EP1851498B1 - Tubes rainures a utilisation reversible pour echangeurs thermiques - Google Patents
Tubes rainures a utilisation reversible pour echangeurs thermiques Download PDFInfo
- Publication number
- EP1851498B1 EP1851498B1 EP03743918.9A EP03743918A EP1851498B1 EP 1851498 B1 EP1851498 B1 EP 1851498B1 EP 03743918 A EP03743918 A EP 03743918A EP 1851498 B1 EP1851498 B1 EP 1851498B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tubes
- use according
- ribs
- ranging
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002441 reversible effect Effects 0.000 title claims description 7
- 230000005494 condensation Effects 0.000 claims description 30
- 238000009833 condensation Methods 0.000 claims description 30
- 238000001704 evaporation Methods 0.000 claims description 28
- 230000008020 evaporation Effects 0.000 claims description 28
- 239000012530 fluid Substances 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 241000826860 Trapezium Species 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 238000005057 refrigeration Methods 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000003507 refrigerant Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 101100334009 Caenorhabditis elegans rib-2 gene Proteins 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/34—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
- F28F1/36—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
Definitions
- the invention relates to the field of tubes for heat exchangers, and more particularly the field of heat exchangers operating in evaporation / condensation and in reversible mode.
- the invention relates to the use of heat exchangers defined in claim 1.
- Japanese demand no. 57-58088 discloses V-grooved tubes, with H between 0.02 and 0.2 mm, and with an angle ⁇ between 4 and 15 °. Neighboring tubes are described in Japanese Application No. 57-58094 .
- Japanese demand no. 52-38663 discloses tubes with V or U grooves, with H between 0.02 and 0.2 mm, a pitch P between 0.1 and 0.5 mm and an angle ⁇ between 4 and 15 °.
- the patent U.S. 4,044,797 describes grooved tubes in V or U adjacent to the preceding tubes.
- Japanese utility model no. 55-180186 describes tubes with trapezoidal grooves and triangular ribs, with a height H of 0.15 to 0.25 mm, a pitch P of 0.56 mm, an apex angle ⁇ (angle called ⁇ in this document) typically equal to 73 °, an angle ⁇ of 30 °, and an average thickness of 0.44 mm.
- Licences U.S. Patent No. 4,545,428 and no 4480684 describe tubes with V-grooves and triangular ribs, with the height H between 0.1 and 0.6 mm, a pitch P between 0.2 and 0.6 mm, an apex angle ⁇ of between 50 and 100 °, a helix angle ⁇ between 16 and 35 °.
- Japanese Patent No. 62-25959 describes tubes with trapezoidal grooves and ribs, with a groove depth H of between 0.2 and 0.5 mm, a pitch P of between 0.3 and 1.5 mm, the average width of the grooves being at least equal to the average width of the ribs.
- the pitch P is 0.70 mm and the helix angle ⁇ is 10 °.
- the European patent EP-B1-701 680 in the name of the applicant, describes grooved tubes, with grooves typically flat bottom and with ribs of different height H, helix angle ⁇ between 5 and 50 °, apex angle ⁇ between 30 and 60 °, to obtain better performances after the crimping of the tubes and assembly in the exchangers.
- the object of the present invention relates to the use of tubes for reversible heat exchangers, that is to say a use where tubes or exchangers are used with refrigerants with change of applications.
- phase sometimes in evaporation, sometimes in condensation, that is to say either to cool, for example as air conditioners, or to heat, for example as heating means, typically air or a secondary fluid.
- the present invention relates to the use of tubes which not only have an excellent compromise between thermal performance in evaporative and refrigerant condensation mode, but which, moreover, intrinsically have high performance as well. in evaporation only in condensation.
- the applicant has therefore sought economic tubes and exchangers, with a relatively low weight per meter, and high heat exchange performance, both in evaporation and in condensation.
- the characteristic defined under a) defines the outer diameter range of tubes in the range of application targeted by the tubes according to the invention.
- the characteristic under d), relative to the apex angle ⁇ , provides that this angle must be chosen in a relatively narrow range (20 ° - 28 °) and with relatively low ⁇ -apex angle values.
- a low ⁇ -angle value is preferable for improving the heat transfer performance to decrease the pressure drop and to decrease the weight of the tube / m. It is with trapezoidal ribs that the angle ⁇ may be the weakest.
