EP1880970B1 - Verfahren zum Optimieren des Gewichts eines Gegengewichts eines Aufzugsystems und Aufzugsystem mit einem derartigen Gegengewicht - Google Patents

Verfahren zum Optimieren des Gewichts eines Gegengewichts eines Aufzugsystems und Aufzugsystem mit einem derartigen Gegengewicht Download PDF

Info

Publication number
EP1880970B1
EP1880970B1 EP20070112719 EP07112719A EP1880970B1 EP 1880970 B1 EP1880970 B1 EP 1880970B1 EP 20070112719 EP20070112719 EP 20070112719 EP 07112719 A EP07112719 A EP 07112719A EP 1880970 B1 EP1880970 B1 EP 1880970B1
Authority
EP
European Patent Office
Prior art keywords
counterweight
weight
drive means
cage
optimising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20070112719
Other languages
English (en)
French (fr)
Other versions
EP1880970A3 (de
EP1880970A2 (de
Inventor
Daniel Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP20070112719 priority Critical patent/EP1880970B1/de
Publication of EP1880970A2 publication Critical patent/EP1880970A2/de
Publication of EP1880970A3 publication Critical patent/EP1880970A3/de
Application granted granted Critical
Publication of EP1880970B1 publication Critical patent/EP1880970B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B17/00Hoistway equipment
    • B66B17/12Counterpoises

