EP1848925A2 - Generateur de vapeur de type horizontal - Google Patents

Generateur de vapeur de type horizontal

Info

Publication number
EP1848925A2
EP1848925A2 EP06708193A EP06708193A EP1848925A2 EP 1848925 A2 EP1848925 A2 EP 1848925A2 EP 06708193 A EP06708193 A EP 06708193A EP 06708193 A EP06708193 A EP 06708193A EP 1848925 A2 EP1848925 A2 EP 1848925A2
Authority
EP
European Patent Office
Prior art keywords
steam generator
water
steam
tubes
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06708193A
Other languages
German (de)
English (en)
Other versions
EP1848925B1 (fr
Inventor
Jan BRÜCKNER
Joachim Franke
Rudolf Kral
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06708193.5A priority Critical patent/EP1848925B1/fr
Publication of EP1848925A2 publication Critical patent/EP1848925A2/fr
Application granted granted Critical
Publication of EP1848925B1 publication Critical patent/EP1848925B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements

Definitions

  • the invention relates to a steam generator in which an evaporator fürlaufterrorism phenomenon angeord ⁇ net in a can be flowed through in an approximately horizontal Kleingasraum a gas evaporator fürlaufterrorism simulation comprising a number of parallel to the flow of a flow medium steam generator tubes summarized downstream of a number of each steam generator tubes flow medium side Exit collectors.
  • the heat contained in the relaxed working medium or heating gas from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer occurs in one of the gas turbine nachge ⁇ switched heat recovery steam generator in which typically a number of heating surfaces for water heating, for steam generation and arranged for steam superheating.
  • the heating surfaces are maral ⁇ tet in the water-steam cycle of the steam turbine.
  • the water-steam cycle usually includes several ⁇ re, z. B. three, pressure levels, each pressure stage can have a Ver ⁇ steamer Schu Structure.
  • a continuous steam generator In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to pressure limitation, so that it is possible for fresh steam pressures far above the critical pressure of water (P K ⁇ x 221 bar) - where no differentiation of the phases water and steam and thus no phase separation is possible. can be designed.
  • a high fresh steam pressure promotes a high thermal efficiency and thus low C0 2 emissions of a fossil-fueled power plant.
  • a continuous steam generator in comparison to a circulating steam generator a simple construction and is thus produced with very little effort.
  • the use of a fertilizer designed according to the continuous flow principle as a heat recovery steam generator of a gas and steam turbine plant is therefore to achieve a high overall efficiency of the gas and steam turbine plant in a simple design be ⁇ particularly favorable.
  • a heat recovery steam generator in horizontal design, in which the heating medium or heating gas, ie the exhaust gas from the gas turbine, is guided in approximately horizontal flow direction through the steam generator.
  • a steam generator which has a particularly high degree of flow stability when designed as a continuous-flow steam generator with comparatively low constructional and design complexity, is known, for example, from WO 2004/025176 A1.
  • This steam generator has an evaporator pass-through heating surface which comprises a number of steam generator tubes or evaporator tubes connected in parallel to the flow through a flow medium.
  • a continuous steam generator is operated in low-load operation or during start-up with a minimum flow of flow medium in the evaporator tubes in order to ensure reliable cooling of the evaporator tubes and to avoid possible formation of steam in the evaporator throughflow heating surface upstream of the economizer heating surface.
  • This minimum flow is not completely vaporized at start or in low-load operation in the evaporator tubes so that, when such an operation of the evaporator tubes ⁇ art at the end still unevaporated flow medium is present. In other words, in this mode of operation, a water-steam mixture emerges from the evaporator tubes.
  • the invention is therefore an object of the invention to provide a continuous steam generator of the above type, which allows for low production costs even in start-up or low load operation, a particularly high operational Flexibi ⁇ quality and thus in particular also kept low start-up and load change times.
  • each outlet header each comprises an integrated Wasserabscheiderelement through which the respective outlet collector is connected to the flow medium side with a number of nachge ⁇ switched superheater tubes a Kochhitzerschreib construction.
  • the invention is based on the consideration that for ER submission of a particularly high operational flexibility in the start-up or low-load operation, a particularly large share of the total available heating surfaces to evaporation ⁇ purposes should be available.
  • a superheater heating surface connected downstream of the evaporator throughflow heating surface should be able to be used for evaporation of the flow medium if necessary, ie just for starting or low load purposes.
  • the evaporation end point should be slidable into the superheater heating surface.
  • the transition region between the evaporator fürlaufterrorism behavior and the fol ⁇ ing superheater heating should be designed such that a feed of water into the superheater heating into it is possible.
  • the switched between the evaporating heating and the superheater heating water separation be designed such that a complex distribution is not required.
