EP1851498B1 - Slotted tube with reversible usage for heat exchangers - Google Patents

Slotted tube with reversible usage for heat exchangers Download PDF

Info

Publication number
EP1851498B1
EP1851498B1 EP03743918.9A EP03743918A EP1851498B1 EP 1851498 B1 EP1851498 B1 EP 1851498B1 EP 03743918 A EP03743918 A EP 03743918A EP 1851498 B1 EP1851498 B1 EP 1851498B1
Authority
EP
European Patent Office
Prior art keywords
tubes
use according
ribs
ranging
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03743918.9A
Other languages
German (de)
French (fr)
Other versions
EP1851498A1 (en
Inventor
Pascal Leterrible
Nicolas Avanan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KME FRANCE Sas
Original Assignee
KME France Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KME France Sas filed Critical KME France Sas
Publication of EP1851498A1 publication Critical patent/EP1851498A1/en
Application granted granted Critical
Publication of EP1851498B1 publication Critical patent/EP1851498B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials

Definitions

  • the invention relates to the field of tubes for heat exchangers, and more particularly the field of heat exchangers operating in evaporation / condensation and in reversible mode.
  • the invention relates to the use of heat exchangers defined in claim 1.
  • Japanese demand no. 57-58088 discloses V-grooved tubes, with H between 0.02 and 0.2 mm, and with an angle ⁇ between 4 and 15 °. Neighboring tubes are described in Japanese Application No. 57-58094 .
  • Japanese demand no. 52-38663 discloses tubes with V or U grooves, with H between 0.02 and 0.2 mm, a pitch P between 0.1 and 0.5 mm and an angle ⁇ between 4 and 15 °.
  • the patent U.S. 4,044,797 describes grooved tubes in V or U adjacent to the preceding tubes.
  • Japanese utility model no. 55-180186 describes tubes with trapezoidal grooves and triangular ribs, with a height H of 0.15 to 0.25 mm, a pitch P of 0.56 mm, an apex angle ⁇ (angle called ⁇ in this document) typically equal to 73 °, an angle ⁇ of 30 °, and an average thickness of 0.44 mm.
  • Licences U.S. Patent No. 4,545,428 and no 4480684 describe tubes with V-grooves and triangular ribs, with the height H between 0.1 and 0.6 mm, a pitch P between 0.2 and 0.6 mm, an apex angle ⁇ of between 50 and 100 °, a helix angle ⁇ between 16 and 35 °.
  • Japanese Patent No. 62-25959 describes tubes with trapezoidal grooves and ribs, with a groove depth H of between 0.2 and 0.5 mm, a pitch P of between 0.3 and 1.5 mm, the average width of the grooves being at least equal to the average width of the ribs.
  • the pitch P is 0.70 mm and the helix angle ⁇ is 10 °.
  • the European patent EP-B1-701 680 in the name of the applicant, describes grooved tubes, with grooves typically flat bottom and with ribs of different height H, helix angle ⁇ between 5 and 50 °, apex angle ⁇ between 30 and 60 °, to obtain better performances after the crimping of the tubes and assembly in the exchangers.
  • the object of the present invention relates to the use of tubes for reversible heat exchangers, that is to say a use where tubes or exchangers are used with refrigerants with change of applications.
  • phase sometimes in evaporation, sometimes in condensation, that is to say either to cool, for example as air conditioners, or to heat, for example as heating means, typically air or a secondary fluid.
  • the present invention relates to the use of tubes which not only have an excellent compromise between thermal performance in evaporative and refrigerant condensation mode, but which, moreover, intrinsically have high performance as well. in evaporation only in condensation.
  • the applicant has therefore sought economic tubes and exchangers, with a relatively low weight per meter, and high heat exchange performance, both in evaporation and in condensation.
  • the characteristic defined under a) defines the outer diameter range of tubes in the range of application targeted by the tubes according to the invention.
  • the characteristic under d), relative to the apex angle ⁇ , provides that this angle must be chosen in a relatively narrow range (20 ° - 28 °) and with relatively low ⁇ -apex angle values.
  • a low ⁇ -angle value is preferable for improving the heat transfer performance to decrease the pressure drop and to decrease the weight of the tube / m. It is with trapezoidal ribs that the angle ⁇ may be the weakest.
  • the lower limit is essentially related to the manufacture of grooved tubes according to the invention to maintain a high rate of production.
  • the thickness Tf of the tube at the bottom of the groove may vary according to the diameter De, so as to have both sufficient mechanical properties, including resistance to internal pressure, a maximum saving in material, and therefore optimized material cost, and a weight per meter as low as possible.
  • This thickness Tf is 0.28 mm for a 9.55 mm diameter tube De, and 0.35 mm for a tube 12.7 mm in diameter De.
  • the different curves of the figure 4 give, in condensation at 30 ° C with fluid R22, the exchange coefficient Hi (in W / m 2 .K) in ordinate as a function of the fluid flow G, in abscissa (in Kg / m 2 .s).
  • the different curves of the figure 5 give, in evaporation at 0 ° C of the fluid R22, the exchange coefficient Hi (in W / m 2 .K) in ordinate as a function of the fluid flow G, in abscissa (in Kg / m 2 .s).
  • the Figures 6 and 7 indicate, on the ordinate, the exchange refrigeration power measured in watts of a battery of tubes and fins as a function, on the abscissa of the frontal velocity of the air which circulates between the fins expressed in m / s.
  • the figure 6 is relative to the condensation measurements on the same battery as before, with an air inlet temperature of 23.5 ° C and a condensing temperature of 36 ° C of the refrigerant R22.
  • the figure 7 is relative to the evaporation measurements on the same battery, with an inlet temperature of 26.5 ° C, and an evaporation temperature of 6 ° C of the refrigerant R22.
  • the figure 8 is a schematic perspective view of the battery (4) of tubes (1) with fins (5) used for testing.
  • the figure 9 graphically represents on the ordinate the cooling capacity gain in evaporation of the batteries, according to the figure 7 , with a reference air speed of 1.25 m / s, as a function of the Cavallini factor on the abscissa for the various tubes tested: smooth tube S, tube E according to the invention, and tubes A and B according to FIG. state of the art.
  • the figure 10 is a graph indicating, on the ordinate, the heat exchange coefficient Hi (W / m 2 .K) on evaporation tubes with the refrigerant R407C, as a function of the weight percentage of vapor in the refrigerant, on the abscissa, the temperature evaporation rate of 5 ° C.
  • the measurements were made with a heat flux of 12 kW / m 2 and a mass flow rate of 100 or 200 kg / m 2 .s of refrigerant R407C, as shown in the figure, on tubes of diameter D equal to 9 52mm.
  • the figure 11 is a view of an inner surface portion of a grooved tube according to the invention provided with an axial counter-groove (30), with, below, its schematic representation.
  • said succession may be an alternation of ribs of height H1 and ribs of height H2 separated by a generally flat groove bottom.
  • the grooved tubes according to the invention do not necessarily include such an alternation of differentially height ribs as on the Figures 2a to 2c , the ribs may have substantially the same height.
  • a range according to the invention of the apex angle ⁇ ranges from 20 ° to 28 °, an even more restricted range from 22 ° to 25 ° ensuring the best compromise. between the technical performance requirements and those related to the expansion of the tubes for attachment to the fins of the batteries.
  • a preferred range of the helix angle ⁇ can range from 22 ° to 30 °, a still more restricted range from 25 ° to 28 ° ensuring the best compromise between technical performance requirements and those related to pressure drop.
  • This angle can vary with the inner diameter Di: it has been found advantageous to have a ⁇ / Di ratio greater than 2.40 ° / mm, and preferably greater than 3 ° / mm.
  • said ribs have a "trapezium" type profile with a base of width L N and a vertex, connected by lateral edges forming between them said apex angle ⁇ , as illustrated in FIG. Figure 2c said apex comprising a substantially flat central portion, typically parallel to said base, but possibly sloping with respect to said base.
  • said vertex of said rib forming a short side of the trapezium may have rounded edges or not, that is to say, very small radius of curvature, these edges forming a connection of said vertex audits side edges.
  • Said rounded edges may have a radius of curvature typically ranging from 40 .mu.m to 100 .mu.m, and preferably ranging from 50 .mu.m to 80 .mu.m, as illustrated in FIGS. Figures 2a to 2c .
  • These ranges of radius of curvature correspond to a compromise between the thermal performance of the tubes and the feasibility of the tubes, the tools for making the tubes with the smallest radii of curvature having the most tendency to wear out.
  • the radius of: curvature can be typically less than 50 microns, and even less than 20 microns.
  • said ribs and said flat bottom of said grooves may be connected with a radius of curvature less than 50 microns, and preferably less than 20 microns. In this case, it seems that there is better separation of the liquid refrigerant film from the inner wall of the tube, which promotes heat exchange.
  • the tubes used according to the invention have even in the absence of axial grooving, a Cavallini factor of at least 3.5. They may advantageously have a Cavallini factor of at least 4.0.
  • the tubes according to the invention may further comprise an axial groove (30) creating in said ribs notches with a typically triangular profile with a rounded top, said top having an angle ⁇ ranging from 25 to 65 °, said lower part or top is at a distance h from the bottom of said grooves from 0 to 0.2 mm.
  • Such axial grooving can be obtained once formed said ribs by passage of a grooving wheel in the axial direction.
  • the grooved tubes according to the invention may be made of copper and alloys of copper, aluminum and aluminum alloys. These tubes can be obtained typically by grooving tubes, or possibly by flat grooving of a metal strip and forming a welded tube.
  • the tests were carried out on copper tubes of 8.0 mm or 9.52 mm of external diameter.
  • the "E” tube of the invention was manufactured according to the Figures 2a to 2c with a diameter of 8.0 mm, and according to the figure 3 with a diameter of 9.52 mm, as well as comparative "S” or smooth, "C", “D”, tubes which have a high ⁇ helix angle (at least equal to 20 °), intended for the condensation according to the state of the art, and comparative tubes "A” and “B”, which have a high apex angle ⁇ (at least equal to 40 °) and a low helix angle ⁇ (at most equal at 18 °), intended for evaporation according to the state of the art.
  • the tubes E, A, B, C were made by grooving a smooth copper tube - S tube, while the D tube was manufactured by flat grooving a metal band and then forming a welded tube.
  • Tube type H in mm angle ⁇ angle ⁇ NOT Rib type Tf mm L R / L N E Fig.3 0.20 25 25 66 V 0.30 2.3 B from 0.20 to 0.17 40 16 74 Alternating triangles 0.30 1.88 AT 0.20 50 18 60 triangular 0.30 2.00 VS 0.20 40 30 60 triangular 0.30 1.94 D 0.20 15 20 72 Double crossed ribs * 0.30 3.66 s ------- ------- ------- -- -- -- -- -- Smooth tube 0.30 ------- * 72 main ribs of helix angle ⁇ equal to + 20 ° interspersed with secondary grooves inclined at an angle of -20 ° relative to the axis of the tube, the depth of the grooves being substantially equal to the height of the ribs main.
  • Winged batteries were manufactured according to the figure 8 from these tubes, placing the tubes in the flanges of the fins and then pressing the tube against the flange of the flanges by expansion of the tube with a conical mandrel.
  • These batteries form a block of dimensions: 400 mm x 400 mm x 65 mm, with a density of 12 fins per 25.4 mm, the battery comprising 3 rows of 16 tubes, and the refrigerant being the R22.
  • the tubes and exchangers or batteries of tubes according to the invention have properties superior to the analogous products of the state of the art, both in evaporation and in condensation.
  • the tubes according to the invention do not only constitute a good compromise of performance in evaporation and condensation, but also have, in absolute terms, excellent performance compared to the tubes of the state. of the technique used in evaporation and those used in condensation, which is of great interest in practice.
  • the values obtained with the tubes according to the invention correspond to a gain ranging from 3.7 to 6.7% compared to the tubes according to the state of the art, taken from same diameter and same thickness Tf, which is considered very important.
  • the tubes according to the invention of the type E can be advantageously manufactured by high-speed grooving of smooth non-grooved copper tube, typically at a grooving speed close to that used for the type B tubes, namely at least 80 m / min.
  • the invention has great advantages. Indeed, on the one hand, the tubes and batteries used according to the invention have high intrinsic performances. On the other hand, these performances are high in both evaporation and condensation, which allows the use of the same tube for these two applications. In addition, the tubes have a relatively low weight per meter, which is very advantageous both from a practical point of view and from the economic point of view with a relatively low material cost.
  • tubes used according to the invention do not require specific manufacturing means. They can be manufactured with standard equipment and especially with the usual production rates.