Definitions

  • the present invention relates to a method for optimizing the weight of a counterweight of an elevator system according to the preamble of claim 1.
  • An elevator system generally comprises a cab for carrying persons and / or loads which is raised, lowered or held at a height by means of a propellant, for example a traction cable.
  • a propellant for example a traction cable.
  • a drive means applies a corresponding tensile force to a propellant.
  • the drive means comprises a motor whose output torque or lifting force is converted into a tensile force on the propellant. Due to the design, this engine can apply a certain maximum lifting force during continuous or time operation. For example, the heat dissipation limits the continuous power of electric motors in continuous operation. In the time mode, during which the motor can apply a higher lifting force for a short time, the maximum current consumption limits the maximum lifting force.
  • the static holding force for holding the cabin at a height may also be applied by the engine or, advantageously, by a brake which may be integrated with the engine or separately apply a holding force to the propellant. Since brakes can apply high braking (holding) moments with simple means, the static holding force generated by the brake is generally greater than the (permanent) lifting force that can be applied by the motor.
  • suspension means To reduce the drive means to be provided holding or lifting force, it is for example from the US 5,984,052 It is known to couple a counterweight to the cab via a suspension means so that it lifts as the cab lowers and lowers as the cab rises.
  • the suspension can with be the same or separate from the propellant and be firmly connected to the cabin and / or the drive.
  • suspension means is also understood to mean blowing agent.
  • the weight of this counterweight is chosen so that it substantially corresponds to the sum of the empty weight and half of the maximum permissible payload of the cabin. This minimizes the maximum tractive force that the drive means must lift, hold or lower the cab.
  • the elevator system is balanced, i. the drive means does not have to apply a holding force and overcome only frictional forces when lifting or lowering. The maximum tractive effort then occurs with the cab empty (with the counterweight pulling down) and the cab full (with the cab pulling down).
  • the drive means is chosen so that on the one hand apply this maximum tensile force as a static holding force and on the other hand also compensate for the occurring at a nominal speed profile inertial forces of the cabin including payload and the counterweight in the continuous or time-lifting operation.
  • the conventional 50% balance requires relatively large counterweights. These are unfavorable in the production, assembly and maintenance. In particular, large counterweights disadvantageously require additional space in the elevator shaft. Balancing with a statistical payload average considerably reduces the transport capacity during full load operation, since the nominal speed is reduced precisely in this operating state.
  • the object of the present invention is therefore to provide an elevator system which avoids the above-mentioned disadvantages.
  • a method according to the preamble of claim 1 is further developed by its characterizing features. It is a method specified, with a counterweight can be optimized accordingly.
  • a method according to the invention comprises, in a manner known per se, a car with an empty weight MK which moves a maximum payload MLmax can.
  • Attached to the cab is a support means on which a drive means can apply a pulling force such that the cab rises, lowers or is held at a height.
  • the drive means can apply a maximum tensile force MFmax as a static holding force MFmaxA, as a dynamic permanent lifting force MFmaxUD and / or as a time-lifting force MfmaxUZ.
  • the dynamic lifting force which must compensate for inertial and frictional forces in addition to weight, is greater than the static holding force.
  • the time-lifting force that can generate the drive means for a short time is generally greater than the duration of the lifting force which the drive means can apply over a longer period of time.
  • the drive means advantageously comprises a brake, which may be integrated into or formed separately from a motor
  • the maximum static holding force MFmaxA which can be generated by the drive means may also exceed the dynamic lifting force MFmaxU.
  • safety brakes in elevator systems can exceed the nominal powers of the drive motors in order to be able to decelerate and hold the cars safely in the event of a failure of the engines.
  • the brakes can be correspondingly strong dimensions.
  • An elevator system further comprises a counterweight coupled to the cab via a suspension means so as to rise as the cab lowers and to lower as the cab rises.
  • the weight MG of the counterweight essentially corresponds to the sum of the empty weight MK and the difference between the maximum tractive force MFmax of the drive means and the maximum payload MLmax of the car, in equation form MG ⁇ MK + MLmax - MFmax
  • the weight of the counterweight does not necessarily correspond exactly to the sum of the empty weight and the difference between the maximum traction force and the maximum payload.
  • the counterweight as will be explained below, be chosen somewhat larger, to take into account inertial and frictional forces and additional weights of the suspension means, so that applies MG ⁇ MK + MLmax - MFmax
  • the drive means can apply a maximum of a tensile force MFmax due to the design. This is always at least greater than half the maximum payload MLmax, otherwise the drive means could not hold or raise and lower either the full or empty cab. MFmax > 0.5 ⁇ MLmax
  • the weight of the counterweight is selected such that the drive means with this maximum traction force can hold the cab with coupled counterweight straight or lift or lower it with the nominal velocity profile.
  • the safety factors required for elevator systems can be taken into account, for example, by setting a quotient of the design-related maximum tensile force of the drive means and a corresponding factor as the maximum tensile force MFmax in equation (1) or (2).
  • a typical value range of this security range is 1.1 to 2.0. This makes it possible to take into account the usual effects of acceleration and inertia, friction losses, suspension element displacements or overload reserves.
  • This safety factor is usually set for certain elevator categories. Preferably, this safety factor is about 1.3.
  • This value is proven in passenger elevators with up to 10 storeys.
  • this safety factor can already be included in the specification of the maximum tensile force MFmax of the drive means. In this case This safety factor does not need to be taken into account when optimizing the counterweight.
  • the drive means with the smallest maximum traction force is selected, which is sufficient to raise, lower or hold the cabin at a 50% balance. Because with a 50% balance, the required maximum tensile force is minimal, so that a drive means in any case must be able to afford these depending on the balance of the smallest possible maximum traction.
  • the maximum tensile force of the individual types will usually not match exactly with the determined thus, the empty and payload weight of the cabin, friction coefficients, weights of the suspension, safety factors and the like, the lowest maximum tensile force for a specific application. Accordingly, in the first step that drive means selected from the series whose maximum tensile force exceeds this minimum required maximum tensile force.
  • the thus selected drive means thus provides more maximum traction available than would be required for the specific application.
  • This excess is used according to the invention to optimize the weight of the counterweight as much as possible, that is to minimize. Because a counterweight, which is not balanced with 50%, requires in the In the limiting case of an empty or maximally loaded cab, a higher tractive force for lifting, lowering or holding the cab. However, this higher tractive force can be achieved by the oversized drive means selected from the series.
  • the choice of counterweight weight according to the invention represents an optimum compromise between 50% balancing with, in the extreme case, minimal traction, and balancing on the statistical payload average, where the traction is minimal on a statistical average. It allows in particular to select the drive means from a series with predetermined graded tensile forces and thus makes it possible to resort to cost-effective series drive means, these nevertheless optimally exploit and minimize costs of the elevator system.
  • a minimal counterweight brings a number of advantages: on the one hand, material costs are already saved during production. On the other hand, the handling of a smaller counterweight in the production, transport to the place of use, installation in the elevator shaft, maintenance and dismantling is much easier. Finally, a smaller counterweight advantageously requires less space in the elevator shaft (or a separate shaft). In a limiting case, the weight of the counterweight could even be made so light that the counterweight is equal to the weight of the empty car. As Stawinoga in the journal Liftreport from Sept./Okt. 1996 could show in this Case of further measures to protect against uncontrolled upward movements are waived.
  • the suspension means may comprise one or more cables and / or one or more belts.
  • the carrying and blowing agents are identical, i.e. Rope (s) and / or straps attached to the cab and the counterweight and diverted by means of loose and / or fixed rollers and / or one or more traction sheaves.
  • One or more cables and / or belts of the suspension element are preferably coated with an elastomer, in particular polyurethane. This increases in particular the traction or traction of the suspension element.
  • the counterweight according to the Euler-Eytelwein equation must be at least e ⁇ of the cabin weight with the coefficient of friction ⁇ between the traction sheave and the suspension angle ⁇ . An increase in the coefficient of friction by the advantageous coating thus allows a reduction in the weight of the counterweight.
  • the drive means preferably comprises a motor, in particular a frequency-controlled electric motor, and may have at least one traction sheave for converting an output torque of the motor into a tensile force on the suspension element.
  • a brake can be provided which can apply a static holding torque on the at least one traction sheave. As brakes all known friction and / or positive brakes come into consideration.
  • the maximum traction force MFmax of the drive means the smaller value of the static holding force MFmaxA at which the drive means holds the cabin at a height, the dynamic endurance lift force MFmaxUD at which the drive means can lift the cabin for a longer period of time, and / or the dynamic time-lifting force MFmaxUZ with which the drive means can lift the cabin briefly, scheduled.
  • the static holding force MFmaxA can exceed the dynamic lifting force MFmaxU.
  • the static endurance force can fall below the dynamic (time) lifting force.
  • the weight of the counterweight and / or the unladen weight of the cabin and the maximum payload of the cabin is reduced from the laws known for pulleys according to the number of loose rollers around which the support means is deflected.
  • the weight of the counterweight MG or the empty weight MK and the maximum payload MLmax can be divided by a suspension factor of 2, for example, if the suspension element is one or more loose on the cabin and counterweight sides Roll (simply) is deflected.
  • the divisor changes accordingly for the design of the weights. In a direct suspension, without loose roles, this divisor is eliminated, or he is equal to 1.
  • equation (1) or (2) the empty weight of the car and / or the maximum tractive force of the drive means and / or the maximum payload of the car can be increased by the safety factor to take account of the inertial forces occurring during operation.
  • friction and / or the weight of the support and / or suspension means are taken into account.
  • the present invention proposes a method for designing the weight of the counterweight of an elevator system with which this weight can be optimized for a drive means with a predetermined maximum tensile force.
  • the present invention relates to an elevator system having a counterweight designed according to this method.
  • An elevator system comprises, as in Fig. 1 schematically illustrated a cabin 1 with an in Fig. 1 indicated empty weight MK, which can raise, lower or keep a payload ML at a certain height.
  • the payload ML must not exceed MLmax.
  • a suspension element 2 is attached via a loose roller 20, which is indicated here as a single rope. This is fixed at one end in a shaft area, is then deflected over the loose roller 20, wraps around in the sequence of a traction sheave 30, is deflected at its other end on a counterweight-side loose roll 20.1 and again firmly connected to the shaft.
  • a drive means 3 comprises a motor and a brake (not shown in each case) which can apply a lifting or holding torque to the traction sheave 30. This torque is frictionally converted into a tensile force in the traction sheave 30 looping around the rope 2, so that the car 1 is raised due to the lifting or holding torque, lowers or held at a level.
  • the drive means 3 can, by means of its brake, apply a maximum static holding force MFmaxA and, by means of its motor, apply a maximum dynamic continuous lifting force and a maximum dynamic lifting time force MFmaxUD or MFmaxUZ.
  • the static holding force that can apply the brake in the embodiment, depending on the type of drive means is greater or less than the dynamic time-lifting force that can apply the engine for a short time. This is due to the limited heat dissipation in turn greater than the dynamic continuous lifting force that the engine can afford over a longer period
  • the counterweight 4 is on the support means 2, which is identical to the propellant in the embodiment, so coupled to the car 1 that it rises when the car 1 lowers, and lowers when the car 1 rises.
  • the tensile force which the drive means 3 applies to the suspension element 2 is reduced or has to be transmitted in a known manner.
  • the in Fig. 1 sketched elevator system as follows: first, the empty weight MK of the car 1 and the maximum allowable payload MLmax of the elevator system are determined. In the embodiment weigh empty car 1 1600kg, the maximum payload is estimated to be 2000 kg.
  • Type maximum holding force MFmaxA maximum continuous lifting force MFmaxUD maximum time lifting force MFmaxUZ Type I 1250kg 1250kg 1500kg Type II 1250kg 1000kg 1200kg Type III 500kg 750kg 800kg Type IV 500kg 450kg 600kg
  • types I and II or III and IV respectively have the same mechanical brake but different drive motors.
  • the lifting forces which a drive means 3 can apply for a short time exceed those which it provides in continuous operation.
  • this selected drive means 3 can lift a load of 769kg even while in continuous operation, while only 500kg would be required with a 50% balance, the weight MG of the counterweight 4 can be correspondingly reduced according to Equation (1) - taking into account the above Safety factor 1.3 - on, due to the counterweight-side loose roller 20.1, the weight of the counterweight is again doubled.
  • the counterweight 4 is preferred, chosen slightly larger according to a weight grading, in the present case, for example, to 2075kg.
  • the counterweight 4 will be minimized, unlike a 30% balancing as seen in the embodiment of FIGS US 5,984,052 It is known that for all payloads, even with maximum payload, the same nominal speed profile can be used. Thus, the tensile force of the drive means 3 is optimally utilized while minimizing the counterweight 4, or optimized.
  • the car 1 is attached via a loose roller 20.
  • the support means 2 is fixed at one end in the shaft area, is then deflected over the loose roller 20, wraps around in the sequence of a traction sheave 30 and is connected at its other end fixed to the counterweight 4.
  • the cab side empty weight MK as well as the allowable payload MLmax is halved because of the cab side loose roller 20.
  • the mass or weight of the counterweight 4 does not have to be doubled again, as no counterweight loose roll is used.
  • the calculation of the weight of the counterweight 4 thus takes place as explained above, wherein only, due to the missing roller 20.1, the weight of the counterweight 4 need not be doubled.
  • the counterweight 4 would preferably have been chosen to be somewhat larger, in the present case for example 1050 kg. This example serves to illustrate the influence of the loose roller 20, 20.1, wherein it should be noted that, of course, the routes of counterweight 4 and cab 1 result differently, which must be taken into account in the design of the shaft.
  • a number of loose rollers 20.20.1 may be taken into account in the weights of car 1 and / or counterweight 4 or their influence may be taken into account in the holding force table.
  • safety factors may be taken into account directly in determining the holding forces, or they may be taken into account in determining the actual weight of the counterweight 4.