  • the water separation system is designed decentralized, wherein the separation function is integrated tube groups in a plurality of parallel connected, individual pipe groups associated components.
  • the already bauartbe ⁇ dingt are each only a small number of evaporator tubes associated, provided with their longitudinal direction in the heating-gas oriented outlet header.
  • the outlet collectors are designed for a water-vapor separation according to the principle of inertial separation as required.
  • ge ⁇ uses that due to the considerable inertial differences between steam on the one hand and water on the other hand, the vapor content of a water-steam mixture in an existing flow comparatively much easier to deflect can be subjected to the water content.
  • collector into this can be implemented in a particularly simple manner by, advantageously, the respective is off ⁇ takes collector essentially configured as a cylindrical body connected at its non-connected with the steam generator tubes end with a Wasserableitrohr consensus is.
  • an outflow pipe piece for flow medium branches off from the respective cylinder body or from the respective water drainage pipe piece and is expediently connected to a number of downstream superheater pipes.
  • the discharge collector provided with an integrated water separation function is thus essentially in the manner of a T-piece formed, in which the cylinder body forms a substantially straight-through channel, in which due to its relatively higher inertia preferably the Wasseran ⁇ part of the flow medium is performed. From this channel branches off the Abströmrohr Sharing, in which due to its relatively lower inertia preferably the vapor content of the flow medium is deflected into.
  • the outlet collector viewed from above - aligned with its longitudinal direction substantially parallel to the Schugasraum so that they receive the seen from in Walkergasraum successively arranged and thus differently heated evaporator tubes flowing flow medium.
  • the outlet header Viewed in the lateral direction, can also be aligned substantially parallel to the direction of the heating gas.
  • the outlet collector with integrated separation function is preferably designed such that, on the one hand, the water portion of the flow medium is preferably guided on the inner wall of the cylinder body opposite the branching outflow pipe piece and, on the other hand, the discharge of the water is favored.
  • the cylinder body and / or the Wasserableitrohr choir are advantageously arranged with its longitudinal direction with respect to the horizontal in the flow direction of the flow medium inclined downward.
  • the inclination can also be relatively strong, so that the cylinder body is oriented substantially vertically.
  • said inertia separation is additionally favored by the gravitational effect on the water content of the flow medium flowing in the cylinder body.
  • a particularly simple design with regard to the flow guidance of the separated water can be achieved by advantageously having some or all of the water separator elements on the water outlet side in groups, each with a common Men are connected outlet collector, which in turn is connected in a further advantageous embodiment, a water collection container.
  • the Wasserab ⁇ separator elements water-side downstream components such as outlet header or water tank are first completely filled with water, so that forms a backwater in further to ⁇ flowing water in the corresponding line pieces. Once this back pressure has reached the water ⁇ elements, a part-stream of new inflowing water is at least passed together with the steam in the flow medium with- out to the subsequent superheater tubes. In terms of extent, this partial flow corresponds to the amount of water that can not be absorbed by the downstream components of the water separator elements.
  • the so-called overfeeding of the separation system is advantageously in a device connected to the waste water collection connected via an associated control device controllable control valve.
  • the control device is advantageously provided with a for the enthalpy of the flow medium at the steam-side outlet of the sheath system Wasserab- the downstream superheater heating ⁇ ristic input value characte acted upon.
  • Valve of the effluent from the water collection mass flow adjustable Since this is replaced by a corresponding mass flow of water from the Wasserabscheidermaschinen, thus, the mass flow is adjustable, which passes from the Wasserabscheidermaschinen in the collection system. This in turn also the remaining part of current is adjustable, which is passed along in the steam in the superheater tubes so that a corresponding adjustment of this partial flow, for example at the end of the downstream over- hitzersammlungflache a given enthalpy met who can ⁇ .
  • the further given, together with the steam to the superheater tubes part ⁇ water stream also influenced by a corresponding Steue ⁇ tion of the superimposed circulation.
  • a circulation pump to the evaporator tubes assigned to ⁇ is controllable in other or of alternative advantageous embodiment, via the control device.
  • the respective outlet collector provided with integrated water separation function is designed for utilizing gravity in order to facilitate the removal of the separated water.
  • the or each off ⁇ is arranged occurs collector advantageously above the heating gas channel.
  • a particularly high operational stability of Dampferzeu ⁇ gers can be achieved if the evaporating heating is designed for a self-stabilizing flow behavior at auftre ⁇ border heating differences between individual steam generator tubes of fürlaufsammlungflache.
