EP1846972A1 - Systeme pile a combustible et procede de commande associe - Google Patents

Systeme pile a combustible et procede de commande associe

Info

Publication number
EP1846972A1
EP1846972A1 EP06709414A EP06709414A EP1846972A1 EP 1846972 A1 EP1846972 A1 EP 1846972A1 EP 06709414 A EP06709414 A EP 06709414A EP 06709414 A EP06709414 A EP 06709414A EP 1846972 A1 EP1846972 A1 EP 1846972A1
Authority
EP
European Patent Office
Prior art keywords
value
stack
current density
battery
requested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06709414A
Other languages
German (de)
English (en)
Inventor
Nathalie Cornet
Cécile BERNAY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1846972A1 publication Critical patent/EP1846972A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and an associated control method.
  • Fuel cells are used to provide energy either for stationary applications, or in the aeronautical or automotive field
  • the standard PEM (“Proton Exchange Membrane”) type fuel cells comprise elementary cells which consist in particular of a bipolar plate and an electrode / membrane assembly commonly called MEA ("Membrane Electrodes Assembly" in the English language).
  • MEA Electrode Electrodes Assembly
  • the electrochemical reactions which take place in the fuel cell make it possible to supply electrical energy.
  • a cell is supplied with hydrogen at the anode, for example by a reformer or a hydrogen reservoir, and with oxygen at the cathode. usually by a group of air compression
  • the aim is to achieve the best possible system performance.
  • Optimizing the efficiency of such a system is sought by reducing the power losses generated by the various auxiliary elements, and by optimizing the operating efficiency of different components. More particularly, the efficiency of the system depends directly on the initial choice of the operating voltage chosen for the maximum power of the fuel cell Generally, the operating voltage chosen for the maximum power of the battery is about 0.6V, by compromise between compactness and cost of the battery
  • Condensers are arranged at the outlet of the anode and the cathode of the fuel cell, making it possible to condense the outlet gases of the cell. It is important to be able to increase the temperature of the end of condensation at the outlet of the cell. temperature end of condensation, an average temperature representative of the temperatures at the outlet of the anode and cathodic condensers located at the outlet of the fuel cell
  • On-stoichiometry is understood to mean Ra in hydrogen and by following stoichiometry Rc oxygen, an amount of reagents provided greater than the amount that would be strictly necessary for the reactions considered (stoechiomét ⁇ e 1)
  • current density is meant the local intensity value per surface unit.
  • the current density corresponds to the intensity delivered by the cell, divided by the active surface value of a battery cell plus the power delivered by the battery is low, the lower the battery density delivered by the battery is low
  • An object of the invention is to optimize the operation of the cell and the temperatures at the end of anodic and cathodic condensations, for small current density values delimited by the cell.
  • a fuel cell system comprising means for supplying hydrogen to the anode of the cell, means for supplying oxygen to the cathode of the cell, and a control unit.
  • the system also comprises first control means for controlling the cell. supply of hydrogen to the anode of the cell and second means of controlling the supply of oxygen to the cathode of the cell.
  • the system comprises the first means for determining hydrogen supraichiometry in the anodic oxidation half - reaction, and second means for determining an omet ⁇ e oxygen super - stoichi of the cathodic reduction half - reaction, said first and second means for controlling are adapted to adapt said hydrogen and oxygen stoichiometries to the stack depending on the power demanded from the stack.
  • the temperature at the outlet of the condensers situated at the outlet of the fuel cell is then higher, which makes it possible to limit the vol ume of the condensers and to improve the efficiency of the system.
  • the power demanded from the battery is a function of the current density requested from the battery
  • the current density delivered by the battery is a parameter that is well known to handle, the power demand passing through a control intensity or current density.
  • said first control means are adapted to maintain said constant hydrogen stoichiometry when the current density requested at the stack is lower than a first value, and increasing as a function of the current density requested at the stack when the current density requested at the stack is greater than said first value and lower than a second value greater than said first value.
  • said second control means are adapted to maintain said constant oxygen stoichiometry when the density current requested to the stack is less than said first value, and increasing as a function of the current density requested from the stack when the current density requested from the stack is greater than said first value and lower than said second value.
  • said first determination means comprise first connected computing means. a first flowmeter disposed at the inlet of the anode of the cell, and said second determination means comprise second calculation means connected to a second flowmeter arranged in an integer of the cathode of the cell;
  • the system comprises a sensor for measuring the intensity delivered by the battery 1
  • the corresponding current density is calculated from this mesuie intensity and the active surface of a battery cell.
  • said first value is substantially equal to 0.2 A / cm 2
  • said second value is substantially equal to 0.6 A / cm 2
  • said first control means are adapted to maintain said on-stoichiometry in linearly increasing hydrogen law sque the current density requested to the stack is greater than the first adite value and lower than said second value De Pl us, said second control means are adapted to maintain said on-stoichiometry in linearly increasing oxygen law sque the current density requested to the stack is greater than said second value and lower than said first value
  • a method of controlling a fuel cell system characterized by supplying the anode of the cell with hydrogen and oxygenating the same. cathode of the cell, so as to respectively adapt the superstoichiomét ⁇ es hydrogen of the half-anodic oxidation reaction and oxygen of the cathodic reduction half-reaction according to the power demanded pi pi
  • the power demanded from the cell is a function of the current density required from the cell.
  • said hydrogen stagnation is maintained constant when the density The current requested from the stack is less than a first value, and increasing as a function of the current density requested from the stack when the deny of current requested from the stack is greater than said first value and less than a second value.
  • the constant oxygen stoichiometry is maintained when the required density of the stack is lower than the first value, and increasing as a function of the current density required at the first value. the stack obtains the current density requested from the stack is greater than said first value and lower than said second value
  • FIG. 1 is a block diagram of a system according to one aspect.
  • FIG. 2 illustrates a method according to one aspect of the invention
  • FIG. 3 illustrates an adaptation of the anodic and cathodic over-stoichiometries according to one aspect of the invention.