Landscapes

  • Cage And Drive Apparatuses For Elevators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Optimieren des Gewichts eines Gegengewichts eines Aufzugsystems nach dem Oberbegriff des Anspruchs 1.
  • Ein Aufzugsystem umfasst allgemein eine Kabine zur Beförderung von Personen und/oder Lasten, die mittels eines Treibmittels, beispielsweise eines Zugseils, gehoben, abgesenkt oder in einer Höhe gehalten wird. Hierzu bringt ein Antriebsmittel eine entsprechende Zugkraft auf ein Treibmittel auf.
  • Das Antriebsmittel umfasst hierzu einen Motor, dessen Abtriebsmoment, bzw. Hubkraft in eine Zugkraft auf das Treibmittel umgesetzt wird. Dieser Motor kann dabei konstruktionsbedingt eine bestimmte maximale Hubkraft im Dauer- bzw. Zeitbetrieb aufbringen. Beispielsweise begrenzt die Wärmeabfuhr die Dauerleistung von Elektromotoren im Dauerbetrieb. Im Zeitbetrieb, während dem der Motor kurzzeitig eine in der Regel höhere Hubkraft aufbringen kann, begrenzt die maximale Stromaufnahme die maximale Hubkraft.
  • Die statische Haltekraft zum Halten der Kabine in einer Höhe kann ebenfalls vom Motor oder vorteilhafterweise von einer Bremse aufgebracht werden, die im Motor integriert sein oder separat eine Haltekraft auf das Treibmittel aufbringen kann. Da Bremsen mit einfachen Mitteln hohe Brems(halte)momente aufbringen können, ist in der Regel die durch die Bremse erzeugte statische Haltekraft grösser als die vom Motor aufbringbare (Dauer)Hubkraft.
  • Zur Reduzierung der vom Antriebsmittel zu erbringenden Halte- oder Hubkraft ist es beispielsweise aus der US 5,984,052 bekannt, ein Gegengewicht über ein Tragmittel so mit der Kabine zu koppeln, dass es sich hebt, wenn sich die Kabine absenkt, und sich absenkt, wenn die Kabine sich hebt. Das Tragmittel kann mit dem Treibmittel identisch oder von diesem getrennt sein und fest mit der Kabine und/oder dem Antrieb verbunden sein. Der Einfachheit halber wird unter dem Begriff Tragmittel auch Treibmittel verstanden.
  • Üblicherweise wird das Gewicht dieses Gegengewichts so gewählt, dass es im wesentlichen der Summe aus dem Leergewicht und der Hälfte der maximal zulässigen Nutzlast der Kabine entspricht. Damit wird die maximale Zugkraft, die das Antriebsmittel zum Heben, Halten bzw. Absenken der Kabine aufbringen muss, minimiert. Bei halber Nutzlast ist das Aufzugsystem ausbalanciert, i.e. das Antriebsmittel muss keine Haltekraft aufbringen und auch beim Heben oder Absenken nur Reibungskräfte überwinden. Die maximale Zugkraft tritt dann bei leerer Kabine (bei der das Gegengewicht nach unten zieht) und voller Kabine (bei der die Kabine nach unten zieht) auf. Das Antriebsmittel wird dabei so gewählt, dass es einerseits diese maximale Zugkraft als statische Haltekraft aufbringen und andererseits zusätzlich auch die bei einem Nominalgeschwindigkeitsprofil auftretenden Trägheitskräfte der Kabine einschliesslich Nutzlast sowie des Gegengewichts im Dauer- oder Zeit-Hubbetrieb ausgleichen kann.
  • Abweichend hiervon schlägt die US 5,984,052 vor, das Gegengewicht so zu wählen, dass es der Summe aus dem Leergewicht und einem statistischen Mittelwert der Nutzlastverteilung entspricht, der im Ausführungsbeispiel mit 30% der maximalen Nutzlast angenommen wird. Ein solches Aufzugsystem ist im statistischen Mittel ausbalanciert, i.e. erfordert während eines grossen Anteils des täglichen Betriebs nur geringe Halte- bzw. Hubkräfte. Sofern die Kabine im Ausführungsbeispiel jedoch mehr als 40% der maximalen Nutzlast befördert, vergrössert sich die vom Antriebsmittel aufzubringende Zugkraft gegenüber dem vorher beschriebenen mit 50% ausbalancierten Aufzugsystem und übersteigt ab 80% der maximalen Nutzlast die maximal aufzubringende Zugkraft des mit 50% ausbalancierten Aufzugsystems.
  • In diesem Bereich kann das gleiche Antriebsmittel nicht mehr dieselben Trägheitskräfte ausgleichen. Dementsprechend schlägt die US 5,984,052 vor, ab einem bestimmten Nutzlastwert das Nominalgeschwindigkeitsprofil zu ändern und nur noch mit geringeren Beschleunigungen zu arbeiten.
  • Nachteilig erfordert die von der US 5,984,052 vorgeschlagene Ausbalancierung die aufwändige empirische Bestimmung des Nutzlastmittelwertes. Sofern die Nutzlastverteilung im tatsächlichen Betrieb von der bei der Auslegung des Gewichts des Gegengewichts zugrunde gelegten Verteilung abweicht, arbeitet das Aufzugsystem suboptimal. Auch bei einer grossen Standartabweichung vom Mittelwert, i.e. wenn häufig stark vom Mittelwert abweichende Nutzlasten auftreten, verschlechtert sich die Effizienz dieses Aufzugsystems.
  • Die herkömmliche 50%-Ausbalancierung erfordert relativ grosse Gegengewichte. Diese sind in der Herstellung, der Montage und der Wartung ungünstig. Insbesondere erfordern grosse Gegengewichte nachteilig zusätzlichen Bauraum im Aufzugschacht. Die Ausbalancierung mit einem statistischen Nutzlastmittelwert reduziert die Transportkapazität bei Volllastbetrieb erheblich, da gerade bei diesem Betriebszustand die Nominalgeschwindigkeit reduziert wird.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Aufzugsystem zur Verfügung zu stellen, dass die oben genannten Nachteile vermeidet. Insbesondere ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren und ein Aufzugsystem zur Verfügung zu stellen, das im Hinblick auf die Herstellung, Montage, Wartung und/oder den erforderlichen Bauraum im Aufzugschacht günstiger ist.
  • Zur Lösung dieser Aufgabe ist ein Verfahren nach dem Oberbegriff des Anspruchs 1 durch dessen kennzeichnende Merkmale weitergebildet. Es ist ein Verfahren angegeben, mit dem ein Gegengewicht entsprechend optimiert werden kann.
  • Ein erfindungsgemässes Verfahren umfasst in an sich bekannter Weise eine Kabine mit einem Leergewicht MK, die eine maximale Nutzlast MLmax bewegen kann. An der Kabine ist ein Tragmittel befestigt, auf das ein Antriebsmittel eine Zugkraft derart aufbringen kann, dass die Kabine sich hebt, senkt oder in einer Höhe gehalten wird. Dabei kann das Antriebsmittel eine maximale Zugkraft MFmax als statische Haltekraft MFmaxA, als dynamische Dauer-Hubkraft MFmaxUD und/oder als Zeit-Hubkraft MfmaxUZ aufbringen.
