EP1882102B1 - Mecanisme d'entrainement a commande fluidique et procede de commande correspondant - Google Patents

Mecanisme d'entrainement a commande fluidique et procede de commande correspondant Download PDF

Info

Publication number
EP1882102B1
EP1882102B1 EP06721249A EP06721249A EP1882102B1 EP 1882102 B1 EP1882102 B1 EP 1882102B1 EP 06721249 A EP06721249 A EP 06721249A EP 06721249 A EP06721249 A EP 06721249A EP 1882102 B1 EP1882102 B1 EP 1882102B1
Authority
EP
European Patent Office
Prior art keywords
movement
component
control
period
end position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06721249A
Other languages
German (de)
English (en)
Other versions
EP1882102A1 (fr
EP1882102B8 (fr
Inventor
Christian Mersnik
Klaus Grausgruber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiwa Holding GmbH
Original Assignee
Stiwa Fertigungstechnik Sticht GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stiwa Fertigungstechnik Sticht GmbH filed Critical Stiwa Fertigungstechnik Sticht GmbH
Publication of EP1882102A1 publication Critical patent/EP1882102A1/fr
Publication of EP1882102B1 publication Critical patent/EP1882102B1/fr
Application granted granted Critical
Publication of EP1882102B8 publication Critical patent/EP1882102B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/085Servomotor systems incorporating electrically operated control means using a data bus, e.g. "CANBUS"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/046Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed depending on the position of the working member
    • F15B11/048Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed depending on the position of the working member with deceleration control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/22Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
    • F15B15/228Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke having shock absorbers mounted outside the actuator housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2807Position switches, i.e. means for sensing of discrete positions only, e.g. limit switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3057Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having two valves, one for each port of a double-acting output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3122Special positions other than the pump port being connected to working ports or the working ports being connected to the return line
    • F15B2211/3127Floating position connecting the working ports and the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/77Control of direction of movement of the output member
    • F15B2211/7741Control of direction of movement of the output member with floating mode, e.g. using a direct connection between both lines of a double-acting cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • F15B2211/853Control during special operating conditions during stopping