- the lower limit is essentially related to the manufacture of grooved tubes according to the invention to maintain a high rate of production.
- the thickness Tf of the tube at the bottom of the groove may vary according to the diameter De, so as to have both sufficient mechanical properties, including resistance to internal pressure, a maximum saving in material, and therefore optimized material cost, and a weight per meter as low as possible.
- This thickness Tf is 0.28 mm for a 9.55 mm diameter tube De, and 0.35 mm for a tube 12.7 mm in diameter De.
- the different curves of the figure 4 give, in condensation at 30 ° C with fluid R22, the exchange coefficient Hi (in W / m 2 .K) in ordinate as a function of the fluid flow G, in abscissa (in Kg / m 2 .s).
- the different curves of the figure 5 give, in evaporation at 0 ° C of the fluid R22, the exchange coefficient Hi (in W / m 2 .K) in ordinate as a function of the fluid flow G, in abscissa (in Kg / m 2 .s).
- the Figures 6 and 7 indicate, on the ordinate, the exchange refrigeration power measured in watts of a battery of tubes and fins as a function, on the abscissa of the frontal velocity of the air which circulates between the fins expressed in m / s.
- the figure 6 is relative to the condensation measurements on the same battery as before, with an air inlet temperature of 23.5 ° C and a condensing temperature of 36 ° C of the refrigerant R22.
- the figure 7 is relative to the evaporation measurements on the same battery, with an inlet temperature of 26.5 ° C, and an evaporation temperature of 6 ° C of the refrigerant R22.
- the figure 8 is a schematic perspective view of the battery (4) of tubes (1) with fins (5) used for testing.
- the figure 9 graphically represents on the ordinate the cooling capacity gain in evaporation of the batteries, according to the figure 7 , with a reference air speed of 1.25 m / s, as a function of the Cavallini factor on the abscissa for the various tubes tested: smooth tube S, tube E according to the invention, and tubes A and B according to FIG. state of the art.
- the figure 10 is a graph indicating, on the ordinate, the heat exchange coefficient Hi (W / m 2 .K) on evaporation tubes with the refrigerant R407C, as a function of the weight percentage of vapor in the refrigerant, on the abscissa, the temperature evaporation rate of 5 ° C.
- the measurements were made with a heat flux of 12 kW / m 2 and a mass flow rate of 100 or 200 kg / m 2 .s of refrigerant R407C, as shown in the figure, on tubes of diameter D equal to 9 52mm.
- the figure 11 is a view of an inner surface portion of a grooved tube according to the invention provided with an axial counter-groove (30), with, below, its schematic representation.
- said succession may be an alternation of ribs of height H1 and ribs of height H2 separated by a generally flat groove bottom.
- the grooved tubes according to the invention do not necessarily include such an alternation of differentially height ribs as on the Figures 2a to 2c , the ribs may have substantially the same height.
- a range according to the invention of the apex angle ⁇ ranges from 20 ° to 28 °, an even more restricted range from 22 ° to 25 ° ensuring the best compromise. between the technical performance requirements and those related to the expansion of the tubes for attachment to the fins of the batteries.
- a preferred range of the helix angle ⁇ can range from 22 ° to 30 °, a still more restricted range from 25 ° to 28 ° ensuring the best compromise between technical performance requirements and those related to pressure drop.
- This angle can vary with the inner diameter Di: it has been found advantageous to have a ⁇ / Di ratio greater than 2.40 ° / mm, and preferably greater than 3 ° / mm.
- said ribs have a "trapezium" type profile with a base of width L N and a vertex, connected by lateral edges forming between them said apex angle ⁇ , as illustrated in FIG. Figure 2c said apex comprising a substantially flat central portion, typically parallel to said base, but possibly sloping with respect to said base.
- said vertex of said rib forming a short side of the trapezium may have rounded edges or not, that is to say, very small radius of curvature, these edges forming a connection of said vertex audits side edges.
- Said rounded edges may have a radius of curvature typically ranging from 40 .mu.m to 100 .mu.m, and preferably ranging from 50 .mu.m to 80 .mu.m, as illustrated in FIGS. Figures 2a to 2c .
- These ranges of radius of curvature correspond to a compromise between the thermal performance of the tubes and the feasibility of the tubes, the tools for making the tubes with the smallest radii of curvature having the most tendency to wear out.