  • In der Regel ist die dynamische Hubkraft, die zusätzlich zu Gewichts- auch Trägheits- und Reibungskräfte ausgleichen muss, grösser als die statische Haltekraft. Dabei ist die Zeit-Hubkraft, die das Antriebsmittel kurzzeitig erzeugen kann, im allgemeinen grösser als die Dauer-Hubkraft, die das Antriebsmittel über einen längeren Zeitraum aufbringen kann. Umgekehrt kann, insbesondere, sofern das Antriebsmittel vorteilhaft eine Bremse umfasst, welche in einen Motor integriert oder von diesem separat ausgebildet sein kann, die vom Antriebsmittel maximal erzeugbare statische Haltekraft MFmaxA die dynamische Hubkraft MFmaxU auch übersteigen. So können insbesondere Sicherheitsbremsen bei Aufzugsystemen die nominellen Leistungen der Antriebsmotoren übersteigen, um beim Ausfall der Motoren die Kabinen sicher abbremsen und halten zu können. Um die bei einer solchen Notabbremsung auftretenden Trägheitskräfte, die die dynamischen Lasten im Normalbetrieb übersteigen können, sicher auszugleichen, können die Bremsen entsprechend stark dimensioniert sein.
  • Ein Aufzugsystem umfasst weiter ein Gegengewicht, das über ein Tragmittel so mit der Kabine gekoppelt ist, dass es sich hebt, wenn sich die Kabine absenkt, und sich absenkt, wenn die Kabine sich hebt.
  • Erfindungsgemäss wird nun vorgeschlagen, dass das Gewicht MG des Gegengewichts im wesentlichen der Summe des Leergewichts MK und der Differenz zwischen der maximalen Zugkraft MFmax des Antriebsmittels und der maximalen Nutzlast MLmax der Kabine entspricht, in Gleichungsform MG MK + MLmax - MFmax
    Figure imgb0001
  • Das Gewicht des Gegengewichts muss nicht exakt der Summe des Leergewichts und der Differenz zwischen der maximalen Zugkraft und der maximalen Nutzlast entsprechen. Insbesondere kann das Gegengewicht, wie nachfolgend erläutert wird, etwas grösser gewählt sein, um Trägheits- und Reibungskräfte sowie zusätzliche Gewichte der Tragmittel zu berücksichtigen, so dass gilt MG MK + MLmax - MFmax
    Figure imgb0002
  • Das Antriebsmittel kann bauartbedingt maximal eine Zugkraft MFmax aufbringen. Diese ist stets mindestens grösser als die Halbe maximale Nutzlast MLmax, da andernfalls das Antriebsmittel entweder die volle oder leere Kabine nicht halten bzw. heben und senken könnte. MFmax > 0.5 × MLmax
    Figure imgb0003
  • Nun wird erfindungsgemäss das Gewicht des Gegengewichts so gewählt, dass das Antriebsmittel mit dieser maximalen Zugkraft die Kabine mit angekoppeltem Gegengewicht gerade halten bzw. mit dem Nominalgeschwindigkeitsprofil heben bzw. absenken kann. Hierbei können die für Aufzugsysteme erforderlichen Sicherheitsfaktoren beispielsweise dadurch berücksichtigt werden, dass als maximale Zugkraft MFmax in Gleichung (1) bzw. (2) ein Quotient der bauartbedingten maximalen Zugkraft des Antriebsmittels und einem entsprechenden Faktor angesetzt wird. Ein typischer Wertebereich dieses Sicherheitsbereiches liegt bei 1.1 bis 2.0. Damit lassen sich übliche Beschleunigungs- und Trägheitseinfüsse, Reibungsverluste, Tragmittelverlagerungen oder Überlastreserven berücksichtigen. Dieser Sicherheitsfaktor wird in der Regel für bestimmte Aufzugskategorien festgelegt. Vorzugsweise beträgt dieser Sicherheitsfaktor etwa 1.3. Dieser Wert bewährt sich bei Personenaufzügen mit etwa bis zu 10 Stockwerken.
    Selbstverständlich kann dieser Sicherheitsfaktor schon in der Angabe der maximalen Zugkraft MFmax des Antriebsmittels beinhaltet sein. In diesem Falle braucht dieser Sicherheitsfaktor beim Optimieren des Gegengewichtes nicht mehr berücksichtigt zu werden.
  • Im Gegensatz zur bisherigen Auslegung des Gewichts des Gegengewichts wo, entweder die erforderliche maximale Zugkraft des Antriebsmittels minimiert wird (50%-Ausbalancierung) oder die erforderliche Zugkraft des Antriebsmittel im statistischen Mittel minimiert wird, wird erfindungsgemäss also vorgeschlagen, die von einem Antriebsmittel zur Verfügung gestellte Zugkraft vollständig auszunutzen und dabei das Gewicht des Gegengewichts zu optimieren bzw. zu minimieren.
  • Hierdurch wird es vorteilhaft möglich, das Antriebsmittel aus einer Baureihe mit vorbestimmten abgestuften Zugkräften auszuwählen. In einem ersten Schritt wird dabei dasjenige Antriebsmittel mit der kleinsten maximalen Zugkraft ausgewählt, die ausreicht, die Kabine bei einer 50%-Ausbalancierung zu heben, senken bzw. halten. Denn bei einer 50%-Ausbalancierung ist die erforderliche maximale Zugkraft minimal, so dass ein Antriebsmittel jedenfalls diese von der Ausbalancierung abhängige kleinstmögliche maximale Zugkraft aufbringen können muss.
  • In abgestuften Baureihen wird in der Regel die maximale Zugkraft der einzelnen Typen nicht exakt mit der so ermittelten, vom Leer- und Nutzlastgewicht der Kabine, Reibwerten, Gewichten der Tragmittel, Sicherheitsfaktoren und ähnlichem abhängigen kleinsten maximalen Zugkraft für einen konkreten Anwendungsfall übereinstimmen. Dementsprechend wird in dem ersten Schritt dasjenige Antriebsmittel aus der Baureihe ausgewählt, dessen maximale Zugkraft diese kleinste erforderliche maximale Zugkraft übersteigt.
  • Das solcherart ausgewählte Antriebsmittel stellt mithin mehr maximale Zugkraft zur Verfügung als für den konkreten Anwendungsfall erforderlich wäre. Dieser Überschuss wird erfindungsgemäss genutzt, um das Gewicht des Gegengewichts so weit wie möglich zu optimieren, das heisst zu minimieren. Denn ein Gegengewicht, das nicht mit 50% ausbalanciert ist, erfordert im Grenzfall einer leeren oder maximal ausgelasteten Kabine eine höhere Zugkraft zum Heben, Senken bzw. Halten der Kabine. Diese höhere Zugkraft kann das aus der Baureihe ausgewählte, insofern überdimensionierte Antriebsmittel jedoch gerade erbringen.
  • Auf der anderen Seite ist es nicht wie in der US 5,984,052 notwendig, das Nominalgeschwindigkeitsprofil bei höheren Nutzlasten zu verändern, da erfindungsgemäss das Gewicht des Gegengewichts nur soweit minimiert wird, dass die Kabine über ihre volle Nutzlastverteilung mit dem gewünschten Nominalgeschwindigkeitsprofil fahren kann. Denn erfindungsgemäss wird das Gewicht des Gegengewichts nur soweit reduziert, dass das Antriebsmittel die Kabine in allen Betriebszuständen mit den gewünschten Geschwindigkeitsprofilen heben bzw. senken kann. Dadurch wird die Transportkapazität bei Volllastbetrieb erhöht.
  • Mithin stellt die erfindungsgemässe Wahl des Gewichts des Gegengewichts einen optimalen Kompromiss zwischen einer 50%-Ausbalancierung mit im Grenzfall minimaler Zugkraft, und einer Ausbalancierung auf den statistischen Nutzlastmittelwert dar, bei dem die Zugkraft im statistischen Mittel minimal ist. Sie erlaubt insbesondere, das Antriebsmittel aus einer Baureihe mit vorbestimmten abgestuften Zugkräften auszuwählen und ermöglicht es damit, auf kostengünstige Serienantriebsmittel zurückzugreifen, diese gleichwohl optimal auszunutzen und Kosten des Aufzugssystems zu minimieren.