  • This it is ⁇ reichbar by the evaporating heating is designed in Particularly advantageous embodiment, such that a more heated in comparison to a further steam-generator tube of the same fürlaufsammlungflache steam generator tube has a higher in comparison to the further steam-generator tube flow rate of the flow medium.
  • the steam generator is expediently used as a waste heat steam generator of a gas and steam turbine plant.
  • the steam generator is advantageously followed by a gas turbine on the hot gas side.
  • this circuit can equipze ⁇ ßigerweise be arranged behind the gas turbine, an additional firing to increase the heating gas temperature.
  • FIG. 1 shows in a simplified representation in longitudinal section the evaporator section of a steam generator in a horizontal design.
  • the steam generator 1 shown in the figure, with its evaporator section is tet in the manner of a heat recovery steam generator of a gas turbine, not shown exhaust gas side nachgeschal ⁇ .
  • the steam generator 1 has a surrounding wall 2, which forms a in a nearly horizontal, indicated by the arrows 4
  • Bank of Agriculture x fuel gas channel 6 for the exhaust gas from the gas turbine.
  • a designed according to the flow principle evaporator fürlaufterrorism behavior 8 is arranged, which is connected for the flow ei ⁇ nes flow medium W, D a superheater heating surface 10 ⁇ .
  • the evaporator fürlaufsammlungflache 8 is acted upon with unvaporized flow medium W, which evaporates in normal or full load operation with a single pass through the evaporator fürlaufsammlung constitutional 8 and after exiting the evaporator fürlaufsammlungflache 8 as steam D of the superheater heating surface 10 is supplied.
  • the evaporator system formed by the evaporator through ⁇ heating surface 8 and the superheater 10 is connected to the non-illustrated water-steam cycle of a steam turbine.
  • a number of further heating surfaces are connected in the water-steam cycle of the steam turbine.
  • the evaporator continuous heating surface 8 is formed by a number of parallel to the flow of the flow medium W ge ⁇ switched steam generator tubes 12.
  • the steam generator tubes 12 are aligned substantially vertically with their longitudinal axis and for flow through the Strö ⁇ tion medium W from a lower inlet region to an upper outlet region, ie from bottom to top, designed.
  • the evaporator fürlaufterrorism design 8 comprises in the manner of a tube bundle a number of seen in Bankgasraum x successively arranged pipe layers 14, each of which is formed from a number of viewed in Bankgasraum x juxtaposed steam generator tubes 12, and of which in FIG each only one Steam generator tube 12 is visible.
  • Each tube layer 14 may be up to 200 steamer ⁇ zeugerrohre comprise 12th
  • the steam generator tubes 12 each tube layer 14 is in each case a common, with his
  • a common inlet header 16 can also be assigned to a plurality of pipe layers 14.
  • the inlet header 16 are connected to a in FIG only schematically indicated water supply system 18, which may include a distribution system for demand-based distribution of the influx of flow medium W to the inlet header 16.
  • the superheater heating surface 10 is formed by a number of superheater tubes 22. These are intracsbei ⁇ game for a flow through the flow medium in the downward ⁇ direction, so from top to bottom, designed.
  • On the input side is the superheater tubes 22 upstream of a number of designed as a so-called T-distributor distributors 24.
  • On the output side lead the superheater tubes 22 in the Common a ⁇ men live steam collector 26 from which overheated from the fresh an associated steam turbine in a manner not illustrated is supplied.
  • the live steam collector 26 below the Schugaskanals 6 angeord ⁇ net.
  • each superheater tube 22 each comprise a downcomer piece and a riser pipe piece downstream therefrom, wherein the live steam collector 26, like the outlet header 20, is arranged above the heating gas duct 6.
  • a drainage collector can be connected between downpipe pipe and riser pipe piece.
  • the evaporating heating 8 is designed such that it is suitable for a coolant injection into the steam generator tubes 12 having a comparatively low mass flow density, where ⁇ fer Wegerrohren at the design flow conditions in the proper Damp ⁇ 12 have a natural circulation characteristic.
  • this natural circulation characteristic has a compared to another steam generator tube 12 of the same evaporator fürlaufeckflache 8 more heated steam generator tube 12 ei ⁇ nen compared to the other steam generator tube 12 higher throughput of the flow medium W.
  • the steam generator 1 is designed for a reliable, homogeneous flow guidance with a comparatively simple construction.
  • the designed according to the design of the evaporator fürlaufsammlung Design 8 natural circulation characteristics is consistently used for a simple held distribution system.
  • This natural circulation characteristic and the associated dene, design provided in accordance with comparatively low mass flow density ge ⁇ maintained allow namely the combination ⁇ guide the partial flows into the heating gas direction x seen departures arranged one behind the other and thus differently heated steam generator tubes in a common space.
  • the number of outlet header 20 is adapted in each tube layer 14 to the number of steam generator tubes 12, so that in the We ⁇ sentlichen the successively positioned, respectively, a so-called evaporator disc forming steam generator tubes 12 a respective outlet header is assigned to the 20th
