EP1803183A1 - Systeme et procede de regulation thermique d'un systeme de pile a combustible embarque sur un vehicule automobile - Google Patents

Systeme et procede de regulation thermique d'un systeme de pile a combustible embarque sur un vehicule automobile

Info

Publication number
EP1803183A1
EP1803183A1 EP05810772A EP05810772A EP1803183A1 EP 1803183 A1 EP1803183 A1 EP 1803183A1 EP 05810772 A EP05810772 A EP 05810772A EP 05810772 A EP05810772 A EP 05810772A EP 1803183 A1 EP1803183 A1 EP 1803183A1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
temperature
estimator
est
solid elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05810772A
Other languages
German (de)
English (en)
Inventor
Karim Bencherif
Vincent Le Lay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1803183A1 publication Critical patent/EP1803183A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a system and method for thermal regulation of a fuel cell system on board a motor vehicle.
  • the thermal regulation of the fuel cell is important, so that there is no overheating of the battery, which can cause damage to the battery.
  • the standard PEM (“Proton Exchange Membrane”) type fuel cells comprise elementary cells which consist in particular of a bipolar plate and an electrode / membrane assembly commonly called MEA ("Membrane Electrodes Assembly" in the English language). English). These are solid elements of the fuel cell.
  • a fuel cell also includes fluid elements including the products obtained by the electrochemical reactions that take place in the fuel cell to provide electrical energy.
  • Such a cell is supplied with hydrogen at the anode, for example by a reformer, and with oxygen at the cathode, generally by a group of air compression.
  • a thermal control system of a fuel cell system on board a motor vehicle comprising a circulation loop of a heat transfer fluid for the thermal regulation of the fuel cell, means for supplying oxygen and hydrogen to the fuel cell, and an electronic control unit.
  • the electronic control unit comprises an estimator of the temperature of the solid elements of the fuel cell.
  • the temperature of the cell is then more accurate because the temperature of the solid elements is not assimilated to the temperature of the fluid elements.
  • the electronic control unit further comprises a control module for the operation of the circulation loop.
  • the estimator comprises input parameters comprising the temperature of the heat transfer fluid upstream of the cell and the temperature of the heat transfer fluid downstream of the fuel cell.
  • the estimator includes input parameters including fluid temperature at the cathode outlet of the fuel cell.
  • the estimator includes input parameters including fluid temperature at the fuel cell anode outlet.
  • the system comprises a comparator adapted to compare the temperature of said solid elements estimated by the estimator, and a desired temperature of said solid elements, stored by the electronic control unit, and to transmit said comparison with said control module of the operation of the circulation loop.
  • a method of thermal regulation of a fuel cell system on board a motor vehicle uses a coolant circulation. An estimation is made of the temperature of the solid elements of the fuel cell and a thermal regulation of the cell is carried out according to said estimate.
  • it acts on the circulation of the heat transfer fluid as a function of the estimated temperature of the solid elements of the fuel cell and a desired temperature of the solid elements of the fuel cell.
  • said estimate is made from parameters comprising the temperature of the heat transfer fluid upstream of the cell and the temperature of the heat transfer fluid downstream of the fuel cell, or from parameters comprising the temperature of the fluids. at the outlet of the cathode of the fuel cell, or from parameters comprising the temperature of the fluids at the outlet of the anode of the fuel cell.
  • FIG. 1 is a block diagram of a fuel cell device according to the invention
  • FIG. 2 is a block diagram illustrating a first embodiment of an estimator according to the invention
  • FIG. 3 is a block diagram illustrating a second embodiment of an estimator according to the invention.
  • FIG. 4 is a block diagram illustrating a third embodiment of an estimator according to the invention.
  • FIG. 1 represents a fuel cell thermal regulation system according to the invention.
  • the system comprises a fuel cell PAC comprising an anode portion A and a cathode portion C.