Definitions

  • the invention relates to a fluidically actuated drive and a method for controlling the same, as described in the preambles of claims 1, 16, 22 and 30.
  • the drive comprises relatively adjustable components, of which a component via the first switching element in a first direction of movement and the second switching element in one of the first direction of movement opposite, second direction of movement between end positions can be moved.
  • the drive is provided in its end positions with shock absorbers, which absorb the impact energy of the accumulating on this component.
  • the controller is provided with a counter-pulse module which can be controlled via a Vorpositioniersensor which is associated with at least one direction of movement of the component.
  • the counterpulse module causes a temporally adjustable reversal of the two switching elements, so that the component of the drive applied immediately before reaching its approaching end position in the direction opposite to the direction of the pressure medium over a fixed period of time and thereby a braking effect is generated.
  • both the first and the second switching element in the sense of a caster are energized simultaneously.
  • the drive is acted upon on both sides with system pressure and the component due to its inertia further driven at low speed in the direction of the end position.
  • the originally active switching element is energized again and moves the component reliably in the end position.
  • a method for controlling a fluidic drive as well as a device with a fluidically actuated drive is also known from DE 197 21 632 C2 known.
  • the drive is formed by a lifting cylinder in which an actuating piston is guided with a piston rod.
  • the piston rod is fixedly mounted via a fixed bearing, so that the lifting cylinder forms the moving component of the drive.
  • the lifting cylinder is connected to a 5/3-way valve, which can be controlled by means of two electromagnetic control magnets and with which pressure chambers of the lifting cylinder are mutually acted upon by system pressure.
  • the control magnets are connected to an electronic control device which in turn receives control signals from sensors that can be switched electronically via switching lugs and, depending on this, actuates the 5/3-way valve and thus the movement of the lifting cylinder.
  • a first measuring signal S 0 is generated at a time T 0 and a second measuring signal S 1 at a later time T 1 lying in the movement phase of the lifting cylinder and a time difference t 1 from this, taking into account the actual movement parameters of the lifting cylinder calculated.
  • the control device for braking the Lifting cylinder to the 5/3-way valve outputs a brake signal for the beginning and for the end of the braking phase.
  • the object of the invention is to provide a fluidically actuated drive and a method for controlling the same, in which the adjustable means of pressure medium component of Drive even with changed operating and environmental conditions, the end position particularly gently anatomic.
  • the object of the invention is achieved by the measures and features of claims 1 and 16.
  • the two measuring signals are triggered only shortly before reaching the end position to be approached, and the switching elements are actuated by the control device as late as possible with respect to the movement phase of the component acted upon by the pressure medium.
  • only a very short braking phase is required in relation to the movement phase of the component, which is sufficient for the component to be gently positioned against the end position of the stationary component of the drive and braked for the shortest possible path, so that on the one hand the movement times of the component significantly shortened between the end positions and on the other hand optionally additionally used shock absorbers designed with less power reserve or even eliminated, which has a favorable effect on the size and price of the drive.
  • both the driving force on the component and the counterforce or braking force on the component corresponds to the maximum, which is beneficial to the movement times affects the component and a simple circuit construction of the fluid control of the drive allows, especially since additional throttle check valves can be omitted to adjust the braking behavior.
  • the use of the control system achieves an adaptive system behavior is set, especially since optimal operation of the drive independently and this can be maintained over the entire operating life.
  • the measure according to claim 6 is advantageous, since hereby the component arrives safely in its desired end position and the functionality of the drive is ensured. For this purpose, a renewed advance of the component in the direction of movement is exerted in the direction of its end position at the end of the braking phase for the second switching time at which the component already has an extremely low movement speed.
  • the movement time of the component can be optimized in the subsequent to the first movement phase with a first direction of movement, second movement phase with opposite direction of movement.
  • the measure according to claim 9 is advantageous, since in the temporal control of the switching element takes into account the system-induced inertia of the drive and the start time is advanced by the time t 5 , so that the component is actually set in motion at the desired time. With this measure, the movement time of the component can be further optimized.
  • the control device of the first drive is provided with the system inertia of the second drive taking into account time t 5 , so that, for example, a feedback signal before reaching the end position of the component triggered by the first drive and the start time of the second drive is presented. Due to the leading feedback independent of the system inertia of the second drive, the associated switching element early on, so that the second drive starts at the same time as reaching the end position of the first drive with its movement.
  • the acknowledgment signal does not necessarily have to be leading, ie it must be output to the control device or to the higher-level control before the end of the movement phase of the first drive.
  • the feedback signal is delivered simultaneously or after reaching the end position of the first drive. This is necessary, for example, if absolutely vibration-free positioning of the first drive in one of its end positions is necessary for a further operation on the second drive.
  • Another advantage is the monitoring of the signal waveform of the sensors and their evaluation, as described in claim 11.
  • an impermissible state of movement of the component can be detected in a first movement phase and corrected in the subsequent movement phase by changing the counter-control period t GD .
  • the control device that the movement speed of the component is just before reaching its end position is too high and must be reduced taking into account the dynamic stress of the drive, for which the counter control period t GD is increased. This ensures reliable operation over the entire service life of the drive.
  • the control device according to claim 13 that the speed of movement of the component is relatively low shortly before reaching its end position and can be selected higher, for which the Gegenmatidauer t GD reduced and the movement speed is increased so far that the movement time for the movement of the component is optimized between the end positions.
  • Another advantage is the measure according to claim 15, whereby, for example, the function of a drive additionally used, mechanical shock absorber can be monitored and an impending failure of the shock absorber as an error message of an operator is announced. As a result, a malfunction of the drive due to malfunction, for example during a working process, such as a joining operation and the like, can be avoided.
  • the different evaluations for example, the waveform of the sensors or the counter control period t GD , an operator can be displayed and logged.
  • the development according to claim 19 is advantageous, since on the short path from the first control edges to the second control edge a change in the state of motion, in particular a strong fluctuations in the speed of movement of the component, will hardly occur and therefore the determined time t 1 and the speed of movement represents a reliable parameter for setting the counter control period.
  • the specified minimum width of the recess groove allows reliable detection of the control edges, by which the first and second measurement signal are triggered.
  • the embodiment according to claim 20 whereby the wiring and tubing between the control device and the switching element and the pressure loss in the pressure lines between the switching element and the pressure chambers can be reduced, which has a positive effect on the time t 5 .
  • the switching element is constructed on one of the components or integrated in one of the components, the pressure lines are formed by pressure medium channels, in particular inflow and outflow channels, which connect directly to the supply channels of the switching element and open into the pressure chambers, as described in US Pat WO 99/09462 A1 disclosed in detail and can also find applications in the drive according to the invention.
  • any position can now be approached via the adjustment path of the movable component of the drive, for which only one or both hard stops and / or shock absorbers and / or a control bar and a sensor associated therewith must be adjusted.
  • a center position on the drive can now be approached smoothly.
  • the object of the invention is also achieved by the measures and features indicated in the characterizing part of claims 22 and 30. It is advantageous that, based on a predetermined movement time for the adjusting movement of the component between the end positions in both directions of movement an optimized as needed control of the drive made and the driving behavior of the component can be specified controlled. This allows the installer in the commissioning of the drive to specify the movement time so that the component is moved in crawl, which on the one hand possible damage to the drive due to incorrect programming or assembly can be prevented and on the other hand, the drive meets the increasing safety requirements. Especially in the commissioning of the drive, the fitter is in the effective range of the same and therefore there is a high risk potential, which can be almost completely turned off by the inventive measures.
  • the drive is always driven with such a movement speed, as required by the current operating situation.
  • unnecessary wear is avoided by unnecessary, low movement times, extends the maintenance intervals and increases the life of the drive.
  • an adaptive system behavior is achieved by the use of the control, especially since an optimal operating mode of the drive can be set independently and maintained over the entire service life.
  • the drive according to the invention represents a good compromise between sufficiently high speed of movement and gentle operation, since the end position of the component can be approached particularly gently.
  • the measure according to claim 26 is advantageous, since now influencing variables resulting in operation can be taken into account in a simple manner and the braking behavior of the component can be optimized even better.
  • error messages can be output in optical and / or acoustic representation.
  • An error message can be triggered if, for example, even after the Nachschaltimpulses the component has not reached the end position and a predetermined by the control device or the higher-level control period has elapsed and a limit is exceeded.
  • the error message may contain information about a technical defect on the drive or that a mounting part is clamped to the drive and thereby movement of the component is prevented.
  • a first embodiment of a drive 1 is shown in a schematic representation.
  • the drive 1 is formed by a lifting cylinder 2, which consists of a cylinder tube whose ends are closed with end walls 3, 4.
  • a control piston 5 is slidably guided by a pressure medium, which in turn is connected to a piston rod 6.
  • the lifting cylinder 2 forms a guide device for the actuating piston 5.
  • the fluidic pressure medium is compressed air or hydraulic oil.
  • the piston rod 6 is fixedly mounted via a corresponding fixed bearing 7, so that the lifting cylinder 2 forms the moving component and the actuating piston 5 with the piston rod 6, the fixed component of the drive 1.
  • the piston rod 6 extends through the right end wall 3 of the lifting cylinder 2 in the axial direction.
  • a first pressure chamber 8 Between the left end wall 4 and the adjusting piston 5 is a first pressure chamber 8 and between the right end wall 3 and the adjusting piston 5, a second pressure chamber 9 is formed.
  • the lifting cylinder 2 is a so-called double-acting fluid cylinder.
  • the pressure chambers 8, 9 are alternately acted upon by this embodiment via two separate switching elements 10, 11, in particular two 3/2-way valves.
  • the switching elements 10, 11 each have an electromagnetic control magnet 12 which is connected via corresponding control lines 14, 15 with an electronic control device 13, in turn, the switching elements 10, 11 between a rest position in the de-energized state of the control magnets 12 and actuation position in energized state Control solenoid 12 switches.
  • the electronic control device 13 is preferably connected via an address-based network, in particular a bus system, with a higher-level control or formed by the higher-level control.
  • the control of the control magnets 12 takes place here via electrical control signals of the control device 13 through which the switching elements 10, 11 are actuated, as shown in the Fig. 8 from the signal curve for the switching position S SCH1 , S SCH2 of the switching elements 10, 11 can be seen.
  • the left pressure chamber 8 is connected via a first pressure line 16 to the first switching element 10 and the right pressure chamber 9 via a second pressure line 17 to the second switching element 11.
  • the switching elements 10, 11 are in turn connected via a corresponding pressure supply connection to a pressure supply unit 18, for example a pneumatic or hydraulic pressure source, through which the pressure chambers 8, 9 alternately with system pressure, for example 6 bar acted upon.
  • the control device 13 is connected via signal lines 19, 20 with sensors 21, 22, so that the output from the sensors 21, 22, electrical control signals of the control device 13 can be fed.
  • the sensors 21, 22 are formed for example by inductively acting sensors.
  • the sensors 21, 22 are arranged in the end positions to be approached by the lifting cylinder 2 above the movement path defined by the drive 1 or the lifting cylinder 2.
  • the end positions are defined by, the hard stops forming end walls 3, 4.
  • the first sensor 21 above the movement path of the drive 1 and the second sensor 22 are arranged below the movement path of the drive.
  • the arrangement of the sensors 21, 22 shown is merely of a fundamental nature. In the arrangement of the sensors 21, 22, depending on the wiring, it is only necessary that they do not influence one another.
  • a first control bar 25 is fixed, which in the in Fig. 2 shown position of the lifting cylinder 2 in the effective range of the first sensor 21 is located.
  • the second sensor 22 is associated with a second control bar 26 at the right end of the lifting cylinder 2, which in the in Fig. 1 shown position of the lifting cylinder 2 in the effective range of the second sensor 22 is located.
  • the control strips 25, 26 are thus fixed to the movable component of the drive 1 at its opposite ends, for example via a screw arrangement.
  • the control bar 25, 26, as in Fig. 1a is shown enlarged, is formed by a prismatic block and has on its the sensor 21, 22 facing upper side a switching lug 27 a, b and one of them via a recess groove 28 a, b separated end position portion 29 a, b.
  • the width (B) of the recessed groove 28a, b is at least between 1 mm and 5 mm, in particular between 2 mm and 4 mm.
  • the longitudinal distance (A) between control edges 32a, b, 33a, b is at most between 4 mm and 15 mm, in particular between 5 mm and 9 mm.
  • a bore 30 a, b arranged to receive a fastening screw, not shown.
  • the switching lug 27a, b, the recess groove 28a, b and the end-position portion 29a, b are in the direction of movement of the lifting cylinder 2 - as indicated by arrow 31 in FIG Fig. 1 - arranged one behind the other.
  • the length of the switching lug 27a, b is viewed by the in the direction of movement - as shown in arrow 31 - front side surface and by the towering, front groove side surface and the width of the transversely to the direction of movement - as indicated by arrow 31, opposite side surfaces of the control bar 25, 26th limited.