  • the distributors 24 are each aligned with their longitudinal axis parallel to the heating gas direction x, so that in each case a respective distributor 24 is assigned to the respective superheater tubes 22 positioned in succession.
  • the steam generator 1 is designed so that, if necessary, especially in start-up or low-load operation, the steamer ⁇ generating tubes 12 in addition to the vaporizable mass flow of fluid for reasons of operational safety yet another Umicalzmassenstrom can be superimposed on flow medium.
  • the steamer ⁇ generating tubes 12 in addition to the vaporizable mass flow of fluid for reasons of operational safety yet another Umicalzmassenstrom can be superimposed on flow medium.
  • An ⁇ driving and load change times and a particularly large proportion of heating surfaces available it is provided that in this operating state of Verdampfungsend ⁇ point, if necessary, from the steam generator tubes 12 in the Superheater tubes 22 can be moved into it.
  • each of the outlet header 20 includes an integrated Wasserabscheiderelement 28, via which the respective outlet header 20 is connected strömungsmedi- umsmann via an overflow pipe 30 to a downstream distributor 24th
  • each provided with integrated Abscheidefunkti ⁇ on the outlet header 20 are on the concept of an inertial separation of a water-steam mixture designed out.
  • the knowledge is used that the water content ei ⁇ nes water-steam mixture due to its relatively greater inertia at a branch point preferably continues to flow straight in its flow direction, whereas the vapor content of a forced deflection is relatively easier to follow due to its relatively lower inertia.
  • the outlet headers 20 are respectively executed in the type of T-pieces, being of a substantially configured as a cylinder body 32 body a opening into the respectively assigned overflow 30 Abströmrohr Sharing 34 for flow medium branches off.
  • the designed as a cylinder body 32 main body of the respective outlet header 20 is connected at its not connected to the steam generator tubes 12 end 36 with a Wasserableitrohr choir 38.
  • This construction thus the water content of the flowing water-steam mixture in the training occurs collector 20 on which the respective integrated waterrepellent ⁇ separator element 28 forming branching point of the outflow duct ⁇ piece 34 preferably further in the axial direction and passes Thus, over the end 36 in the Wasserableitrohr harmony 38.
  • the cylinder body 32 can be arranged with its longitudinal direction inclined downwards relative to the horizontal in the flow direction.
  • Water outlet side so on the Wasserableitrohr Communitye 38, which are integrated into the outlet header 20 water separator elements 28 in groups with a common ⁇ cum outlet collector 40 are connected.
  • This is a water collection container 42, in particular a separation bottle, connected after ⁇ .
  • the water collection container 42 is connected via a connected outflow line 44, from which also a discharge line 45 connected to a sewage system, to the water supply system 18 of the continuous evaporator heating surface 8, so that a closed circulation circuit can be operated.
  • This circulation can be superimposed in start-up, low or partial load operation flowing into the steam generator tubes 12 evaporable flow medium, an additional circulation to increase the operational safety.
  • the formed by the integrated Wasserabscheiderimplantation 28 deposition system can be operated here in such a way that all of the off ⁇ the steam generator tubes 12 enters still entrained water from the flow medium deposited and only evaporated flow medium is passed to the superheater tubes 22nd
  • the water separation system can also be operated in the so-called over-flow mode, in which not all water is separated from the flow medium, but a partial flow of entrained water is passed on to the superheater tubes 22 together with the steam.
  • the evaporation end point shifts into the superheater tubes 22.
  • over-fed mode first both the water collecting tank 42 and the upstream outlet header 40 completely fill with water, so that a backflow forms up to the transition area ⁇ respective water separator 28 on which the outlet pipe section 34 branches off. Due to this back jam undergoes also the water content of the water separator ⁇ elements 28 flowing flow medium at least teilwei ⁇ se, a deflection and thus passes together with the steam into the Abströmrohr choir 34.
  • the water separation system is associated with a control device 60 which is connected on the input side to a measuring sensor 62 designed to determine a characteristic value characteristic of the enthalpy at the flue gas end of the superheater heating surface 22.
  • the control device 60 acts on the one hand to a switched into the outflow line 44 of the water collection container 42
  • Control valve 64 a This can be specified by selective control of the control valve 64, the water flow, the off taken from the separation system. This mass flow can in turn be withdrawn from the flow medium in the water separator elements 28 and forwarded to the subsequent collection systems.
  • the control valve 64 is possible to influence the in Wasserabscheiderelement 28 per ⁇ wells diverted water flow, and thus a further influencing of the given still in the flow medium to the superheater 22 after deposition by controlling the water content.
  • the control device 60 can still act on a circulating pump 66 connected in the outflow line 44, so that the inflow rate of the medium into the water separation system can also be adjusted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Central Heating Systems (AREA)