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

L'invention concerne le domaine des tubes pour échangeurs de chaleur, et plus spécialement le domaine des échangeurs de chaleur fonctionnant en évaporation/condensation et en mode réversible. L'invention se rapporte à l'utilisation d'échangeurs de chaleur définie la revendication 1.The invention relates to the field of tubes for heat exchangers, and more particularly the field of heat exchangers operating in evaporation / condensation and in reversible mode. The invention relates to the use of heat exchangers defined in claim 1.

ETAT DE LA TECHNIQUESTATE OF THE ART

Le document EP 0148609 , considéré comme représentant l'état de la technique le plus proche de l'objet de la revendication 1, divulgue l'utilisation d'un échangeur de chaleur en mode condensation ou invaporation (sans être réversible), ledit échangeur comprenant des tubes rainurés métalliques, d'épaisseur Tp en fond de rainure, de diamètre extérieur De, lesdits tubes étant rainurés intérieurement par N rainures hélicoïdales d'angle d'apex (α), de hauteur H, de largeur de base LN et d'angle d'hélice β, deux nervures consécutives étant séparés par une rainure typiquement à fond plat de largeur LR, avec un pas égal à LR+LN, oú:

  • a) De= 9,52nm; b) N= 60;
  • c) H= 0,2 mm;
  • d) 30°<d<60°;
  • e) β= 18°;
  • f) le facteur de cavallini est égal a 3.15.
The document EP 0148609 , considered as representing the state of the art closest to the object of claim 1, discloses the use of a heat exchanger in condensation or invaporation mode (without being reversible), said exchanger comprising metal grooved tubes , of thickness Tp at the bottom of groove, of outside diameter De, said tubes being grooved internally by N helical grooves of apex angle (α), of height H, of basic width L N and of angle d β helix, two consecutive ribs being separated by a groove typically flat bottom of width L R , with a pitch equal to L R + L N , where:
  • a) De = 9.52nm; (b) N = 60;
  • c) H = 0.2 mm;
  • d) 30 ° <d <60 °;
  • e) β = 18 °;
  • f) the cavallini factor is equal to 3.15.

De plus, l'on connaît un grand nombre de documents décrivant la géométrie de tubes rainurés utilisés dans les échangeurs de chaleur.In addition, there is a large number of documents describing the geometry of grooved tubes used in heat exchangers.

A titre d'exemple, on peut citer la demande de brevet EP-A2-0 148 609 qui décrit des tubes à rainures triangulaires ou trapézoïdales présentant les caractéristiques suivantes :

  • un rapport H/Di compris entre 0,02 et 0,03, H désignant la profondeur des rainures (ou la hauteur des nervures), et Di le diamètre intérieur du tube rainuré,
  • un angle d'hélice β par rapport à l'axe de tube compris entre 7 et 30°,
  • un rapport S/H compris entre 0,15 et 0,40, avec S désignant la section transversale de la rainure,
  • un angle d'apex α des nervures compris entre 30 et 60°.
Ces caractéristiques de tube sont adaptées à des fluides à transition de phase, les performances des tubes étant analysées de manière distincte lors de l'évaporation du fluide et lors de la condensation du fluide.By way of example, mention may be made of the patent application EP-A2-0 148 609 which describes triangular or trapezoidal groove tubes having the following characteristics:
  • an H / Di ratio of between 0.02 and 0.03, H denoting the depth of the grooves (or the height of the ribs), and Di the inside diameter of the grooved tube,
  • a helix angle β with respect to the tube axis of between 7 and 30 °,
  • a S / H ratio of between 0.15 and 0.40, with S denoting the cross section of the groove,
  • an apex angle α of ribs between 30 and 60 °.
These tube characteristics are adapted to phase transition fluids, the performance of the tubes being analyzed separately during the evaporation of the fluid and during the condensation of the fluid.

La demande japonaise n° 57-58088 décrit des tubes à rainures en V, avec H compris entre 0,02 et 0,2 mm, et avec un angle β compris entre 4 et 15°.
Des tubes voisins sont décrits dans la demande japonaise n° 57-58094 .
Japanese demand no. 57-58088 discloses V-grooved tubes, with H between 0.02 and 0.2 mm, and with an angle β between 4 and 15 °.
Neighboring tubes are described in Japanese Application No. 57-58094 .

La demande japonaise n° 52-38663 décrit des tubes à rainures en V ou U, avec H compris entre 0,02 et 0,2 mm, un pas P compris entre 0,1 et 0,5 mm et un angle β compris entre 4 et 15°.
Le brevet US n° 4,044,797 décrit des tubes à rainures en V ou U voisins des tubes précédents.
Japanese demand no. 52-38663 discloses tubes with V or U grooves, with H between 0.02 and 0.2 mm, a pitch P between 0.1 and 0.5 mm and an angle β between 4 and 15 °.
The patent U.S. 4,044,797 describes grooved tubes in V or U adjacent to the preceding tubes.

Le modèle d'utilité japonais n° 55-180186 décrit des tubes à rainures trapézoïdales et nervures triangulaires, avec une hauteur H de 0,15 à 0,25 mm, un pas P de 0,56 mm, un angle d'apex α (angle appelé θ dans ce document) typiquement égal à 73° , un angle β de 30°, et une épaisseur moyenne de 0,44 mm.Japanese utility model no. 55-180186 describes tubes with trapezoidal grooves and triangular ribs, with a height H of 0.15 to 0.25 mm, a pitch P of 0.56 mm, an apex angle α (angle called θ in this document) typically equal to 73 °, an angle β of 30 °, and an average thickness of 0.44 mm.

Les brevets US n° 4,545,428 et n° 4,480,684 décrivent des tubes à rainures en V et nervures triangulaires, avec la hauteur H comprise entre 0,1 et 0,6 mm, un pas P compris entre 0,2 et 0,6 mm, un angle d'apex α compris entre 50 et 100°, une angle d'hélice β compris entre 16 et 35°.Licences U.S. Patent No. 4,545,428 and no 4480684 describe tubes with V-grooves and triangular ribs, with the height H between 0.1 and 0.6 mm, a pitch P between 0.2 and 0.6 mm, an apex angle α of between 50 and 100 °, a helix angle β between 16 and 35 °.

Le brevet japonais n° 62-25959 décrit des tubes à rainures et nervures trapézoïdales, avec une profondeur de rainure H comprise entre 0,2 et 0,5 mm, un pas P compris entre 0,3 et 1,5 mm, la largeur moyenne des rainures étant au moins égale à la largeur moyenne des nervures. Dans un exemple, le pas P est de 0,70 mm et l'angle d'hélice β est de 10°.Japanese Patent No. 62-25959 describes tubes with trapezoidal grooves and ribs, with a groove depth H of between 0.2 and 0.5 mm, a pitch P of between 0.3 and 1.5 mm, the average width of the grooves being at least equal to the average width of the ribs. In one example, the pitch P is 0.70 mm and the helix angle β is 10 °.

Enfin, le brevet européen EP-B1-701 680 , au nom de la demanderesse, décrit des tubes rainurés, avec rainures typiquement à fond plat et avec des nervures de hauteur H différente, d'angle d'hélice β compris entre 5 et 50°, d'angle d'apex α compris entre 30 et 60°, de manière obtenir de meilleures performances après le sertissage des tubes et montage dans les échangeurs.Finally, the European patent EP-B1-701 680 , in the name of the applicant, describes grooved tubes, with grooves typically flat bottom and with ribs of different height H, helix angle β between 5 and 50 °, apex angle α between 30 and 60 °, to obtain better performances after the crimping of the tubes and assembly in the exchangers.

D'une manière générale, les performances techniques et économiques des tubes, qui résultent du choix de la combinaison de moyens définissant les tubes (H, P, α, β, forme des rainures et nervures, etc...), doivent satisfaire à quatre exigences concernant :

  • d'une part, les caractéristiques relatives au transfert de chaleur (coefficient d'échange thermique), domaine dans lequel les tubes rainurés sont très supérieurs aux tubes non rainurés, de sorte qu'à échange thermique équivalent, la longueur de tube rainuré nécessaire sera moindre que celle de tube non rainuré,
  • d'autre part, les caractéristiques relatives aux pertes de charge, de faibles pertes de charge permettant d'utiliser des pompes ou compresseurs de plus faible puissance, encombrement et coût,
  • en outre, les caractéristiques relatives aux propriétés mécaniques des tubes, typiquement en relation avec la nature des alliages utilisés ou avec l'épaisseur moyenne des tubes, épaisseur qui conditionne le poids du tube par unité de longueur, et donc influe sur son prix de revient.
  • enfin, la faisabilité industrielle des tubes et la vitesse de production qui conditionne le prix de revient du tube chez le fabricant de tubes.
In general, the technical and economic performances of the tubes, which result from the choice of the combination of means defining the tubes (H, P, α, β, form grooves and ribs, etc.), must satisfy four requirements for:
  • on the one hand, the characteristics relating to the heat transfer (heat exchange coefficient), area in which the grooved tubes are much higher than the non-grooved tubes, so that equivalent heat exchange, the length of grooved tube necessary will be less than that of ungrooved tube,
  • on the other hand, the characteristics relating to pressure drops, low pressure drops allowing the use of pumps or compressors of lower power, size and cost,
  • in addition, the characteristics relating to the mechanical properties of the tubes, typically in relation to the nature of the alloys used or the average thickness of the tubes, which thickness determines the weight of the tube per unit length, and thus influences its cost price .
  • finally, the industrial feasibility of the tubes and the speed of production which conditions the cost price of the tube at the tube manufacturer.

