EP1866991A1 - Dispositif et procede pour chauffer un empilement de piles a combustible au moyen d'une alimentation en courant alternatif - Google Patents

Dispositif et procede pour chauffer un empilement de piles a combustible au moyen d'une alimentation en courant alternatif

Info

Publication number
EP1866991A1
EP1866991A1 EP06707503A EP06707503A EP1866991A1 EP 1866991 A1 EP1866991 A1 EP 1866991A1 EP 06707503 A EP06707503 A EP 06707503A EP 06707503 A EP06707503 A EP 06707503A EP 1866991 A1 EP1866991 A1 EP 1866991A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
voltage
cell stack
cell system
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06707503A
Other languages
German (de)
English (en)
Inventor
Bruno Burger
Jan Hesselmann
Mario Zedda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1866991A1 publication Critical patent/EP1866991A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates in the field of fuel cell technology to an apparatus and a method for heating a fuel cell or a fuel cell stack.
  • fuel cell stack (or fuel cell stack) will be understood below to mean an arrangement of at least one fuel cell, i. Single cell, but usually several fuel cells, understood. If the fuel cell stack has more than one fuel cell, then the individual fuel cells of the fuel cell stack can be electrically connected in parallel and / or in series.
  • Fuel cell stacks or the individual fuel cells are devices in which an electric chemical reaction is used to recover electrical energy.
  • Such fuel cell systems have a potentially high energy density and are characterized by the fact that overall the exhaust gases or waste products in energy production compared to other current power generation systems are significantly reduced.
  • Fuel cell systems or the individual fuel cells convert chemical energy into electrical energy by means of electrochemical reactions.
  • the reactions take place separately from each other in separated by an electrolytic ion conductor reaction spaces.
  • PEMFC polymer electrolyte membrane fuel cell
  • hydrogen at the anode is oxidized to protons.
  • the protons move through the electrolytic membrane to the cathode, while the electrons remain due to the electrical insulation properties of the membrane or forced into an external electrical circuit.
  • oxygen is reduced to water with the help of electrons and protons, which is the only emission product of the hydrogen-powered PEMFC.
  • the electrochemical reaction at the anode is the conversion of methanol and water to carbon dioxide, hydrogen ions and electrons.
  • the hydrogen ions flow e.g. by a polymer or Kunststoffmemb- ran as electrolyte to the cathode, while the free
  • Prior art methods for such heating include heating by means of heating foils or heating by means of a heating circuit using water as the heat carrier.
  • Another disadvantage relates to the fact that only indirect heating is possible because the heat is not generated in the fuel cell, but is supplied from the outside.
  • the object of the present invention is to provide, starting from the prior art, a fuel cell system whose fuel cell stack or its fuel cells are heated simply and reliably and at sufficient speed. you can. It is also an object of the present invention to provide a corresponding heating method for a fuel cell stack or for fuel cells.
  • a fuel cell system according to the invention has a fuel cell stack having at least one fuel cell, which is provided with at least one electrical connection per pole, i. positive and negative pole, which can serve in particular for connection of an external electrical load, equipped and is inventively characterized in that the fuel cell stack on the
  • the AC voltage generating device here advantageously has an AC voltage source connected in series and a DC voltage source or, connected in series, an AC voltage source and a capacitor.
  • the alternating current may in this case be e.g. via terminals in the fuel cell stack or the fuel cells are fed.
  • the one used to feed the alternating current by the AC voltage generating device to the fuel cell stack or the fuel cell applied AC voltage can have any curved or rectangular shape.
  • These include, for example, a pure sinusoidal AC voltage or a pure rectangular AC voltage.
  • an intermediate form between the two extremes of the pure rectangular shape and the pure sinusoidal shape can be used.