  • the end-layer section 29a, b extends as a surface between the upwardly projecting rear groove side surface and the rear side surface of the control strip 25, 26 as well as between the lateral side surfaces of the control strip 25, 26 opposite the direction of movement, as shown in arrow 31
  • two control edges 32a, b, 33a, b provided in the direction of movement of the lifting cylinder 2 - according to arrow 31 - successively offset are at which a respective measurement signal S 1 , S 2 is triggered when the control edge 32 a, b, 33 a, b enters the effective range of the respective sensor 21, 22, as will be described in more detail.
  • control bar 25, 26 has a third control edge 34a, b, which lies between the first and second control edge 32a, b, 33a, b.
  • a start signal S Start is triggered via the second control edge 33a, b when the control edge 33a, b leaves the effective range of the relevant sensor 21, 22, as will be described in more detail.
  • the drive 1 according to the above-described embodiment with another embodiment of the control shown in a schematic representation.
  • the lifting cylinder 2 is a so-called double-acting fluid cylinder.
  • the pressure chambers 8, 9 are alternately acted upon by this embodiment via only one switching element 36, in particular a 5/2-way valve.
  • the switching element 36 has, for example, an electromagnetic control magnet 37 which is connected via a corresponding control line 14 with an electronic control device 13, which in turn switches the switching element 36 between a rest position in the de-energized state of the control magnet 37 and actuation position in energized state of the control magnet 37.
  • control of the control magnet 37 takes place here via electrical control signals of the control device 13, by which the switching element 36 is actuated, as shown in the Fig. 10 from the waveform for the switching position S SCH of the switching element 36 can be seen.
  • the left pressure chamber 8 via a first pressure line 16 and the right pressure chamber 9 via a second pressure line 17 to the switching element 36 are connected.
  • the switching element 36 is connected to the pressure supply unit 18, through which the pressure chambers 8, 9 alternately with system pressure, for example 6 bar acted upon.
  • a further embodiment variant of a fluidically actuated drive 1 ' which comprises relatively adjustable components, of which the movable component via an actuator 40' along a guide device 41 'between a right end position, as in Fig. 5 shown, and a left end position, as in Fig. 6 shown, is adjustable.
  • the movable component is formed by a guide carriage 42 'and the guide device 41' by a fixed to the fixed component linear guide, wherein the guide carriage 42 'is mounted on the linear guide.
  • the fixed component is formed by a frame 43 'on which in the direction of movement - according to arrow 31- of the adjustable component opposite each other fixed stops 44' are arranged, by which the end positions are fixed.
  • the fixed stops 44 ' are formed for example by a screw-threaded arrangement and limit the maximum displacement of the movable member between the end positions.
  • damper 45' As in the Fig. 5 and 6 Furthermore, it can be seen on the frame 43 'in the end positions opposite one another damper 45' are arranged. These mechanical shock absorbers 45 'fulfill primarily the task of reducing the impact load on the frame 43' in the commissioning of the drive 1 'or to prevent damage to the drive 1' during operation due to unforeseen faults.
  • the actuator 40 ' is formed by a fluid cylinder, as this in the Fig. 1 to 4 has been described, and attached via a fastening device 46 with the cylinder housing on the frame 43 '.
  • the piston rod 6 'of the actuator 40' is connected via a further fastening device 47 'with the guide carriage 42', so that the actuating piston 5 ' and the guide carriage 42 'are coupled in terms of movement and the retraction or extension movement of the piston rod 6' is transmitted to the guide carriage 42 '.
  • the pressure chambers 8 ', 9' of the actuator 40 ' are connected via the pressure lines 16, 17 with the switching elements 10, 11.
  • the switching elements 10, 11 are connected to the pressure supply unit 18.
  • the control magnets 12 of the switching elements 10, 11 are connected via the control lines 14, 15 with the electronic control device 13, which in turn drives the switching elements 10, 11.
  • the sensors 21, 22 shown in the figures are fastened to the frame 43 'of the drive 1' and are connected to the electronic control device 13 via signal lines 19, 20.
  • the guide carriage 42 ' is on its side facing the sensors 21, 22 in the direction of movement - according to arrow 31 - opposite ends with the control bars 25, 26 equipped, as in Fig. 1a are described in detail.
  • Fig. 7 shows a handling system 48, which is composed of a plurality of fluidly actuated drives 1 ', 1 ", the type of which, for example, in the Fig. 5 and 6 illustrated embodiment corresponds.
  • the first drive 1 ' is formed by a horizontal axis and the second drive 1 "by a vertical axis, the second drive 1" is fastened with its frame 43 "on the guide carriage 42' of the first drive 1 '”is formed by a guide carriage 42", which is mounted on the guide device 41 "vertically movable on the linear guide via the actuator 40.
  • the fixed component is formed by the frame 43", on which in the direction of movement - according to arrow 31 - the movable
  • shock absorbers 45 are disposed opposite one another on the frame 43" in the end positions, on the guide carriage 42 "of the second drive 1" are the control strips 25, 26 and, for example, a attached pneumatically or hydraulically operated gripping system, the control bars 25, 26 with the stationary Sensors interact in the end positions.
  • the pressure chambers of the actuator 40 are also connected via pressure lines to one or two switching elements, as is not shown for reasons of clarity.
  • each drive 1 ', 1 will be described in the following: As not shown in detail, in a preferred embodiment both drives 1', 1 "to be connected to its own control device 13, each of which comprises a control unit and a memory.
  • the control device (s) are preferably connected via an address-based network, in particular a bus system, for data or signal exchange with the higher-level control or formed by them. If two control devices 13 are used, they are connected to one another via a further, address-based network, in particular a bus system. Between the control devices 13 and / or the (n) control device (s) 13 and the higher-level control, the Ethernet can be used.
  • the described drives 1 ', 1 are usually integrated in a high number in a machine system, it is also advantageous if the sensors 21, 22 and the control magnet 12 of the switching elements 10, 11 for data or signal exchange with the control device 13 and / or the higher-level control to an address-based network, in particular a bus system, such as a fieldbus, are connected to which the control device (s) 13 and possibly the higher-level control can be connected.
  • a bus system such as a fieldbus
  • Fig. 8 shows the principle timing diagram for the drive 1; 1'; 1 "according to the embodiments shown in the Fig., 1 . 2 ; 5 . 6 ; 7 ,
  • the signal curve S R for the feedback, the signal sequences S E1 and S E2 of the two sensors 21, 22 and the switch positions S SCH1 and S SCH2 of the switching elements 10, 11 are shown over the time of three movement phases of the movable between the end positions component.
  • the embodiment of the drive 1 according to Fig. 1 and 2 corresponds to the first and third movement phase of an extension movement according to arrow 31 - of the lifting cylinder 2 and the second phase of movement of a retraction - according to arrow 31 '- of the lifting cylinder. 2
  • a start signal is transmitted via a higher-level control (not shown) of the electronic control device 13, as indicated in the figures by the arrow 50, whereby the first switching element 10 is activated by the control device 13 by energizing the control magnet 12 and the movable Component - the lifting cylinder 2 after Fig. 1 and the guide carriage 42 ', 42 "after Fig. 5 ; 7 - from its starting position in the direction of the arrow 31 is adjusted from right to left or up to down.
  • the switching element 10 in the in the Fig. 1 ; 5 shown operated switching position brought and thus opens the pressure line 16, so that the pressure chamber 8; 9 'of the drive 1, 1' is connected to the pressure supply unit 18 and pressurized with system pressure.
  • the second switching element 11 remains unactuated and is the pressure chamber 9; 8 'connected via the pressure line 17 with a vent line 51, so that in the pressure chamber 9; 8 'located pressure medium or working fluid can escape unhindered into the atmosphere. Therefore, in the right end position of the movable member, the pressure chamber 9; 8 'separated from the pressure supply unit 18.
  • a confirmation signal is transmitted, as indicated by the arrow 52.
  • This procedure confirms proper operation.
  • the component moves from its initial position, which corresponds to the right end position, in the direction of the left end position.
  • the first movement phase is initiated, as will be described in more detail below.
  • the control bar 26 With the beginning of the movement of the component from its initial position or right end position to the start time T start the control bar 26 is moved past the stationary sensor 22 and in this the in Fig. 8 signal sequence triggered. If, at the start time T start, the end position section 29b of the control bar 26 faces the effective range of the sensor 22, the sensor 22 sends to the control device 13 an acknowledgment signal S B. The confirmation signal S B is still detected at the time of the standstill of the component. With the confirmation signal S B the control device 13 is signaled that the component at the start time T start is safe in its initial position and the first movement phase can be initiated.
  • the end position section 29 b leaves the effective range of the sensor 22 arranged in the start end position and a start signal S Start is triggered at the control edge 33 b at the time T 0 and transmitted to the control device 13.
  • a start signal S Start is triggered at the control edge 33 b at the time T 0 and transmitted to the control device 13.
  • the falling signal edge of the sensor 22 is evaluated.
  • the further rising and falling signal edge, which are triggered at the edges 34b and 32b of the switching flag 27b are not evaluated on the movement of the component from its right end position to the left end position.
  • the arranged in the target end position sensor 21 is switched by the moving past these control bar 25. If the switching lug 27a with its control edge 32a enters the effective range of the stationary sensor 21, it triggers a first measuring signal S 1 at the time T 1 , which signal is passed on to the control device 13 via the signal line 19. At a later time T 2 , which is in the movement phase, the end position section 29 a comes with its control edge 33 a into the effective range of the sensor 21 and triggers a second measurement signal S 2 in the sensor 21, which is likewise transmitted to the control device 13 via the signal line 19. With the time T 2 , the end of movement is reached. Like in the Fig.
  • the rising signal edges of the signal curves S E1 , S E2 are evaluated as measurement signals S 1 , S 2 .
  • This is advantageous because now, regardless of the vertical distance between the control edge 32a, b, 33a, b and sensor 21, 22 always the same time t 1Ist is measured and an uncomplicated installation of the sensors 21, 22 on the drive 1; 1'; Although the measuring signal triggered by the control edge 34a of the switching lug 27a on the sensor 21 is detected as a falling signal edge, it is not evaluated.
  • the control device 13 determines from the time difference between the measuring signals S 1 , S 2 a time interval t 1 corresponds to the determined actual value t 1Ist in the first movement phase .
  • control device 13 in addition to the output device 53 also has an electronic memory 54, an electronic control unit 55 and a computer module 56, in particular microprocessor, as shown schematically in the figures.
  • the computer module 56 is integrated in the controller unit 55.
  • This target value is matched, 1 "for the time period t 1To is to the different embodiments of the drives.
  • the time span t 1Ist is thus determined during the movement phase of the component and further processed in the manner indicated above by the control device 13.
  • a common first switching time T UZ1 of the switching elements 10, 11 and a second, in the movement phase subsequent, common switching time T UZ2 of the switching elements 10, 11 calculated and stored in the memory 54 . If the third movement phase of the component is started, therefore the movement of the component in the same direction of movement as that of the first movement phase of the component, the previously calculated switching times T UZ1 , T UZ2 of the switching elements 10, 11 are read from the memory 54 and at least one of the switching times T UZ1 , T UZ2 are set in the third movement phase so that the control deviation is corrected, as in Fig. 11 will be described in more detail.
  • the switching times T UZ1 , T UZ2 of the switching elements 10, 11 are predetermined by the control device 13.
  • the switching times T UZ1 , T UZ2 of the switching elements 10, 11 or 13 are respectively / for each direction of movement according to arrow 31, 31 ' a period of time t GD in the last movement phase of the component before the stoppage of the drive 1, 1 ', 1 "is detected, stored and stored after the restart of the drive 1, 1'; 1 "in the first and second movement phase, before the initial startup of the drive 1, 1 ', 1", the switching times T UZ1 , T UZ2 of the switching elements 10, 11 or the time period t GD are likewise predetermined by the control device 13.
  • the first switching element 10 for the movement of the component from its starting position or right end position to the left end position is initially at the starting time T start via a control device 13 to the control solenoid 12 dispensed, redesign the first control signal into the operating position and held until the first switching time T UZ1 in the operating position for the period t SCH1 .
  • t SCH1 becomes the Pressure chamber 8; 9 'vented with system pressure and thus pressurization of the component in the direction of movement - according to arrow 31- causes while the other switching element 11 for the period t SCH1 remains in the rest position and the pressure chamber 9; 8 'depressurized or vented.
  • a second control signal is output by the control device 13 to the control magnets 12 again, with which the switching element 10 in the rest position and the switching element 11 in the operating position for a period of t GD are redesigned.
  • the time period t GD results from the time difference between T UZ1 and T UZ2 or the control signals output by the control device 13 for reversing the switching elements 10, 11 and is determined by the control device 13, as in Fig. 11 is described.
  • the time period t GD for the duration of the counter-control of the pressure chambers 8, 9; 8 ', 9' is derived from the period t 1 .
  • a braking phase is inserted towards the end of the movement phase, in which by the in the pressure chamber 9; 8 'constructed pressure pad is a deceleration in the direction of movement - according to arrow 31- to the switching time T UZ1 moving at the maximum possible speed component occurs. Accordingly, in the first switching time T UZ1 the braking phase is initiated and in the second switching time T UZ2 the braking phase is terminated.
  • the braking phase is thus determined by the switching times T UZ1 , T UZ2 and / or the duration of the countersteering or the time interval t GD .
  • a third control signal is output again from the control device 13 to the control magnets 12 of the switching elements 10, 11, and the pressure chambers 8, 9; 8 ', 9' driven in opposite directions, wherein the component again shortly before reaching its end position in the direction of movement again with system pressure or the pressure chamber 8; 9 'in turn subjected to system pressure and the pressure chamber 9; 8 'is vented.
  • the component experiences at the end of the braking phase, where this already one has low movement speed, again a feed in the direction of movement - according to arrow 31- in the direction of its left end position. This ensures that the component reliably reaches its end position.
  • a third control signal corresponding Nachschaltsignal S NS is generated in the second switching time T UZ2 , through which the control device 13, the feed of the component in the original direction of movement - according to arrow 31 - causing switching element 10 at least until the end of the movement phase and with Reaching the end position is controlled.
  • the Nachschaltsignal S NS is applied to the control magnet 12 of the switching element 10 for a period of time t SCH2 until the start of movement of the component in the second movement phase , in which the component from its left end position in its right end position in the opposite direction of movement - ' - is moved.