PROBLEMES POSESPROBLEMS POSED

D'une part, comme cela résulte de l'état de la technique, il y a un grand nombre et une très grande diversité d'enseignements en ce qui concerne les tubes rainurés, sachant qu'ils visent généralement l'optimisation de l'échange thermique et la diminution de perte de charge.
D'autre part, chacun de ces enseignements offre lui-même le plus souvent une large étendue de possibilités, les paramètres étant généralement définis par des plages de valeurs relativement larges.
Enfin, ces enseignements concernent, quand cela est spécifié, les échanges avec fluide frigorigène, fluide qui, typiquement, s'évapore ou se condense dans le circuit frigorifique, le fluide ayant un comportement différent en évaporation et en condensation. Jusqu'à présent, ces enseignements concernent des tubes rainurés pour échangeurs fonctionnant soit en condensation, soit en évaporation.
On the one hand, as is the result of the state of the art, there is a great number and a great diversity of teachings with regard to grooved tubes, knowing that they generally aim at the optimization of the heat exchange and reduction of pressure loss.
On the other hand, each of these teachings itself usually offers a wide range of possibilities, the parameters being generally defined by relatively wide ranges of values.
Finally, these teachings concern, where specified, exchanges with refrigerant fluid which typically evaporates or condenses in the refrigerant circuit, the fluid having a different behavior in evaporation and condensation. So far, these teachings relate to grooved tubes for exchangers operating either in condensation or in evaporation.

En définitive, l'homme du métier a déjà beaucoup de difficultés pour tirer la quintessence de l'état de la technique, parmi un si grand nombre de données, parfois contradictoires.
L'homme du métier sait par contre qu'un tube typique du commerce, à nervures triangulaires comme représenté à la figure 1, présente typiquement les caractéristiques suivantes : diamètre extérieur De = 12 mm, hauteur de nervure H = 0,25 mm, épaisseur de paroi du tube Tf = 0,35 mm, nombre de nervures N = 65, angle d'hélice β = 15°, angle d'apex α = 55°.
Ultimately, a person skilled in the art already has many difficulties in drawing the quintessence of the state of the art, from so many, sometimes contradictory data.
On the other hand, a person skilled in the art knows that a typical commercial tube with triangular ribs as shown in FIG. figure 1 typically has the following characteristics: outer diameter De = 12 mm, rib height H = 0.25 mm, tube wall thickness Tf = 0.35 mm, number of ribs N = 65, helix angle β = 15 ° Apex angle α = 55 °.

De manière à répondre à une demande du marché, l'objet de la présente invention concerne l'utilisation de tubes pour échangeurs à applications réversibles, c'est à dire une utilisation oú des tubes ou échangeurs sont utilisés avec des fluides frigorigènes à changement de phase, tantôt en évaporation, tantôt en condensation, c'est-à-dire soit pour refroidir, par exemple comme climatiseurs, soit pour réchauffer, par exemple comme moyens de chauffage, typiquement de l'air ou un fluide secondaire.In order to meet a market demand, the object of the present invention relates to the use of tubes for reversible heat exchangers, that is to say a use where tubes or exchangers are used with refrigerants with change of applications. phase, sometimes in evaporation, sometimes in condensation, that is to say either to cool, for example as air conditioners, or to heat, for example as heating means, typically air or a secondary fluid.

Plus particulièrement, la présente invention a pour objet l'utilisation de tubes qui, non seulement présentent un excellent compromis entre les performances thermiques en mode évaporation et en mode condensation de fluide frigorigène, mais qui, de plus, présentent intrinsèquement des performances élevées aussi bien en évaporation qu'en condensation.More particularly, the present invention relates to the use of tubes which not only have an excellent compromise between thermal performance in evaporative and refrigerant condensation mode, but which, moreover, intrinsically have high performance as well. in evaporation only in condensation.

La demanderesse a donc recherché des tubes et échangeurs à la fois économiques, avec un poids par mètre relativement peu élevé, et des performances d'échange thermique élevées, à la fois en évaporation et en condensation.The applicant has therefore sought economic tubes and exchangers, with a relatively low weight per meter, and high heat exchange performance, both in evaporation and in condensation.

DESCRIPTION DE L'INVENTIONDESCRIPTION OF THE INVENTION

Selon l'invention, les tubes métalliques rainurés, d'épaisseur Tf en fond de rainure, de diamètre extérieur De, typiquement destinés à la fabrication d'échangeurs de chaleur fonctionnant en évaporation ou en condensation ou en mode réversible et utilisant un fluide frigorigène à changement de phase, rainurés intérieurement par N nervures hélicoïdales d'angle d'apex α, de hauteur H, de largeur de base LN et d'angle d'hélice β, deux nervures consécutives étant séparées par une rainure typiquement à fond plat de largeur LR, avec un pas P égal LR + LN , sont tels que,

  1. a) le diamètre extérieur De est compris entre 4 et 20 mm,
  2. b) le nombre N de nervures va de 46 à 98, en fonction notamment du diamètre De,
  3. c) la hauteur H des nervures va de 0,18 mm à 0,40 mm, en fonction notamment du diamètre De,
  4. d) l'angle d'apex α tel que 20° ≤ α < 28°,
  5. e) l'angle d'hélice β va de 18° à 35°, ledit tube présentant un facteur de Cavalini au moins égal à 3.5,
de manière à obtenir simultanément un coefficient d'échange thermique élevé à la fois en évaporation et en condensation, une faible perte de charge et un tube le plus léger possible et cela sans surcoût de fabrication par rapport aux tubes spécifiques à l'évaporation ou à la condensation.According to the invention, the grooved metal tubes, of thickness T f at the bottom of the groove, with an outer diameter De, typically intended for the manufacture of heat exchangers operating in evaporation or in condensation or in reversible mode and using a refrigerant with phase change, grooved internally by N helical ribs of apex angle α, of height H, of base width L N and of helix angle β, two consecutive ribs being separated by a groove with a flat bottom of width L R , with a pitch P equal L R + L N , are such that,
  1. a) the outer diameter De is between 4 and 20 mm,
  2. b) the number N of ribs ranges from 46 to 98, in particular according to the diameter De,
  3. c) the height H of the ribs ranges from 0.18 mm to 0.40 mm, depending in particular on the diameter De,
  4. d) the apex angle α such that 20 ° ≤ α <28 °,
  5. e) the helix angle β is from 18 ° to 35 °, said tube having a Cavalini factor of at least 3.5,
so as simultaneously to obtain a high heat exchange coefficient in both evaporation and condensation, a low pressure drop and a lightest possible tube and this without manufacturing cost over the specific tubes for evaporation or condensation. the condensation.

Suite à ses travaux de recherche, la demanderesse a réussi à résoudre les problèmes posés par la combinaison de moyens et l'ensemble de caractéristiques qui précèdent.As a result of her research, the Applicant has successfully solved the problems posed by the combination of means and the preceding set of features.

La caractéristique définie sous a) définit la plage de diamètre extérieur De des tubes dans le domaine d'application visé par les tubes selon l'invention.The characteristic defined under a) defines the outer diameter range of tubes in the range of application targeted by the tubes according to the invention.

La caractéristique sous b), relative au nombre N de rainures, et donc au pas P correspondant, spécifie que ce nombre doit être relativement élevé. Les essais de la demanderesse avec des batteries à ailettes ont montré que ce nombre de rainures a une grande influence sur la performance thermique des échangeurs.The characteristic under b), relative to the number N of grooves, and therefore to the corresponding pitch P, specifies that this number must be relatively high. The applicant's tests with finned batteries have shown that this number of grooves has a great influence on the heat performance of the exchangers.

Ainsi, par exemple, pour un diamètre de tube De 9,52 mm :

  • quand le nombre N est inférieur à 46, il a été observé que la performance de l'échangeur chutait considérablement.
  • en ce qui concerne la limite supérieure du nombre N, elle est essentiellement d'ordre technologique et pratique, et dépend des possibilités technique de fabrication des tubes rainurés, cette limite supérieure varie donc, et augmente avec le diamètre De du tube.
Il a été observé sur un tube de 12 mm de diamètre De, qu'un nombre de nervures N de 98 assure une performance thermique élevée de l'échangeur en évaporation et en condensation.Thus, for example, for a tube diameter of 9.52 mm:
  • when the number N is less than 46, it was observed that the performance of the exchanger fell considerably.
  • as regards the upper limit of the number N, it is essentially of a technological and practical nature, and depends on the technical possibilities of manufacture of the grooved tubes, this upper limit therefore varies, and increases with the diameter De of the tube.
It has been observed on a tube 12 mm in diameter that a number of ribs N of 98 ensures a high thermal performance of the exchanger in evaporation and condensation.

En ce qui concerne la caractéristique sous c), relative à la hauteur H des nervures ou profondeur des rainures, les limites de H résultent des observations suivantes :

  • pour des valeurs de H supérieures à 0,40 mm, il a été noté une faisabilité technique moindre, car il n'est pas aisé de fabriquer des nervures de très grande hauteur, et il a été noté en outre une augmentation de la perte de charge,
  • pour des valeurs de H inférieures à 0,20 mm, il a été noté que la performance d'échange thermique diminue trop et devient insuffisante.
Cette hauteur H peut varier avec le diamètre du tube, les tubes de plus grand diamètre ayant de préférence les nervures de plus grande hauteur.With regard to the characteristic under c), relative to the height H of the ribs or depth of the grooves, the limits of H result from the following observations:
  • for values of H greater than 0.40 mm, a lower technical feasibility was noted, as it is not easy to make very high ribs, and there was also an increase in the loss of charge,
  • for values of H less than 0.20 mm, it was noted that the heat exchange performance decreases too much and becomes insufficient.
This height H can vary with the diameter of the tube, the larger diameter tubes preferably having the ribs of greater height.