  • Ein minimales Gegengewicht bringt eine Reihe von Vorteilen: zum einen werden bereits bei der Herstellung Materialkosten eingespart. Zum anderen ist das Handling eines kleineren Gegengewichts bei der Herstellung, dem Transport zum Einsatzort, der Montage im Aufzugschacht, der Wartung und dem Abbau deutlich erleichtert. Schliesslich benötigt ein kleineres Gegengewicht vorteilhaft weniger Raum im Aufzugschacht (oder einem separaten Schacht). In einem Grenzfall könnte das Gewicht des Gegengewichts sogar so leicht gemacht werden, dass das Gegengewicht gleich dem Gewicht der leeren Kabine ist. Wie Stawinoga in der Fachzeitschrift Liftreport vom Sept./Okt. 1996 aufzeigt, könnten in diesem Falle auf weitergehende Massnahmen zum Schutze gegen unkontrollierte Aufwärtsbewegungen verzichtet werden.
  • Das Tragmittel kann ein oder mehrere Seile und/oder einen oder mehrere Riemen umfassen. In der Regel sind Trag- und Treibmittel identisch, i.e. Seil(e) und/oder Riemen, die an der Kabine und dem Gegengewicht befestigt sind und über lose und/oder feste Rollen und/oder eine oder mehrere Treibscheiben umgelenkt werden.
  • Bevorzugt sind ein oder mehrere Seile und/oder Riemen des Tragmittels mit einem Elastomer, insbesondere Polyurethan, beschichtet. Dies erhöht insbesondere die Traktions- bzw. Treibfähigkeit des Tragmittels. Bekanntlich muss bei einer Umlenkung über eine Treibscheibe das Gegengewicht nach der Euler-Eytelweinschen Gleichung wenigstens eµα des Kabinengewichts mit dem Reibkoeffizienten µ zwischen Treibscheibe und Tragmittel und dem Umlenkungswinkel α betragen. Eine Erhöhung des Reibkoeffizienten durch die vorteilhafte Beschichtung gestattet somit eine Reduzierung des Gewichts des Gegengewichts.
  • Das Antriebsmittel umfasst bevorzugt einen Motor, insbesondere einen frequenzgeregelten Elektromotor, und kann wenigstens eine Treibscheibe zur Umsetzung eines Abtriebsmomentes des Motors in eine Zugkraft auf das Tragmittel aufweisen. In den Motor integriert oder von diesem getrennt kann eine Bremse vorgesehen sein, die ein statisches Haltemoment auf die wenigstens eine Treibscheibe aufbringen kann. Als Bremsen kommen alle bekannten reib- und/oder formschlüssigen Bremsen in Betracht.
  • Bevorzugt wird als maximale Zugkraft MFmax des Antriebsmittels der kleinere Wert von der statischen Haltekraft MFmaxA, mit der das Antriebsmittel die Kabine in einer Höhe hält, der dynamischen Dauer-Hubkraft MFmaxUD, mit der das Antriebsmittel die Kabine während eine längeren Zeitdauer heben kann, und/oder der dynamischen Zeit-Hubkraft MFmaxUZ, mit der das Antriebsmittel die Kabine kurzzeitig heben kann, angesetzt. Wie einleitend geschildert, kann, insbesondere bei Sicherheitsbremsen, die statische Haltekraft MFmaxA die dynamische Hubkraft MFmaxU überschreiten. Umgekehrt kann beispielsweise bei reinen Motorbremsen die statische Dauerhaltekraft die dynamische (Zeit-) Hubkraft unterschreiten. Um sowohl ein sicheres Heben und Senken, i.e. eine ausreichende dynamische Hubkraft des Antriebsmittels, als auch ein sicheres Halten der Kabine in einer Höhe, i.e. eine ausreichende statische Hubkraft des Antriebsmittels, sicherzustellen, wird vorgeschlagen, den kleinsten dieser Werte bei der Auslegung des Gewichts des Gegengewichts zugrunde zu legen.
  • Bei der Auslegung des Gewichts des Gegengewichts wird das Gewicht des Gegengewichts und/oder das Leergewicht der Kabine und die maximale Nutzlast der Kabine aus dem für Flaschenzüge bekannten Gesetzmässigkeiten entsprechend der Anzahl der losen Rollen verkleinert, um die das Tragmittel umgelenkt ist. So können in Gleichung (1) bzw. (2) das Gewicht des Gegengewichts MG bzw. das Leergewicht MK und die maximale Nutzlast MLmax beispielsweise durch einen Aufhängefaktor von 2 dividiert werden, wenn das Tragmittel einmal, bzw. Kabinen- und Gegengewichtsseitig um eine lose Rolle (einfach) umgelenkt ist. Bei einer Mehrfachumhängung (i.e. 4-fach, 5- fach, etc) verändert sich der Divisor zur Auslegung der Gewichte entsprechend. Bei einer direkten Aufhängung, ohne lose Rollen, entfällt dieser Divisor, bzw. er ist gleich 1.
  • In an sich bekannter Weise kann für Gleichung (1) bzw. (2) das Leergewicht der Kabine und/oder die maximale Zugkraft des Antriebsmittels und/oder die maximale Nutzlast der Kabine um den Sicherheitsfaktor zur Berücksichtigung der im Betrieb auftretenden Trägheitskräfte vergrössert werden. Gleichermassen können in Gleichung (1) bzw. (2) Reibung und/oder das Gewicht des Trag- und/oder Tragmittels mit berücksichtigt werden.
  • Die vorliegende Erfindung schlägt ein Verfahren zur Auslegung des Gewichts des Gegengewichts eines Aufzugsystems vor, mit dem dieses Gewicht für ein Antriebsmittel mit vorgegebener maximaler Zugkraft optimiert werden kann.
  • Gleichermassen betrifft die vorliegende Erfindung ein Aufzugsystem mit einem nach diesem Verfahren ausgelegten Gegengewicht.
  • Weitere Aufgaben, Merkmale und Vorteile ergeben sich aus den Unteransprüchen und den nachfolgenden Ausführungsbeispielen. Hierzu zeigt:
  • Fig. 1
    schematisch den Aufbau eines Aufzugsystems nach einer Ausführung der vorliegenden Erfindung.
    Fig. 2
    schematisch den Aufbau eines weiteren Aufzugsystems nach einer Ausführung der vorliegenden Erfindung.
    Die Figuren verwenden gleiche Bezugszeichen für vergleichbare Bauteile
  • Ein Aufzugsystem nach einer Ausführung der vorliegenden Erfindung umfasst, wie in Fig. 1 schematisch dargestellt, eine Kabine 1 mit einem in Fig. 1 angedeuteten Leergewicht MK,
    die eine Nutzlast ML heben, senken oder in einer bestimmten Höhe halten kann. Die Nutzlast ML darf maximal MLmax betragen.
  • An der Kabine 1 ist über eine lose Rolle 20 ein Tragmittel 2 befestigt, das hier als Einfachseil angedeutet ist. Dieses ist an einem Ende in einem Schachtbereich festgelegt, wird anschliessend über die lose Rolle 20 umgelenkt, umschlingt in der Folge eine Treibscheibe 30, ist an seinem anderen Ende über eine gegengewichtsseitige lose Rolle 20.1 umgelenkt und wiederum fest zum Schacht verbunden.
  • Ein Antriebsmittel 3 umfasst einen Motor und eine Bremse (jeweils nicht dargestellt), die ein Hub- bzw. Haltedrehmoment auf die Treibscheibe 30 aufbringen können. Dieses Drehmoment wird reibschlüssig in eine Zugkraft im die Treibscheibe 30 umschlingenden Seil 2 umgesetzt, so dass die Kabine 1 sich infolge des Hub- bzw. Haltedrehmoments hebt, senkt oder in einer Höhe gehalten wird.