  • the time interval t SCH2 results from the time difference between the second switching time T UZ2 and a third switching time T UZ3 of the switching elements 10, 11.
  • T UZ3 is again issued by the control device 13 to the control magnets 12 of the switching elements 10, 11, a fourth control signal and the pressure chambers 8, 9; 8 ', 9' driven in opposite directions.
  • the fourth control signal corresponds to the start signal for the second movement phase at time T start .
  • the switching element 11 is always driven in opposite directions to the switching element 10 and remains for the period t SCH2 in its rest position.
  • the switching elements 10, 11 and the pressure chambers 8, 9; 8 ', 9' within a movement phase abruptly and in opposite directions , are controlled exactly to the calculated switching times T UZ1 , T UZ2 and predetermined by the control device 13 or the higher-level control switching T UZ3 , as is achieved by known from the prior art quick- acting valves ,
  • a pilot signal S VS supplied and its switching state is changed , which causes the pressurization in the direction of movement - as indicated by arrow 31-, as in dashed lines in Fig. 8 entered.
  • the pilot control signal Svs is triggered at the pre-control time T VS.
  • the Time difference between the pre-control time T VS and the start time T start for the second movement phase corresponds to the time t 2 , wherein the start time T start the third switching time T UZ3 of the switching elements 10, 11 corresponds.
  • the period t 2 is preferably determined empirically and stored in the memory 54 of the control device 13 retrievable.
  • the third switching time T UZ3 of the switching elements 10, 11 is specified by the control device 13 or the higher-level control.
  • the pre-control time T VS is calculated in each movement phase of the component from the time difference between the switching time T UZ3 and the time t 2 and switched before the movement of the component in the previous movement phase opposite direction of movement, the pressurization in the direction of movement of the component causing switching element 10, 11 ,
  • the pressure chamber 8 pressurized with system pressure in the first movement phase; 9 'vented before the start of movement of the component in the second movement phase or the pressure in this pressure chamber 8; 9 'reduced, so that the movement of the component to the start of movement in the second movement phase counteracts only a minimized or no counterforce.
  • This is advantageous since, with the drive force set by the system pressure, a high acceleration is achieved at the start of movement of the second movement phase and, further, the movement time of the component between the end positions is substantially reduced, as shown in FIG Fig. 9 is shown as a diagram for example for the first movement phase.
  • the movement time of the component in the subsequent movement phase - according to the representation according to Fig. 8 in the second movement phase - by the "early" venting in the previous movement phase - according to the representation according to Fig. 8 in the first movement phase - pressurized pressure chamber 8, 9; 8 ', 9' are reduced with increasing duration of the venting time.
  • the switching element 11 is switched by the control device 13 at the start time T start , whereby the pressure supply unit 18 via the switching element 11 and the pressure line 17 to the pressure chamber 9; 8 'connected and this is acted upon by the system pressure, so that the component is moved from its left end position to the right end position.
  • the time span t SCH2 for the switching element 10 effecting the movement of the component results from the time difference between the second switchover time T UZ2 and the pilot control signal S VS , but this is not entered in the FIGURE .
  • the time period t SCH2 for the other switching element 11 remains unchanged.
  • Fig. 8 As in Fig. 8 further entered, are still evaluated by the control device 13, the time periods t 3 , t 4 and t 5 .
  • the time interval t 3 is determined by the control device 13 from the time difference between the third control signals for the second switching time T UZ2 and the first measuring signal S 1 at the time T 1 as the actual value t 3Ist .
  • a setpoint value t 3soll is also stored for the time period t 3 , which is tuned to a type of drive 1, 1 ', 1 "and mathematically calculated or determined empirically Fig.
  • the electronic control unit 55 between the set time t 3Soll and the determined time t 3Ist a target-actual comparison, a control deviation calculated from the difference between the setpoint and actual value and formed a control variable.
  • the first and / or second switching time T UZ1 , T UZ2 of the switching elements 10, 11 are set for the respective next movement phase of the component in the same direction of movement - and the time period t GD is set in the same direction of movement.
  • the entered time period t 4 is triggered at the time T 2 and ends at a later time, in which it is ensured that all arithmetic operations of the control unit 55 are completed and the control deviation or manipulated variables for the next movement phase are available in the same direction of movement.
  • This time period t 4 can for example be fixed and is stored in the memory 54.
  • the control device 13 After completion of the calculations of the control deviations, the control device 13 generates a release signal with which the second movement phase of the component can be started by the control device 13 or superordinate control.
  • This design is used when, due to the movement of the drive 1; 1'; 1 "is known that between the first and second movement phase of the drive 1, 1 ', 1" the component remains in the respective end position for a certain time, within which the calculations of the deviations and all other mathematical functions can be completed.
  • This application corresponds to the usual use of the drive 1 according to the invention; 1'; 1 "as the axis of a multi-axis handling system, after which the computer power of the control device 13 can be designed lower.
  • the time t 5 is determined, which results from the time difference between the control signal at the start time T start of the movement of the component-initiating switching element 10 and the start signal S start at time T 0 .
  • This period of time t 5 resulting from the inertia of the system for example from the switching time of the switching element 10, pressure propagation in the pressure lines 16, 17, friction between the relatively movable components, mass of the moving member and the like To this inertia of the drive.
  • the first phase of movement corresponds to the movement of the component from its initial position to the left end position
  • the time t 5 is read out of the memory 54.
  • the determined time intervals t 5 from the last movement phase of the component of each movement direction - according to arrow 31, 31 '- stored in the memory 54.
  • the time interval t 5 is calculated continuously in all movement phases, stored in the memory 54 and used in the next movement phase in the same direction of movement.
  • the control device 13 determines or calculates the time period t 5, for example, in the first movement phase and switches these or the higher-level control in the third movement phase, the switching element 10 to the calculated from the first movement phase, new start time T start .
  • Fig. 7 shown, for example, two actuators 1 ', 1 "motionally coupled to one another, it is advantageous that the at least one control means 13 and / or higher-level control before the completion of the phase of movement of the first actuator 1' given a feedback signal S Re and the starting time T Start of the second drive 1 "is submitted at least by the time period t 5 .
  • the start time T start the movement of the component causing switching element is switched, the corresponding pressure chamber of the actuator 40 "applied system pressure and the guide carriage 43", for example, adjusted from top to bottom between its end positions.
  • the inertia is compensated by the leading feedback or the leading feedback signal S Re , so that the second drive 1 "actually starts its movement when the first drive 1 'has reached its end position ,
  • the acknowledgment signal S does not necessarily have to be output in advance, that is to say before the end of the movement phase of the first drive 1 'to the control device 13 or superordinate control (not shown).
  • the feedback signal S is delivered back simultaneously with the attainment or after reaching the end position of the first actuator 1 '. This may be the case when the second drive 1 "is equipped with a laser beam head, which must be moved from the end position of the first drive 1 'by means of the second drive 1" defined to a weld. In order for the laser beam head to be absolutely vibration-free until the welding point is reached, the movement of the second drive 1 "with the laser beam head is started at the earliest when the end position of the first drive 1 'is reached.
  • the time T R (shown in Figs. Unrecorded) in which the feedback signal S back is triggered, is calculated by the control device 13 or the higher level control and results from the difference between the time T 2 of the sensor 21 from the first drive 1; 1 'and the time t 5 to the start of movement of the second drive 1 ". Since the time T 2 is not recognized until reaching the to-propelled end position, this need for the calculation of the time T R of the preceding movement phase of the actuator 1' are used, after which from the control device 13, the time T R for the subsequent movement phase of the second drive 1 "can be determined.
  • a correspondingly reverse control of the switching elements 10, 11 takes place, as in Fig. 8 registered for the second movement phase, wherein the corresponding measurement signals S 1 , S 2 are triggered by the sensor 22, the confirmation signal S B and start signal S start from the sensor 21.
  • the switching element 11 receives at time T start the first control signal for the beginning of the movement of the component from its left end position to the right end position again from the control device 13 or the higher-level control.
  • the control device 13 the first and / or second switching time T UZ1 , T UZ2 of the switching elements 10, 11 is calculated at a control deviation in the second phase of movement of the component and in the fourth phase of movement of the component of the first and / or second Switching time T UZ1, T UZ2 of the switching elements 10, 11 set accordingly.
  • Fig. 10 shows the principle timing diagram for the drive 1 according to the embodiments shown after the Fig., 3rd . 4 ,
  • the signal curve S R for the feedback, the signal sequences S E1 and S E2 of the two sensors 21, 22 and the switching position S SCH of the switching element 36 are shown over the time of three movement phases of the movable between the end positions component.
  • the embodiment of the drive 1 according to Fig. 3 and 4 corresponds to the first and third movement phase of an extension movement - according to arrow 31- of the lifting cylinder 2 and the second phase of movement of a retraction - according to arrow 31 '- of the lifting cylinder 2.
  • a start signal is initially transmitted via a higher-level control (not shown) to the electronic control device 13, as shown in the figures Arrow 50 indicated, and then discharged from the control device 13 to the control magnet 37, a first control signal, whereby the control magnet 37 is energized and the switching element 36 is switched to the operating position and the movable member - according to the embodiment of the lifting cylinder 2 - from its initial position in the direction of Arrow 31 is adjusted from right to left.
  • the switching element 36 in the in Fig.
  • the pressure line 16 is opened, so that the pressure chamber 8 of the drive 1 is connected to the pressure supply unit 18 and pressurized with system pressure, while the pressure chamber 9 is connected via the pressure line 17 with a vent line 51 on the switching element 36, so that in the pressure chamber. 9 located pressure medium or working fluid can escape unhindered into the atmosphere. Therefore, in the right end position of the movable component, the pressure chamber 9 is disconnected from the pressure supply unit 18.
  • the arranged in the end position sensor 21 is switched by the moving past these control bar 25. If the switching lug 27a with its control edge 32a enters the effective range of the stationary sensor 21, it triggers a first measuring signal S 1 at the time T 1 , which signal is passed on to the control device 13 via the signal line 19. At a later time T 2 , which is in the movement phase, the end position section 29 a comes with its control edge 33 a into the effective range of the sensor 21 and triggers a second measurement signal S 2 in the sensor 21, which is also transmitted to the control device 13. Please refer to the detailed description here Fig. 8 referred to, in which the signal waveform is explained on the sensor 21, and is therefore taken at this point by a repetition distance.
  • a first switching time T UZ1 of the switching element 36 and / or a second switching point T UZ2 of the switching element 36 subsequent to the movement phase are calculated and stored in the memory 54 on the basis of the control deviation in the first movement phase of the component. If the third movement phase of the component is started, therefore, the movement of the component in the same direction of movement as the the first movement phase of the component, the previously calculated switching time (s) T UZ1 , T UZ2 of the switching elements 36 are read from the memory 54 and set at least one of the switching times T UZ1 , T UZ2 in the third movement phase so that the control deviation corrected.
  • the switching element 36 is emitted to the starting position T start via the control device 13 to the control magnet 37 for movement of the component from its starting position or right end position into the left end position. redesign the first control signal into the actuation position and held in the actuation position for the time span t SCH1 until the first changeover time T UZ1 .
  • the pressure chamber 8 is vented with system pressure and thus a pressurization of the component in the direction of movement - as indicated by arrow 31- causes while the pressure chamber 9 is vented.
  • a second control signal is output by the control device 13 to the control magnet 37, with which the switching element 36 is transformed into the rest position for a time period t GD .
  • the originally pressurized pressure chamber 8 is vented, the originally pressureless pressure chamber 9 for the time t GD vented with system pressure and thus a small pressure pad just before the end of the phase of movement of the component, against which the moving component runs, so that a hard stop in the End position of the component is excluded.
  • the time interval t GD results from the time difference between T UZ1 and T UZ2 or the control signals output by the control device 13 for reversing the switching element 36 and is determined by the control device 13.
  • a braking phase is inserted towards the end of the movement phase, in which a deceleration of the in the direction of movement - as indicated by arrow 31- by the built-up in the pressure chamber 9 pressure pad. takes place at the switchover time T UZ1 with the maximum possible speed of the moving component.
  • a third control signal corresponding Nachschaltsignal S NS is generated in the second switching time T UZ2 , which is the control magnet 37 is switched on for a period of time t SCH2 to the start of movement of the component in the second movement phase .
  • the effect of the subsequent signal S NS has already been described in detail above.
  • a fourth control signal is output again from the control device 13 to the control magnet 37 of the switching element 36, and the pressure chambers 8, 9 are actuated in opposite directions.
  • the fourth control signal corresponds to the start signal for the second movement phase at time T start .
  • a correspondingly reversed activation of the switching element 36 takes place, as in Fig. 10 registered for the second movement phase, wherein the corresponding measurement signals S 1 , S 2 are triggered by the sensor 22, the confirmation signal S B and start signal S start from the sensor 21.
  • the switching element 36 is for this purpose of the in Fig. 3 entered operating position in the in Fig. 4 registered rest position switched by the starting time point T start the second movement phase of the parent control or control device 13 of the control magnet 37 is driven to the first control signal and the control magnet 37 is moved to the de-energized state.
  • the component is moved from its left end position counter to the original direction of movement - according to arrow 31- in the right end position.