La caractéristique sous d), relative à l'angle d'apex α, prévoit que cet angle doit être choisi dans une plage relativement étroite (20° - 28°) et avec de valeurs d'angle d'apex α relativement faibles.
D'une part, une faible valeur d'angle α est préférable pour améliorer la performance du transfert de chaleur pour diminuer la perte de charge et pour diminuer le poids du tube / m. C'est avec des nervures trapézoïdales que l'angle α peut être le plus faible. Cependant, la limite inférieure est essentiellement lié à la fabrication de tubes rainurés selon l'invention pour conserver une haute cadence de production.
The characteristic under d), relative to the apex angle α, provides that this angle must be chosen in a relatively narrow range (20 ° - 28 °) and with relatively low α-apex angle values.
On the one hand, a low α-angle value is preferable for improving the heat transfer performance to decrease the pressure drop and to decrease the weight of the tube / m. It is with trapezoidal ribs that the angle α may be the weakest. However, the lower limit is essentially related to the manufacture of grooved tubes according to the invention to maintain a high rate of production.

La caractéristique sous e), relative à l'angle d'hélice β, montre que cet angle doit être au moins égal à 18° pour résoudre les problèmes de l'invention, et au plus égal à 35° à cause de l'augmentation significative des pertes de charge, notamment avec certains fluides frigorigènes, par exemple le fluide frigorigène R134a.The characteristic under e), relative to the helix angle β, shows that this angle must be at least equal to 18 ° to solve the problems of the invention, and at most equal to 35 ° to because of the significant increase in pressure losses, especially with certain refrigerants, for example R134a refrigerant.

En ce qui concerne l'épaisseur Tf du tube en fond de rainure, elle peut varier en fonction du diamètre De, de manière à avoir à la fois des propriétés mécaniques suffisantes, notamment une résistance à la pression interne, une économie de matière maximum, et donc un coût matière optimisé, et un poids au mètre le plus faible possible. Cette épaisseur Tf est de 0,28 mm pour un tube de 9,55 mm de diamètre De, et de 0,35 mm pour un tube de 12,7 mm de diamètre De.Regarding the thickness Tf of the tube at the bottom of the groove, it may vary according to the diameter De, so as to have both sufficient mechanical properties, including resistance to internal pressure, a maximum saving in material, and therefore optimized material cost, and a weight per meter as low as possible. This thickness Tf is 0.28 mm for a 9.55 mm diameter tube De, and 0.35 mm for a tube 12.7 mm in diameter De.

L'ensemble de ces moyens permet de définir une sélection de tubes, tubes spécifiques particulièrement adaptés aux échangeurs avec fluides frigorigènes à changement de phase, de manière à avoir simultanément un coefficient d'échange thermique élevé en évaporation et en condensation, une faible perte de charge et un tube le plus léger possible.All of these means make it possible to define a selection of tubes, specific tubes particularly adapted to exchangers with phase-change refrigerants, so as to simultaneously have a high heat exchange coefficient in evaporation and condensation, a small loss of charge and a tube as light as possible.

DESCRIPTION DES FIGURESDESCRIPTION OF THE FIGURES

  • Les figures 1a et 1b sont destinées à illustrer la signification des différents paramètres utilisés pour définir les tubes utilisés dans la méthode selon l'invention.The Figures 1a and 1b are intended to illustrate the meaning of the various parameters used to define the tubes used in the method according to the invention.
  • La figure 1a représente une vue partielle d'un tube rainuré (1), en coupe partielle selon l'axe du tube, de manière à illustrer l'angle d'hélice β.The figure 1a is a partial view of a grooved tube (1), in partial section along the axis of the tube, so as to illustrate the helix angle β.
  • La figure 1b représente une vue partielle d'un tube rainuré (1), en coupe partielle perpendiculairement à l'axe du tube, de manière à illustrer le cas d'un tube comprenant une succession de nervures (2) de hauteur H, nervures de forme sensiblement triangulaire, de largeur LN à la base et d'angle d'apex α, séparées par des rainures (3) de forme sensiblement trapézoïdale et de largeur LR, LR étant la distance entre deux rainures nervures. Ce tube a une épaisseur Tf, un diamètre extérieur De, un diamètre intérieur Di et un pas P égal LR + LN.The figure 1b represents a partial view of a grooved tube (1), in partial section perpendicular to the axis of the tube, so as to illustrate the case of a tube comprising a succession of ribs (2) of height H, substantially shaped ribs triangular, of width L N at the base and apex angle α, separated by grooves (3) of substantially trapezoidal shape and width L R , L R being the distance between two grooves ribs. This tube has a thickness Tf, an outside diameter De, an inner diameter Di and a pitch P equal to L R + L N.
  • Les figures 2a à 2c sont des coupes partielles d'un tube de 8 mm de diamètre De et de 0,26 mm d'épaisseur Tf, selon un exemple de réalisation de l'invention, dans lequel les nervures forment une alternance de nervures trapézoïdales de hauteur H1 et de hauteur H2 < H1, à différentes échelles.The Figures 2a to 2c are partial sections of a tube 8 mm in diameter and 0.26 mm thick Tf, according to an exemplary embodiment of the invention, in which the ribs form an alternation of trapezoidal ribs of height H1 and height H2 <H1, at different scales.
  • La figure 2a représente 3 nervures (2) complètes et 2 nervures partielles, espacées par des rainures (3), et porte une échelle "200 µm".The figure 2a represents 3 complete ribs (2) and 2 partial ribs, spaced by grooves (3), and carries a "200 μm" scale.
  • La figure 2b représente 2 nervures complètes et porte une échelle "100 µm".The figure 2b represents 2 complete ribs and carries a scale "100 μm".
  • La figure 2c représente 1 seule nervure (2) et porte une échelle "50 µm".The Figure 2c represents 1 single rib (2) and carries a scale "50 μm".
  • La figure 3 représente une coupe partielle d'un tube de 9,52 mm de diamètre De et de 0,30 mm d'épaisseur Tf selon l'invention.The figure 3 represents a partial section of a 9.52 mm diameter tube De and 0.30 mm thick Tf according to the invention.

Les différentes courbes de la figure 4 donnent, en condensation à 30°C avec fluide R22, le coefficient d'échange Hi (en W/m2.K) en ordonnée en fonction du débit de fluide G, en abscisse (en Kg/m2.s).
Les différentes courbes de la figure 5 donnent, en évaporation à 0°C du fluide R22, le coefficient d'échange Hi (en W/m2.K) en ordonnée en fonction du débit de fluide G, en abscisse (en Kg/m2.s).
Ces courbes correspondent à une tube selon l'invention - noté E selon la figure 3, et à des tubes de l'état de la technique notés "A", "C", "D" et "S", tous ces tubes étant de même diamètre extérieur De = 9,52 mm. Voir les exemples de réalisation.
The different curves of the figure 4 give, in condensation at 30 ° C with fluid R22, the exchange coefficient Hi (in W / m 2 .K) in ordinate as a function of the fluid flow G, in abscissa (in Kg / m 2 .s).
The different curves of the figure 5 give, in evaporation at 0 ° C of the fluid R22, the exchange coefficient Hi (in W / m 2 .K) in ordinate as a function of the fluid flow G, in abscissa (in Kg / m 2 .s).
These curves correspond to a tube according to the invention - noted E according to the figure 3 , and tubes of the state of the art denoted "A", "C", "D" and "S", all these tubes being of the same external diameter De = 9.52 mm. See the examples of realization.

Les figures 6 et 7 indiquent, en ordonnée, la puissance frigorifique d'échange mesurée en watt d'une batterie de tubes et d'ailettes en fonction, en abscisse de la vitesse frontale de l'air qui circule entre les ailettes exprimée en m/s.
Ces courbes correspondent à une tube selon l'invention - noté E, selon les figures 2a à 2c, et à des tubes de l'état de la technique notés "A", "B" et "S", tous ces tubes étant de même diamètre extérieur De = 8,00 mm. Voir les exemples de réalisation.
La batterie (4), schématisée sur la figure 8, est formée de tubes (1) de De = 9,52 mm et forme un bloc de dimensions : 400 mm x 400 mm x 65 mm, avec une densité de 12 ailettes (5) par 25,4 mm, la batterie (4) comprenant 3 rangées de 16 tubes rainurés (1), et le fluide frigorigène étant le R22.
La figure 6 est relative aux mesures en condensation sur la même batterie que précédemment, avec une température d'entrée d'air de 23,5°C et une température de condensation de 36°C du fluide frigorigène R22.
La figure 7 est relative aux mesures en évaporation sur la même batterie, avec une température d'entrée de 26,5°C, et une température d'évaporation de 6°C du fluide frigorigène R22.
The Figures 6 and 7 indicate, on the ordinate, the exchange refrigeration power measured in watts of a battery of tubes and fins as a function, on the abscissa of the frontal velocity of the air which circulates between the fins expressed in m / s.
These curves correspond to a tube according to the invention - noted E, according to Figures 2a to 2c , and tubes of the state of the art denoted "A", "B" and "S", all these tubes being of the same external diameter De = 8.00 mm. See the examples of realization.
The battery (4), schematized on the figure 8 , is formed of tubes (1) of De = 9.52 mm and forms a block of dimensions: 400 mm x 400 mm x 65 mm, with a density of 12 fins (5) by 25.4 mm, the battery (4) comprising 3 rows of 16 grooved tubes (1), and the refrigerant being R22.
The figure 6 is relative to the condensation measurements on the same battery as before, with an air inlet temperature of 23.5 ° C and a condensing temperature of 36 ° C of the refrigerant R22.
The figure 7 is relative to the evaporation measurements on the same battery, with an inlet temperature of 26.5 ° C, and an evaporation temperature of 6 ° C of the refrigerant R22.

La figure 8 est une vue schématique en perspective de la batterie (4) de tubes (1) avec ailettes (5) ayant servi aux tests.
La figure 9 représente graphiquement en ordonnée le gain de puissance frigorifique en évaporation des batteries, selon la figure 7, avec une vitesse d'air de référence de 1,25 m/s, en fonction du facteur de Cavallini en abscisse pour les différents tubes testés : tube lisse S, tube E selon l'invention, et tubes A et B selon l'état de la technique.
The figure 8 is a schematic perspective view of the battery (4) of tubes (1) with fins (5) used for testing.
The figure 9 graphically represents on the ordinate the cooling capacity gain in evaporation of the batteries, according to the figure 7 , with a reference air speed of 1.25 m / s, as a function of the Cavallini factor on the abscissa for the various tubes tested: smooth tube S, tube E according to the invention, and tubes A and B according to FIG. state of the art.