  • Das Antriebsmittel 3 kann bauartbedingt vermittels seiner Bremse eine maximale statische Haltekraft MFmaxA, und vermittels seines Motors eine maximale dynamische Dauer- und eine maximale dynamische Zeit-Hubkraft MFmaxUD bzw. MFmaxUZ aufbringen. Dabei ist die statische Haltekraft, die die Bremse aufbringen kann, im Ausführungsbeispiel je nach Typ des Antriebsmittels grösser oder kleiner als die dynamische Zeit-Hubkraft, die der Motor kurzzeitig aufbringen kann. Diese ist aufgrund der begrenzten Wärmeabfuhr wiederum grösser als die dynamische Dauer-Hubkraft, die der Motor über einen längeren Zeitraum leisten kann
  • Wie aus der schematischen Darstellung der Fig. 1 ersichtlich, ist das Gegengewicht 4 über das Tragmittel 2, das im Ausführungsbeispiel mit dem Treibmittel identisch ist, so mit der Kabine 1 gekoppelt, dass es sich hebt, wenn sich die Kabine 1 absenkt, und sich absenkt, wenn die Kabine 1 sich hebt. Durch diese Ausbalancierung reduziert sich in bekannter Weise die Zugkraft, die das Antriebsmittel 3 auf das Tragmittel 2 aufbringen, bzw. übertragen muss.
  • Im Ausführungsbeispiel wird das in Fig. 1 skizzierte Aufzugsystem wie folgt ausgelegt: zunächst werden das Leergewicht MK der Kabine 1 und die maximal zulässige Nutzlast MLmax des Aufzugsystems bestimmt. Im Ausführungsbeispiel wiege die leere Kabine 1 1600kg, die maximal zulässige Nutzlast sei mit 2000 kg veranschlagt.
  • Aufgrund der losen Rollen 20, 20.1 werden diese Gewichte in den nachfolgenden Rechnungen halbiert, da das Antriebsmittel aufgrund des Flaschenzugs nur die halbe Zugkraft aufbringen muss (MK = 800kg; MLmax = 1000kg).
  • Als mögliche Antriebsmittel 3 stehen folgende vier Typen einer Antriebsbaureihe zur Verfügung:
    Typ maximale Haltekraft MFmaxA maximale Dauer-Hubkraft MFmaxUD maximale Zeit-Hubkraft MFmaxUZ
    Typ I 1250kg 1250kg 1500kg
    Typ II 1250kg 1000kg 1200kg
    Typ III 500kg 750kg 800kg
    Typ IV 500kg 450kg 600kg
  • Wie aus der zweiten Spate erkennbar, weisen Typen I und II bzw. III und IV jeweils dieselbe mechanische Bremse, jedoch unterschiedliche Antriebsmotoren auf. Wie aus der vierten Spalte erkennbar, übersteigen die Hubkräfte, die ein Antriebsmittel 3 kurzzeitig aufbringen kann, diejenigen, die es im Dauerbetrieb zur Verfügung stellt.
  • Zunächst werden, in diesem Beispiel, alle obigen Werte um einen Faktor 1.3 reduziert, um einen Sicherheitsfaktor gleich 1.3 (wie vorgängig erläutert) bei der Auslegung zu berücksichtigen. Dieser Faktor berücksichtigt beispielsweise Reibungseinflüsse, Trägheitskräfte, Sonderanforderungen etc. Anschliessend wird für jedes Antriebsmittel 3 die kleinste maximale Zugkraft aus der Halte-, der Dauer- und der Zeit-Hubkraft ermittelt (in der obigen Tabelle unterstrichen). Diese wird mit der halben Nutzlast MLmax/2 = 500kg nach Gleichung (3) verglichen, da das Antriebsmittel 3 diese halben Nutzlast selbst bei einer 50%-Ausbalancierung aufbringen müsste. MFmax > 0.5 × MLmax > 500 kg
    Figure imgb0004
  • Während Typ III mit MFmaxA/1.3 (=Sicherheitsfaktor) = 384kg noch nicht ausreicht, ist das Antriebsmittel Typ II mit MFmaxUD/1.3 = 769kg dasjenige mit der kleinsten ausreichenden Zugkraft, welche die Bedingung gemäss Gleichung (3) erfüllt, und wird ausgewählt.
  • Da dieses ausgewählte Antriebsmittel 3 jedoch selbst im Dauerbetrieb eine Last von 769kg heben kann, während bei einer Ausbalancierung von 50% nur 500kg erforderlich wären, kann das Gewicht MG des Gegengewichts 4 entsprechend reduziert werden, nach Gleichung (1) - unter Berücksichtigung des oben erläuterten Sicherheitsfaktors 1.3 - auf, wobei aufgrund der Gegengewichtsseitigen losen Rolle 20.1 das Gewicht des Gegengewichts wiederum verdoppelt wird. MG / 2 = MK + MLmax - MFmax / 1.3 = 800 kg + 1000 kg - 769 kg = 1031 kg
    Figure imgb0005
    MG = 2 × 1031 kg = 2062 kg .
    Figure imgb0006
  • Sinnvollerweise wird das Gegengewicht 4 bevorzugt, entsprechend einer Gewichtsstufung etwas grösser gewählt, im vorliegenden Fall beispielsweise zu 2075kg.
  • Damit wird gegenüber einer herkömmlichen Ausbalancierung von 50%, bei der das Gewicht des Gegengewichts 2x(MK + MLmax/2) = 2600kg betragen würde, das Gegengewicht 4 minimiert, wobei im Unterschied zu einer 30%-Ausbalancierung, wie sie aus dem Ausführungsbeispiel der US 5,984,052 bekannt ist, bei allen Nutzlasten, auch bei maximaler Nutzlast mit demselben Nominalgeschwindigkeitsprofil gefahren werden kann. Mithin wird die Zugkraft des Antriebsmittels 3 optimal ausgenutzt und gleichzeitig das Gegengewicht 4 minimiert, bzw. optimiert.
  • Bei dem in Fig.2 dargestellten Beispiel ist lediglich die Kabine 1 ist über eine lose Rolle 20 befestigt. Das Tragmittel 2 ist an einem Ende im Schachtbereich festgelegt, wird anschliessend über die lose Rolle 20 umgelenkt, umschlingt in der Folge eine Treibscheibe 30 und ist an seinem anderen Ende fest mit dem Gegengewicht 4 verbunden. Bei diesem Beispiel wird das kabineseitige Leergewicht MK wie auch die zulässige Nutzlast MLmax wegen der kabinenseitigen losen Rolle 20 halbiert. Die Masse oder das Gewicht des Gegengewichts 4 muss jedoch nicht wieder verdoppelt werden, da keine gegengewichtsseitige lose Rolle verwendet wird. Die Berechnung des Gewichts des Gegengewichtes 4 erfolgt somit wie oben erläutert wobei lediglich, aufgrund der fehlenden Rolle 20.1 das Gewicht des Gegengewichtes 4 nicht verdoppelt werden muss. MG = MK + MLmax - MFmax / 1.3 = 800 kg + 1000 kg - 769 kg = 1031 kg
    Figure imgb0007
  • Aufgrund der Gewichtsabstufung würde das Gegengewicht 4 bevorzugt etwas grösser gewählt, im vorliegenden Fall beispielsweise zu 1050kg.
    Dieses Beispiel dient der Veranschaulichung des Einflusses der losen Rolle 20, 20.1, wobei anzumerken ist dass sich hierbei natürlich die Fahrwege von Gegengewicht 4 und Kabine 1 unterschiedlich ergeben, was bei der Gestaltung des Schachtes berücksichtigt werden muss.
  • Unterschiedliche Vorgehensweisen bei der Anwendung der Formeln sind möglich, so kann eine Anzahl loser Rollen 20. 20.1 bei den Gewichten von Kabine 1 und/oder Gegengewicht 4 berücksichtigt sein oder deren Einfluss kann bei der Haltekrafttabelle berücksichtigt sein. Ebenso können Sicherheitsfaktoren direkt bei der Festlegung der Haltekräfte berücksichtigt sein oder sie können bei der Festlegung des tatsächlichen Gewichts des Gegengewichts 4 berücksichtigt werden.