- the radius of: curvature can be typically less than 50 microns, and even less than 20 microns.
- said ribs and said flat bottom of said grooves may be connected with a radius of curvature less than 50 microns, and preferably less than 20 microns. In this case, it seems that there is better separation of the liquid refrigerant film from the inner wall of the tube, which promotes heat exchange.
- the tubes used according to the invention have even in the absence of axial grooving, a Cavallini factor of at least 3.5. They may advantageously have a Cavallini factor of at least 4.0.
- the tubes according to the invention may further comprise an axial groove (30) creating in said ribs notches with a typically triangular profile with a rounded top, said top having an angle ⁇ ranging from 25 to 65 °, said lower part or top is at a distance h from the bottom of said grooves from 0 to 0.2 mm.
- Such axial grooving can be obtained once formed said ribs by passage of a grooving wheel in the axial direction.
- the grooved tubes according to the invention may be made of copper and alloys of copper, aluminum and aluminum alloys. These tubes can be obtained typically by grooving tubes, or possibly by flat grooving of a metal strip and forming a welded tube.
- the tests were carried out on copper tubes of 8.0 mm or 9.52 mm of external diameter.
- the "E” tube of the invention was manufactured according to the Figures 2a to 2c with a diameter of 8.0 mm, and according to the figure 3 with a diameter of 9.52 mm, as well as comparative "S” or smooth, "C", “D”, tubes which have a high ⁇ helix angle (at least equal to 20 °), intended for the condensation according to the state of the art, and comparative tubes "A” and “B”, which have a high apex angle ⁇ (at least equal to 40 °) and a low helix angle ⁇ (at most equal at 18 °), intended for evaporation according to the state of the art.
- the tubes E, A, B, C were made by grooving a smooth copper tube - S tube, while the D tube was manufactured by flat grooving a metal band and then forming a welded tube.
- Tube type H in mm angle ⁇ angle ⁇ NOT Rib type Tf mm L R / L N E Fig.3 0.20 25 25 66 V 0.30 2.3 B from 0.20 to 0.17 40 16 74 Alternating triangles 0.30 1.88 AT 0.20 50 18 60 triangular 0.30 2.00 VS 0.20 40 30 60 triangular 0.30 1.94 D 0.20 15 20 72 Double crossed ribs * 0.30 3.66 s ------- ------- ------- -- -- -- -- -- Smooth tube 0.30 ------- * 72 main ribs of helix angle ⁇ equal to + 20 ° interspersed with secondary grooves inclined at an angle of -20 ° relative to the axis of the tube, the depth of the grooves being substantially equal to the height of the ribs main.
- Winged batteries were manufactured according to the figure 8 from these tubes, placing the tubes in the flanges of the fins and then pressing the tube against the flange of the flanges by expansion of the tube with a conical mandrel.
- These batteries form a block of dimensions: 400 mm x 400 mm x 65 mm, with a density of 12 fins per 25.4 mm, the battery comprising 3 rows of 16 tubes, and the refrigerant being the R22.
- the tubes and exchangers or batteries of tubes according to the invention have properties superior to the analogous products of the state of the art, both in evaporation and in condensation.
- the tubes according to the invention do not only constitute a good compromise of performance in evaporation and condensation, but also have, in absolute terms, excellent performance compared to the tubes of the state. of the technique used in evaporation and those used in condensation, which is of great interest in practice.
- the values obtained with the tubes according to the invention correspond to a gain ranging from 3.7 to 6.7% compared to the tubes according to the state of the art, taken from same diameter and same thickness Tf, which is considered very important.
- the tubes according to the invention of the type E can be advantageously manufactured by high-speed grooving of smooth non-grooved copper tube, typically at a grooving speed close to that used for the type B tubes, namely at least 80 m / min.
- the invention has great advantages. Indeed, on the one hand, the tubes and batteries used according to the invention have high intrinsic performances. On the other hand, these performances are high in both evaporation and condensation, which allows the use of the same tube for these two applications. In addition, the tubes have a relatively low weight per meter, which is very advantageous both from a practical point of view and from the economic point of view with a relatively low material cost.