  • the pressure line 17 is opened, so that the pressure chamber 9 of the drive 1 is connected to the pressure supply unit 18 and pressurized with system pressure, while the pressure chamber 8 is connected via the pressure line 16 with a vent line 51 on the switching element 36, so that the located in the pressure chamber 8 pressure medium or working fluid can escape unhindered into the atmosphere.
  • T UZ2 of the switching element 36 is calculated and set in the fourth phase of movement of the component of the new, first and / or second switching time T UZ1 , T UZ2 of the switching element 36 accordingly.
  • the start of movement of the component in the first movement phase is symbolized by block 70 and the end of movement of the component in the first movement phase by block 71.
  • the movement of the component is monitored by means of a monitoring device 72 having the control device 13, as shown schematically in the preceding figures.
  • This monitoring device 72 is formed, for example, by an electronic or programmed counter, which detects the number of state changes of a signal level between a high level and a low level of the sensor 21 and / or 22.
  • a value for the minimum number of state changes of a signal level between a high level and a low level of the sensor 21 and / or 22 is stored in the memory 54 of the control device 13.
  • the controller 13 performs a comparison between the determined number of state changes of a signal level between a high level and a low level and a specified minimum number of state changes of a signal level between a high level and a low level, and an evaluation performed. If the determined number of state changes falls below the specified minimum number of state changes, an error message is displayed on the output device 53 of the control device 13 and / or on the higher-level control. This error message is shown as block 74. After this execution, the minimum number of state changes is set greater than one and an error message is issued, if the determined number of state change is, for example, one or zero.
  • the cause of the error message may be, for example, a defective sensor 21, 22 or a hindrance to the movement of the component. The latter, for example, if a technical defect on the drive 1; 1'; 1 "occurs or a mounting part on the drive 1, 1 ', 1" clamped and thereby movement of the component is prevented.
  • method step 75 is initiated.
  • step 75 a setpoint-actual comparison between the set time interval t 3setpoint and the determined time interval t 3Ist is first carried out by the control unit 55 of the control device 13 . If the determined time interval t 3Ist deviates from the set time interval t 3Soll , a control variable for setting the switching times T UZ1 , T UZ2 is formed from these in a first control loop of the control unit 55.
  • Fig. 11a the first control loop is shown in detail.
  • a control deviation (e) between the determined time interval t 3Ist and the set time t 3Soll is calculated and fed to a first controller 77 of the control unit 55.
  • the manipulated variables for setting both switching times T UZ1 , T UZ2 are calculated from the control deviation (e) according to a defined control law and then stored in the memory 54. If the movement of the component in the third movement phase is now started, the corresponding manipulated variables are read from the memory 54 and applied to the switching elements 10, 11 according to the explanations in FIGS Fig. 1 .
  • the switching elements 10, 11; 36 form the actuators of the control loop, as these, however, in the Fig. 11a are not shown. It can therefore be seen from the above that, given a deviation of the time span t 3Ist from the time interval t 3Soll , the switching times T UZ1 , T UZ2 are readjusted for the next movement phase in the same direction.
  • a control deviation (e) which is determined in a previous movement phase in the first direction of movement - as indicated by arrow 31-, by changing the switching times T UZ1 , T UZ2 and in the subsequent movement phase in the same direction of movement - according to arrow 31- the or the switching element (s) 10, 11; 3 6 after the calculated switching times T UZ1 , T UZ2 be controlled so that the detected time t 3Ist the set time t 3Soll corresponds.
  • the new switching times T UZ1 , T UZ2 are calculated, wherein the time period t GD remains unchanged in all subsequent phases of movement in the same direction of movement - according to arrow 31-.
  • this control intervention substantially corresponds to a shift of the switching times T UZ1 , T UZ2 at a constant distance with respect to the time T 1 .
  • the actual value of the ascertained time interval t 3Ist corresponds to the specified setpoint of the time interval t 3Soll .
  • step 78 the setpoint-actual comparison of the set time interval t 1setpoint and the determined time interval t 1actual is again effected by the controller unit 55. If the determined time interval t 1Ist deviates from the set time interval t 1setpoint , in the first movement phase for the next movement phase in the same direction of movement of the component the control deviation (e) is initially formed on a comparison element 79 and fed to a second controller 80 of the control unit 55 in Fig. 11b shown as a second control loop of the control unit 55. In the controller 80, only one manipulated variable for setting the switching time T UZ1 or the time interval t GD is formed from the control deviation (e) according to a defined control law and then stored in the memory 54.
  • the corresponding manipulated variable is read from the memory 54 and applied to the switching elements 10, 11 according to the explanations in FIGS Fig. 1 . 2 ; 5 . 6 ; 7 or the switching element 36 according to the embodiment in the Fig. 3 . 4 switched. Accordingly, the second switching time T UZ2 is maintained in this control loop and the time period t GD or the duration of the counter control changed by the first switching time T UZ1 is shifted on the time axis.
  • the first and second regulators 77, 80 of the control unit 55 are formed by an I-controller.
  • a simplification of the control method is also achieved by setting the time periods t 1soll , t 3soll as a time window with a lower and upper limit and a control intervention takes place only if the determined time intervals t 1Ist , t 3Ist outside the time or tolerance window lie.
  • the lower and upper limits of the time window are defined in such a way that nevertheless an optimal deceleration behavior and smooth approach of the end position is possible.
  • Fig. 12 shows a modified method for controlling the drive 1; 1 ', 1 "in a flow chart
  • the modification concerns the consideration or correction of the movement sequence of the component
  • the component is moved too fast against the end position and due to the high kinetic impact energy is moved from the end position against the target movement and at the, to be approached end position associated sensor 21 results in a waveform, as in Fig. 12a is shown.
  • the case may occur that the component is moved at too low a speed against the end position and it performs a pendulum motion before reaching the end position, so that the in Fig. 12b shown signal waveform for the located in the approaching end position sensor 21 results.
  • the end position is formed by a mechanical limiting element, such as a fixed stop or shock absorber.
  • the signal profile at the sensor 21 arranged in the end position to be approached is determined and the number of state changes of a signal level between a high Level and low level evaluated. If the determined number of state changes of a signal level at the sensor 21 exceeds a limit number of state changes of a signal level determined by the control device 13, the method step 82 is initiated.
  • the control unit 55 of the control device 13 carries out a desired / actual comparison between a defined time interval t 1setpoint and the determined time interval t 1ist . If the determined time interval t 1 1st falls below the defined time interval t 1setpoint , the control device 13 can determine by evaluating the signal curve that the component has been moved into the end position at too high a speed.
  • the control device 13 is supplied with three measurement signals S 1 , S 2 , S 3 .
  • the first measuring signal S 1 is detected at a time T 1 when, for example, the control strip 25 attached to the moving component enters the effective range of the sensor 21 arranged in the approaching end position in the direction of movement - as indicated by arrow 31 - front control edge 32 a, while the second Measuring signal is detected at a time T 2 , in which the control bar 25 with the second control edge 33 a in the effective range of the sensor arranged in the end position to be approached 21 enters.
  • the component If the speed of movement of the component is too high, it is initially moved counter to its desired movement due to its excessive impact energy at the end position and then driven by the repeated application of pressure for safe starting of the end position in its original direction of movement. As a result, the component is again moved in the direction of the end position and braked against the end position, so that the second control edge 33a again enters the effective range of the arranged in the end position sensor 21 and thereby triggers the third measurement signal S 3 at a later time T 3 , However, this third measurement signal S 3 is not evaluated by the control device 13.
  • the second control loop is run through as described above. It is essential that the corrected period of time t GD calculated on the basis of the previous movement phase and only in the subsequent movement phase in the same direction of movement of the component, the corrected or reduced time period t GD is set. The setting of the time period t GD is again carried out by the correction of at least one of the switching times T UZ1 , T UZ2 of the switching elements 10, 11; 36th
  • step 82 if determined in step 82 that the time period calculated t 1If the predetermined period of time exceeds t 1To, this is evaluated as a pendulum movement in the first movement phase of the control device 13, the t by reducing the period of time GD is eliminated.
  • the time interval t GD stored in the memory 54 is multiplied by a weighting factor which is defined, for example, as a constant between 0.6 and 0.8.
  • the weighting factor is indicated by a block 83 in FIG Fig. 12 shown.
  • the time period t GD corrected by the weighting factor is again used as a new time interval t GD in the third movement phase.
  • the control device 13 is supplied with three measurement signals S 1 , S 2 , S 3 .
  • the first measuring signal S 1 is detected at a time T 1 when, for example, the control strip 25 attached to the moving component enters the effective range of the sensor 21 arranged in the approaching end position with the control edge 32 a in the direction of movement. If the speed of movement of the component is too low, the component is still before reaching the end position moved counter to its desired movement, so that the control bar 25 again leaves the effective range of the sensor 21.
  • the component By applying pressure to safely approach the end position, the component is again driven in its original direction of movement, so that the front control edge 32a at time T 2 again enters the effective range of arranged in the end position sensor 21 to be approached. If the end position is reached, then at a later time T 3 , when the control edge 33a enters the effective range of the sensor 21, the third measurement signal S 3 is triggered, in which the component has actually reached the end position. However, this third measurement signal S 3 is not evaluated by the control device 13.
  • the end position can be determined either solely by the skillful control of the drive 1; 1'; 1 "or by the combination of the skillful control of the drive 1, 1 ', 1" and a shock absorber gently approached. If a shock absorber is used, then that part of the kinetic impact energy of the component is absorbed, which was not degraded by the countermeasures over the time period t GD . Therefore, the proportion of the kinetic energy to be absorbed by the shock absorber is significantly influenced by the duration of the countersteering t GD . As described above, the time period t GD for the duration of the counter-control results from the period t 1 .
  • the shock absorber acts with its spring force counter to the direction of movement of the component, so that the determined period t 1Ist will slightly increase when the moving component runs onto the shock absorber.
  • the time span t GD for the duration of the countermeasure is slightly reduced by the control from the determined time span t 1Ist . If the shock absorber fails due to a defect or if it has been mounted incorrectly, the time span t 1Ist is significantly reduced, so that the time span t GD for the duration of the countersteering is increased by the control from the determined time interval t 1Ist .
  • a time lower limit and upper limit are specified for the time period t GD . If the calculated time interval t GD exceeds the upper limit defined by the control device 13 and stored in the memory 54, an error message in the form of an optical and / or acoustic signal is output at the output device 53 or the higher-level control and / or the drive 1; 1'; 1 "shut down.
  • FIG. 13 to 18 shows another embodiment of the method according to the invention, which may optionally represent an independent, inventive solution.
  • Fig. 13 shows a drive 100, which is also formed according to this embodiment by a double-acting lift cylinder 101, which consists of a cylinder tube, the ends of which are completed with end walls 102, 103.
  • a double-acting lift cylinder 101 which consists of a cylinder tube, the ends of which are completed with end walls 102, 103.
  • a control piston 104 out, which in turn is connected to a piston rod 105.
  • the piston rod 105 is mounted in a stationary manner via a corresponding fixed bearing 106, so that the lifting cylinder 101 forms the movable component and the adjusting piston 104 with the piston rod 105 forms the stationary component of the drive 100.
  • a first pressure chamber 107 and between the right end wall 102 and the control piston 105 a second pressure chamber 108 is formed.
  • the pressure chambers 107, 108 are acted upon by this embodiment via only one switching element 109, in particular a 5/3-way valve alternately with system pressure.
  • the switching element 109 has, for example, two electromagnetic control magnets 110, which are connected via corresponding control lines 111, 112 with an electronic control device 116, which in turn controls the switching element 109.
  • the 5/3-way valve In the de-energized state of the control magnets 110, the 5/3-way valve is in the unentered middle position (B). In the middle position (B), both pressure chambers 107, 108 are connected to return ports of the 5/3-way valve.
  • first operating position A In energized state (first operating position A) of left control solenoid 110, the first pressure chamber 107 via a first pressure line 113 to the pressure supply unit 114 and in energized state (second operating position C) of the right control solenoid 110, the second pressure chamber 108 via a second pressure line 115 to the pressure supply unit 114 is connectable.
  • the switching element 109 is connected to the pressure supply unit 114.
  • the control of the control magnet 110 takes place here via electrical control signals of the control device 116, as shown in FIG Fig. 15 from the signal curve for the switching position S SCH of the switching element 109 can be seen.
  • control device 116 is connected via signal lines 117, 118 to sensors 119, 120, so that the electrical control signals output by the sensors 119, 120 can be fed to the control device 116.
  • the control device 116 may also be formed by the higher-level control.
  • the sensors 119, 120 are arranged in a stationary manner above the travel path defined by the drive 100 in the end positions to be approached by the movable component. These sensors 119, 120 cooperate with switching lugs 27a, b of the control bars 25, 26 described above, which are fastened to the opposite ends of the movable component, therefore the lifting cylinder 101.
  • the arrangement of the control strips 25, 26 shown is only of a fundamental nature.
  • Switching lugs 27a, b may equally well be used, which are formed by a prismatic block, or reed switches are used, ie sensors with which the end positions of the component without switching lugs 27a, b is monitored. It is essential that, via the sensors 119, 120 arranged in the end positions, an actual movement time t BIst of the component moved between the end positions is detected exactly.
  • Fig. 15 shows the principle timing diagram for the drive 100.
  • the first and third movement phase corresponds to an extension movement - according to arrow 31 - of the lifting cylinder 101 and the second movement phase of a retraction movement - according to arrow 31 '- of the lifting cylinder 101st
  • a start signal is initially transmitted via a higher-level control (not shown) to the electronic control device 116, as in the FIGS Fig. 13 and 14 indicated by the arrow 50, and then from the controller 116 to the left