  • the pure rectangular shape is associated with the advantage that the fuel cell can be brought to the fastest operating or switch-on.
  • the disadvantage of the pure rectangular shape is that very high currents flow at the edges of the square-wave voltage. It is therefore preferable to select a waveform having a shape approximated to the rectangular shape, but which is brushed at the edges.
  • this preferred shape is assigned to the rectangular shape.
  • a trapezoidal shape is possible.
  • resonant methods can also be used to supply the alternating current.
  • a preferred embodiment of the fuel cell system according to the invention comprises an AC voltage generating device, which is constructed from an AC voltage source and a DC voltage source connected electrically in series with the AC voltage source.
  • the alternating and the DC voltage source are integrated in one unit or the AC voltage generating device contains a single device, which has both functions at the same time.
  • AC and DC voltage sources are realized by a power electronic circuit.
  • a power electronic circuit This can e.g. consist of a buck converter, a boost converter, an inverting converter, a single-ended primary inductance converter (SEPIC) converter, a Cuk converter and / or a circuit related thereto.
  • SEPIC single-ended primary inductance converter
  • a bidirectional circuit is used, which can be used both for heating the fuel cell stack, as well as for the conversion of the output voltage (DC / DC converter) ' in the normal fuel cell operation.
  • a further preferred variant provides that the AC voltage generating device has an AC voltage source and a capacitor connected electrically in series with the AC voltage source.
  • an AC voltage with a frequency of 10 Hz to 10 MHz, preferably from 100 Hz to 1 MHz and more preferably and 1 kHz to 100 kHz, can be generated.
  • an AC voltage to the fuel cell stack can be applied.
  • the capacitance of the series capacitor is dependent on the fuel cell size and the frequency of the AC voltage and is preferably in the range between 1 ⁇ F to 10 F.
  • the inventive fuel cell system has the particular advantages that the heat generation takes place directly in the fuel cell and no heating of additional components or masses is required. This means that for other components, such. a heating element can be dispensed with. Depending on the design of the required voltage converter to stabilize the output voltage, i. To supply the connected consumers, this can be designed bidirectionally and take over the heating of the fuel cell.
  • Another advantage of the fuel cell system according to the invention is based on the fact that an air cooling of the fuel cell is possible.
  • the invention likewise provides a heating method for heating a fuel cell stack having at least one fuel cell.
  • an alternating current is fed into at least one of the individual cells of the fuel cell stack, wherein preferably the fuel cell system described above is used.
  • a fuel cell system according to the invention can be designed or used as described in one of the following examples.
  • the examples belonging to the example and described below ren have identical reference numerals for the same or similar components or components.
  • FIG. 1a schematically shows a first fuel cell system according to the invention with an in-line fuel cell system
  • FIG. 1b shows a second example of a fuel cell system according to the invention with an AC voltage source which is connected in series with a capacitor.
  • Fig. 2 shows a simple equivalent circuit of a fuel cell stack with two single cells in series.
  • FIG. 3a shows a first variant according to the invention of a bidirectional, power-electronic circuit.
  • 3b shows a second variant of a bidirectional power electronic circuit according to the invention.
  • reference numeral 1 denotes a fuel cell stack, which in the present case has six individual series-connected fuel cells. However, the fuel cell stack can also have more or fewer fuel cells, wherein the fuel cells can also be connected in parallel.
  • the fuel cell stack is provided with two electrical connections Ia and Ib in the form of connection terminals, via which an electrical load can be connected to the fuel cell stack.
  • the connection Ia Connected via a electrical line 3a to a first terminal of an AC voltage source 2a.