La figure 10 est un graphique indiquant, en ordonnée, le coefficient d'échange thermique Hi (W/m2.K) sur tubes en évaporation avec le fluide frigorigène R407C, en fonction du pourcentage pondéral de vapeur dans le fluide frigorigène, en abscisse, la température d'évaporation étant de 5°C. Les mesures ont été faites avec un flux de chaleur de 12 kW/m2 et un débit massique de 100 ou 200 kg/m2.s de fluide frigorigène R407C, comme indiqué sur la figure, sur des tubes de diamètre De égal à 9,52mm.The figure 10 is a graph indicating, on the ordinate, the heat exchange coefficient Hi (W / m 2 .K) on evaporation tubes with the refrigerant R407C, as a function of the weight percentage of vapor in the refrigerant, on the abscissa, the temperature evaporation rate of 5 ° C. The measurements were made with a heat flux of 12 kW / m 2 and a mass flow rate of 100 or 200 kg / m 2 .s of refrigerant R407C, as shown in the figure, on tubes of diameter D equal to 9 52mm.

La figure 11 est une vue d'une portion de surface interne d'un tube rainuré selon l'invention doté d'une contre-rainure axiale (30), avec, au-dessous, sa représentation schématique.The figure 11 is a view of an inner surface portion of a grooved tube according to the invention provided with an axial counter-groove (30), with, below, its schematic representation.

DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

Selon une modalité de l'invention illustrée sur les figures 2a à 2c, lesdites nervures peuvent former une succession de nervures de hauteur H1=H et de hauteur H2 = a.Hl, avec a compris entre 0,6 et 0,9, et de préférence compris entre 0,70 et 0,85, la valeur de a étant voisine de 0,75 sur les figures 2a à 2c.
Typiquement, et comme illustré sur ces figures, ladite succession peut être une alternance de nervures de hauteur H1 et de nervures de hauteur H2 séparées par un fond de rainure typiquement plat.
Cependant, comme illustré sur la figure 3, les tubes rainurés selon l'invention ne comprennent pas nécessairement une telle alternance de nervures à hauteur différencié comme sur les figures 2a à 2c, les nervures pouvant avoir sensiblement la même hauteur.
According to a modality of the invention illustrated on the Figures 2a to 2c said ribs may form a succession of ribs of height H1 = H and height H2 = a.H1, with a between 0.6 and 0.9, and preferably between 0.70 and 0.85, the value of a being close to 0.75 on the Figures 2a to 2c .
Typically, and as illustrated in these figures, said succession may be an alternation of ribs of height H1 and ribs of height H2 separated by a generally flat groove bottom.
However, as shown on the figure 3 the grooved tubes according to the invention do not necessarily include such an alternation of differentially height ribs as on the Figures 2a to 2c , the ribs may have substantially the same height.

Typiquement, dans le cas de tubes de 9,52 mm de diamètre De, on peut avoir :

  • H allant de 0,18 à 0,3 mm,
  • et/ou N inférieur à 75, et allant de préférence de 64 à 70.
De même, lorsque De est au moins égal à 9,55 mm, on peut avoir :
  • H allant de 0,25 à 0,40 mm,
  • N allant de 70 à 98.
Typically, in the case of 9.52 mm diameter tubes De, one can have:
  • H ranging from 0.18 to 0.3 mm,
  • and / or N less than 75, and preferably from 64 to 70.
Similarly, when De is at least equal to 9.55 mm, we can have:
  • H ranging from 0.25 to 0.40 mm,
  • N ranging from 70 to 98.

En ce qui concerne l'angle d'apex α, une plage selon l'invention de l'angle d'apex α va de 20° à 28°, une plage encore plus restreinte allant de 22° à 25° assurant le meilleur compromis entre les exigences en matière de performance technique et celles liées à l'expansion des tubes en vue de leur solidarisation aux ailettes des batteries.With regard to the apex angle α, a range according to the invention of the apex angle α ranges from 20 ° to 28 °, an even more restricted range from 22 ° to 25 ° ensuring the best compromise. between the technical performance requirements and those related to the expansion of the tubes for attachment to the fins of the batteries.

En ce qui concerne l'angle d'hélice β, une plage préférée de l'angle d'hélice β peut aller de 22° à 30°, une plage encore plus restreinte allant de 25° à 28° assurant le meilleur compromis entre les exigences en matière de performance technique et celles liées à la perte de charge. Cet angle peut varier avec le diamètre intérieur Di : il a été trouvé avantageux d'avoir un rapport β/Di supérieur à 2,40 °/mm, et de préférence supérieur à 3 °/mm.With regard to the helix angle β, a preferred range of the helix angle β can range from 22 ° to 30 °, a still more restricted range from 25 ° to 28 ° ensuring the best compromise between technical performance requirements and those related to pressure drop. This angle can vary with the inner diameter Di: it has been found advantageous to have a β / Di ratio greater than 2.40 ° / mm, and preferably greater than 3 ° / mm.

De préférence, lesdites nervures ont un profil de type "trapèze" avec une base de largeur LN et un sommet, raccordés par des bords latéraux faisant entre eux ledit angle d'apex α, comme illustré sur la figure 2c, ledit sommet comprenant une partie centrale sensiblement plate, typiquement parallèle à ladite base, mais éventuellement en pente par rapport à ladite base.
Quelle que soit le cas, ledit sommet de ladite nervure formant un petit côté du trapèze peut présenter des bords arrondis ou non, c'est-à-dire à très faible rayon de courbure, ces bords formant un raccordement dudit sommet audits bords latéraux.
Lesdits bords arrondis peuvent présenter un rayon de courbure allant typiquement de 40µm à 100 µm, et allant de préférence de 50 µm à 80µm, comme illustré sur les figures 2a à 2c. Ces plages de rayon de courbure correspondent à un compromis entre les performances thermiques des tubes et la faisabilité des tubes, les outils destinés à fabriquer les tubes avec les plus petits rayons de courbure ayant le plus tendance à s'user.
Lorsque les bords ne sont pas arrondis, comme illustré sur la figure 3, le rayon de : courbure peut être typiquement inférieur à 50 µm, et même inférieur à 20 µm.
Preferably, said ribs have a "trapezium" type profile with a base of width L N and a vertex, connected by lateral edges forming between them said apex angle α, as illustrated in FIG. Figure 2c said apex comprising a substantially flat central portion, typically parallel to said base, but possibly sloping with respect to said base.
Whatever the case, said vertex of said rib forming a short side of the trapezium may have rounded edges or not, that is to say, very small radius of curvature, these edges forming a connection of said vertex audits side edges.
Said rounded edges may have a radius of curvature typically ranging from 40 .mu.m to 100 .mu.m, and preferably ranging from 50 .mu.m to 80 .mu.m, as illustrated in FIGS. Figures 2a to 2c . These ranges of radius of curvature correspond to a compromise between the thermal performance of the tubes and the feasibility of the tubes, the tools for making the tubes with the smallest radii of curvature having the most tendency to wear out.
When the edges are not rounded, as shown on the figure 3 , the radius of: curvature can be typically less than 50 microns, and even less than 20 microns.

Selon l'invention, la largeur LR du fond plat de ladite rainure et la largeur LN de la base de ladite nervure peuvent être telles que LR = b.LN avec b allant de 1 à 2, et de préférence de 1,1 à 1,8, de manière à avoir un tube présentant un poids par mètre relativement bas.According to the invention, the width L R of the flat bottom of said groove and the width L N of the base of said rib may be such that L R = bL N with b ranging from 1 to 2, and preferably 1.1 at 1.8, so as to have a tube having a relatively low weight per meter.

Typiquement, et comme illustré sur les figures 2a à 2c et 3, les dites nervures et ledit fond plat des dites rainures peuvent se raccorder avec un rayon de courbure inférieur à 50 µm, et de préférence inférieur à 20 µm. Dans ce cas, il semble qu'il y ait un meilleur décollement du film liquide de fluide frigorigène de la paroi interne du tube, ce qui favorise l'échange thermique.Typically, and as illustrated on Figures 2a to 2c and 3 , said ribs and said flat bottom of said grooves may be connected with a radius of curvature less than 50 microns, and preferably less than 20 microns. In this case, it seems that there is better separation of the liquid refrigerant film from the inner wall of the tube, which promotes heat exchange.

Les tubes utilisés selon l'invention présentent même en l'absence de rainurage axial, un facteur de Cavallini au moins égal à 3,5. Ils peuvent présenter avantageusement un facteur de Cavallini au moins égal à 4,0.The tubes used according to the invention have even in the absence of axial grooving, a Cavallini factor of at least 3.5. They may advantageously have a Cavallini factor of at least 4.0.

Le facteur de Cavallini Rx^2 (Rx .Rx) qui intervient dans les modèles d'évaluation du coefficient d'échange, est un facteur purement géométrique égal à : 2. N . H . 1 - Sin α / 2 / 3 , 14. Di . Cos α / 2 + 1 / Cos β 2

Figure imgb0001
The Cavallini factor Rx ^ 2 (Rx .Rx), which is involved in the evaluation models of the exchange coefficient, is a purely geometrical factor equal to: 2. NOT . H . 1 - Sin α / 2 / 3 , 14. di . Cos α / 2 + 1 / Cos β 2
Figure imgb0001

De manière à augmenter encore le facteur de Cavallini, et comme illustré sur la figure 11, les tubes selon l'invention peuvent comprendre en outre un rainurage axial (30) créant dans lesdites nervures des encoches à profil typiquement triangulaire à sommet arrondi, ledit sommet présentant un angle γ allant de 25 à 65°, ladite partie inférieure ou sommet est à une distance h du fond desdites rainures allant de 0 à 0,2 mm.
Un tel rainurage axial peut être obtenu une fois formées lesdites nervures par passage d'une molette de rainurage dans le sens axial.
In order to further increase the Cavallini factor, and as illustrated on the figure 11 , the tubes according to the invention may further comprise an axial groove (30) creating in said ribs notches with a typically triangular profile with a rounded top, said top having an angle γ ranging from 25 to 65 °, said lower part or top is at a distance h from the bottom of said grooves from 0 to 0.2 mm.
Such axial grooving can be obtained once formed said ribs by passage of a grooving wheel in the axial direction.

Les tubes rainurés selon l'invention peuvent être en cuivre et alliages de cuivre, aluminium et alliages d'aluminium. Ces tubes peuvent être obtenus typiquement par rainurage de tubes, ou éventuellement, par rainurage à plat d'une bande métallique puis formation d'un tube soudé.The grooved tubes according to the invention may be made of copper and alloys of copper, aluminum and aluminum alloys. These tubes can be obtained typically by grooving tubes, or possibly by flat grooving of a metal strip and forming a welded tube.