  • Control magnet 110 outputs a first control signal, whereby the control magnet 110 is energized and the switching element 109 is switched to the actuating position (A) and the movable member - according to shown embodiment of the lifting cylinder 101 - is adjusted from its initial position in the direction of arrow 31 from right to left.
  • the switching element 109 in the in Fig.
  • the pressure line 113 is opened, so that the pressure chamber 107 of the drive 100 is connected to the pressure supply unit 114 and pressurized with system pressure, while the pressure chamber 108 is connected via the pressure line 115 with a vent line 125 on the switching element 109, so that in the pressure chamber 108 located pressure medium can escape unhindered into the atmosphere.
  • the switching element 109 By activating the switching element 109, the first movement phase is initiated, as will be described in more detail below.
  • a setpoint value for the movement time t BSoll of the component between the end positions of each movement phase is statically predetermined or dynamically determined before the actual movement start of the component at the start time T start of the control device 116 or the higher-level control (not shown).
  • the statically predetermined desired value t BSoll is determined mathematically or empirically, for example, and stored in a memory 129 of the control device 116.
  • the setpoint can t Bsoll also be set dynamically.
  • the setpoint t BSoll is continuously adapted to a machine cycle of a machine system interacting with the drive 100 and continuously read into the memory 129. From the setpoint for the movement time t BSoll , a theoretical starting time T Start (movement start ) is set or calculated by the control device 116, and a theoretical end time T TE (theoretical end of movement) is calculated.
  • the detected actual value t BIst is supplied to the electronic control device 116, whereupon a setpoint-actual comparison is carried out by a control unit 127 comprising this between the determined movement time t BIst and the defined movement time t BSoll Fig. 16 seen.
  • a control deviation (e) is calculated from the difference between the desired movement time t BSoll predetermined for the first movement phase and the actual movement time t BIst determined from the first movement phase .
  • the manipulated variable is temporarily stored in the memory 129.
  • the controller unit 127 has a computer module 130, in particular a microprocessor.
  • the manipulated variable calculated by the first movement phase is read out of the memory 129 and adjusted according to the manipulated variable of at least one of the two temporally successive switching times T UZ1 , T UZ2 , so that the control deviation (e) is corrected in the third movement phase is.
  • the first switching time T UZ1 corresponds to the start time T Start determined by the control device 116 or the higher-level control, in which the switching element 109 is controlled by a first control signal of the control device 116 or the higher-level control and energizing of the left control magnet 110 from the center position (rest position) to the Actuating position (A) is activated.
  • the pressure chamber 107 In the actuated position (A), the pressure chamber 107 is subjected to system pressure, so that the component is moved in the direction of the left end positions.
  • a control duration t SD of a start pulse is changed.
  • the first changeover time T UZ1 remains unchanged with respect to the time axis and the control duration t SD of the start pulse is set by changing the second changeover time T UZ2 .
  • the start pulse is predetermined by the rising edge in the first switching time T UZ1 and the falling edge in the second switching time T UZ2 .
  • the pressure chamber 107 is subjected to system pressure over the control period t SD , so that the component accelerates from standstill in the starting position or right end position to a desired speed v Soll and moves in the direction of movement - according to arrow 31- to its left end position becomes.
  • the start pulse is followed within a time span t GB by a plurality of short duration switching pulses t SCH , by which the switching element 109 is actuated by the control device 116 or the superordinate control in intervals of successive intervals between the center position (B) and the actuation position (A).
  • the switching element 109 is driven pulsed over the period t GB and the pressure chamber 107 is applied over the duration t SCH of each switching pulse with system pressure.
  • the pulse pauses are in the Fig.
  • the left control magnet 110 by the control device 116 or the higher-level control via control signals at the switching times T UZ3 ... T UZn several times.
  • the left control magnet 110 receives a third control signal, with which the switching element 109 is actuated from its original center position (B) back to the operating position (A) and the pressure chamber 107 is acted upon.
  • the left control magnet 110 receives an nth control signal within the time period t GB , with which the switching element 109 is actuated from its original actuation position (A) back into the middle position (B) and the pressure chamber 107 is vented.
  • the duration of the pulsed actuation of the switching element 109 results from the time span t GB between the second control or switching signal in the second switching time T UZ2 and the control or switching signal for the n-th switching time T UZn .
  • the theoretical end time T TE is reached.
  • the switching time T UZN corresponds to the calculated end time T TE , at which the component should have reached its end position.
  • the left end position is not reached within the target movement time t BSoll , but only to a later, determined by the approaching sensors 119 end time T EE (corresponds to T 2 ), which is after the theoretical end time T TE .
  • This circumstance can change the operating conditions and environmental conditions, for example, be changed by the additional load of the drive, the friction conditions occur.
  • the control deviation (e) is calculated and the at least one manipulated variable for setting at least one switching time T UZ1 , T UZ2 or the control duration t SD of the start pulse is formed the switching element 109 is switched in the third movement phase.
  • the electronic control unit 127 calculates the pulse interval t P between two successive switching pulses within the time period t GB . These switching pulses follow the pulse pauses, which are defined by the time difference between two directly successive control signals at the switching times T UZ2, T UZ3 to T UZn .
  • the duration t SCH of the switching element 109 impressed switching pulses is preferably fixed depending on the type of drive and is stored in the memory 129. Likewise, the number of switching pulses within the time period t GB is selected depending on the drive type and stored in memory 129.
  • the duration t SCH and the number of switching pulses from the fitter is entered.
  • the controller 116 has the input device 131.
  • the controller unit 127 may also have a dynamic learning mode (adaptive control) for setting the duration t SCH and / or the number of switching pulses.
  • the component is controlled between the end positions by means of basic settings for the duration t SCH and / or the number of switching pulses, and meanwhile the sensed oscillations are sensed. If the vibrations exceed a limit value, the duration t SCH and / or the number of switching pulses are automatically adapted until the vibrations are within a permissible range and an optimum driving behavior of the component is achieved. Even during operation, an automatic adaptation can be maintained, that is, changes in sliding properties, masses, signs of aging, impact energy in the end position and the like can be continuously adapted to compensate by changing the duration t SCH and / or the number of switching pulses become.
  • the computer unit 130 of the controller unit 127 can be used to calculate the time interval t P of each pulse break after a calculation algorithm stored in the memory 129 and described below.
  • t P ms t Bsoll - t SD - Number of switching pulses • t SCH Number of switching pulses
  • Fig. 17 Different speed profiles of the component are in Fig. 17 shown. If there is a long control period t SD , the speed profile entered in full lines results, while the speed profile entered in dotted lines results for a short control time t SD . As can be seen, the component reaches its maximum setpoint speed v setpoint in a time span over the control duration t SD . From the second switching time T UZ2 within the time period t GB , the component increasingly loses movement speed, so that it is moved with respect to the maximum target speed v target reduced movement speed against the end position.
  • the speed drop ⁇ v varies depending on the control period t SD of the start pulse. If a high control deviation (e) occurs, and therefore the detected movement time t BIst is higher than the set movement time t BSoll , the control duration t SD of the starting pulse is also increased, thereby increasing the component to a high movement speed in the first period accelerated. Accordingly, as the control duration t SD of the starting pulse increases, the duration t P of each pulse break is reduced uniformly, that is, the component is moved without drive over shorter intervals, as indicated in solid lines. If, on the other hand, the control duration t SD of the start pulse is reduced, then the duration t P of each pulse break is increased uniformly, that is, the component is driven without drive over longer intervals, as indicated in dashed lines.
  • the method according to the invention makes use of the knowledge that the ambient conditions, in particular the friction or aging phenomena during the non-moving movement of the component cause a targeted deceleration of the component on its adjustment, for example, from the right end position to the end position, so that the component gently against the final position is running.
  • the time interval t A results from the time difference between the switching time T UZA the first movement phase and the first switching time T UZ1 or the start time T start the second movement phase in the opposite direction of movement - according to arrow 31 '.
  • the Nachschaltsignal S NS therefore corresponds to a Nachschaltimpuls. If the component is actually in its end position, the signal S 2 is triggered via the control edge 33 a at the sensor 119 arranged in the end position to be approached at the time T EE or T 2 (not registered). Please refer to the detailed description here Fig.
  • Fig. 15 shows in the third movement phase , the control deviation (e) between the target movement time T Bset and actual movement time T BIst is compensated by the control period t SD of the start pulse and the periods t P of the pulse pauses are set so that the actual movement time T are the target movement time T corresponds Bsoll and the component within the predetermined target movement time T Bsoll reaches the left end position.
  • the control duration t SD of the start pulse is extended and the time periods t P shortened.
  • a signal S 2 is triggered on the sensor 119 and supplied to the control device 116, whereupon the switching element 109 at a switching time T UZA a Nachschaltsignal S NS switched and the pressure chamber 107 over a period t A with system pressure activated, so that the component is essentially pressed only against the end position and kept positioned in this with a holding force. Since there is no control deviation in the third movement phase, the adjustment of the control duration t SD of the start pulse and the time intervals t P of the pulse pauses remains for all subsequent movement phases in the same direction of movement, until a control deviation (e) is calculated by changing the friction conditions.
  • the switching pulses over the time period t GB are regularly divided and the last switching pulse the switching element 109 just before the component reaches its end position, is switched.
  • the component runs against the end position even before it has reached its maximum speed, as in Fig. 17 registered in dotted line.
  • the speed impressed on the component via the last switching pulse at the switching-over time T UZn corresponds to only a fraction of the speed which the component has in each case via the preceding switching pulses at the respective switching times is impressed, so that the end position is approached particularly gently.
  • the control duration t SD and the time t GB or the time t P of the pulse pauses so divided to the target movement time, that the switching time T UZN with the switching time T coincides UZA.
  • the last switching pulse passes directly to the Nachschaltimpuls and the component is already driven over the last switching pulse against the end position and pressed against this with a holding force which is maintained by connecting the Nachschaltimpulses over the period t A , as in the third Movement phase is entered. Since the component has reached the end position monitored by the sensor 119 at the theoretical end time T TE , no monitoring signal S T is triggered by the control device 116.
  • the reset signal S NS is triggered by the response of the sensor 119 after the component has reached the end position and fed to the control device 116.
  • a correspondingly reversed activation of the switching element 109 takes place, as in Fig. 15 registered for the second movement phase, wherein the corresponding measurement signals S 1 , S 2 are triggered by the sensor 120, the confirmation signal S B and start signal S start from the sensor 119.
  • the switching element 109 receives at the time T start the first control signal for the start of the movement of the component from its left end position to the right end position again from the control device 116 or the higher-level control.
  • control time t SD of the start pulse and the time intervals t P of the pulse pauses is calculated at a control deviation (e) and in the fourth phase of movement preferably the second switching time T UZ2 of the switching element 109 set accordingly ,
  • the pressure chambers 107, 108 are each controlled via a switching element 133, 134.
  • These switching elements 133, 134 are preferably formed by 3/2-way valves.
  • the control of the switching elements 133, 134 via the control device 116 which in turn is connected via a first control line 14 with a control magnet of the left switching element 133 and a second control line 15 with a control magnet of the right switching element 134.
  • the associated timing diagram with the switching positions S SCH1 , S SCH2 of the switching elements 133, 134 is in Fig. 18 shown.
  • control device is suitable for processing both control methods according to the invention.
  • the control and calculation algorithm of the two driving characteristics of the component are stored in the memory of the control device.
  • the corresponding driving behavior is selected via an input and / or output device, in particular a computer (PC), or the higher-level control of the control device.
  • a user program is opened and output to the input and / or output device before commissioning the drive and selected by the fitter the desired driving behavior for the adjustment movement of the component in a first direction of movement and in a direction opposite to this movement direction.
  • the control device activates the control and calculation algorithm assigned to the corresponding control method and controls the drive in the manner described above. For example, the first driving behavior for the first movement direction and the second driving behavior for the other movement direction or either the first or second driving behavior for both directions of movement can be selected.
  • the driving behavior of the component is set dynamically. For example, based on a required cycle time of a composed of several drives handling system or a cooperating with the drive machinery the respective favorable driving behavior of the control device or the higher-level control specified.
  • the required cycle time is communicated by the higher-level, central control of the decentralized control device, which in turn makes the choice of the driving behavior based on the information of the available movement time.
  • a current work process may require a particularly low cycle time, so that the drives of the handling system are controlled for both directions of movement after the first driving behavior. If the cycle time is less critical, but certain other parameters must be adhered to the handling system, for example, must be a vibration-free positioning of the drives, at least one of the drives according to the second driving behavior is controlled.
  • the movable component can also be provided only with a control bar, which cooperates with a sensor arranged in the approaching end position. Such an embodiment is realized in those cases in which the component only has to be gently positioned against one of the end positions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • External Artificial Organs (AREA)