- tubes used according to the invention do not require specific manufacturing means. They can be manufactured with standard equipment and especially with the usual production rates.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Treatment Of Fiber Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0203067A FR2837270B1 (fr) | 2002-03-12 | 2002-03-12 | Tubes rainures a utilisation reversible pour echangeurs thermiques |
PCT/FR2003/000760 WO2003076861A1 (fr) | 2002-03-12 | 2003-03-10 | Tubes rainures a utilisation reversible pour echangeurs thermiques |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1851498A1 EP1851498A1 (fr) | 2007-11-07 |
EP1851498B1 true EP1851498B1 (fr) | 2013-05-15 |
Family
ID=27772057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03743918.9A Expired - Lifetime EP1851498B1 (fr) | 2002-03-12 | 2003-03-10 | Tubes rainures a utilisation reversible pour echangeurs thermiques |
Country Status (21)
Country | Link |
---|---|
US (1) | US7048043B2 (pl) |
EP (1) | EP1851498B1 (pl) |
JP (1) | JP2005526945A (pl) |
KR (1) | KR100980755B1 (pl) |
CN (1) | CN1636128A (pl) |
AU (1) | AU2003242811B2 (pl) |
BR (1) | BR0308372A (pl) |
CA (1) | CA2474558C (pl) |
ES (1) | ES2449091T3 (pl) |
FR (1) | FR2837270B1 (pl) |
HR (1) | HRP20040819B1 (pl) |
IL (2) | IL162942A0 (pl) |
MX (1) | MXPA04007907A (pl) |
MY (1) | MY135526A (pl) |
NO (1) | NO338468B1 (pl) |
PL (1) | PL201843B1 (pl) |
PT (1) | PT1851498E (pl) |
RU (1) | RU2289076C2 (pl) |
WO (1) | WO2003076861A1 (pl) |
YU (2) | YU76804A (pl) |
ZA (1) | ZA200405864B (pl) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2837270B1 (fr) | 2002-03-12 | 2004-10-01 | Trefimetaux | Tubes rainures a utilisation reversible pour echangeurs thermiques |
FR2855601B1 (fr) * | 2003-05-26 | 2005-06-24 | Trefimetaux | Tubes rainures pour echangeurs thermiques a fluide monophasique, typiquement aqueux |
JP4651366B2 (ja) * | 2004-12-02 | 2011-03-16 | 住友軽金属工業株式会社 | 高圧冷媒用内面溝付伝熱管 |
KR100643399B1 (ko) * | 2005-09-12 | 2006-11-10 | 박설환 | 방열파이프와 그 제조방법 및 방열파이프를 이용한 방열기 |
JP4665713B2 (ja) * | 2005-10-25 | 2011-04-06 | 日立電線株式会社 | 内面溝付伝熱管 |
MY180662A (en) * | 2006-06-14 | 2020-12-04 | Dura Line India Pvt Ltd | A duct with internal spiral ribs |
US7743821B2 (en) | 2006-07-26 | 2010-06-29 | General Electric Company | Air cooled heat exchanger with enhanced heat transfer coefficient fins |
US20080078535A1 (en) * | 2006-10-03 | 2008-04-03 | General Electric Company | Heat exchanger tube with enhanced heat transfer co-efficient and related method |
KR20090022841A (ko) * | 2007-08-31 | 2009-03-04 | 엘지전자 주식회사 | 냉동 장치의 열교환기 및 그 냉매 튜브와 그 제조 방법 |
JP4738401B2 (ja) * | 2007-11-28 | 2011-08-03 | 三菱電機株式会社 | 空気調和機 |
US20090211732A1 (en) * | 2008-02-21 | 2009-08-27 | Lakhi Nandlal Goenka | Thermal energy exchanger for a heating, ventilating, and air conditioning system |
JP5446163B2 (ja) * | 2008-08-04 | 2014-03-19 | ダイキン工業株式会社 | 熱交換器用溝付き管 |
JP2010038502A (ja) * | 2008-08-08 | 2010-02-18 | Mitsubishi Electric Corp | 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置 |
JP2011144989A (ja) * | 2010-01-13 | 2011-07-28 | Mitsubishi Electric Corp | 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置 |
DE102010007570A1 (de) * | 2010-02-10 | 2011-08-11 | ThyssenKrupp Nirosta GmbH, 47807 | Produkt für strömungstechnische Anwendungen, Verfahren zu seiner Herstellung und Verwendung eines solchen Produkts |
EP2668460A1 (en) * | 2011-01-28 | 2013-12-04 | Carrier Corporation | Tube structures for heat exchanger |
CN102636073B (zh) * | 2012-04-20 | 2013-07-24 | 南京航空航天大学 | 一种可以产生纵向涡的换热元件及其元件对 |
WO2014130281A1 (en) * | 2013-02-21 | 2014-08-28 | Carrier Corporation | Tube structures for heat exchanger |