  • Fig 1 represents a system according to the invention, embarked in a motor vehicle
  • the system comprises a fuel cell 1 comprising an anode portion A and a cathode portion C, a reformer 2 for supplying hydrogen fuel cell 1
  • the system comprises also a burner 3 for heating the entire system, during the start-up phase, as well as regulating the temperature during nominal operation
  • the fuel cell 1 is designed so that the voltage chosen for the maximum power
  • the burner 3 also supplies the energy required for the reforming reaction and makes it possible to oxidize the hydriogen when it uses a return of the anode output gases from the fuel cell 1. also to provide the energy necessary for the vaporization of the water and the fuel necessary for the ieformer 2.
  • the system also comprises an air compression unit 4, which supplies oxygen, generally in the form of compressed air, to the fuel cell 1, and the burner 3, respectively via ducts 5 and 6. air 4 also feeds into air a preferred oxidation reactor 7 via a conduit 8
  • the system further comprises an electronic control unit 9 also used for other purposes such as vehicle stability control or braking, connected at reformer 2, the burner 3, the fuel cell 1 and the air compression unit 4 respectively by connections 10, 11, 12 and 13.
  • the system also comprises a fuel supply device 14, comprising a fuel tank, connected to the electronic control unit 9 via a connection 15.
  • This fuel supply device 14 supplies the burner 3 with fuel.
  • a vaporizer 16 which vaporizes the water and the fuel input of the reloimeur 2
  • the burner 3 and the vapo ⁇ sateui 16 are respectively fueled by conduits 17 and 18
  • At the outlet of refoi die 2 are present two reaction reactors 19 and 20 of These two reactors 19 and 20, as well as the preferred oxidation reactor 7, allow the carbon monoxide content CO of the reformate fueling the fuel cell 1 to be considerably reduced because the monoxide of CO Carbon Poisons Fuel Cells
  • Various heat exchangers 21, 22 and 23 are present to cool gas streams
  • the system also includes various condensers 24, 25 and 26 for receiving water and sending it, respectively by conduits 27 28 and 29 in a water supply device 30, comprising a tank of water, allowing in particular food the vapo ⁇ sateui 16 in water through a conduit 31
  • the outlet gases from the anode A are fed to the condenser 25 via a pipe 39.
  • the outlet gases from the condenser 25 then feed the combustion chamber 3 through a pipe 40.
  • the outlet gases from the cathode portion C of the fuel cell 1 are fed to the condenser 26 through a conduit 41, before being mixed, through a conduit 42, to the exit gases of the exchanger 23
  • the mixture is then fed to the turbine 4
  • the device of The water supply 30 is also controlled by the electronic control unit 9 via a connection 43.
  • the electronic control unit 9 comprises a first module 44 for controlling the supply of hydrogen in the cell, for example by acting on the reformer 2, as well as a second module 45 for controlling the oxygen supply of the cathode of the battery, for example by acting on the air compression group 4
  • the electronic control unit 9 furthermore comprises a first module 46 for determining an over-stoichiometry Ra in hydrogen of the anodic oxidation half-reaction, and a second module 47 for determining an on-stoichiometry Rc in oxygen of the cathodic reduction half-reaction.
  • the first and second modules 46 and 47 determine the respective over-stoichiometries Ra and Rc, as a function of the different flow rates feeding the battery 1, supplied for example by respective flow meters 48 and 49.
  • the flowmeter 48 is located at the inlet of the supply in hydrogen from the anode A of the pile
  • the flow meter 49 is located at the inlet of the oxygen supply of the cathode C of the cell 1.
  • the flow meters 48 and 49 are respectively connected to the electronic control unit 9 by connections 50 and 51. Electrical energy supplied by the battery with an output cable 52 is measured by a current sensor 53 connected to the electronic control unitc 9 by a connection 54 the electronic control unit calculates the current density corresponding to the intensity provided by the sensor 53.
  • the power demanded from the battery 1 is, for example, a function of the current density requested from the battery 1.
  • the first and second control means 44 and 45 test (step 60) if the current density requested at the stack 1 is lower than the first value If the current density demanded at the cell 1 is lower than the first value, the first and second control means 44 and 45 maintain the over-stoichiometry Ra and Rc constant as a function of the current density requested at the cell 1 (step 61). If the current density requested at the stack 1 is greater than or equal to the first value, the first and second control means 44 and 45 test (step 62) if the current density requested at the stack 1 is less than the second value. .
  • the first and second control means 44 and 45 maintain the increasing on-stoichiometry Ra and Rc as a function of the density of the current requested on stack 1 (step 63).
  • the first and second control means 44 and 45 maintain the over-stoichiometry Ra and Rc constant as a function of the current density requested at the stack 1
  • the super-stoichiometry Ra in hydrogen of the anodic oxidation half-reaction has a value of 1, 30, and the super-stoichiometry Rc in oxygen of the cathodic reduction half-reaction has a value of 1.8. .
  • the invention makes it possible to adapt the respective super-stoichiometries Ra and Rc, as a function of the current density delivered by the fuel cell 1.
  • FIG. 3 An example of such an adaptation of the superstoichiometries as a function of the current density required of the stack is illustrated in FIG. 3.
  • the first current density value is 0.2 A / cm 2
  • the second current density value is 0.6 A / cm 2 .
  • the burner 3 can only be fed with the gases coming from the anode outlet of the fuel cell 1, or, if the reformer 2 needs more thermal energy, the burner 3 can also be powered. by fuel.
  • the expression of the efficiency of the system then varies according to the supply of the burner 3.
  • the invention makes it possible to increase the efficiency of the fuel cell system by about 2 to 5%, and to reduce by 2 to 4% the consumption of the air supply device of the fuel cell system. low power demand on the stack.
  • condensation end temperature is increased from 4 to 8 0 C, which makes it possible to reduce the volume of the outlet condensers of the fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Le système pile à combustible comprend des moyens (2) pour alimenter en hydrogène l'anode (A) de la pile (1), des moyens (4) pour alimenter en oxygène la cathode (C) de la pile (1), et une unité de commande (9). Le système comprend également des premiers moyens de commande (44 ) de l'alimentation en hydrogène de l'anode (A ) de la pile (1) et des deuxièmes moyens de commande (45) de l’alimentation en oxygène de la cathode (C) de la pile (1). Le système comprend en outre des premiers moyens de détermination d'une sur-stœchiométrie en hydrogène de la demi-réaction d'oxydation anodique, et des deuxièmes moyens de détermination d'une sur-stœchiométrie en oxygène de la demi-réaction de réduction cathodique. Lesdits premiers et deuxièmes moyens de commande (44, 45 ) sont respectivement aptes à adapter lesdites sur- stœchiométries en hydrogène et en oxygène de la pile (1) en fonction de la puissance demandée à la pile (1).