  • the other electrical connection of the AC voltage source 2a is connected via a further electrical line 3b to a first terminal of a DC voltage source 2b.
  • the second terminal of the DC voltage source 2b is connected via an electrical line 3c to the second terminal Ib of the fuel cell stack 1.
  • the AC heating or AC voltage generating device 2 for the fuel cell stack is thus designed so that an AC voltage source 2a and a DC voltage source 2b (which determines the operating point) are connected in series.
  • the voltage generated by the voltage sources is applied via the terminals Ia and Ib to the fuel cell stack 1, whereby an alternating current is fed directly through the terminals of the fuel cell stack 1 in the individual fuel cells of the stack. Due to the ohmic resistance of the stack, a heating thus takes place directly in the interior of the fuel cell stack.
  • the applied voltage is selected, for example, such that an alternating voltage having an amplitude of 0.4 V per fuel cell of the fuel cell stack 1 is superimposed on the no-load voltage or the operating voltage of the fuel cell stack 1. Since in the present case the stack has six individual fuel cells, an alternating voltage with an amplitude of 2.4 V is thus superimposed on the fuel cell stack. However, larger or smaller amplitude values can also be applied. _
  • the waveform of the applied AC voltage can be chosen to be rectangular or sinusoidal or to increase the power.
  • Preferred here is a form of the alternating voltage, which is based on a rectangular shape, but is rounded by a sinusoidal superposition on the flanks.
  • the frequency of the applied AC voltage is freely selectable in wide ranges, particularly advantageous frequencies between 10 Hz and 10 MHz.
  • resonant methods can also be used depending on the capacity of the fuel cell stack.
  • FIG. 1b shows a further embodiment of an alternating current heater according to the invention.
  • the AC voltage generating device 2 has an AC voltage source 2 a and a capacitor 2 c connected in series with it via the electrical line 3 b.
  • the alternating voltage generating device is connected via the two electrical leads 3 a and 3 c to the connection terminals 1 a and 1 c of the fuel cell stack 1.
  • One or more consumers which are connected via corresponding electrical connections to the fuel cell or the fuel cell stack, can be connected to the fuel cell via its own circuit.
  • FIG. 2 shows an equivalent circuit diagram of a fuel cell stack consisting of two fuel cells, which consists in the simplest form of a series circuit of resistors and capacitors.
  • the resistances of the equivalent circuit diagram are determined by the conductivity of the materials used and the capacitor is replaced by the bipolar _ _
  • Fig. 3a shows a bidirectional according to the invention
  • the DC voltage of the capacitor Cl or a DC voltage source or battery connected in parallel to the CI is transformed by clocking the electronic switches S1 and S2 into a controllable DC voltage with a superimposed alternating voltage.
  • the alternating voltage component causes the heating of the stack.
  • the stack is the power source and the circuit operates as a boost converter and converts the DC voltage of the stack to a higher output voltage on capacitor C1.
  • Parallel to Cl the electrical consumers can be connected.
  • Capacitor C2 may optionally be connected in parallel with the fuel cell stack to support the voltage and / or smooth the currents.
  • FIG. 3b shows a second variant of a bidirectional circuit according to the invention.
  • the bidirectional converter operates as a boost converter to heat the fuel cell stack.
  • the DC voltage of the capacitor Cl or a DC voltage source or battery connected in parallel to the CI is transformed by clocking the electronic switches S1 and S2 into a controllable DC voltage with a superimposed alternating voltage.
  • the AC voltage component causes the heating of the stack.
  • the stack is the power source and the circuit converts the DC voltage of the stack to a lower output voltage across capacitor C1.
  • Parallel to C1 the electrical consumers can be connected.
  • the capacitor C2 may advertising optionally connected in parallel to the fuel cell stack •, to support the voltage and / or to smooth the currents.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