Claims (32)

  1. Procédé de commande d'un entraînement actionné par fluide (1; 1', 1") comportant des pièces pouvant être réglées les unes par rapport aux autres. L'une des pièces est déplacée par le biais d'au moins un élément de commutation (10, 11; 36) dans un premier sens de déplacement (31) et dans un second sens de déplacement (31'), opposé au premier sens de déplacement (31), entre des positions de fin de course et immobilisée contre au moins l'une des positions de fin de course. Un dispositif de commande (13) reçoit, d'un capteur (21, 22) électroniquement commutable par le biais d'une came de contacteur (27a, b) et disposé dans la position de fin de course, des signaux de commande pour la commande temporelle de la phase de déplacement de la pièce pour une amenée sans à-coups dans la position de fin de course. Le dispositif de commande (13) actionne l'élément de commutation (10, 11; 36) au moyen des signaux de commande et commande les chambres de pression (8, 9) de l'entraînement (1, 1', 1") de manière inversée. Le procédé est caractérisé en ce que, dans une première phase de déplacement de la pièce, peu de temps avant que la position de fin de course ne soit atteinte, un premier signal de mesure (S1) est relevé par le biais du dispositif came de contacteur-capteur à un moment (T1) et un second signal de mesure (S2) à un moment ultérieur (T2). Ensuite, le dispositif de commande (13) calcule au moins un intervalle (t1réel) à partir de la différence temporelle entre les signaux de mesure (S1, S2) et une unité de réglage (55) du dispositif de commande (13) calcule, pour l'amenée sans à-coups dans la position de fin de course, au moins une grandeur de réglage pour au moins l'un des deux moments de commutation (TUZ1, TUZ2) de l'élément de commutation (10, 11; 36) se suivant dans le temps, à partir d'une comparaison théorie-réalité, entre un intervalle fixé (t1théorique) et l'intervalle calculé (t1réel)' Ce moment de commutation (TUZ1, TUZ2) de l'élément de commutation (10, 11; 36) est réglé conformément à la grandeur de réglage dans la seconde phase de déplacement de la pièce, faisant suite à la première phase de déplacement, dans le même sens de déplacement (31, 31').
  2. Procédé selon la revendication 1, caractérisé en ce que le dispositif de commande (13) calcule ou prédéfinit un intervalle (tGD) à partir de la différence temporelle entre les signaux de commande aux moments de commutation (TUZ1, TUZ2) de l'élément de commutation (10, 11; 36) et en ce qu'une phase de freinage fixée par l'intervalle (tGD) est débutée au premier moment de commutation (TUZ1) de l'élément de commutation (10, 11; 36) et terminée au second moment de commutation (TUZ2) de l'élément de commutation (10,11; 36). Lors du premier moment de commutation (TUZ1) de l'élément de commutation (10, 11; 36), une pression de circuit contraire au sens du déplacement (31, 31') de la pièce est générée dans la chambre de pression (8, 9) initialement dépourvue de pression pendant le déplacement de la pièce et la pression de circuit agissant dans le sens du déplacement (31, 31') de la pièce est dissipée dans la chambre de pression (8, 9) initialement alimentée en pression pendant le déplacement de la pièce. Lors du second moment de commutation (tUZ2) de l'élément de commutation (10, 11; 36), une pression de circuit contraire au sens du déplacement (31, 31') de la pièce est dissipée dans la chambre de pression (8, 9) alimentée en pression pendant l'intervalle (tGD) et la pression de circuit agissant dans le sens du déplacement initial (31, 31') de la pièce est générée dans la chambre de pression (8, 9) dépourvue de pression pendant l'intervalle (tGD).
  3. Procédé selon la revendication 1, caractérisé en ce que le dispositif de commande (13) calcule, dans la première phase de déplacement de la pièce, un autre intervalle (t3réel) à partir de la différence temporelle entre le premier signal de mesure (S1) et un signal de commande pour l'élément de commutation (10, 11; 36) au second moment de commutation (TUZ2). Ensuite, l'unité de réglage (55) du dispositif de commande (13) calcule, pour une amenée sans à-coups dans la position de fin de course, des grandeurs de réglage à partir d'une comparaison théorie-réalité entre un intervalle fixé (t3théorie) et l'intervalle calculé (t3réel), pour un premier et un second moment de commutation (TUZ1, TUZ2) de l'élément de commutation (10, 11; 36). Le procédé est également caractérisé en ce que les moments de commutation (TUZ1, TUZ2) en question de l'élément de commutation (10, 11; 36) sont réglés conformément aux grandeurs de réglage dans la seconde phase de déplacement de la pièce, faisant suite à la première phase de déplacement, dans le même sens de déplacement (31, 31') dans la mesure où l'intervalle calculé (t3réel) diffère de l'intervalle fixé (t3théorique).
  4. Procédé selon la revendication 3, caractérisé en ce que le dispositif de commande (13) fixe, dans la première phase de déplacement de la pièce, un intervalle (tGD) à partir de la différence temporelle entre les signaux de commande aux moments de commutation (TUZ1, TUZ2) de l'élément de commutation (10, 11; 36) et en ce que le premier et le second élément de commutation (TUZ1, TUZ2) de l'élément de commutation (10, 11; 36) sont décalés sur l'axe temporel, à un intervalle temporel constant, correspondant à l'intervalle (tGD), par rapport au premier signal de mesure (S1).
  5. Procédé selon la revendication 1, caractérisé en ce que le dispositif de commande (13) calcule et modifie un intervalle (tGD) à partir de la différence temporelle entre les signaux de commande aux moments de commutation (TUZ1, TUZ2) de l'élément de commutation (10, 11; 36) et en ce que, à cet effet, l'unité de réglage (55) règle le moment de commutation (TUZ1) de l'élément de commutation (10, 11; 36), considéré comme étant le premier dans le temps, conformément à la grandeur de réglage calculée dans la seconde phase de déplacement de la pièce, faisant suite à la première phase de déplacement, dans le même sens de déplacement (31, 31') et fixe le moment de commutation (TUZ2) de l'élément de commutation (10,11; 36), considéré comme étant le second dans le temps, dans la mesure où l'intervalle calculé (t1réel) diffère de l'intervalle fixé (t1théorique).
  6. Procédé selon la revendication 2, caractérisé en ce que le dispositif de commande (13) produit un signal de commutation ultérieure (SNS) au second moment de commutation (TUZ2) de l'élément de commutation (10, 11; 36) et le transmet à l'élément de commutation (10, 11; 36) et que ce dernier commande la chambre de pression (8, 9) pendant un intervalle (tSCH2) avec la pression de circuit de telle sorte que la pièce soit alimentée en pression de circuit jusqu'à ce qu'elle ait atteint avec sûreté sa position de fin de course, dans le sens du déplacement (31, 31').
  7. Procédé selon la revendication 1 ou 6, caractérisé en ce que le dispositif de commande (13) transmet un signal de précommande (Svs) à l'élément de commutation (10, 11; 36) au moment de précommande (Tvs), signal au moyen duquel la chambre de pression alimentée en pression de circuit est purgée par le biais de l'élément de commutation (10, 11; 36), avant le démarrage du déplacement de la pièce, dans la seconde phase de déplacement, dans un sens de déplacement (31') contraire au sens de déplacement (31) de la première phase de déplacement.
  8. Procédé selon la revendication 1, caractérisé en ce que le dispositif de commande (13) prédéfinit, au moment (T2), un intervalle (t4) pour le temps pendant lequel la pièce reste dans sa position de fin de course et émet, à la fin de l'intervalle (t4), un signal de validation au moyen duquel, ou à un moment de démarrage ultérieur (Tdémarrage) fixé par le dispositif de commande (13) ou une commande supérieure, l'élément de commutation (10, 11; 36) est inversé pour le démarrage du déplacement de la pièce dans l'autre sens de déplacement (31') contraire au premier sens de déplacement (31) de la première phase de déplacement.
  9. Procédé selon la revendication 1, caractérisé en ce que le dispositif de commande (13) calcule, dans la première phase de déplacement de la pièce, un intervalle (ts) à partir de la différence temporelle entre un signal de commande, au moment de démarrage (Tdémarrage), transmis par le dispositif de commande (13) ou une commande supérieure à l'élément de commutation (10, 11; 3 6) commandant la pièce, et un signal de démarrage (Sdémarrage), au moment (T0), déclenché après le démarrage du déplacement de la pièce dans la phase de déplacement et relevé par le biais d'un capteur (21, 22) disposé dans la position de fin de course située du côté du démarrage du déplacement. Le procédé est en outre caractérisé en ce que le moment de démarrage (Tdémarrage), lors duquel le signal de commande est déclenché et transmis à l'élément de commutation (10, 11; 36), est réglé conformément à l'intervalle calculé (tS) dans l'autre phase de déplacement de la pièce faisant suite à la première phase de déplacement, dans le même sens de déplacement (31, 31').
  10. Procédé selon la revendication 1, caractérisé en ce que le dispositif de commande (13) calcule un moment (TR) en tenant compte des propriétés de circuit de l'autre entraînement (1") en liaison active avec l'entraînement (1; 1'), moment auquel un signal de retour (Sretour) est déclenché et au moyen duquel l'autre entraînement (1") est commandé par le premier entraînement avant, pendant ou après que la pièce a atteint la position de fin de course.
  11. Procédé selon la revendication 1, caractérisé en ce qu'un dispositif de surveillance (72) du dispositifde commande (13) évalue une courbe de signal des capteurs (21, 22) pendant la phase de déplacement de la pièce entre ses positions de fin de course et surveille à cette occasion le nombre de changements d'état d'un niveau de signal entre un niveau haut et un niveau bas.
  12. Procédé selon la revendication 11, caractérisé en ce que le dispositif de commande (13) fixe un nombre limite de changements d'état d'un niveau de signal entre un niveau haut et un niveau bas et effectue, dans la première phase de déplacement de la pièce, une comparaison théorie-réalité entre un intervalle fixé (t1théorique) et l'intervalle calculé (t1réel), dans la mesure où le nombre calculé de changements d'état dépasse le nombre limite fixé de changements d'état. Le procédé est également caractérisé en ce que l'unité de réglage (55) calcule une grandeur de réglage, pour l'amenée sans à-coups dans la position de fin de course, à partir de la comparaison théorie-réalité entre un intervalle fixé (t1théorie) et l'intervalle calculé (t1réel), pour au moins l'un des deux moments de commutation (TUZ1, TUZ2) de l'élément de commutation (10, 11; 36) se suivant dans le temps et élargit ensuite un intervalle (tGD) pour l'application d'une force sur la pièce dans un sens de déplacement (31') ') contraire à son sens de déplacement (31), conformément à la grandeur de réglage dans l'autre phase de déplacement de la pièce faisant suite à la première phase de déplacement, dans le même sens de déplacement (31, 31'), dans la mesure où l'intervalle calculé (t1réel) ne dépasse pas l'intervalle fixé (t1théorique).
  13. Procédé selon la revendication 11, caractérisé en ce que le dispositif de commande (13) fixe un nombre limite de changements d'état d'un niveau de signal entre un niveau haut et un niveau bas et effectue, dans la première phase de déplacement de la pièce, une comparaison théorie-réalité entre un intervalle fixé (t1théorique) et l'intervalle calculé (t1réel), dans la mesure où le nombre calculé de changements d'état dépasse le nombre limite fixé de changements d'état. Le procédé est également caractérisé en ce que le dispositif de commande (13) réduit, pour une approche sûre de la position de fin de course, un intervalle (tGD) pour l'application d'une force sur la pièce dans un sens de déplacement (31') contraire à son sens de déplacement (31), conformément à un coefficient de pondération, dans l'autre phase de déplacement de la pièce faisant suite à la première phase de déplacement, dans le même sens de déplacement (31, 31'), dans la mesure où l'intervalle calculé (t1réel) dépasse l'intervalle fixé (t1théorique).
  14. Procédé selon la revendication 11, caractérisé en ce que le dispositif de commande (13) compare et analyse le nombre calculé de changements d'état d'un niveau de signal entre un niveau haut et un niveau bas et un nombre minimal fixé de changements d'état d'un niveau de signal entre un niveau haut et un niveau bas et transmet un message d'erreur à un système de sortie (53) du dispositif de commande (13) ou d'une commande supérieure dans la mesure où le nombre calculé de changements d'état ne dépasse pas le nombre minimal fixé de changements d'état.
  15. Procédé selon la revendication 1, caractérisé en ce que le dispositif de commande (13) surveille l'intervalle (tGD) pour la commande inverse des chambres de pression (8, 9) et transmet un message d'erreur à un système de sortie (53) du dispositif de commande (13) ou d'une commande supérieure dans la mesure où une limite supérieure temporelle, fixée par le dispositif de commande (13), pour l'intervalle (tGD), est dépassée.
  16. Entraînement actionné par un fluide (1; 1'; 1 ") pour l'exécution du procédé selon l'une quelconque des revendications 1 à 15, comportant des pièces déplaçables les unes par rapport aux autres. L'une des pièces est déplaçable par le biais d'au moins un élément de commutation (10, 11; 36) dans un premier sens de déplacement (31) et dans un second sens de déplacement (31'), contraire au premier sens de déplacement (31), entre des positions de fin de course et de manière à être bloquée contre au moins l'une des positions de fin de course. Des signaux de commande, pour la commande temporelle de la phase de déplacement de la pièce, pour une amenée sans à-coups vers la position de fin de course, sont amenés vers le dispositif de commande électronique (13) par un capteur (21, 22) électroniquement commutable par le biais d'une came de contacteur (27a, b) et disposé dans la position de fin de course. Le dispositif de commande (13) actionne l'élément de commutation (10, 11; 36) à l'aide des signaux de commande et commande les chambres de pression (8, 9) de l'entraînement (1; 1'; 1") de manière inversée. L'entraînement est également caractérisé en ce que la pièce mobile est équipée, sur ses extrémités opposées dans le sens du déplacement (31, 31'), d'une barre de commande (25, 26), la barre de commande (25, 26) formant la came de contacteur (27a, b) et comportant au moins deux arêtes de commande (32a, b, 33a, b) décalées l'une derrière l'autre dans le sens du déplacement (31, 31') de la pièce de telle sorte que, dans la phase de déplacement de la pièce, il soit possible de déclencher, à partir de la première arête de commande (32a, b), dans la zone active du capteur (21, 22) disposé dans la position de fin de course à atteindre, à un moment (T1), un premier signal de mesure (S1) et, à partir de la seconde arête de commande (33a, b), dans la zone active de ce même capteur (21, 22), à un moment ultérieur (T2), un second signal de mesure (S2). Il est également caractérisé en ce que le dispositif de commande (13) comporte, pour une amenée sans à-coups dans la position de fin de course, une unité de réglage (55) calculant au moins une grandeur de réglage, pour au moins l'un des deux moments de commutation (TUZ1, TUZ2) de l'élément de commutation (10, 11; 36) se suivant dans le temps, à partir d'une comparaison théorie-réalité entre un intervalle fixé (t1théorique et un intervalle calculé (t1réel). L'entraînement se caractérise en outre en ceci que l'élément de commutation (10, 11; 36) est prévu pour le réglage d'au moins un moment de commutation (TUZ1, TUZ2) conformément à la grandeur de réglage dans l'autre phase de déplacement de la pièce faisant suite à la première phase de déplacement, dans le même sens de déplacement (31, 31').
  17. Entraînement selon la revendication 16, caractérisé en ce que le dispositif de commande (13) comporte en outre un dispositif de surveillance (72) pour l'analyse d'une courbe de signal des capteurs (21, 22) pendant le déplacement de la pièce entre ses positions de fin de course ou un intervalle (tGD) pour la durée de la commande inversée des chambres de pression (8, 9).
  18. Entraînement selon la revendication 16 ou 17, caractérisé en ce que le dispositif de commande (13) comporte en outre un système de sortie (53) pour l'analyse de la courbe de signal des capteurs (21, 22) ou l'émission d'un message d'erreur.
  19. Entraînement selon la revendication 16, caractérisé en ce que la barre de commande (25, 26) comporte une cannelure (28a, b) réalisée perpendiculairement au sens du déplacement (31, 31'), sur une partie de son épaisseur, cannelure par le biais de laquelle la came de contacteur (27a, b) et une section de la position de fin de course (29a, b) sont séparées l'une de l'autre, une largeur (B) de la cannelure (28a, b) étant au moins comprise entre 1 mm et 5 mm, en particulier entre 2 mm et 4 mm, par exemple 3 mm, et une distance longitudinale (A) entre les arêtes de commande (32a, b, 33a, b) étant au maximum comprise entre 4 mm et 15 mm, en particulier entre 5 mm et 12 mm, par exemple 9 mm.
  20. Entraînement selon la revendication 16, caractérisé en ce que le dispositif de commande (13) et/ou le ou les éléments de commutation (10, 11; 36) sont fixés sur l'une des pièces ou intégrés dans l'une des pièces.
  21. Entraînement selon la revendication 1, caractérisé en ce qu'au moins l'une des positions de fin de course peut être réglée par la modification de la position d'une butée fixe (3, 4; 44'; 44") et/ou d'un amortisseur (45', 45") et/ou d'une barre de commande (25, 26) et d'un capteur (21, 22) attribué à celle-ci.
  22. Procédé de commande d'un entraînement actionné par fluide (100) comportant des pièces pouvant être réglées les unes par rapport aux autres. L'une des pièces est déplacée, avec réglage entre deux positions de fin de course, par le biais d'au moins un élément de commutation (109; 133, 134) dans un premier sens de déplacement (31) et dans un second sens de déplacement (31'), opposé au premier sens de déplacement (31). Un dispositif de commande (116) reçoit des signaux de commande électriques, provenant de capteurs (119, 120) disposés dans les positions de fin de course, pour la commande temporelle de la phase de déplacement de la pièce pour une amenée sans à-coups dans la position de fin de course. Le dispositif de commande (116) actionne l'élément de commutation (109; 133, 134) à l'aide des signaux de commande. Le procédé est caractérisé en ce que, par le biais du dispositif de commande (116) ou d'une commande supérieure, une valeur théorique du temps de déplacement (tBthéorique) est fixée pour le déplacement de la pièce d'une position de fin de course à l'autre position de fin de course et, par le biais des capteurs (119, 120), sur le déplacement de réglage de la pièce d'une position de fin de course à l'autre position de fin de course, une valeur réelle du temps de déplacement (tBréelle) est relevée et en ce qu'une unité de réglage (127) du dispositif de commande (116) calcule, pour une amenée sans à-coups dans la position de fin de course, à partir d'une comparaison théorie-réalité entre le temps de déplacement fixé (tBthéorique) et le temps de déplacement calculé (tBréel), une grandeur de réglage pour au moins l'un des moments de commutation (TUZ1, TUS2) de l'élément de commutation (109; 133, 134) se suivant dans le temps et en ce qu'une durée de commande (tSD), prédéfinie au moyen des moments de commutation (TUZ1, TUZ2), est réglée par la modification du moment de commutation (TUZ1, TUZ2), conformément à la grandeur de réglage dans l'autre phase de déplacement de la pièce, faisant suite à la première phase de déplacement, dans le même sens de déplacement (31, 31'). C'est tout d'abord dans la plage de la durée de commande réglée (tSD) que la pièce est accélérée à une vitesse théorique et, qu'ensuite, l'élément de commutation (109; 133, 134) est actionné par impulsions, du second moment de commutation (TUZ2) à un moment de fin théorique (TTE) prédéfini par la durée de déplacement fixée (tBthéorique), en passant par un intervalle (tGB).
  23. Procédé selon la revendication 22, caractérisé en ce que l'élément de commutation (109; 133, 134) est commuté par le biais du dispositif de commande (116) ou de la commande supérieure dans l'intervalle (tGB) par plusieurs impulsions de commutation de courte durée (tSCH) se suivant dans le temps, impulsions au moyen desquelles une chambre de pression (107, 108) de l'entraînement (100), commandant la pièce, est alimentée en pression de circuit à des intervalles se succédant après des pauses d'impulsion de sorte que la pièce est déplacée dans la position de fin de course à atteindre à partir du second moment de commutation (TUZ2), dans le sens de déplacement (31, 31') à une vitesse de déplacement allant en diminuant par rapport à la vitesse théorique.
  24. Procédé selon la revendication 23, caractérisé en ce que le dispositif de commande (116) ou la commande supérieure calcule un intervalle (tp) des pauses d'impulsion dans lequel la pièce est déplacée en direction de la position de fin de course à atteindre en raison de son inertie, sans entraînement, dans le sens de déplacement (31, 31').
  25. Procédé selon la revendication 23, caractérisé en ce que le nombre et/ou la durée (tSCH) des impulsions de commutation sont prédéterminés de manière fixe par le biais du dispositif de commande (116) ou de la commande supérieure.
  26. Procédé selon la revendication 23, caractérisé en ce que le dispositif de commande (116) ou la commande supérieure calcule en permanence le nombre et/ou la durée (tSCH) des impulsions de commutation dans un mode d'apprentissage dynamique dans lequel la pièce est tout d'abord amenée dans la position de fin de course par réglage et un état de déplacement, telle que la courbe de vitesse, les oscillations générées sur l'entraînement ou la contrainte mécanique sur l'entraînement à la suite de la charge par à-coups lorsque la pièce touche la position de fin de course, est relevé et ensuite un état de déplacement optimal est réglé sur l'entraînement (100) par la modification constante du nombre et/ou + de la durée (tSCH) des impulsions de commutation.
  27. Procédé selon la revendication 22, caractérisé en ce que le dispositif de commande (116) produit, au moment où la pièce arrive dans la position de fin de course à atteindre, pendant la durée de déplacement fixée (tBthéorique) au moment (T2 ou TEE), un signal de commutation ultérieure (SNS) et le transmet à l'élément de commutation (109; 133, 134) et ce dernier commande la chambre de pression (107, 108) pendant un intervalle (tA) avec la pression de circuit de telle sorte que la pièce soit alimentée en pression de circuit dans le sens du déplacement (31, 31') et maintenue dans la position de fin de course par une force de retenue.
  28. Procédé selon la revendication 22, caractérisé en ce qu'un dispositif de surveillance (132) du dispositif de commande (116) déclenche, lors d'une différence de réglage (e) entre le temps de déplacement fixé (tBthéorique) et le temps de déplacement calculé (tréel), au moment final théorique (TTE) du temps de déplacement fixé (tBthéorique), un signal de surveillance (Sύ) au moyen duquel est prédéfini un premier intervalle et produit, à la fin de cet intervalle, un signal de commutation ultérieure (SNS) et le transmet à l'élément de commutation (109; 133, 134) et ce dernier commande la chambre de pression (107, 108) pendant un intervalle (tA) avec la pression de circuit de telle sorte que la pièce soit alimentée en pression de circuit jusqu'à ce qu'elle ait atteint avec sûreté sa position de fin de course, dans le sens du déplacement (21, 31') et soit maintenue dans la position de fin de course par une force de retenue.
  29. Procédé selon la revendication 28, caractérisé en ce que, dans la phase de déplacement de la pièce, peu avant qu'elle soit arrivée dans la position de fin de course à atteindre, un premier signal de mesure (S1) est relevé par le biais d'une came de contacteur (27a, b) sur le capteur (119, 120) à un moment (T1) et, à un moment ultérieur (T2), un second signal de mesure (S2) et en ce qu'un second intervalle (tF) est calculé à partir de la différence temporelle entre le premier signal de mesure (S1) et un second signal de commande de la dernière impulsion de commutation déclenché au moment de commutation (TUZ0) et en ce que le dispositif de surveillance (132) produit le signal de commutation ultérieure (SNS) avant la fin du premier intervalle et le transmet à l'élément de commutation (109; 133, 134) dans la mesure où le premier intervalle dépasse le second intervalle (tF) de telle sorte que la pièce soit alimentée assez tôt en pression de circuit dans le sens du déplacement (31, 31').
  30. Entraînement actionné par fluide (100) pour l'exécution du procédé selon l'une quelconque des revendications 22 à 29, comportant des pièces pouvant être réglées les unes par rapport aux autres. L'une des pièces peut être déplacée entre deux positions de fin de course, par le biais d'au moins un élément de commutation (109; 133, 134) dans un premier sens de déplacement (31) et dans un second sens de déplacement (31'), opposé au premier sens de déplacement (31). Un dispositif de commande électronique (116) reçoit des signaux de commande, provenant d'un capteur (119, 120) disposé dans les positions de fin de course, pour la commande temporelle de la phase de déplacement de la pièce, pour une amenée sans à-coups dans la position de fin de course. Le dispositif de commande (116) actionne l'élément de commutation (109; 133, 134) à l'aide des signaux de commande. Le procédé est caractérisé en ce que, par le biais du dispositif de commande (116), une valeur théorique du temps de déplacement (tBthéorique) est fixée pour le déplacement de la pièce d'une position de fin de course à l'autre position de fin de course et, par le biais des capteurs (119, 120), sur le déplacement de réglage de la pièce d'une position de fin de course à l'autre position de fin de course, une valeur réelle du temps de déplacement (tBréel) est relevée et en ce que le dispositif de commande (116) présente une unité de réglage (127) calculant, pour une amenée sans à-coups dans la position de fin de course, à partir d'une comparaison théorie-réalité entre le temps de déplacement fixé (tBthéorique) et le temps de déplacement calculé (tBréel), une grandeur de réglage pour au moins l'un des deux moments de commutation (TUZ1, TUZ2) de l'élément de commutation (109; 133,134) se suivant dans le temps et en ce que l'élément de commutation (109; 133, 134) est prévu pour le réglage d'une durée de commande (tSD), prédéterminée au moyen des moments de commutation (TUZ1, TUZ2), par la modification du moment de commutation (TUZ1, TUZ2), conformément à la grandeur de réglage dans l'autre phase de déplacement de la pièce, faisant suite à la première phase de déplacement, dans le même sens de déplacement (31, 31'). Il est également caractérisé en ce que, tout d'abord dans la plage de la durée de commande réglée (tSD), la pièce est accélérée à une vitesse théorique par la commande réglée de l'élément de commutation (109; 133, 134) et, qu'ensuite, l'élément de commutation (109; 133, 134) est actionné par impulsions par le dispositif de commande (116), du second moment de commutation (TUZ2) à un moment de fin théorique (TTE) prédéfini par le temps de déplacement fixé (tBthéorique), en passant par un intervalle (tGB).
  31. Entraînement selon la revendication 30, caractérisé en ce que le dispositif de commande (116) présente en outre un dispositif de surveillance (132) pour la production d'un signal de surveillance (Sύ) et l'analyse d'un premier et d'un second intervalle (tF).
  32. Entraînement selon la revendication 30, caractérisé en ce que le dispositif de commande (116) présente en outre un système d'entrée et/ou de sortie (131) pour le réglage du nombre et/ou de la durée (TSCH) des impulsions de commutation ou l'émission d'un message d'erreur.
EP06721249A 2005-05-20 2006-05-11 Mecanisme d'entrainement a commande fluidique et procede de commande correspondant Active EP1882102B8 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0086405A AT501935A1 (de) 2005-05-20 2005-05-20 Fluidisch betätigter antrieb sowie verfahren zur steuerung desselben
PCT/AT2006/000193 WO2006122339A1 (fr) 2005-05-20 2006-05-11 Mecanisme d'entrainement a commande fluidique et procede de commande correspondant