Description

SYSTEME PILE A COMBUSTIBLE ET PROCEDE DE COMMANDE ASSOCIE
La présente invention concerne un système pile à combustible et un procédé de commande associé. Les piles à combustible sont utilisées pour fournir de l'énergie soit pour des applications stationnaires, soit dans le domaine aéronautique ou automobile
Les piles à combustibles standard de type PEM ("Proton Exchange Membrane" en langue anglaise) comprennent des cellules élémentaires qui se composent notamment d'une plaque bipolaire et d'un assemblage électrodes/membrane couramment appelé MEA ("Membrane Electrodes Assembly" en langue anglaise)
Les réactions électrochimiques qui se déroulent dans la pile à combustible permettent de fournir de l'énergie électrique Une telle pile est alimentée en hydrogène à l'anode, par exemple par un reformeur ou un réservoir d'hydrogène, et en oxygène à la cathode, généralement par un groupe de compression d'air
Afin de réduire au maximum la consommation d'un système pile à combustible, ainsi que les émissions de dioxyde de carbone, on cherche à obtenir le meilleur rendement possible du système
L'optimisation du rendement d'un tel système est recherchée par la réduction des pertes de puissance engendrées par les différents éléments auxiliaires, et par une optimisation du rendement de fonctionnement de différents organes Plus particulièrement, le rendement du système dépend directement du choix initial de la tension de fonctionnement choisie pour la puissance maximale de la pile à combustible Généralement, la tension de fonctionnement choisie pour la puissance maximale de la pile est d'environ 0,6V, par compromis entre compacité et coût de la pile
Des condenseurs sont disposés en sortie de l'anode et de la cathode de la pile à combustible, permettant de condenser les gaz de sortie de la pile II est important de pouvoir augmenter la températuie de fin de condensation en sortie de la pile On entend par température de fin de condensation, une température moyenne représentative des températures en sortie des condenseurs anodiques et cathodiques situés en sortie de la pile à combustible
En effet, plus la différence entre la température de fin de condensation et la température du fluide caloporteur de la boucle de circulation du système est élevée, plus la quantité de chaleur absorbable pai le fluide caloporteur est importante, et plus le volume des condenseuis peut être diminué
Une SUi -stœchiométπe Ra en hydrogène de la demi-réaction de réduction anodique (H2 — > 2H+ + 2e") et une sur-stœchiométπe Rc en oxygène de la demi-réaction d'oxydation cathodique
(— O2 +2H+ +2e~ — >H2O) permettent de s'affranchir de problèmes de performances globales de la pile et de stabilité de fonctionnement de la pile On entend par sur-stœchiométπe Ra en hydrogène et par sui- stœchiométπe Rc en oxygène, une quantité de réactifs apportés supérieure à la quantité qui serait strictement nécessaire aux réactions considérées (stoechiométπe 1)
Une augmentation de la sur-stœchiométπe en hydrogène de la demi-réaction de réduction anodique et/ou de la sur-stœchiométπe en oxygène de la demi-réaction d'oxydation cathodique entraînent une diminution du rendement global d'un tel système de pile à combustible
II existe néanmoins une limitation de la baisse de ces sur- stœchiométπes liée à la performance acceptable et la stabilité de la pile En effet, si ces sur-stœchiométπes sont trop basses, certaines tensions électπques de cellules peuvent trop fortement chuter, et même passer à des tensions électriques de signe inverse, engendrant un risque d'endommagement irréversible de la pile Le brevet US 6 586 123 (UTC Fuel cells) décrit une augmentation des sur-stœchiométπes en hydrogène de la demi-réaction de réduction anodique et en oxygène de la demi-réaction d'oxydation cathodique en fonction de la densité de courant délivrée par la pile à combustible, au-dessus d' une valeur de seuil de 0,6 A/c m2, afin de préserver les performances de la pile à de fortes densités de courant
Cependant, pour de faibles valeurs de densité de courant, le rendement de la pile et les températures en fin de condensation anodique et cathodique ne sont pas optimisés
On entend par densité de courant la valeur d' intensité locale par uni té de surface La densité de courant correspond à l ' intensité délivrée par la pile, divisée par la valeur de surface active d' une cellule de pile Plus la puissance déli vrée par la pile est faible, plus la densité de coui ant déli vrée par la pile est faible