La présente invention concerne un système de piles à combustible qui peut être chauffé avec un dispositif de production de courant alternatif. Le système de piles à combustible présente un empilement de piles à combustible (1) qui comprend au moins une pile à combustible et qui est équipé d'au moins un raccord électrique (1a et 1b). Cette invention est caractérisée en ce que l'empilement de piles à combustible (1) est relié par l'intermédiaire dudit raccord (1a et 1b) à un dispositif de production de courant alternatif (2) qui permet d'assurer un chauffage électrique de l'empilement de piles à combustible (1) grâce à une alimentation en courant alternatif de l'empilement par l'intermédiaire des raccords (1a et 1b).
EP06707503A 2005-03-18 2006-03-09 Dispositif et procede pour chauffer un empilement de piles a combustible au moyen d'une alimentation en courant alternatif Withdrawn EP1866991A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005012617A DE102005012617B4 (de) 2005-03-18 2005-03-18 Vorrichtung und Verfahren zur Heizung einer Brennstoffzelle oder eines Brennstoffzellenstacks
PCT/EP2006/002194 WO2006097242A1 (fr) 2005-03-18 2006-03-09 Dispositif et procede pour chauffer un empilement de piles a combustible au moyen d'une alimentation en courant alternatif

Publications (1)

Publication Number Publication Date
EP1866991A1 true EP1866991A1 (fr) 2007-12-19

Family

ID=36293301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06707503A Withdrawn EP1866991A1 (fr) 2005-03-18 2006-03-09 Dispositif et procede pour chauffer un empilement de piles a combustible au moyen d'une alimentation en courant alternatif

Country Status (5)

Country Link
US (1) US20080193815A1 (fr)
EP (1) EP1866991A1 (fr)
JP (1) JP2008533675A (fr)
DE (1) DE102005012617B4 (fr)
WO (1) WO2006097242A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008025967A1 (de) 2008-05-30 2009-12-03 Elcomax Membranes Gmbh Brennstoffzellensystem
DE102008056604B4 (de) * 2008-11-10 2011-02-03 Continental Automotive Gmbh Versorgungsnetz für schaltbare Verbraucher, insbesondere Hochleistungsverbraucher in Fahrzeugen
DE102009015619A1 (de) * 2008-11-13 2010-05-27 Tedatex Industrie Gmbh Beratung-Planung-Entwicklung Brennstoffzelle ohne Bipolarplatten
DE102021106835A1 (de) 2021-03-19 2022-09-22 Audi Aktiengesellschaft Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Brennstoffzellen-Fahrzeug

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129785A (ja) * 1982-01-29 1983-08-02 Toshiba Corp 溶融炭酸塩燃料電池積層体起動方式
US5089700A (en) * 1990-01-30 1992-02-18 Amdata, Inc. Apparatus for infrared imaging inspections
DE19710819C1 (de) * 1997-03-15 1998-04-02 Forschungszentrum Juelich Gmbh Brennstoffzelle mit pulsförmig verändertem Anodenpotential
US6340879B1 (en) * 1999-02-03 2002-01-22 Nokia Mobile Phones Ltd. Device for reactivating an electric battery
AT408160B (de) * 1999-03-17 2001-09-25 Vaillant Gmbh Kühleinrichtung eines brennstoffzellenstapels und dessen wechselrichter
DE19945668B4 (de) * 1999-09-23 2004-10-07 Siemens Ag Verfahren zum Starten einer PEM-Brennstoffzellenanlage sowie PEM-Brennstoffzellenanlage zur Durchführung des Verfahrens
DE19954306B4 (de) * 1999-11-11 2004-09-02 Ballard Power Systems Ag Vorrichtung zur elektrischen Energieerzeugnung mit einer Brennstoffzelle in einem Fahrzeug und Verfahren zum Betrieb einer derartigen Vorrichtung
JP2003051332A (ja) * 2001-08-07 2003-02-21 Nissan Motor Co Ltd 燃料電池及び燃料電池発電システム
JP4828056B2 (ja) * 2001-09-10 2011-11-30 三菱重工メカトロシステムズ株式会社 還元装置および脱硝装置
DE10154366A1 (de) * 2001-11-06 2003-05-22 Zsw System zur Erzeugung von einphasigem Wechselstrom
DE60215700T2 (de) * 2001-12-27 2007-02-08 Nissan Motor Co., Ltd., Yokohama Aufwärmung einer brennstoffzellenkraftanlage mit polymerelektrolyten
JP2003285069A (ja) * 2002-03-28 2003-10-07 Hitachi Metals Ltd 流体浄化装置
JP4048900B2 (ja) * 2002-10-03 2008-02-20 株式会社デンソー 燃料電池システム
US7192666B2 (en) * 2003-12-05 2007-03-20 Microsoft Corporation Apparatus and method for heating fuel cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006097242A1 *