Abstract

L'invention concerne un générateur de vapeur (1) dans lequel une surface d'évaporation à chauffage continu (8) est disposée dans un canal de gaz chaud (6) pouvant être traversé par du gaz chaud dans une direction (x) sensiblement horizontale, cette surface comprenant une pluralité de tuyaux de génération de vapeur (12) montés en parallèle et destinés à être parcourus par un fluide d'écoulement. Une pluralité de collecteurs de sortie (20) montés en aval de certains des tuyaux de génération de vapeur (12) du côté du fluide d'écoulement sont orientés dans leur sens longitudinal sensiblement parallèlement à la direction (x) du gaz chaud. L'objectif de l'invention est de perfectionner ce générateur de vapeur (1) de sorte qu'il permette d'obtenir une flexibilité opérationnelle particulièrement élevée et par là même des temps de démarrage et de changement de charge particulièrement réduits, y compris en mode de démarrage ou à faible charge, tout en étant de production économique. A cet effet, chaque collecteur de sortie (20) comprend un élément séparateur d'eau (28) intégré par l'intermédiaire duquel il est relié du côté du fluide d'écoulement avec une pluralité de tuyaux de surchauffe (22) d'une surface de surchauffe (10) montés en aval.
EP06708193.5A 2005-02-16 2006-02-10 Générateur de vapeur de type horizontal Active EP1848925B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06708193.5A EP1848925B1 (fr) 2005-02-16 2006-02-10 Générateur de vapeur de type horizontal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05003268A EP1701090A1 (fr) 2005-02-16 2005-02-16 Générateur de vapeur à construction horizontale
PCT/EP2006/050851 WO2006087299A2 (fr) 2005-02-16 2006-02-10 Generateur de vapeur de type horizontal
EP06708193.5A EP1848925B1 (fr) 2005-02-16 2006-02-10 Générateur de vapeur de type horizontal

Publications (2)

Publication Number Publication Date
EP1848925A2 true EP1848925A2 (fr) 2007-10-31
EP1848925B1 EP1848925B1 (fr) 2016-09-28

Family

ID=34933772

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05003268A Withdrawn EP1701090A1 (fr) 2005-02-16 2005-02-16 Générateur de vapeur à construction horizontale
EP06708193.5A Active EP1848925B1 (fr) 2005-02-16 2006-02-10 Générateur de vapeur de type horizontal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05003268A Withdrawn EP1701090A1 (fr) 2005-02-16 2005-02-16 Générateur de vapeur à construction horizontale

Country Status (16)