Un but de l' invention est d' optimiser le fonctionnement de la pile et les températures en fin de condensations anodi que et cathodique, pour de faibles valeurs de densité de courant déli vrées par la pile Selon un aspect de l' invention, il est proposé un système pile a combustible comprenant des moyens pour alimenter en hydrogène l' anode de la pile, des moyens pour alimenter en oxygène la cathode de la pile, et une unité de commande Le système comprend également des premi ers moyens de commande de l ' alimentation en hydrogène de l ' anode de la pile et des deuxièmes moyens de commande de l ' alimentation en oxygène de la cathode de la pile En outre, le système compi end des premiers moyens de déterminati on d' une sur- stœchiométπe en hydrogène de la demi-réaction d' oxydation anodique, et des deuxièmes moyens de détermination d' une sur-stœchi ométπe en oxygène de la demi-réaction de réduction cathodique Lesdits premiers et deuxièmes moyens de commande sont respectivement aptes à adapter lesdites sur-stœchiométπes en hydrogène et en oxygène de la pile en fonction de la puissance demandée à la pile
La température en sortie des condenseurs situés en sortie de la pile à combusti ble est alors plus élevée, ce qui permet de limi ter le vol ume des condenseurs, et améliorer le rendement du système
Avantageusement, la puissance demandée à la pile est une fonction de la densité de courant demandée à la pile La densité de courant délivrée par la pile est un paramètre que l'on sait bien manipuler, la demande de puissance passant par une commande en intensité ou densité de courant.
Dans un mode de réalisation préféré, lesdits premiers moyens de commande sont adaptés pour maintenir ladite sur-stœchiométπe en hydrogène constante lorsque la densité de courant demandée à la pile est inférieure à une première valeur, et croissante en fonction de la densité de courant demandée à la pile lorsque la densité de courant demandée à la pile est supérieure à ladite première valeur et inférieure à une deuxième valeur supérieure à ladite première valeur De plus, lesdits deuxièmes moyens de commande sont adaptés pour maintenir ladite sur-stœchiométπe en oxygène constante lorsque la densité de courant demandée à la pile est inférieure à ladite première valeur, et croissante en fonction de la densité de courant demandée à la pile lorsque la densité de courant demandée à la pile est supérieure à ladite première valeui et inférieure à ladite deuxième valeur
La température en sortie des condenseurs situés en sortie de la pile est alors plus élevée, ce qui limite le volume des condenseurs, et améliore le rendement du système Dans un mode de réalisation avantageux, lesdits premiers moyens de détermination comprennent des premiers moyens de calcul connectés à un premier débitmètre disposé en entrée de l'anode de la pile, et lesdits deuxièmes moyens de détermination comprennent des deuxièmes moyens de calcul connectés à un deuxième débitmètre disposé en entiée de la cathode de la pile
II est alors possible de bien gérer les débits d'alimentation de l'anode et de la cathode, ce qui permet de bien gérer les sur- stoechiométπes
Dans un mode de réalisation préféré, le système comprend un capteur de mesure de l'intensité délivrée par la pile 1
La densité de courant correspondante est calculée à partir de cette mesuie d'intensité et de la surface active d'une cellule de la pile La présence d' un tel capteur permet de contrôler si l ' intensité demandée à la pile, et donc si la puissance demandée à la pile, est bien délivrée en sortie de la pile
Dans un mode de réali sation avantageux, ladite première valeur est sensi blement égale à 0,2 A/cm2, et ladite deuxième valeur est sensiblement égale à 0,6 A/cm2
En outi e, lesdits premiers moyens de commande sont adaptés pour maintenu ladite sur-stœchiométπe en hydrogène linéairement croissante loi sque la densité de courant demandée à la pile est supérieure à l adite première valeur et inférieure à ladite deuxième valeur De pl us , lesdits deuxièmes moyens de commande sont adaptés pour maintenu ladite sur-stœchiométπe en oxygène linéairement croissante loi sque la densité de courant demandée à la pile est supérieure à ladite deuxième valeur et inférieure à ladite première valeur
Sel on un autre aspect de l' invention, il est également proposé un procède de commande d' un système de pile à combustible, caractéri sé pai le fait que l' on alimente en hydrogène l ' anode de la pile et en ox ygène la cathode de la pile, de manière à adapter respectivement les sur-stœchiométπes en hydrogène de l a demi- réaction d' oxydation anodique et en oxygène de là demi-réacti on de réduction cathodique en fonction de la puissance demandée à la pi le
Dan s un mode de mise en œuvre préféré, la puissance demandée à la pile est une fonction de la densité de courant demandée à la pile Dans un mode de mise en œuvre avantageux, on maintient ladite sur-stœc hiométπe en hydrogène constante lorsque la densité de courant demandée à la pile est inférieure à une première valeur, et croissante en fonction de la densité de courant demandée à la pile lorsque la den si té de courant demandée à la pile est supérieure à ladite première valeur et inférieure à une deuxième valeur En outre, on maintient l adi te sur-stœchiométπe en oxygène constante lorsque la densité de coui ant demandée à la pile est inférieure à ladi te première valeur, et croi ssante en fonction de la densité de courant demandée à la pile loisque la densité de courant demandée à la pile est supérieure à ladite premieie valeur et inférieure à ladite deuxième valeur