Claims (9)

  1. Verfahren zum Optimieren des Gewichts des Gegengewichts (4) eines Aufzugsystems, das Aufzugssystem beinhaltet:
    eine Kabine (1) mit einem Leergewicht (MK), die eine zulässige Nutzlast (MLmax) bewegen kann;
    ein Gegengewicht (4) mit einem Gewicht (MG), das über ein Tragmittel (2) so mit der Kabine (1) gekoppelt ist, dass es sich hebt, wenn sich die Kabine (1) absenkt, und sich absenkt, wenn die Kabine (1) sich hebt;
    ein Antriebsmittel (3), welches eine maximale Zugkraft (MFmax) auf das Tragmittel (2) aufbringen kann;
    dadurch gekennzeichnet, dass
    o in einem ersten Schritt das Antriebsmittel (3) aus einer Baureihe (I-IV) mit abgestufter, vorgegebener maximaler Zugkraft (MFmax) ausgewählt wird, wobei die maximale Zugkraft (MFmax) zumindest grösser als die halbe zulässige Nutzlast (MLmax) ist: MFmax > 0.5 x MLmax ;
    Figure imgb0008
    ○ in einem weiteren Schritt das Gewicht (MG) des Gegengewichts (4) so optimiert wird, dass das Gewicht (MG) des Gegengewichts (4) im wesentlichen gleich dem Leergewicht (MK) und der Differenz zwischen der zulässigen Nutzlast (MLmax) der Kabine (1) und der maximalen Zugkraft (MFmax) des ausgewählten Antriebsmittels (3) ist: MG MK + MLmax - MFmax .
    Figure imgb0009
  2. Verfahren zum Optimieren des Gewichts des Gegengewichts (4) eines Aufzugsystems nach Anspruch 1, wobei als maximale Zugkraft (MFmax) des Antriebsmittels (3) der kleinere Wert
    - einer statischen Haltekraft (MFmaxA), mit der das Antriebsmittel (3) die Kabine (1) in einer Höhe hält,
    - einer dynamischen Dauer-Hubkraft (MFmaxUD), mit der das Antriebsmittel (3) die Kabine (1) während eine längeren Zeitdauer heben kann, und/oder
    - einer dynamischen Zeit-Hubkraft (MFmaxUZ), mit der das Antriebsmittel (3) die Kabine (1) kurzzeitig heben kann,
    definiert wird.
  3. Verfahren zum Optimieren des Gewichts des Gegengewichts (4) eines Aufzugsystems nach Anspruch 1 oder 2, wobei das Gewicht des Gegengewichts (4) und/oder das Leergewicht der Kabine (1) und die zulässige Nutzlast der Kabine (1) entsprechend der Anzahl der losen Rollen (20, 20.1) um die das Tragmittel (2) umgelenkt wird verkleinert wird, oder die maximale Zugkraft des Antriebsmittels (3) entsprechend der Anzahl der losen Rollen (20, 20.1) um die das Tragmittel (2) umgelenkt wird, vergrössert wird.
  4. Verfahren zum Optimieren des Gewichts des Gegengewichts (4) eines Aufzugsystems nach einem der Ansprüche 1 bis 3, wobei das Leergewicht der Kabine (1) und die zulässige Nutzlast der Kabine (1) und/oder das Gewicht des Gegengewichts (4) um einen Sicherheitsfaktor zur Berücksichtigung der im Betrieb auftretenden Reib- und Trägheitskräfte vergrössert wird, oder die maximale Zugkraft des Antriebsmittels (3) um einen Sicherheitsfaktor zur Berücksichtigung der im Betrieb auftretenden Reib- und Trägheitskräfte verkleinert wird.
  5. Verfahren zum Optimieren des Gewichts des Gegengewichts (4) eines Aufzugsystems nach Anspruch 4, wobei der Sicherheitsfaktor 1.1 bis 2.0, vorzugsweise 1.3 beträgt.
  6. Verfahren zum Optimieren des Gewichts des Gegengewichts (4) eines Aufzugsystems nach einem der Ansprüche 1 bis 5, wobei das Tragmittel (2) ein oder mehrere Seile und/oder ein oder mehrere Riemen umfasst, und wobei ein oder mehrere Seile und/oder Riemen mit einem Elastomer, insbesondere Polyurethan, beschichtet sind.
  7. Verfahren zum Optimieren des Gewichts des Gegengewichts (4) eines Aufzugsystems nach einem der Ansprüche 1 bis 6, wobei als Antriebsmittel (3) ein Motor, insbesondere ein frequenzgeregelter Elektromotor, und wenigstens eine Treibscheibe (30) zur Umsetzung eines Abtriebsmomentes des Motors in eine Zugkraft auf das Tragmittel (2) verwendet werden.
  8. Verfahren zum Optimieren des Gewichts des Gegengewichts (4) eines Aufzugsystems nach einem der Ansprüche 1 bis 7, wobei im Antriebsmittel (3) eine in den Motor integrierte oder von diesem getrennte Bremse angeordnet wird, die ein statisches Haltemoment auf die wenigstens eine Treibscheibe aufbringen kann.
  9. Verfahren zum Optimieren des Gewichts des Gegengewichts (4) eines Aufzugsystems nach Anspruch 7 oder 8, wobei der Motor und/oder die Bremse aus einer Baureihe mit abgestuften, vorgegebenen Halte- bzw. Hubmomenten ausgewählt werden.
EP20070112719 2006-07-21 2007-07-18 Verfahren zum Optimieren des Gewichts eines Gegengewichts eines Aufzugsystems und Aufzugsystem mit einem derartigen Gegengewicht Not-in-force EP1880970B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20070112719 EP1880970B1 (de) 2006-07-21 2007-07-18 Verfahren zum Optimieren des Gewichts eines Gegengewichts eines Aufzugsystems und Aufzugsystem mit einem derartigen Gegengewicht