Country Link
US (1) US7628124B2 (fr)
EP (2) EP1701090A1 (fr)
JP (1) JP4781370B2 (fr)
CN (1) CN100572911C (fr)
AR (1) AR052290A1 (fr)
AU (1) AU2006215685B2 (fr)
BR (1) BRPI0608082A2 (fr)
CA (1) CA2597936C (fr)
ES (1) ES2609410T3 (fr)
MY (1) MY145953A (fr)
PL (1) PL1848925T3 (fr)
RU (1) RU2382936C2 (fr)
TW (1) TWI357965B (fr)
UA (1) UA88350C2 (fr)
WO (1) WO2006087299A2 (fr)
ZA (1) ZA200705853B (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710498A1 (fr) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Générateur de vapeur
WO2007133071A2 (fr) * 2007-04-18 2007-11-22 Nem B.V. Générateur de vapeur alimenté par le bas pourvu d'un séparateur et d'une conduite de descente
EP2065641A3 (fr) * 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur en flux continu, ainsi que générateur de vapeur en flux à sens unique
EP2180250A1 (fr) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Générateur de vapeur en continu
EP2204611A1 (fr) 2008-09-09 2010-07-07 Siemens Aktiengesellschaft Générateur de vapeur à récupération de chaleur
EP2182278A1 (fr) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Générateur de vapeur en continu
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
NL2003596C2 (en) 2009-10-06 2011-04-07 Nem Bv Cascading once through evaporator.
US9273865B2 (en) * 2010-03-31 2016-03-01 Alstom Technology Ltd Once-through vertical evaporators for wide range of operating temperatures
ITMI20102463A1 (it) * 2010-12-30 2012-07-01 Stamicarbon Metodo per l'avviamento e la gestione di un impianto termico a ciclo combinato per la produzione di energia e relativo impianto
WO2013011904A1 (fr) * 2011-07-15 2013-01-24 日本電気株式会社 Dispositif de refroidissement et dispositif de réception d'instrument l'utilisant
US10274192B2 (en) 2012-01-17 2019-04-30 General Electric Technology Gmbh Tube arrangement in a once-through horizontal evaporator
MX349702B (es) 2012-01-17 2017-08-08 General Electric Technology Gmbh Un método y aparato para conectar secciones de un evaporador horizontal directo.
US20140123914A1 (en) * 2012-11-08 2014-05-08 Vogt Power International Inc. Once-through steam generator
WO2015028378A2 (fr) * 2013-08-28 2015-03-05 Siemens Aktiengesellschaft Procédé de fonctionnement, en particulier pour démarrer un générateur de vapeur à circulation forcée chauffé par héliothermie
US10125972B2 (en) * 2014-03-21 2018-11-13 Amec Foster Wheeler Energia, S.L.U. Apparatus that provides and evaporation cycle of a natural circulation steam generator in connection with a vertical duct for upward gas flow
US9541280B2 (en) 2014-06-04 2017-01-10 Fives North American Combustion, Inc. Ultra low NOx combustion for steam generator
DE102014222682A1 (de) 2014-11-06 2016-05-12 Siemens Aktiengesellschaft Regelungsverfahren zum Betreiben eines Durchlaufdampferzeugers
EP3318800A1 (fr) * 2016-11-02 2018-05-09 NEM Energy B.V. Système d'évaporateur

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927646A (en) * 1965-04-13 1975-12-23 Babcock & Wilcox Co Vapor generator
US3369526A (en) * 1966-02-14 1968-02-20 Riley Stoker Corp Supercritical pressure boiler
US3789806A (en) * 1971-12-27 1974-02-05 Foster Wheeler Corp Furnace circuit for variable pressure once-through generator
US4572110A (en) * 1985-03-01 1986-02-25 Energy Services Inc. Combined heat recovery and emission control system
JPH0445301A (ja) * 1990-06-13 1992-02-14 Toshiba Corp 自然循環形排熱回収熱交換器
JP3727668B2 (ja) * 1993-09-17 2005-12-14 三菱重工業株式会社 排ガスボイラ
DE19651678A1 (de) * 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger
DE59707431D1 (de) * 1997-12-01 2002-07-11 Alstom Kombinierte Gas-Dampf-Kraftwerksanlage mit Zwangdurchlaufdampferzeuger
US6055803A (en) * 1997-12-08 2000-05-02 Combustion Engineering, Inc. Gas turbine heat recovery steam generator and method of operation
US5924389A (en) * 1998-04-03 1999-07-20 Combustion Engineering, Inc. Heat recovery steam generator
DK1086339T3 (da) * 1998-06-10 2002-04-15 Siemens Ag Fossilt fyret gennemløbsdampgenerator
DE19914761C1 (de) * 1999-03-31 2000-09-28 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
DE19914760C1 (de) * 1999-03-31 2000-04-13 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
DE19929088C1 (de) * 1999-06-24 2000-08-24 Siemens Ag Fossilbeheizter Dampferzeuger mit einer Entstickungseinrichtung für Heizgas
EP1398565A1 (fr) * 2002-09-10 2004-03-17 Siemens Aktiengesellschaft Générateur de vapeur à construction horizontale
EP1398564A1 (fr) * 2002-09-10 2004-03-17 Siemens Aktiengesellschaft Procédé pour faire fonctionner un générateur de vapeur à construcion horizontale, et générateur de vapeur pour mettre en oeuvre ledit procédé
US7243618B2 (en) * 2005-10-13 2007-07-17 Gurevich Arkadiy M Steam generator with hybrid circulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006087299A3 *