D'autres buts, caractéristiques et avantages de l'invention apparaîtront a la lecture de la description suivante, de quelques exemples nullement limitatifs, et faite en référence aux dessins annexés sur lesquels la figure 1 est un schéma synoptique d'un système selon un aspect de l'invention , la figure 2 illustre un procédé selon un aspect de l'invention , et - la figure 3 illustre une adaptation des sur-stœchiométπes anodique et cathodique selon un aspect de l'invention
La figuie 1 représente un système selon l'invention, embarque dans un véhicule automobile Le système comprend une pile à combustible 1 comprenant une partie anode A et une partie cathode C, un reformeur 2 pour alimenter en hydrogène la pile à combustible 1 Le système comprend également un brûleur 3 permettant de chauffer l'ensemble du système, lors de la phase de démarrage, ainsi que de réguler la température lors du fonctionnement nominal La pile à combustible 1 est conçue de manière à ce que la tension électrique choisie pour la puissance maximale soit de 0,7V Le brûleur 3 apporte également l'énergie nécessaire à la réaction de reformage et permet d'oxyder l'hydiogène quand il utilise un retour des gaz de sortie de l'anode de la pile à combustible 1 Le brûleur 3 permet également de fournir l'énergie nécessaire à la vaporisation de l'eau et du carburant nécessaires au ieformeur 2.
Le système comprend également un groupe de compression d'air 4, qui alimente en oxygène, généralement sous forme d'air comprimé, la pile à combustible 1, et le brûleur 3, respectivement par des conduits 5 et 6 Le groupe de compression d'air 4 alimente également en air un réacteur d'oxydation préférentielle 7 par un conduit 8 Le système comprend, en outre, une unité de commande électronique 9 utilisée également pour d'autres buts tels que le contrôle de stabilité du véhicule ou du freinage, connectée au reformeui 2, au brûleur 3, à la pile à combustible 1 et au groupe de compression d'air 4 respectivement par des connexions 10, 11, 12 et 13.
Le système comprend également un dispositif d'alimentation en carburant 14, comprenant un réservoir de carburant, relié à l'unité de commande électronique 9 par une connexion 15 Ce dispositif d'alimentation en carburant 14 permet d'alimenter en carburant le brûleur 3 et un vaporisateur 16 qui vaporise l'eau et le carburant en entrée du reloimeur 2 Le brûleur 3 et le vapoπsateui 16 sont respectivement alimentés en carburant par des conduits 17 et 18 En sortie du refoi meur 2 sont présents deux réacteurs 19 et 20 de réaction de gaz à l'eau lespectivement à haute et basse température Ces deux réacteurs 19 et 20, ainsi que le réacteur 7 d'oxydation préférentielle permettent de diminuer fortement la teneur en monoxyde de carbone CO du reformat alimentant la pile à combustible 1, car le monoxyde de carbone CO empoisonne les piles à combustible Divers échangeurs de chaleur 21, 22 et 23 sont présents pour refroidir des courants gazeux Le système comprend également divers condenseurs 24, 25 et 26 permettant de iecuperer de l'eau et de l'envoyer, respectivement par des conduits 27 28 et 29 dans un dispositif d'alimentation en eau 30, comprenant un îéservoir d'eau, permettant notamment d'alimentei le vapoπsateui 16 en eau par un conduit 31 Les gaz de sortie du brûleur 3 sont amenés au vaporisateur 16 par un conduit 32 permettant de fournir l'énergie nécessaire à la vaporisation de l'eau et du carburant fournis au refoimeur 2 par un conduit 33 Le reformât est ensuite amené successivement aux réacteurs 19, 20 et 7 pour être fortement appauvri en monoxyde de carbone, par des conduits 34, 35 et 36 Enfin, le refoimât, en sortie du réacteur d'oxydation préférentielle 7, est amené au condenseur 24 par un conduit 37. Le reformât en sortie du condenseui 24 alimente alors la partie anode A de la pile à combustible 1 par un conduit 38
Les gaz de sortie de l'anode A sont amenés au condenseur 25 par un conduit 39 Les gaz de sortie du condenseur 25 alimentent alors le brûleui 3 pai un conduit 40 Les gaz de sortie de la partie cathode C de la pile à combustible 1, sont amenés au condenseur 26 par un conduit 41, avant d'être mélangés, par un conduit 42, aux gaz de sortie de l'échangeui 23 Le mélange est alors amené à la turbine 4 Le dispositif d'alimentation en eau 30 est également commandé pai l'unité de commande électronique 9 par l'intermédiaire d'une connexion 43
L'unité de commande électronique 9 comprend un premier module 44 de commande de l'alimentation en hydrogène dans la pile, par exemple en agissant sur le reformeur 2, ainsi qu'un deuxième module 45 de commande de l'alimentation en oxygène de la cathode de la pile, par exemple en agissant sur le groupe de compression d'air 4
