T patent/ATE548566T1/de active
Also Published As
Publication number | Publication date |
---|---|
EP1886025A1 (de) | 2008-02-13 |
WO2006122516A1 (de) | 2006-11-23 |
ATE548566T1 (de) | 2012-03-15 |
DE112006002033A5 (de) | 2008-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1886025B1 (de) | Flügelzellenpumpe | |
DE10240409B4 (de) | Variable Verdrängungspumpe | |
DE19755678B4 (de) | Pumpenvorrichtung | |
DE102012201615B4 (de) | variable kombinierte Öl-Vakuum-Verdrängerpumpe | |
EP1861623B1 (de) | Flügelzellenmaschine, insbesondere flügelzellenpumpe | |
DE60034006T2 (de) | Gerät zum Evakuieren eines Vakuumsystems | |
DE4200305C2 (de) | Regelbare Flügelzellenpumpe in kompakter Bauweise | |
WO2006005381A1 (de) | Einflügelvakuumpumpe | |
EP1141551A1 (de) | Pumpenanordnung mit zwei hydropumpen | |
DE102006001568B4 (de) | Kraftstoffpumpe | |
WO2000047899A1 (de) | Seitenkanalpumpe | |
EP0509077B1 (de) | Kolbenpumpe, insbesondere radialkolbenpumpe | |
EP1319831B1 (de) | Kraftstoffhochdruckpumpe mit integrierter Sperrflügel-Vorförderpumpe | |
DE102006025367B4 (de) | Zahnradpumpe, insbesondere Zahnradölpumpe für Fahrzeuge | |
DE3910659C2 (de) | ||
DE2737659A1 (de) | Fluegelzellenpumpe zur erzeugung eines unterdruckes | |
EP4217610B1 (de) | Motor-pumpe-einheit | |
DE4008522C2 (de) | ||
DE102009037277B4 (de) | Regelbare Vakuumpumpe | |
DE10194275B4 (de) | Vakuumpumpe für einen Servoantrieb in einem Kraftfahrzeug | |
EP1454055A1 (de) | Radialkolbenpumpe mit zwangsschmierung | |
EP0918158A2 (de) | Kolbenpumpe | |
EP1671032B1 (de) | Hydrostatische kolbenmaschine mit zwei hydraulischen kreisläufen | |
WO2017021117A1 (de) | Verdrängerpumpe zur förderung eines fluides für einen verbraucher eines kraftfahrzeuges | |
EP1058001A1 (de) | Hochdruckförderpumpe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071219 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IXETIC HUECKESWAGEN GMBH |
|
17Q | First examination report despatched |
Effective date: 20110708 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 548566 Country of ref document: AT Kind code of ref document: T Effective date: 20120315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006011082 Country of ref document: DE Effective date: 20120503 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120608 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
BERE | Be: lapsed |
Owner name: IXETIC HUCKESWAGEN G.M.B.H. Effective date: 20120430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120707 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120709 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120422 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120430 |
|
26N | No opposition filed |
Effective date: 20121210 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006011082 Country of ref document: DE Effective date: 20121210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120618 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 548566 Country of ref document: AT Kind code of ref document: T Effective date: 20120422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120422 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120607 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006011082 Country of ref document: DE Representative=s name: RAUSCH, GABRIELE, DIPL.-PHYS. DR.RER.NAT., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006011082 Country of ref document: DE Representative=s name: RAUSCH, GABRIELE, DIPL.-PHYS. DR.RER.NAT., DE Effective date: 20140409 Ref country code: DE Ref legal event code: R081 Ref document number: 502006011082 Country of ref document: DE Owner name: MAGNA POWERTRAIN HUECKESWAGEN GMBH, DE Free format text: FORMER OWNER: IXETIC HUECKESWAGEN GMBH, 42499 HUECKESWAGEN, DE Effective date: 20140409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060422 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150427 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160421 Year of fee payment: 11 Ref country code: DE Payment date: 20160421 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160421 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160422 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006011082 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170422 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170502 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170422 |