Publications (3)

Publication Number Publication Date
EP1882102A1 EP1882102A1 (fr) 2008-01-30
EP1882102B1 true EP1882102B1 (fr) 2010-09-22
EP1882102B8 EP1882102B8 (fr) 2010-11-17

Family

ID=36751901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06721249A Active EP1882102B8 (fr) 2005-05-20 2006-05-11 Mecanisme d'entrainement a commande fluidique et procede de commande correspondant

Country Status (4)

Country Link
EP (1) EP1882102B8 (fr)
AT (2) AT501935A1 (fr)
DE (1) DE502006007920D1 (fr)
WO (1) WO2006122339A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017117000A1 (de) * 2017-07-27 2019-01-31 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Verfahren zum Steuern eines Aktuators sowie Aktuator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE533131C2 (sv) * 2008-11-18 2010-07-06 Scania Cv Abp Pneumatiskt manöverdon, system och metod för reglering av detsamma
GB2472005A (en) * 2009-07-20 2011-01-26 Ultronics Ltd Control arrangement for monitoring a hydraulic system and altering opening of spool valve in response to operating parameters
EP2644904B1 (fr) * 2012-03-26 2014-11-12 Festo AG & Co. KG Procédé de commande d'un système de travail à actionnement fluidique
SE541823C2 (en) 2016-06-09 2019-12-27 Husqvarna Ab Improved arrangement and method for operating a hydraulic cylinder
IT201600084066A1 (it) * 2016-08-09 2018-02-09 Safen Fluid And Mech Engineering S R L Procedimento per l'alimentazione di un'utenza pneumatica
DE102018217337A1 (de) * 2018-10-10 2020-04-16 Festo Se & Co. Kg Bewegungsvorrichtung, Reifenhandhabungsvorrichtung und Verfahren zum Betrieb eines fluidischen Aktors
DE102019120863A1 (de) * 2019-08-01 2021-02-04 Atlas Copco Ias Gmbh Verfahren zur Steuerung eines mechanischen Füge- oder Umformprozesses

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628499A (en) * 1984-06-01 1986-12-09 Scientific-Atlanta, Inc. Linear servoactuator with integrated transformer position sensor
CA1306345C (fr) * 1985-10-04 1992-08-18 Honda Giken Kogyo Kabushiki Kaisha (Also Trading As Honda Motor Co., Ltd .) Appareil servant a l'installation de roulements sur des composants de moteur et methode connexe
DE3734547A1 (de) * 1987-10-13 1989-05-03 Festo Kg Kolben-zylinder-aggregat
DE4201464C2 (de) * 1992-01-21 1995-08-24 Festo Kg Vorrichtung zur Dämpfung eines in einem Zylinder verschiebbaren Kolbens in wenigstens einem seiner Endlagenbereiche
DE4410103C1 (de) * 1994-03-21 1995-08-31 Mannesmann Ag Antrieb der fluidischen oder elektrischen Bauart mit einer Steuerung
DE19721632C2 (de) * 1997-05-23 2003-02-13 Bernhard Moosmann Verfahren zum Steuern eines fluidischen Antriebes
AT410291B (de) 1997-08-18 2003-03-25 Walter Sticht Bewegungseinheit
ITTO20010852A1 (it) * 2001-09-06 2003-03-06 Fiat Ricerche Sistema per la misura della velocita' di spostamento dello stelo di un cilindro fluidico.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017117000A1 (de) * 2017-07-27 2019-01-31 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Verfahren zum Steuern eines Aktuators sowie Aktuator
WO2019020617A1 (fr) 2017-07-27 2019-01-31 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Unité de pivotement

Also Published As

Publication number Publication date
AT501935A1 (de) 2006-12-15
DE502006007920D1 (de) 2010-11-04
EP1882102A1 (fr) 2008-01-30
WO2006122339A1 (fr) 2006-11-23
EP1882102B8 (fr) 2010-11-17
ATE482338T1 (de) 2010-10-15

Similar Documents

Publication Publication Date Title
EP1882102B1 (fr) Mecanisme d'entrainement a commande fluidique et procede de commande correspondant
DE3708989C2 (de) Steuervorrichtung für einen in einem doppeltwirkenden Zylinder verschiebbaren Kolben
EP1067319B1 (fr) Dispositif de commande pour actionneur de transmission
DE102005014416B4 (de) Luftservozylindervorrichtung und Steuerverfahren hierfür
EP1426499B1 (fr) Procédé et appareil d'amortissement des fins de course d'un cylindre hydraulique utilisé dans des engins de travaux publics
EP2105280B1 (fr) Procédé d'utilisation d'un outil de soudure par ultrasons doté d'un entraînement fluidique
DE102004012294B4 (de) Hochgeschwindigkeitsantriebsverfahren und -system für Druckzylinder
WO2001092777A1 (fr) Dispositif de protection pour machines telles que presses-plieuses, decoupeuses, machines a estamper ou analogues
DE2609434C2 (de) Einrichtung zur Steuerung eines hydraulischen Motors
EP2400165B1 (fr) Entraînement de réglage pneumatique et procédé de fonctionnement de l'entraînement de réglage pneumatique
EP1818744A1 (fr) Structure de régulation comprenant un modèle de torsion
WO2018210448A2 (fr) Procédé de fonctionnement d'une presse à poudre à régulation de position et presse à poudre pour mettre en œuvre le procédé
DE102016001422A1 (de) Servopresse, steuerverfahren und programm
DE4313597B4 (de) Verfahren zum Betreiben einer verstellbaren hydrostatischen Pumpe und dafür ausgebildetes hydrostatisches Antriebssystem
DE3215066C1 (de) Sicherheitsabschaltvorrichtung fuer eine Zahnradschleifmaschine
DE102005053106A1 (de) Hydraulischer Antrieb
EP1430985B1 (fr) Pince de soudage comprenant un entraînement linéaire programmable avec deux boucles indépendantes d'asservissement et procédé de commande de l'entraînement linéaire d'une telle pince de soudage
EP0632202A1 (fr) Procédé pour la mise en oeuvre d'un instrument de positionnement ou de préhension ou de serrage actionné par un medium de tension
AT501936B1 (de) Verfahren zur steuerung eines fluidisch betätigten antriebs sowie ein antrieb
EP2005037B1 (fr) Procédé et dispositif pour commander un système de commande actionné par un fluide
EP0879969A2 (fr) Procédé pour commander un actionneur à fluide
EP0917675B1 (fr) Positionneur pour dispositifs d'entrainement et soupape de regulation pneumatique equipee dudit positionneur
DE102010063513A1 (de) Verfahren zur Ansteuerung eines Betätigungsmittels
DE3438600C2 (fr)
WO2018046045A1 (fr) Procédé d'adaptation d'une compensation de température d'un système d'embrayage hydraulique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: STIWA HOLDING GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006007920

Country of ref document: DE

Date of ref document: 20101104

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100922

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006007920

Country of ref document: DE

Effective date: 20110623

BERE Be: lapsed

Owner name: STIWA-FERTIGUNGSTECHNIK STICHT -G. M.B.H

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100922

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006007920

Country of ref document: DE

Representative=s name: ABP BURGER RECHTSANWALTSGESELLSCHAFT MBH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240502

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240503

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240502

Year of fee payment: 19