L'unité de commande électronique 9 comprend en outre un premier module 46 de détermination d'une sur-stœchiométπe Ra en hydrogène de la demi-réaction d'oxydation anodique, et un deuxième module 47 de détermination d'une sur-stœchiométπe Rc en oxygène de la demi-réaction de réduction cathodique. Les premier et deuxième modules 46 et 47 déterminent les sur-stœchiométπes respectives Ra et Rc, en fonction des différents débits alimentant la pile 1, fournis par exemple par des débitmètres respectifs 48 et 49. Le débitmètre 48 est situé en entrée de l'alimentation en hydrogène de l'anode A de la pile
1, et le débitmètre 49 est situé en entrée de l'alimentation en oxygène de la cathode C de la pile 1. Les débitmètres 48 et 49 sont respectivement connectés à l'unité de commande électronique 9 par des connexions 50 et 51 En outre l'énergie électrique fournie par la pile par un câble de sortie 52 est mesurée par un capteur d'intensité 53 relié à l'unitc de commande électronique 9 par une connexion 54 L'unité de commande électronique calcule la densité de courant correspondant à l'intensité fournie par le capteur 53.
Un procédé selon un aspect de l'invention est décrit sur la figure 2 La puissance demandée à la pile 1 est, par exemple, une fonction de la densité de courant demandée à la pile 1 Les premiers et deuxièmes moyens de commande 44 et 45 testent (étape 60) si la densité de courant demandée à la pile 1 est inférieure à la première valeur Si la densité de courant demandée à la pile 1 est inférieure à la première valeur, les premiers et deuxièmes moyens de commande 44 et 45 maintiennent les sur-stœchiométries Ra et Rc constantes en fonction de la densité de courant demandée à la pile 1 (étape 61 ). Si la densité de courant demandée à la pile 1 est supérieure ou égale à la première valeur, les premiers et deuxièmes moyens de commande 44 et 45 testent (étape 62) si la densité de courant demandée à la pile 1 est inférieure à la deuxième valeur.
Si la densité de courant demandée à la pile 1 est supérieure ou égale à la première valeur et inférieure à la deuxième valeur, les premiers et deuxièmes moyens de commande 44 et 45 maintiennent les sur-stœchiométries Ra et Rc croissantes en fonction de la densité de courant demandée à la pile 1 (étape 63) .
Si la densité de courant demandée à la pile 1 est supérieure ou égale à la deuxième valeur, les premiers et deuxièmes moyens de commande 44 et 45 maintiennent les sur-stœchiométries Ra et Rc constantes en fonction de la densité de courant demandée à la pile 1
(étape 64) .
De manière classique, la sur-stœchiométrie Ra en hydrogène de la demi-réaction d' oxydation anodique a pour valeur 1 ,30 , et la sur-stœchiométri e Rc en oxygène de la demi-réaction de réduction cathodique a pour valeur 1 , 8.
L' inventi on permet d' adapter les sur-stœchiométries respecti ves Ra et Rc, en fonction de la densité de courant déli vrée par la pile à combustible 1.
Un exemple d' une telle adaptation des sur-stœchiométries en fonction de la densité de courant demandée à la pile est illustré par la figure 3.
Dans cet exemple, la première valeur de densité de courant vaut 0,2 A/cm2, et i a deuxième valeur de densité de courant vaut 0,6 A/cm2.
Pour des valeurs de densité de courant comprises entre 0 et 0,2 A/cm2, les sui -stœchi ométries Ra et Rc sont maintenues constantes en fonction de la densité de courant demandée à la pile 1 (étape 61 ), de valeurs Ra= I . 15 A/cm2, et Rc = I , 4 A/cm2. Pour des valeurs de densité de courant comprises entre 0,2 et 0,6 A/cm2, les sur-stœchiométries Ra et Rc sont maintenues croissantes en fonction de la densité de courant demandée à la pile 1 (étape 63 ), ici linéairement croissantes en fonction de la densité de courant demandée à la pile 1 , et d'équations respectives
Ra=O, 375J + 1 , 075 , et Rc=j + 1 ,2, dans lesquelles j représente la variable densité de courant demandée la pile à combustible 1.
Enfin, pour des valeurs de densité de courant supérieures à 0,6 A/cm2, les sur-stœchiométries Ra et Rc sont maintenues constantes en fonction de la densité de courant demandée à la pile 1 (étape 64), de valeurs respectives Ra= I , 3 A/cm2, et Rc= I , 8 A/cm2.
Dans un tel système, le brûleur 3 peut être uniquement alimenté par les gaz provenant de la sortie anodique de la pile à combustible 1 , ou, si le reformeur 2 a besoin de plus d' énergie thermique, le brûleur 3 peut en outre être alimenté par du carburant. L' expression du rendement du système varie alors en fonction de l ' alimentation du brûleur 3.
L' i nvention permet d' augmenter d' environ 2 à 5 % le rendement du système de pile à combustible, et de diminuer de 2 à 4% la consommati on du dispositif d' alimentation en air du système de pile à combustible, à faible demande de puissance à la pile.
En out re, la température de fin de condensation est augmentée de 4 à 80C, ce qui permet de diminuer le volume des con denseurs de sortie de la pi l e à combustible.