RU2641765C1 (ru) * | 2013-12-27 | 2018-01-22 | Мицубиси Хитачи Пауэр Системз, Лтд. | Теплообменная труба, котел и паротурбинное устройство |
CN104807358A (zh) * | 2014-01-29 | 2015-07-29 | 卢瓦塔埃斯波公司 | 截面不规则的内槽管 |
WO2017087664A1 (en) * | 2015-11-17 | 2017-05-26 | Kandlikar, Satish, G. | Pool boiling enhancement with feeder channels supplying liquid to nucleating regions |
SE540857C2 (en) * | 2017-02-03 | 2018-12-04 | Valmet Oy | Heat transfer tube and method for manufacturing a heat transfer tube |
CN110849182A (zh) * | 2019-11-13 | 2020-02-28 | 佛山科学技术学院 | 一种新型换热管及管壳式换热器 |
US20220128318A1 (en) * | 2020-10-28 | 2022-04-28 | Carrier Corporation | Heat transfer tube for heat pump application |
CA3139673A1 (en) * | 2020-12-02 | 2022-06-02 | Carrier Corporation | Heat transfer tube for air conditioner application |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5238663A (en) | 1975-09-22 | 1977-03-25 | Hitachi Ltd | Heat transmission tube |
US4044797A (en) | 1974-11-25 | 1977-08-30 | Hitachi, Ltd. | Heat transfer pipe |
JPS55167091U (pl) | 1979-05-16 | 1980-12-01 | ||
JPS55180186U (pl) | 1979-06-09 | 1980-12-24 | ||
JPS5758094A (en) | 1981-08-10 | 1982-04-07 | Hitachi Ltd | Heat transfer pipe |
JPS6027917B2 (ja) | 1981-08-10 | 1985-07-02 | 株式会社日立製作所 | 空調用圧縮式冷凍サイクルの蒸発器における伝熱管 |
JPS60142195A (ja) | 1983-12-28 | 1985-07-27 | Hitachi Cable Ltd | 内面溝付伝熱管 |
JPS6225959A (ja) | 1985-07-26 | 1987-02-03 | House Food Ind Co Ltd | 容器入り澱粉含有高粘度食品の製造法 |
JPH0237292A (ja) * | 1989-06-07 | 1990-02-07 | Sumitomo Light Metal Ind Ltd | 凝縮伝熱管 |
JPH04302999A (ja) * | 1991-03-29 | 1992-10-26 | Sumitomo Light Metal Ind Ltd | 内面溝付伝熱管 |
JPH0579783A (ja) * | 1991-06-11 | 1993-03-30 | Sumitomo Light Metal Ind Ltd | 内面溝付伝熱管 |
JP2730824B2 (ja) * | 1991-07-09 | 1998-03-25 | 三菱伸銅株式会社 | 内面溝付伝熱管およびその製造方法 |
JP3219811B2 (ja) * | 1991-11-15 | 2001-10-15 | 株式会社神戸製鋼所 | 内面溝付伝熱管 |
MX9305803A (es) * | 1992-10-02 | 1994-06-30 | Carrier Corp | Tubo de transferencia de calor con nervaduras internas. |
DE4235247C1 (de) * | 1992-10-20 | 1994-03-10 | Link Wilhelm Kg | Stuhl, insbesondere Bürostuhl |
US5332034A (en) * | 1992-12-16 | 1994-07-26 | Carrier Corporation | Heat exchanger tube |
FR2706197B1 (fr) | 1993-06-07 | 1995-07-28 | Trefimetaux | Tubes rainurés pour échangeurs thermiques d'appareils de conditionnement d'air et de réfrigération, et échangeurs correspondants. |
US6164370A (en) * | 1993-07-16 | 2000-12-26 | Olin Corporation | Enhanced heat exchange tube |
JP2912826B2 (ja) * | 1994-08-04 | 1999-06-28 | 住友軽金属工業株式会社 | 内面溝付伝熱管 |
DE19510124A1 (de) * | 1995-03-21 | 1996-09-26 | Km Europa Metal Ag | Austauscherrohr für einen Wärmeaustauscher |
JPH0921594A (ja) * | 1995-07-04 | 1997-01-21 | Hitachi Ltd | 混合冷媒用伝熱管とその製造方法 |
JPH0924594A (ja) * | 1995-07-12 | 1997-01-28 | Iwatsu Electric Co Ltd | デジタル製版機 |
DE19612470A1 (de) * | 1996-03-28 | 1997-10-02 | Km Europa Metal Ag | Austauscherrohr |
US6176301B1 (en) * | 1998-12-04 | 2001-01-23 | Outokumpu Copper Franklin, Inc. | Heat transfer tube with crack-like cavities to enhance performance thereof |
FR2837270B1 (fr) | 2002-03-12 | 2004-10-01 | Trefimetaux | Tubes rainures a utilisation reversible pour echangeurs thermiques |
-
2002
- 2002-03-12 FR FR0203067A patent/FR2837270B1/fr not_active Expired - Fee Related
- 2002-04-12 US US10/120,782 patent/US7048043B2/en not_active Expired - Fee Related
-
2003
- 2003-03-10 KR KR1020047014125A patent/KR100980755B1/ko not_active IP Right Cessation
- 2003-03-10 EP EP03743918.9A patent/EP1851498B1/fr not_active Expired - Lifetime
- 2003-03-10 IL IL16294203A patent/IL162942A0/xx not_active IP Right Cessation
- 2003-03-10 CA CA2474558A patent/CA2474558C/en not_active Expired - Fee Related
- 2003-03-10 CN CNA038041820A patent/CN1636128A/zh active Pending