EXEMPLES DE REALISATIONEXAMPLES OF REALIZATION I - Fabrication des tubes :I - Manufacture of tubes:

Les essais ont été réalisés sur tubes de cuivre de 8,0 mm ou de 9,52 mm de diamètre extérieur.
On a fabriqué le tube "E" de l'invention selon les figures 2a à 2c avec un diamètre De de 8,0 mm, et selon la figure 3 avec un diamètre De de 9,52 mm, ainsi que des tubes comparatifs "S" ou lisse, "C", "D", qui présentent un angle d'hélice β élevé (au moins égal à 20°), destinés à la condensation selon l'état de la technique, et des tubes comparatifs "A" et "B", qui présentent un angle d'apex α élevé (au moins égal à 40°) et un angle d'hélice β faible (au plus égal à 18°), destinés à l'évaporation selon l'état de la technique.
Les tubes E, A, B, C ont été fabriqués par rainurage d'un tube de cuivre lisse - tube S, alors que la tube D a été fabriqué par rainurage à plat d'une bande métallique puis formation d'un tube soudé.
The tests were carried out on copper tubes of 8.0 mm or 9.52 mm of external diameter.
The "E" tube of the invention was manufactured according to the Figures 2a to 2c with a diameter of 8.0 mm, and according to the figure 3 with a diameter of 9.52 mm, as well as comparative "S" or smooth, "C", "D", tubes which have a high β helix angle (at least equal to 20 °), intended for the condensation according to the state of the art, and comparative tubes "A" and "B", which have a high apex angle α (at least equal to 40 °) and a low helix angle β (at most equal at 18 °), intended for evaporation according to the state of the art.
The tubes E, A, B, C were made by grooving a smooth copper tube - S tube, while the D tube was manufactured by flat grooving a metal band and then forming a welded tube.

Un certain nombre d'essais ont été réalisés sur des tubes de cuivre de 9,52 mm de diamètre extérieur De. Ces tubes présentent les caractéristiques suivantes : Type de tube H en mm angle α angle β N Type de nervure Tf mm LR/LN E Fig.3 0,20 25 25 66 Trapézoïdales 0,30 2,3 B 0,20-0,17 40 16 74 Triangulaires alternées 0,30 1,88 A 0,20 50 18 60 Triangulaires 0,30 2,00 C 0,20 40 30 60 Triangulaires 0,30 1,94 D 0,20 15 20 72 Doubles nervures croisées * 0,30 3,66 s ------- ------- ------- ----- Tube lisse 0,30 ------- * 72 nervures principales d'angle d'hélice β égal à + 20° entrecoupées de rainures secondaires inclinées d'un angle de - 20° par rapport à l'axe du tube, la profondeur des rainures étant sensiblement égale à la hauteur des nervures principales. A number of tests have been carried out on 9.52 mm OD copper tubes. These tubes have the following characteristics: Tube type H in mm angle α angle β NOT Rib type Tf mm L R / L N E Fig.3 0.20 25 25 66 V 0.30 2.3 B from 0.20 to 0.17 40 16 74 Alternating triangles 0.30 1.88 AT 0.20 50 18 60 triangular 0.30 2.00 VS 0.20 40 30 60 triangular 0.30 1.94 D 0.20 15 20 72 Double crossed ribs * 0.30 3.66 s ------- ------- ------- ----- Smooth tube 0.30 ------- * 72 main ribs of helix angle β equal to + 20 ° interspersed with secondary grooves inclined at an angle of -20 ° relative to the axis of the tube, the depth of the grooves being substantially equal to the height of the ribs main.

Un certain nombre d'autres essais ont été réalisés sur des tubes de cuivre de 8,0 mm de diamètre extérieur. Ces tubes présentent les caractéristiques suivantes : Type de tube H en mm angle α angle β N Type de nervure Tf mm LR/LN E Fig.2a 0,20-0,16 21 18 46 Trapézoïdales alternées 0,26 2,5 B 0,18-0,16 40 18 64 Triangulaires alternées 0,26 2,38 A 0,18 40 18 50 Triangulaires 0,26 2,33 S ---------- ------ ------ ---- Tube lisse 0,3 - A number of other tests were performed on copper tubes of 8.0 mm OD. These tubes have the following characteristics: Tube type H in mm angle α angle β NOT Rib type Tf mm L R / L N E Fig.2a 0.20 to 0.16 21 18 46 Alternate trapezoidal 0.26 2.5 B 0.18 to 0.16 40 18 64 Alternating triangles 0.26 2.38 AT 0.18 40 18 50 triangular 0.26 2.33 S ---------- ------ ------ ---- Smooth tube 0.3 -

II - Fabrication de batteries ou échangeurs :II - Manufacture of batteries or exchangers:

On a fabriqué des batteries à ailettes selon la figure 8 à partir de ces tubes, en plaçant les tubes dans les collets des ailettes puis en plaquant le tube contre le rebord des collets par expansion du tube à l'aide d'un mandrin conique. Ces batteries forment un bloc de dimensions : 400 mm x 400 mm x 65 mm, avec une densité de 12 ailettes par 25,4 mm, la batterie comprenant 3 rangées de 16 tubes, et le fluide frigorigène étant le R22.Winged batteries were manufactured according to the figure 8 from these tubes, placing the tubes in the flanges of the fins and then pressing the tube against the flange of the flanges by expansion of the tube with a conical mandrel. These batteries form a block of dimensions: 400 mm x 400 mm x 65 mm, with a density of 12 fins per 25.4 mm, the battery comprising 3 rows of 16 tubes, and the refrigerant being the R22.

III - Résultats obtenus :III - Results obtained:

Les figures 4 à 7, et 9 à 10 illustrent les différents résultats de l'invention.The Figures 4 to 7 , and 9 at 10 illustrate the different results of the invention.

III-1 Résultats obtenus sur tubes :III-1 Results obtained on tubes:


A) Résultats obtenus en condensation avec fluide frigorigène R22 sur tubes de De égal à 9,52 mm : TUBES => Propriétés E Fig. 3 A C D S Poids g/m 89 93,5 95 95 78 Perte de charge dP** 2500 +/-100 - 2400 +/-100 3000 +/-100 Facteur Cavallini 3,94 2,72 3,53 --- 1 Coefficient* d'échange Hi moyen 6850 +/-50 4950 +/-50 6300 +/-50 6000 +/-50 2850 +/-50 * Coefficient d'échange Hi en W/m2.K pour un débit de fluide G égal à 350 Kg/m2.s. Conditions de mesure : température de 30°C, longueur du tube de 6 m, et débit de fluide G égal à 350 kg/m2.s
** en Pa/m mesurée pour un débit de fluide G égal à 350 kg/m2.s

B) Résultats obtenus en évaporation avec fluide frigorigène R22 sur tubes de De égal à 8,0 mm : TUBES => Propriétés E Fig. 2a B A S Poids g/ m 66 68 66 - Perte de charge dP** 6700 +/-100 8000 +/-100 7000 +/-100 5800 +/-100 Facteur Cavallini 3,13 3,02 2,68 1 Coefficient* d'échange Hi moyen 10500 +/-100 9500 +/-100 8500 +/-100 4500 +/-100 * Coefficient d'échange Hi en W/m2.K pour un débit de fluide G égal à 200 Kg/m2.s. Conditions de mesure : température de 0°C, longueur du tube de 3 m, flux de 10 à 12 kW/m2.K, titre en vapeur allant de 0,2 à 0,9, et débit de fluide G égal à 200 kg/m2.s
** en Pa/m mesurée pour un débit de fluide G égal à 200 kg/m2.s

C) Résultats obtenus en évaporation avec fluide frigorigène R407C sur tubes de De égal à 9,52 mm : TUBES => Propriétés E Fig.3 B Poids g/m 89 92,3 Facteur de Cavallini 3,94 3,3 Perte de charge dP* 600 +/-40 700 +/-40 Coefficient* d'échange Hi local 6000 +/-100 2500 +/-100 Perte de charge dP** 1200 +/-40 1200 +/-40 Coefficient** d'échange Hi moyen 11000 +/-100 3000 +/-100 Conditions des mesures : température de 5°C et flux de 12 kw/m2.K. Voir figure 10.
* Coefficient d'échange Hi en W/m2.K et perte de charge dP en Pa/m prises à un débit de fluide G égal à 100 Kg/m2.s et avec un titre moyen de vapeur de 0,6.
** Coefficient d'échange Hi en W/m2.K et perte de charge dP en Pa/m prises à un débit de fluide G égal à 200 Kg/m2.s et avec un titre moyen de vapeur de 0,3.

A) Results obtained in condensation with refrigerant R22 on De tubes equal to 9.52 mm: TUBES => Properties E Fig. 3 AT VS D S Weight g / m 89 93.5 95 95 78 Loss of charge dP ** 2500 +/- 100 - 2400 +/- 100 3000 +/- 100 Cavallini factor 3.94 2.72 3.53 --- 1 Coefficient * of exchange Hi average 6850 +/- 50 4950 +/- 50 6300 +/- 50 6000 +/- 50 2850 +/- 50 * Exchange coefficient Hi in W / m 2 .K for a fluid flow G equal to 350 Kg / m 2 .s. Measuring conditions: temperature 30 ° C, tube length 6 m, and fluid flow G equal to 350 kg / m 2 .s
** in Pa / m measured for a fluid flow G equal to 350 kg / m 2 .s

B) Results obtained in evaporation with refrigerant R22 on De tubes equal to 8.0 mm: TUBES => Properties E Fig. 2a B AT S Weight g / m 66 68 66 - Loss of charge dP ** 6700 +/- 100 8000 +/- 100 7000 +/- 100 5800 +/- 100 Cavallini factor 3.13 3.02 2.68 1 Coefficient * of exchange Hi average 10500 +/- 100 9500 +/- 100 8500 +/- 100 4500 +/- 100 * Exchange coefficient Hi in W / m 2 .K for a fluid flow G equal to 200 Kg / m 2 .s. Measuring conditions: temperature 0 ° C, tube length 3 m, flux 10 to 12 kW / m 2 .K, vapor content 0.2 to 0.9, and fluid flow G 200 kg / m 2 .s
** in Pa / m measured for a fluid flow G equal to 200 kg / m 2 .s

C) Results obtained in evaporation with refrigerant R407C on De tubes equal to 9.52 mm: TUBES => Properties E Fig.3 B Weight g / m 89 92.3 Cavallini's Factor 3.94 3.3 Loss of charge dP * 600 +/- 40 700 +/- 40 Coefficient * of exchange Hi local 6000 +/- 100 2500 +/- 100 Loss of charge dP ** 1200 +/- 40 1200 +/- 40 Coefficient ** of exchange Hi mean 11000 +/- 100 3000 +/- 100 Measurement conditions: temperature 5 ° C and flow 12 kw / m 2 .K. See figure 10 .
* Exchange coefficient Hi in W / m 2 .K and pressure drop dP in Pa / m taken at a fluid flow rate G equal to 100 Kg / m 2 .s and with an average vapor head of 0.6.
** Coefficient of exchange Hi in W / m 2 .K and pressure drop dP in Pa / m taken at a flow rate of fluid G equal to 200 Kg / m 2 .s and with an average vapor head of 0.3 .