Claims

REVENDICATIONS
1. Système pile à combustible comprenant des moyens (2) pour alimenter en hydrogène l'anode (A) de la pile (1), des moyens (4) pour alimenter en oxygène la cathode (C) de la pile (1), et une unité de commande (9), ledit système comprenant des premiers moyens de commande (44) de l'alimentation en hydrogène de l'anode (A) de la pile (1) et des deuxièmes moyens de commande (45) de l'alimentation en oxygène de la cathode (C) de la pile (1), caractérisé par le fait qu'il comprend : - des premiers moyens de détermination d'une sur-stœchiométrie en hydrogène de la demi-réaction d'oxydation anodique ; des deuxièmes moyens de détermination d'une sur-stœchiométrie en oxygène de la demi-réaction de réduction cathodique ; et par le fait que lesdits premiers et deuxièmes moyens de commande (44,45) sont respectivement aptes à adapter lesdites sur-stœchiométries en hydrogène et en oxygène de la pile (1) en fonction de la puissance demandée à la pile (1).
2. Système selon la revendication 1, caractérisé par le fait que la puissance demandée à la pile (1) est une fonction de la densité de courant demandée à la pile (1).
3. Système selon la revendication 2, caractérisé par le fait que : lesdits premiers moyens de commande (44) sont adaptés pour maintenir ladite sur-stœchiométrie en hydrogène constante lorsque la densité de courant demandée à la pile (1) est inférieure à une première valeur, et croissante en fonction de la densité de courant demandée à la pile (1) lorsque la densité de courant demandée à la pile (1) est supérieure à ladite première valeur et inférieure à une deuxième valeur supérieure à ladite première valeur ; et lesdits deuxièmes moyens de commande (45) sont adaptés pour maintenir ladite sur-stœchiométrie en oxygène constante lorsque la densité de courant demandée à la pile (1) est inférieure à ladite première valeur, et croissante en fonction de la densité de courant demandée à la pile (1) lorsque la densité de courant demandée à la pile (1) est supérieure à ladite première valeur et inférieure à ladite deuxième \aleur
4 Système selon l'une quelconque des revendications 1 à 3, caractérisé pai le fait que lesdits premiers moyens de détermination comprennent des premiers moyens de calcul (46) connectés à un premier débitmètre (48) disposé en entrée de l'anode (A) de la pile (1), et lesdits deuxièmes moyens de détermination comprennent des deuxièmes moyens de calcul (46) connectés à un deuxième débitmètre (49) disposé en entrée de la cathode (C) de la pile (1) 5 Système selon l'une quelconque des revendications 1 à 4, caractérisé pai le fait qu'il comprend un capteur (53) de mesure d'intensité délivrée par la pile 1
6 Système selon l'une quelconque des revendications 2 à 5, caractérisé pai le fait que ladite première valeur est sensiblement égale à 0,2 A/cm2, et ladite deuxième valeur est sensiblement égale à 0,6
A/cm2
7 Système selon l'une quelconque des revendications 3 à 5, caractérisé pai le fait que :
- lesdits premiers moyens de commande (44) sont adaptés pour maintenir ladite sur-stœchiométπe en hydrogène linéairement croissante lorsque la densité de courant demandée à la pile (1) est supéπeure a ladite première valeur et inférieure à ladite deuxième valem , et lesdità deuxièmes moyens de commande (45) sont adaptés pour maintenir ladite sur-stœchiométπe en oxygène linéairement croissante loisque la densité de courant demandée à la pile (1) est supérieure a ladite deuxième valeur et inférieure à ladite première valeui
8 Procédé de commande d'un système de pile à combustible, caracténse pai le fait que l'on alimente en hydrogène l'anode (A) de la pile (1) et en oxygène la cathode (C) de la pile (1), de manière à adapter i espectivement les sur-stœchiométπes en hydrogène de là demi-réaction d'oxydation anodique et en oxygène de la demi-réaction de réduction cathodique en fonction de la puissance demandée à la pile
(1)
9 Procédé selon la revendication 8, caractérisé par le fait la puissance demandée à la pile (1) est une fonction de la densité de courant demandée à la pile (1)
10 Procédé selon la revendication 9, caractérisé par le fait que l'on maintient ladite sur-stœchiométπe en hydrogène constante lorsque la densité de courant demandée à la pile (1) est inférieure à une première valeur, et croissante en fonction de la densité de courant demandée à la pile (1) lorsque la densité de courant demandée à la pile
(1) est supéπeuie à ladite première valeur et inférieure à une deuxième valeur, et que l'on maintient ladite sur-stœchiométπe en oxygène constante lorsque la densité de courant demandée à la pile (1) est inférieure à ladite première valeur, et croissante en fonction de la densité de couiant demandée à la pile (1) lorsque la densité de courant demandée à la pile (1) est supérieure à ladite première valeur et inférieure à ladite deuxième valeur.
EP06709414A 2005-02-01 2006-01-19 Systeme pile a combustible et procede de commande associe Withdrawn EP1846972A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0500966A FR2881577B1 (fr) 2005-02-01 2005-02-01 Systeme pile a combustible et procede de commande associe
PCT/FR2006/050028 WO2006082331A1 (fr) 2005-02-01 2006-01-19 Systeme pile a combustible et procede de commande associe