- 2003-03-10 YU YU76804A patent/YU76804A/sh unknown
- 2003-03-10 PT PT37439189T patent/PT1851498E/pt unknown
- 2003-03-10 AU AU2003242811A patent/AU2003242811B2/en not_active Ceased
- 2003-03-10 MX MXPA04007907A patent/MXPA04007907A/es active IP Right Grant
- 2003-03-10 PL PL370690A patent/PL201843B1/pl not_active IP Right Cessation
- 2003-03-10 JP JP2003575041A patent/JP2005526945A/ja active Pending
- 2003-03-10 WO PCT/FR2003/000760 patent/WO2003076861A1/fr active Application Filing
- 2003-03-10 RU RU2004130315/06A patent/RU2289076C2/ru not_active IP Right Cessation
- 2003-03-10 BR BR0308372-1A patent/BR0308372A/pt not_active Application Discontinuation
- 2003-03-10 ES ES03743918.9T patent/ES2449091T3/es not_active Expired - Lifetime
- 2003-03-10 MY MYPI20030822A patent/MY135526A/en unknown
- 2003-05-20 YU YU101804A patent/YU101804A/sh unknown
-
2004
- 2004-07-08 IL IL162942A patent/IL162942A/en unknown
- 2004-07-22 ZA ZA200405864A patent/ZA200405864B/en unknown
- 2004-09-10 HR HRP20040819AA patent/HRP20040819B1/hr not_active IP Right Cessation
- 2004-10-11 NO NO20044299A patent/NO338468B1/no not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
RU2004130315A (ru) | 2005-06-10 |
FR2837270A1 (fr) | 2003-09-19 |
CN1636128A (zh) | 2005-07-06 |
ES2449091T3 (es) | 2014-03-18 |
PL370690A1 (pl) | 2005-05-30 |
HRP20040819A2 (en) | 2004-12-31 |
YU101804A (sh) | 2006-01-16 |
EP1851498A1 (fr) | 2007-11-07 |
US20030173071A1 (en) | 2003-09-18 |
RU2289076C2 (ru) | 2006-12-10 |
HRP20040819B1 (hr) | 2017-12-01 |
AU2003242811B2 (en) | 2009-05-28 |
JP2005526945A (ja) | 2005-09-08 |
AU2003242811A1 (en) | 2003-09-22 |
FR2837270B1 (fr) | 2004-10-01 |
YU76804A (sh) | 2006-01-16 |
NO338468B1 (no) | 2016-08-22 |
MY135526A (en) | 2008-05-30 |
IL162942A0 (en) | 2005-11-20 |
ZA200405864B (en) | 2005-06-21 |
WO2003076861A1 (fr) | 2003-09-18 |
US7048043B2 (en) | 2006-05-23 |
IL162942A (en) | 2008-06-05 |
PL201843B1 (pl) | 2009-05-29 |
KR100980755B1 (ko) | 2010-09-07 |
MXPA04007907A (es) | 2004-10-15 |
KR20040101283A (ko) | 2004-12-02 |
BR0308372A (pt) | 2005-01-11 |
PT1851498E (pt) | 2013-07-04 |
CA2474558A1 (en) | 2003-09-18 |
CA2474558C (en) | 2011-03-08 |
NO20044299L (no) | 2004-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1851498B1 (fr) | Tubes rainures a utilisation reversible pour echangeurs thermiques | |
EP0701680B1 (fr) | Tubes rainures pour echangeurs thermiques d'appareils de conditionnement d'air et de refrigeration, et echangeurs correspondants | |
EP1482269B1 (fr) | Tubes rainurés pour échangeurs thermiques à fluide monophasique, typiquement aqueux | |
CA2747353C (fr) | Echangeur de chaleur comprenant des tubes a ailettes rainurees | |
FR2865028A1 (fr) | Echangeur thermique et module d'echange s'y rapportant | |
EP2208955B1 (fr) | Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur. | |
WO2012000779A2 (fr) | Tube d'echangeur de chaleur, echangeur de chaleur comportant de tels tubes et procede d'obtention d'un tel tube | |
WO2009141379A1 (fr) | Echangeur de chaleur a plaques, notamment pour vehicules automobiles | |
EP2691722B1 (fr) | Tube pour echangeur thermique, echangeur thermique et procede d'obtention correspondants | |
FR2690515A1 (fr) | Echangeur de chaleur à tubes de section oblongue, en particulier pour véhicules automobiles. | |
EP1949012B1 (fr) | Tubes rainures pour echangeurs thermiques a resistance a l'expansion amelioree | |
EP2655000A1 (fr) | Procédé de brasage pour échangeur thermique, tube et échangeur thermique correspondants | |
EP0692692A1 (fr) | Tube à section transversale oblongue pour échangeur de chaleur | |
WO2013127770A1 (fr) | Procédé de fabrication d'un tube d'échangeur de chaleur pour véhicule | |