  • the anode A is supplied with dihydrogen rich reformate, by a reformer R, and the cathode C is supplied with air, thus with oxygen, through a GCA air compression unit.
  • the outlet fluids of the anode A pass through an outlet duct SA, and the outlet fluids of the cathode C pass through an outlet duct SC.
  • the system also includes a circulation loop BC of a heat transfer fluid for thermal regulation of the fuel cell PAC.
  • a circulation loop BC of a heat transfer fluid for thermal regulation of the fuel cell PAC A portion of this circulation loop BC crossing the fuel cell PAC is shown in Figure 1.
  • This circulation loop BC also comprises, in a conventional manner, exchangers and condensers.
  • the coolant passing through the stack can be used to cool the battery when its temperature becomes too high, and there is a risk of damage, or to heat the battery during a start-up phase.
  • the thermal control system also includes an electronic control unit UCE which includes an estimator EST capable of accurately estimating the temperature of the solid elements of the battery P AC.
  • Figure 2 shows a first embodiment of an EST estimator.
  • the EST estimator uses the following relationships for the temperature of the PAC solids: d ⁇ s _ dt M PAC - C P
  • T R ⁇ F> T £ p are respectively the temperatures of the heat transfer fluid upstream and downstream of the stack, in K;
  • T s is the average temperature of the solid elements of the fuel cell, in K;
  • L ref is the length of the circulation loop BC or cooling circuit, in m;
  • p ref is the density of the coolant, in kg / m3;
  • C p ref is the heat capacity of the coolant, in J / kg / K; h ref is the convection coefficient of the circulation loop
  • S ref is the heat exchange surface between the circulation loop and the cell, in m 2 ;
  • V ref is the volume of heat transfer fluid of the circulation loop in the stack, in m 3 ;
  • W therm (I, U) is the thermal power dissipated by the battery, in W;
  • h A is the convection coefficient at the input of the anode circuit, in Wm- 2 K- ';
  • S A is the exchange surface between the anode circuit and the battery, in m 2 ;
  • hc is the convection coefficient at the input of the cathode circuit, in W. ⁇ f 2 K- ! ;
  • Sc is the exchange surface between the cathode circuit and the cell, in m 2 ;
  • T 0U J is the outlet temperature of the anode of the fluid or gas elements, in K;
  • T OR J is the outlet temperature of the cathode of the fluid or gas elements, in K; M PAC is the mass of the battery, in kg;
  • C p is the specific calorific heat of the fuel cell, in J. kg “1 .K "1 ;
  • k represents A or C
  • R is the constant of perfect gases
  • ⁇ k h k .S k .L ⁇ k (P k , V k )
  • L represents the length of the channels, in m.
  • L v is the latent heat of melting of water, in J / mol.
  • T s ⁇ ref .Q (T ° f u ⁇ -T TM) + T ° f u ⁇ from the circulation loop
  • the EST estimator may also use linearization of the nonlinear system around an operating point.
  • Fig. 3 shows a second embodiment of an EST estimator.
  • This embodiment uses the equation: f -T ° UT + ⁇ (P £ V wi__ k_ ⁇ "T / ⁇ OUTxx ⁇ OUT 1 S - R 1 + Pk ⁇ - r k UM 1 ⁇ vV orW ⁇ C L k- 1 k J- iN k, H, O (1)
  • the inlet temperature T ⁇ N of the anode portion A is deduced from these inputs.
  • the EST estimator may also use linearization of the nonlinear system around an operating point.
  • Fig. 4 shows a third embodiment of an EST estimator.
  • This embodiment uses the equation: f 1 S - - n ⁇ ref - NVR (r o ef u ⁇ Jr ⁇ ⁇ 1 K IN F i) - t + ⁇ s ⁇ o tf u ⁇
  • the temperature of the inlet gases T ⁇ N of the cathode portion C is deduced from these inputs.
  • the EST estimator may also use linearization of the nonlinear system around an operating point.
  • FIG. 5 represents an embodiment of a thermal regulation system according to the invention.
  • the system comprises an estimator as previously described, for example that of FIG. 2.
  • the system comprises a comparator COMP which makes a comparison between the temperature T s of the solid elements of the fuel cell PAC estimated by the estimator EST, and a desired temperature T S DES stored by the electronic control unit UCE.
  • the comparison is transmitted to an MC control module. capable of controlling the operation of the circulation loop BC of heat transfer fluid and its elements for controlling the flow rate Q of heat transfer fluid passing in the cell PAC and the inlet temperature T ⁇ F of the heat transfer fluid.
  • the invention makes it possible to better regulate the temperature of a fuel cell, by improving the accuracy of estimation of the temperature of the solid elements of the fuel cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