Also Published As

Publication number Publication date
WO2006097242A1 (fr) 2006-09-21
DE102005012617B4 (de) 2006-12-14
US20080193815A1 (en) 2008-08-14
JP2008533675A (ja) 2008-08-21
DE102005012617A1 (de) 2006-10-12

Similar Documents

Publication Publication Date Title
EP2956572B1 (fr) Empilement d'électrolyse et électrolyseur
EP3022335B1 (fr) Cellule électrochimique et procédé de modulation d'un empilement de cellules électrochimiques
WO1997048143A1 (fr) Procede permettant de faire fonctionner un systeme de cellule electrochimique a electrolyte membranaire polymere
DE112014005128B4 (de) Lastantriebsbrennstoffzellensystem mit zwei Leistungsversorgungen
WO2017178016A1 (fr) Modèle de pronostic de pile à combustible basé sur un schéma électrique équivalent
DE102005012617B4 (de) Vorrichtung und Verfahren zur Heizung einer Brennstoffzelle oder eines Brennstoffzellenstacks
DE102007026003A1 (de) Brennstoffzellensystem mit verbesserten Kaltstarteigenschaften sowie Verfahren
DE102010042034A1 (de) Betriebsverfahren für ein Brennstoffzellensystem
DE112013001280T5 (de) Leistungsversorgungssystem
DE102013114359A1 (de) Verfahren zum erzeugen eines injizierten stroms eines brennstoffzellenstapels
DE102014118051B4 (de) Verfahren zur Erzeugung von Injektionsstrom für einen Brennstoffzellenstapel sowie Vorrichtung zu dessen Durchführung
DE102019217219A1 (de) Zellanordnung zur Erzeugung und Verdichtung von Wasserstoff
WO2023006724A2 (fr) Cellule électrolytique à dispositif de thermorégulation, empilement d'électrolyseurs comportant un dispositif de thermorégulation, système d'électrolyse comportant l'empilement d'électrolyseurs et procédé de thermorégulation d'un empilement d'électrolyseurs
DE102013207877A1 (de) Vorrichtung und Verfahren zur photovoltaischen Erzeugung von Wasserstoff aus wasserstoffhaltigen Verbindungen
DE102013114360A1 (de) Verfahren zum erzeugen eines injizierten stroms eines brennstoffzellenstapels und vorrichtung für selbiges
WO2014023542A1 (fr) Dispositif de formation et procédé de formation de cellules de batterie d'une batterie
DE602004010006T2 (de) Brennstoffzelle mit hoher aktiver Oberfläche
DE102020105216A1 (de) Trafolose Zellenstapel-Leistungselektronik-Schaltanordnung
EP2671974A1 (fr) Générateur d'ozone électrochimique et générateur d'hydrogène
DE102021214574A1 (de) Verfahren zum Laden einer Batterie, Batterie und Verwendung einer solchen
Kulsangcharoen et al. Efficiency evaluation of a novel supercapattery stack with a power electronic interface for energy storage systems
DE102020213248A1 (de) Energieversorgungseinrichtung
WO2023148132A1 (fr) Procédé de détermination de l'état d'un dispositif d'alimentation en énergie
DE102020202435A1 (de) Vorrichtung zur elektrischen Belastung eines Brennstoffzellen-Stacks
WO2022128252A1 (fr) Système de gestion d'énergie pour un véhicule à moteur, véhicule à moteur et procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZEDDA, MARIO

Inventor name: HESSELMANN, JAN

Inventor name: BURGER, BRUNO

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090424

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141001