WO2012131046A1 (fr) | Boîte collectrice pour échangeur thermique notamment pour véhicule automobile, et échangeur thermique correspondant | |
EP2923166A1 (fr) | Boite collectrice pour vehicule automobile | |
WO2009040164A1 (fr) | Revetement pour materiau d'echangeur de chaleur | |
WO2018142070A1 (fr) | Evaporateur pour installation de climatisation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20041208 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KME FRANCE SAS |
|
17Q | First examination report despatched |
Effective date: 20081008 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: PP Ref document number: 20080300019 Country of ref document: GR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 612368 Country of ref document: AT Kind code of ref document: T Effective date: 20130615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20130624 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60344054 Country of ref document: DE Effective date: 20130711 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20130401551 Country of ref document: GR Effective date: 20130829 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 612368 Country of ref document: AT Kind code of ref document: T Effective date: 20130515 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2449091 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140318 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140218 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60344054 Country of ref document: DE Effective date: 20140218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140310 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140310 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20030310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160310 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160310 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20170710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: TREFIMETAUX SAS Effective date: 20190402 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: HC Owner name: TREFIMETAUX SAS; FR Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: KME FRANCE SAS Effective date: 20190328 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60344054 Country of ref document: DE Representative=s name: SCHMIDT, MARTIN PETER, DIPL.-CHEM. DR., FR Ref country code: DE Ref legal event code: R081 Ref document number: 60344054 Country of ref document: DE Owner name: TREFIMETAUX SAS, FR Free format text: FORMER OWNER: KME FRANCE SAS, COURBEVOIE, FR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20210323 Year of fee payment: 19 Ref country code: IT Payment date: 20210323 Year of fee payment: 19 Ref country code: PT Payment date: 20210225 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20210303 Year of fee payment: 19 Ref country code: BE Payment date: 20210326 Year of fee payment: 19 Ref country code: GB Payment date: 20210326 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20210310 Year of fee payment: 19 Ref country code: DE Payment date: 20210329 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210415 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220325 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60344054 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220912 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220310 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220310 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220310 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221006 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230321 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220310 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220310 |