Publications (1)

Publication Number Publication Date
EP1846972A1 true EP1846972A1 (fr) 2007-10-24

Family

ID=35134192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709414A Withdrawn EP1846972A1 (fr) 2005-02-01 2006-01-19 Systeme pile a combustible et procede de commande associe

Country Status (5)

Country Link
US (1) US20080131743A1 (fr)
EP (1) EP1846972A1 (fr)
JP (1) JP2008529228A (fr)
FR (1) FR2881577B1 (fr)
WO (1) WO2006082331A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663861B2 (en) * 2010-03-26 2014-03-04 Panasonic Corporation Fuel cell system and control method therefor
EP3933990B1 (fr) * 2019-02-28 2024-10-09 Kyocera Corporation Appareil de pile à combustible
DE102020116891A1 (de) 2020-06-26 2021-12-30 Audi Aktiengesellschaft Leistungsmoduliert und überstöchiometrisch betriebenes Brennstoffzellensystem

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8400128A (nl) * 1984-01-14 1985-08-01 Electrochem Energieconversie Werkwijze voor het bedrijven van een brandstofcel.
US4904548A (en) * 1987-08-03 1990-02-27 Fuji Electric Co., Ltd. Method for controlling a fuel cell
US6329089B1 (en) * 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
JP3724365B2 (ja) * 2000-12-04 2005-12-07 日産自動車株式会社 燃料電池システムの制御装置及び方法
US6586123B1 (en) * 2001-02-07 2003-07-01 Utc Fuel Cells, Llc Variable stochiometry fuel cell
JP3840908B2 (ja) * 2001-03-19 2006-11-01 日産自動車株式会社 燃料電池システム
US6977119B2 (en) * 2001-04-27 2005-12-20 Plug Power Inc. Fuel cell transient control scheme
US20030064262A1 (en) * 2001-05-31 2003-04-03 Plug Power Inc. Method and apparatus for controlling a combined heat and power fuel cell system
JP4410965B2 (ja) * 2001-10-18 2010-02-10 株式会社荏原製作所 燃料電池発電システムによる発電方法及び燃料電池発電システム
US20040096709A1 (en) * 2002-11-15 2004-05-20 Darling Robert M. Fuel cell system with a dry cathode feed
JP4686957B2 (ja) * 2003-02-28 2011-05-25 日産自動車株式会社 燃料電池発電制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006082331A1 *

Also Published As

Publication number Publication date
FR2881577A1 (fr) 2006-08-04
FR2881577B1 (fr) 2010-10-15
JP2008529228A (ja) 2008-07-31
US20080131743A1 (en) 2008-06-05
WO2006082331A1 (fr) 2006-08-10

Similar Documents

Publication Publication Date Title
US7282288B2 (en) Fuel cell system and method
US6306532B1 (en) Vehicular mountable fuel cell system
US6783879B2 (en) Dynamic fuel processor mechanization and control
US9005785B2 (en) Open-loop system and method for fuel cell stack start-up with low-voltage source
US8435691B2 (en) Operation method at the time of load increase of fuel cell system
US8263273B2 (en) Fuel cell system and method for controlling the same
US10014539B2 (en) Fuel cell system
KR20120012210A (ko) 차량용 연료 전지 장치 및 그 제어 방법
EP1846972A1 (fr) Systeme pile a combustible et procede de commande associe
US9640819B2 (en) Fuel cell system
EP4233112A1 (fr) Système et procédé de refroidissement d'un ensemble de piles à combustible
US9105895B2 (en) Operation method at the time of load reduction of fuel cell system
JP4296741B2 (ja) コージェネレーションシステム
CN102349185B (zh) 燃料电池系统、用于燃料电池系统的控制方法以及用于燃料电池的状态检测方法
EP3387693B1 (fr) Procede de pilotage de pile a combustible
US20060068236A1 (en) Advanced shutdown strategy to improve safety and efficiency of fuel cell vehicles
US11233251B2 (en) Fuel cell system
WO2005107001A2 (fr) Agencement de piles a combustible
FR2862435A1 (fr) Dispositif d'humidification cathodique et de gestion thermique d'un systeme pile a combustible
EP1730806B1 (fr) Procede de regulation de la pression d'un gaz d'echappement d'une pile a combustible de maniere a reguler l'aptitude a la condensation de ce gaz
WO2006005857A2 (fr) Procede de controle d’un systeme de pile a combustible et systeme associe
FR2868212A1 (fr) Dispositif de gestion de l'eau d'un systeme pile a combustible
FR2914740A1 (fr) Procede de determination du debit volumique d'un fluide circulant dans une canalisation et dispositif associe
FR2883102A1 (fr) Dispositif de gestion des alimentations en air d'un systeme pile a combustible incluant un reformeur de carburant
FR2788631A1 (fr) Pile a combustible

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120412