Also Published As

Publication number Publication date
TW200634258A (en) 2006-10-01
CN101120206A (zh) 2008-02-06
WO2006087299A2 (fr) 2006-08-24
UA88350C2 (ru) 2009-10-12
WO2006087299A3 (fr) 2006-11-16
PL1848925T3 (pl) 2017-03-31
TWI357965B (en) 2012-02-11
RU2007134409A (ru) 2009-03-27
CA2597936C (fr) 2013-10-29
JP2008530494A (ja) 2008-08-07
JP4781370B2 (ja) 2011-09-28
AU2006215685A1 (en) 2006-08-24
RU2382936C2 (ru) 2010-02-27
AU2006215685B2 (en) 2010-09-30
EP1848925B1 (fr) 2016-09-28
ES2609410T3 (es) 2017-04-20
EP1701090A1 (fr) 2006-09-13
ZA200705853B (en) 2008-09-25
US7628124B2 (en) 2009-12-08
AR052290A1 (es) 2007-03-07
MY145953A (en) 2012-05-31
CA2597936A1 (fr) 2006-08-24
CN100572911C (zh) 2009-12-23
US20080190382A1 (en) 2008-08-14
BRPI0608082A2 (pt) 2009-11-10

Similar Documents

Publication Publication Date Title
EP1848925B1 (fr) Générateur de vapeur de type horizontal
EP0944801B1 (fr) Chaudiere a vapeur
EP1710498A1 (fr) Générateur de vapeur
EP1660814A1 (fr) Procede pour faire demarrer un dispositif de production de vapeur en continu, et dispositif de production de vapeur en continu pour mettre en oeuvre le procede
EP1588095B1 (fr) Generateur de vapeur
EP1701091A1 (fr) Générateur de vapeur à passage unique
DE10127830B4 (de) Dampferzeuger
EP2324285B1 (fr) Générateur de vapeur à récupération de chaleur
EP2438351B1 (fr) Évaporateur continu
EP1288567A1 (fr) Générateur de vapeur et procédé de démarrage d'un générateur de vapeur ayant un canal de gas de chauffage, celui-ci étant traversé par le gas de chauffage avec une direction sensiblement horizontale
EP2321578B1 (fr) Générateur de vapeur en continu
WO2006032556A1 (fr) Generateur de vapeur en continu chauffe a l'aide d'un combustible fossile
EP1660812B1 (fr) Générateur de vapeur à passage unique et méthode pour faire fonctionner ledit générateur de vapeur à passage unique
WO2015039831A2 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur
EP1537358B1 (fr) Generateur de vapeur construit horizontalement
CH653758A5 (de) Zwangsdurchlaufkessel.
EP2409078B1 (fr) Procédé de conception d'un évaporateur continu
EP1554522B1 (fr) Procede pour exploiter un generateur de vapeur de conception horizontale
EP1512906A1 (fr) Générateur de vapeur de construction horizontale à passage unique et méthode pour faire fonctionner ledit générateur de vapeur à passage unique
DE102010040216A1 (de) Solarthermischer Druchlaufdampferzeuger mit einem Dampfabscheider und nachgeschaltetem Sternverteiler für Solarturm-Kraftwerke mit direkter Verdampfung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070704

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F22B 37/26 20060101AFI20160321BHEP

Ipc: F22B 1/18 20060101ALI20160321BHEP

INTG Intention to grant announced

Effective date: 20160422

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006015175

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 833102

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015175

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2609410

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015175

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

26N No opposition filed

Effective date: 20170629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 833102

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160928

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006015175

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220811 AND 20220817

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230206

Year of fee payment: 18

Ref country code: IT

Payment date: 20230221

Year of fee payment: 18

Ref country code: BE

Payment date: 20230216

Year of fee payment: 18

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20240409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240308

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 19

Ref country code: GB

Payment date: 20240220

Year of fee payment: 19