III - 2 Résultats obtenus sur batteries :III - 2 Results obtained on batteries:

BATTERIES PropriétésBATTERIES Properties EE BB AAT ss Puissance* Condensation (watt) Fig.6 Power * Condensation (watt) Fig.6 5025 +/-1505025 +/- 150 4230 +/-1274230 +/- 127 4100 +/-1644100 +/- 164 4050 +/-1214050 +/- 121 Puissance** Evaporation (watt) Fig.7 Power ** Evaporation (watt) Fig.7 4650 +/-1404650 +/- 140 4350 +/-1754350 +/- 175 4200 +/-904200 +/- 90 4050 +/-1214050 +/- 121 * pour une vitesse frontale de l'air prise égale à 2,8 m/s.
** pour une vitesse frontale de l'air prise égale à 1,5 m/s
* for a frontal air speed of 2.8 m / s.
** for a frontal air speed of 1.5 m / s

IV - Conclusions :IV - Conclusions:

Tous ces résultats montrent que les tubes et échangeurs ou batteries de tubes selon l'invention présentent des propriétés supérieures aux produits analogues de l'état de la technique, à la fois en évaporation et en condensation.
En conséquence, et de manière surprenante, les tubes selon l'invention ne constituent pas seulement un bon compromis de performances en évaporation et en condensation, mais présentent aussi, dans l'absolu, d'excellentes performances par rapport aux tubes de l'état de la technique utilisés en évaporation et ceux utilisés en condensation, ce qui est d'un grand intérêt en pratique.
En outre, en ce qui concerne le poids au mètre, les valeurs obtenues avec les tubes selon l'invention correspondent à un gain allant de 3,7 à 6,7 % par rapport aux tubes selon l'état de la technique, pris à même diamètre et à même épaisseur Tf , ce qui est considéré comme très important.
Enfin, les tubes selon l'invention de type E peuvent être fabriqués avantageusement par rainurage à haute cadence de tube de cuivre non rainuré lisse, typiquement à une vitesse de rainurage voisine de celle utilisée pour les tubes de type B, à savoir au moins 80 m/min.
All these results show that the tubes and exchangers or batteries of tubes according to the invention have properties superior to the analogous products of the state of the art, both in evaporation and in condensation.
As a result, and surprisingly, the tubes according to the invention do not only constitute a good compromise of performance in evaporation and condensation, but also have, in absolute terms, excellent performance compared to the tubes of the state. of the technique used in evaporation and those used in condensation, which is of great interest in practice.
In addition, as regards the weight per meter, the values obtained with the tubes according to the invention correspond to a gain ranging from 3.7 to 6.7% compared to the tubes according to the state of the art, taken from same diameter and same thickness Tf, which is considered very important.
Finally, the tubes according to the invention of the type E can be advantageously manufactured by high-speed grooving of smooth non-grooved copper tube, typically at a grooving speed close to that used for the type B tubes, namely at least 80 m / min.

AVANTAGES DE L'INVENTIONADVANTAGES OF THE INVENTION

L'invention présente de grands avantages.
En effet, d'une part, les tubes et batteries utilisés selon l'invention présentent des performances intrinsèques élevées.
D'autre part, ces performances sont élevées à la fois en évaporation et en condensation, ce qui permet l'utilisation d'un même tube pour ces deux applications.
En outre, les tubes sont d'un poids au mètre relativement faible, ce qui est très avantageux à la fois d'un point de vue pratique, et du point de vue économique avec un coût matière relativement bas.
The invention has great advantages.
Indeed, on the one hand, the tubes and batteries used according to the invention have high intrinsic performances.
On the other hand, these performances are high in both evaporation and condensation, which allows the use of the same tube for these two applications.
In addition, the tubes have a relatively low weight per meter, which is very advantageous both from a practical point of view and from the economic point of view with a relatively low material cost.

Enfin, les tubes utilisés selon l'invention ne nécessitent pas de moyens de fabrication spécifiques. Ils peuvent être fabriqués avec les équipements standards et notamment avec les cadences de production habituelles.Finally, the tubes used according to the invention do not require specific manufacturing means. They can be manufactured with standard equipment and especially with the usual production rates.

LISTE DES REPERESLIST OF REFERENCES

Tube rainuréGrooved tube 11 NervureRib 22 RainureGroove 33 Rainure axialeAxial groove 3030 Batterie.Drums. 44 AiletteFin 55

Claims (18)

  1. Use of a heat exchanger operating in reversible mode, in evaporation or in condensation using a phrase-change refrigeration fluid, said exchanger comprising grooved metal tubes (1), of thickness Tf at the bottom of the groove, with an outside diameter De, said tubes being grooved internally by N helical grooves (2) of apex angle α, height H, base width LN and helix angle β, two consecutive ribs being separated by a groove (3) typically with a flat bottom of width LR, with a pitch P equal to LR + LN.
    a) the outside diameter De being between 4 and 20 mm,
    b) the number N of ribs ranging from 46 to 98, depending in particular on the diameter De,
    c) the height H of the ribs ranging from 0.18 mm to 0.40 mm, depending in particular on the diameter De,
    d) the apex angle α such that 20° ≤ α < 28°,
    e) the helix angle β ranging from 18° to 35°,
    f) said tube having a Cavallini factor of at least 3.5,
    so as to obtain simultaneously a high heat exchange coefficient in evaporation and condensation, a low pressure drop and a tube as lightweight as possible.
  2. Use according to claim 1, in which said ribs form a succession of ribs of height H1 = H and height H2 = a.H1, with a between 0.6 and 0.9.
  3. Use according to any one of claims 1 to 2, in which said succession is an alternation of ribs of height H1 and ribs of height H2 separated by a typically flat groove bottom.
  4. Use according to any one of claims 1 to 3, in which, when De is less than or equal to 9.55 mm, this gives:
    - H ranging 0.18 to 0.3 mm, and preferably 0.20 to 0.25 mm,
    - and/or N less than 75, and preferably ranging from 64 to 70.
  5. Use according to any one of claims 1 to 3, in which, when De is at least equal to 9.55 mm, this gives:
    - H ranging from 0.25 to 0.40 mm,
    - N ranging from 70 to 98.
  6. Use according to one of claims 1 to 5, in which the angle α ranges from 22° to 25°.
  7. Use according to any one of claims 1 to 6, in which the helix angle β ranges from 22° to 30°.
  8. Use according to any one of claims 1 to 7, in which the helix angle β ranges from 25° to 28°.
  9. Use according to any one of claims 1 to 8, in which said ribs have a profile of the "trapezium type with a base and vertex, said vertex comprising a substantially flat central part, and optionally a slope with respect to said base.
  10. Use according to claim 9, in which the vertex of said rib forming a small side of the trapezium has rounded edges.
  11. Use according to claim 10, in which said rounded vertex or said rounded edges have a radius of curvature ranging typically from 40 µm to 100 µm, and preferably 50 µm to 80 µm.
  12. Use according to any one of claims 1 to 11, in which the width LR of the flat bottom of said groove and the width LN of the base of said rib are such that LR = b.LN with b ranging from 1 to 2, and preferably 1.10 to 1.8.
  13. Use according to any one of claims 1 to 12, in which said ribs and said flat bottom of said grooves are connected with a radius of curvature typically less than 50 µm and preferable less than 20 µm.
  14. Use according to any one of claims 1 to 13, in which the Cavallini factor is at least 4.0.
  15. Use according to any one of claims 1 to 14, in which the tubes further comprise an axial grooving creating in said ribs recesses with a typically triangular profile with a rounded vertex, said vertex having an angle γ ranging from 25° to 65°, said bottom part or vertex is at a distance h from the bottom of said grooves ranging from 0 to 0.2 mm.
  16. Use according to any one of claims 1 to 15, in which the tubes are made from copper and copper alloys, aluminium and aluminium alloys.
  17. Use according to any one of claims 1 to 16, in which the tubes have typically been obtained by the grooving of tubes, or optionally by flat grooving of a metal strip and then formation of a welded tube.
  18. Use according to any one of claims 1 to 17, for reversible hair conditioners and multi-tube exchangers as coolers.
EP03743918.9A 2002-03-12 2003-03-10 Slotted tube with reversible usage for heat exchangers Expired - Lifetime EP1851498B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0203067A FR2837270B1 (en) 2002-03-12 2002-03-12 GROOVED TUBES FOR REVERSIBLE USE FOR HEAT EXCHANGERS
PCT/FR2003/000760 WO2003076861A1 (en) 2002-03-12 2003-03-10 Slotted tube with reversible usage for heat exchangers

Publications (2)

Publication Number Publication Date
EP1851498A1 EP1851498A1 (en) 2007-11-07
EP1851498B1 true EP1851498B1 (en) 2013-05-15

Family

ID=27772057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03743918.9A Expired - Lifetime EP1851498B1 (en) 2002-03-12 2003-03-10 Slotted tube with reversible usage for heat exchangers

Country Status (21)