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06117643 2006-07-21
EP20070112719 EP1880970B1 (de) 2006-07-21 2007-07-18 Verfahren zum Optimieren des Gewichts eines Gegengewichts eines Aufzugsystems und Aufzugsystem mit einem derartigen Gegengewicht

Publications (3)

Publication Number Publication Date
EP1880970A2 EP1880970A2 (de) 2008-01-23
EP1880970A3 EP1880970A3 (de) 2008-03-26
EP1880970B1 true EP1880970B1 (de) 2013-04-17

Family

ID=38872019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070112719 Not-in-force EP1880970B1 (de) 2006-07-21 2007-07-18 Verfahren zum Optimieren des Gewichts eines Gegengewichts eines Aufzugsystems und Aufzugsystem mit einem derartigen Gegengewicht

Country Status (1)

Country Link
EP (1) EP1880970B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022105674A1 (de) 2022-03-10 2023-09-14 Tk Elevator Innovation And Operations Gmbh Aufzugsanlage zum Transport von Personen und/oder Transportgut

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101108712B (zh) * 2006-07-21 2012-05-23 因温特奥股份公司 优化电梯系统的对重重量的方法和具有此种对重的电梯系统
RU2549722C1 (ru) * 2013-12-05 2015-04-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" Шахтный скиповой грузовой подъемник

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984052A (en) 1997-09-17 1999-11-16 Otis Elevator Company Elevator with reduced counterweight
ATE402902T1 (de) * 2004-05-25 2008-08-15 Inventio Ag Aufzug mit einer aufzugskabine und einem gegengewicht

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022105674A1 (de) 2022-03-10 2023-09-14 Tk Elevator Innovation And Operations Gmbh Aufzugsanlage zum Transport von Personen und/oder Transportgut

Also Published As

Publication number Publication date
EP1880970A3 (de) 2008-03-26
EP1880970A2 (de) 2008-01-23

Similar Documents

Publication Publication Date Title
EP1400479B1 (de) Antriebsmaschine für eine Aufzugsanlage und Verfahren zur Montage einer Antriebsmaschine
EP0917518B1 (de) Treibscheibenaufzug
EP2229332B1 (de) Betriebsverfahren für einen aufzug mit zwei aufzugskabinen und einem gegengewicht
EP1347931A1 (de) Getriebeloser seilaufzug mit doppelt umschlungenen treibscheibenantrieb
EP3478621B1 (de) Verfahren zum errichten einer aufzugsanlage mit einer anpassbaren nutzbaren hubhöhe
DE10024973B4 (de) Liftsystem für den vertikalen Transport von Nutzlasten in einem Luftfahrzeug
EP1880970B1 (de) Verfahren zum Optimieren des Gewichts eines Gegengewichts eines Aufzugsystems und Aufzugsystem mit einem derartigen Gegengewicht
WO2002068307A1 (de) Anordnung für gewichtsausgleichelemente
DE60315027T2 (de) Aufzug
DE102013215901A1 (de) Servicelift
DE102006037253A1 (de) Aufzugsanlage
DE112019007665T5 (de) Transporteinrichtung
DE60315873T2 (de) Antriebsscheibenaufzug ohne gegengewicht
WO2018091470A1 (de) Seiltrieb mit ummanteltem zugorgan
EP1656318B1 (de) Verfahren zur Montage eines Aufzugs
DE10200874A1 (de) Aufzug zur Beförderung von Personen und Lasten
DE10305275B4 (de) Aufzuganlage mit Ausgleich der Tragseilmassen
EP2116503A2 (de) Hubvorrichtung
EP3705443A1 (de) Aufzuganlage mit ausbalancierten traktionsmitteln
EP1439145A1 (de) Aufzug mit getrennter Fahrkorbaufhängung
DE19860458C1 (de) Seiltrieb für Gebäudeaufzüge
DE102022105674A1 (de) Aufzugsanlage zum Transport von Personen und/oder Transportgut
EP1673301B1 (de) Antriebssystem für enge triebwerksräume
EP4093694A1 (de) Hebevorrichtung zum steuerbaren heben einer nutzlast innerhalb eines aufzugschachts
DE102013008719A1 (de) Aufzugsanlage, insbesondere Seilaufzugsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080925

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 607161

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007011616

Country of ref document: DE

Effective date: 20130613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130718

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130722

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130719

Year of fee payment: 7

Ref country code: FR

Payment date: 20130722

Year of fee payment: 7

BERE Be: lapsed

Owner name: INVENTIO A.G.

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20140120

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007011616

Country of ref document: DE

Effective date: 20140120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130718

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 607161

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007011616

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007011616

Country of ref document: DE

Effective date: 20150203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140718

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130718

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070718