Country Link
US (1) US7048043B2 (en)
EP (1) EP1851498B1 (en)
JP (1) JP2005526945A (en)
KR (1) KR100980755B1 (en)
CN (1) CN1636128A (en)
AU (1) AU2003242811B2 (en)
BR (1) BR0308372A (en)
CA (1) CA2474558C (en)
ES (1) ES2449091T3 (en)
FR (1) FR2837270B1 (en)
HR (1) HRP20040819B1 (en)
IL (2) IL162942A0 (en)
MX (1) MXPA04007907A (en)
MY (1) MY135526A (en)
NO (1) NO338468B1 (en)
PL (1) PL201843B1 (en)
PT (1) PT1851498E (en)
RU (1) RU2289076C2 (en)
WO (1) WO2003076861A1 (en)
YU (2) YU76804A (en)
ZA (1) ZA200405864B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837270B1 (en) 2002-03-12 2004-10-01 Trefimetaux GROOVED TUBES FOR REVERSIBLE USE FOR HEAT EXCHANGERS
FR2855601B1 (en) * 2003-05-26 2005-06-24 Trefimetaux GROOVED TUBES FOR THERMAL EXCHANGERS WITH TYPICALLY AQUEOUS MONOPHASIC FLUID
JP4651366B2 (en) * 2004-12-02 2011-03-16 住友軽金属工業株式会社 Internal grooved heat transfer tube for high-pressure refrigerant
KR100643399B1 (en) * 2005-09-12 2006-11-10 박설환 Radiating pipe and manufacturing method thereof, and radiator using that
JP4665713B2 (en) * 2005-10-25 2011-04-06 日立電線株式会社 Internal grooved heat transfer tube
WO2007144899A2 (en) * 2006-06-14 2007-12-21 Dura-Line India Pvt. Ltd. A duct with internal spiral ribs
US7743821B2 (en) 2006-07-26 2010-06-29 General Electric Company Air cooled heat exchanger with enhanced heat transfer coefficient fins
US20080078535A1 (en) * 2006-10-03 2008-04-03 General Electric Company Heat exchanger tube with enhanced heat transfer co-efficient and related method
KR20090022841A (en) * 2007-08-31 2009-03-04 엘지전자 주식회사 Heat exchanger of cycling apparatus and tube of the same and manufacturing method of the same
JP4738401B2 (en) * 2007-11-28 2011-08-03 三菱電機株式会社 Air conditioner
US20090211732A1 (en) * 2008-02-21 2009-08-27 Lakhi Nandlal Goenka Thermal energy exchanger for a heating, ventilating, and air conditioning system
JP5446163B2 (en) * 2008-08-04 2014-03-19 ダイキン工業株式会社 Grooved tube for heat exchanger
JP2010038502A (en) * 2008-08-08 2010-02-18 Mitsubishi Electric Corp Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioning device
JP2011144989A (en) * 2010-01-13 2011-07-28 Mitsubishi Electric Corp Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioner
DE102010007570A1 (en) * 2010-02-10 2011-08-11 ThyssenKrupp Nirosta GmbH, 47807 Product for fluidic applications, process for its preparation and use of such a product
EP2668460A1 (en) * 2011-01-28 2013-12-04 Carrier Corporation Tube structures for heat exchanger
CN102636073B (en) * 2012-04-20 2013-07-24 南京航空航天大学 Heat transfer element capable of generating longitudinal vortex and element pair thereof
US20150377563A1 (en) * 2013-02-21 2015-12-31 Carrier Corporation Tube structures for heat exchanger
US10132494B2 (en) * 2013-12-27 2018-11-20 Mitsubishi Hitachi Power Systems, Ltd. Heat transfer tube including a groove portion having a spiral shape extending continuously and a rib portion extending continuously and protruding inward by the groove portion
CN104807358A (en) * 2014-01-29 2015-07-29 卢瓦塔埃斯波公司 Inner groove tube with irregular cross section
US10473410B2 (en) * 2015-11-17 2019-11-12 Rochester Institute Of Technology Pool boiling enhancement with feeder channels supplying liquid to nucleating regions
SE540857C2 (en) * 2017-02-03 2018-12-04 Valmet Oy Heat transfer tube and method for manufacturing a heat transfer tube
US20220128318A1 (en) * 2020-10-28 2022-04-28 Carrier Corporation Heat transfer tube for heat pump application
CA3139673A1 (en) * 2020-12-02 2022-06-02 Carrier Corporation Heat transfer tube for air conditioner application

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044797A (en) 1974-11-25 1977-08-30 Hitachi, Ltd. Heat transfer pipe
JPS5238663A (en) 1975-09-22 1977-03-25 Hitachi Ltd Heat transmission tube
JPS55167091U (en) 1979-05-16 1980-12-01
JPS55180186U (en) 1979-06-09 1980-12-24
JPS5758094A (en) 1981-08-10 1982-04-07 Hitachi Ltd Heat transfer pipe
JPS6027917B2 (en) 1981-08-10 1985-07-02 株式会社日立製作所 Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning
JPS60142195A (en) 1983-12-28 1985-07-27 Hitachi Cable Ltd Heat transfer tube equipped with groove on internal surface thereof
JPS6225959A (en) 1985-07-26 1987-02-03 House Food Ind Co Ltd Production of starch-containing high-viscosity food contained in container
JPH0237292A (en) * 1989-06-07 1990-02-07 Sumitomo Light Metal Ind Ltd Condensing heat transmission pipe
JPH04302999A (en) * 1991-03-29 1992-10-26 Sumitomo Light Metal Ind Ltd Heat transfer tube with inner surface groove
JPH0579783A (en) * 1991-06-11 1993-03-30 Sumitomo Light Metal Ind Ltd Heat transfer tube with inner surface groove
JP2730824B2 (en) * 1991-07-09 1998-03-25 三菱伸銅株式会社 Heat transfer tube with inner groove and method of manufacturing the same
JP3219811B2 (en) * 1991-11-15 2001-10-15 株式会社神戸製鋼所 Heat transfer tube with internal groove
MX9305803A (en) * 1992-10-02 1994-06-30 Carrier Corp HEAT TRANSFER TUBE WITH INTERNAL RIBS.
DE4235247C1 (en) * 1992-10-20 1994-03-10 Link Wilhelm Kg Chair, especially office chair
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
FR2706197B1 (en) 1993-06-07 1995-07-28 Trefimetaux Grooved tubes for heat exchangers of air conditioning and refrigeration equipment, and corresponding exchangers.
US6164370A (en) * 1993-07-16 2000-12-26 Olin Corporation Enhanced heat exchange tube
JP2912826B2 (en) * 1994-08-04 1999-06-28 住友軽金属工業株式会社 Heat transfer tube with internal groove
DE19510124A1 (en) * 1995-03-21 1996-09-26 Km Europa Metal Ag Exchanger tube for a heat exchanger
JPH0921594A (en) * 1995-07-04 1997-01-21 Hitachi Ltd Heat transfer pipe for mixed refrigerant and method for producing the same
JPH0924594A (en) * 1995-07-12 1997-01-28 Iwatsu Electric Co Ltd Digital plate making machine
DE19612470A1 (en) * 1996-03-28 1997-10-02 Km Europa Metal Ag Exchanger tube
US6176301B1 (en) * 1998-12-04 2001-01-23 Outokumpu Copper Franklin, Inc. Heat transfer tube with crack-like cavities to enhance performance thereof
FR2837270B1 (en) 2002-03-12 2004-10-01 Trefimetaux GROOVED TUBES FOR REVERSIBLE USE FOR HEAT EXCHANGERS

Also Published As

Publication number Publication date
JP2005526945A (en) 2005-09-08
WO2003076861A1 (en) 2003-09-18
CA2474558A1 (en) 2003-09-18
YU76804A (en) 2006-01-16
AU2003242811B2 (en) 2009-05-28
ES2449091T3 (en) 2014-03-18
BR0308372A (en) 2005-01-11
NO20044299L (en) 2004-10-11
PL370690A1 (en) 2005-05-30
HRP20040819B1 (en) 2017-12-01
CA2474558C (en) 2011-03-08
MXPA04007907A (en) 2004-10-15
RU2004130315A (en) 2005-06-10
PL201843B1 (en) 2009-05-29
KR20040101283A (en) 2004-12-02
YU101804A (en) 2006-01-16
PT1851498E (en) 2013-07-04
IL162942A0 (en) 2005-11-20
FR2837270A1 (en) 2003-09-19
MY135526A (en) 2008-05-30
HRP20040819A2 (en) 2004-12-31
US7048043B2 (en) 2006-05-23
EP1851498A1 (en) 2007-11-07
CN1636128A (en) 2005-07-06
NO338468B1 (en) 2016-08-22
US20030173071A1 (en) 2003-09-18
KR100980755B1 (en) 2010-09-07
AU2003242811A1 (en) 2003-09-22
ZA200405864B (en) 2005-06-21
IL162942A (en) 2008-06-05
RU2289076C2 (en) 2006-12-10
FR2837270B1 (en) 2004-10-01

Similar Documents

Publication Publication Date Title
EP1851498B1 (en) Slotted tube with reversible usage for heat exchangers
EP0701680B1 (en) Grooved tubes for heat exchangers used in air conditioning and cooling apparatuses, and corresponding exchangers
EP1482269B1 (en) Grooved tubes for heat exchangers for single-phased typically aqueous fluids
CA2747353C (en) Heat exchanger comprising tubes with grooved fins
WO2012000779A2 (en) Heat exchanger tube, heat exchanger comprising such tubes and method for producing one such tube
EP2208955B1 (en) heat exchange fin for a heat exchange system
WO2005083347A1 (en) Metal blade for an air heat exchanger
EP2294348A1 (en) Plate type heat exchanger, particularly for motor vehicles
EP2691722B1 (en) Heat exchanger tube, and corresponding heat exchanger production method
EP1949012B1 (en) Grooved tubes for heat exchangers with better resistance to expansion
WO2012084584A1 (en) Brazing method for a heat exchanger, and corresponding tube and heat exchanger
EP0692692A1 (en) Pipe having an oblong cross-section for heat exchanger
WO2013127770A1 (en) Method of manufacturing a vehicle heat exchanger tube
WO2002086408A1 (en) Folded tube for a heat exchanger and method for the production thereof
EP2691725A1 (en) Heat exchanger collector box, in particular for a motor vehicle, and corresponding heat exchanger
EP2923166A1 (en) Collector box for a motor vehicle
WO2009040164A1 (en) Coating for heat exchanger material
WO2018142070A1 (en) Evaporator for air conditioning installation
FR2886393A1 (en) Metallic fins for heat exchanger, have upstream edge of blades with secondary fins which are inclined with respect to corresponding blade, where each fin has maximal width along flow direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KME FRANCE SAS

17Q First examination report despatched

Effective date: 20081008

REG Reference to a national code

Ref country code: GR

Ref legal event code: PP

Ref document number: 20080300019

Country of ref document: GR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 612368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20130624

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60344054

Country of ref document: DE

Effective date: 20130711

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20130401551

Country of ref document: GR

Effective date: 20130829

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 612368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2449091

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140318

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60344054

Country of ref document: DE

Effective date: 20140218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140310

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140310

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20030310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160310

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160310

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: TREFIMETAUX SAS

Effective date: 20190402

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: TREFIMETAUX SAS; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: KME FRANCE SAS

Effective date: 20190328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60344054

Country of ref document: DE

Representative=s name: SCHMIDT, MARTIN PETER, DIPL.-CHEM. DR., FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 60344054

Country of ref document: DE

Owner name: TREFIMETAUX SAS, FR

Free format text: FORMER OWNER: KME FRANCE SAS, COURBEVOIE, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20210323

Year of fee payment: 19

Ref country code: IT

Payment date: 20210323

Year of fee payment: 19

Ref country code: PT

Payment date: 20210225

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20210303

Year of fee payment: 19

Ref country code: BE

Payment date: 20210326

Year of fee payment: 19

Ref country code: GB

Payment date: 20210326

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210310

Year of fee payment: 19

Ref country code: DE

Payment date: 20210329

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210415

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220325

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60344054

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220912

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220310

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220310

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220310

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221006

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220311