Système de régulation thermique d'un système de pile à combustible embarqué sur un véhicule automobile comprenant une boucle de circulation (BC) d'un fluide caloporteur pour la régulation thermique de la pile à combustible (PAC) , des moyens pour alimenter en oxygène (GCA) et en hydrogène (R) la pile à combustible (PAC), et une unité de commande électronique (UCE). L'unité de commande électronique (UCE) comprend un estimateur (EST) de la température (Ts) des éléments solides de la pile à combustible.

Description

Système et procédé de régulation thermique d' un système de pile à combustible embarqué sur un véhicule automobile
La présente invention concerne un système et un procédé de régulation thermique d'un système de pile à combustible embarqué sur un véhicule automobile.
La régulation thermique de la pile à combustible est importante, afin qu'il n'y ait pas de surchauffe de la pile, pouvant entraîner des dégradations de la pile.
Les piles à combustibles standard de type PEM ("Proton Exchange Membrane" en langue anglaise) comprennent des cellules élémentaires qui se composent notamment d'une plaque bipolaire et d'un assemblage électrodes/membrane couramment appelé MEA ("Membrane Electrodes Assembly" en langue anglaise). Il s'agit d'éléments solides de la pile à combustible.
Une pile à combustible comprend également des éléments fluides comprenant les produits obtenus par les réactions électrochimiques qui se déroulent dans la pile à combustible pour fournir de l'énergie électrique. Une telle pile est alimentée en hydrogène à l'anode, par exemple par un reformeur, et en oxygène à la cathode, généralement par un groupe de compression d'air.
Des systèmes de régulation thermiques de pile à combustible existent.
Les documents US 4 640 873 , FR 2 809 535 , et JP 9 213357 portent sur des systèmes de régulation thermique d'une pile à combustible dans lesquels la température de la pile est assimilée à la température des éléments fluides.
Cependant il existe un écart entre la température des éléments solides de la pile et des éléments fluides de la pile, ce qui entraîne une régulation thermique ayant une efficacité limitée, car elle se base sur la température des éléments fluides et non sur la température des éléments solides L'invention permet d'estimer la température des éléments solides de la pile avec une meilleure précision qu'une assimilation de la température des éléments solides de la pile à la température des éléments fluides de la pile.
Selon un aspect de l'invention, il est proposé un système de régulation thermique d'un système de pile à combustible embarqué sur un véhicule automobile comprenant une boucle de circulation d'un fluide caloporteur pour la régulation thermique de la pile à combustible, des moyens pour alimenter en oxygène et en hydrogène la pile à combustible, et une unité de commande électronique. L'unité de commande électronique comprend un estimateur de la température des éléments solides de la pile à combustible.
La température de la pile est alors plus précise, car on n'assimile pas la température des éléments solides à la température des éléments fluides.
Dans un mode de réalisation préféré, l'unité de commande électronique comprend, en outre, un module de commande du fonctionnement de la boucle de circulation.
Par exemple, l'estimateur comprend des paramètres d'entrées comprenant la température du fluide caloporteur en amont de la pile et la température du fluide caloporteur en aval de la pile à combustible .
Par exemple, l'estimateur comprend des paramètres d'entrées comprenant la température des fluides en sortie de la cathode de la pile à combustible.
Par exemple, l'estimateur comprend des paramètres d'entrées comprenant la température des fluides en sortie de l'anode de la pile à combustible.
Dans un mode de réalisation avantageux, le système comprend un comparateur adapté pour comparer la température des dits éléments solides estimée par l'estimateur, et une température souhaitée desdits éléments solides, mémorisée par l'unité de commande électronique, et pour transmettre ladite comparaison audit module de commande du fonctionnement de la boucle de circulation.
Selon l'invention, il est également proposé un procédé de régulation thermique d'un système de pile à combustible embarqué sur un véhicule automobile. Le procédé utilise une circulation de fluide caloporteur. On procède à une estimation de la température des éléments solides de la pile à combustible et on effectue une régulation thermique de la pile en fonction de ladite estimation.
Dans un mode de mise en oeuvre avantageux, on agit sur la circulation du fluide caloporteur en fonction de la température estimée des éléments solides de la pile à combustible et d'une température désirée des éléments solides de la pile à combustible.
Dans un mode de réalisation avantageux, ladite estimation est effectuée à partir de paramètres comprenant la température du fluide caloporteur en amont de la pile et la température du fluide caloporteur en aval de la pile à combustible, ou à partir de paramètres comprenant la température des fluides en sortie de la cathode de la pile à combustible, ou à partir de paramètres comprenant la température des fluides en sortie de l'anode de la pile à combustible.
L'invention sera mieux comprise à l'étude de la description détaillée suivante, de quelques modes de réalisations pris à titre d'exemples nullement limitatifs et illustrée par les dessins annexés sur lesquels:
- la figure 1 est un schéma synoptique d'un dispositif de pile à combustible selon l'invention;
- la figure 2 est un schéma synoptique illustrant un premier mode de réalisation d'un estimateur selon l'invention;
- la figure 3 est un schéma synoptique illustrant un deuxième mode de réalisation d'un estimateur selon l'invention;
- la figure 4 est un schéma synoptique illustrant un troisième mode de réalisation d'un estimateur selon l'invention; et
- la figure 5 est un système de régulation thermique de l'invention. La figure 1 représente un système de régulation thermique de pile à combustible selon l'invention. Le système comprend une pile à combustible PAC comprenant une partie anode A et une partie cathode C. L'anode A est alimentée en reformat riche en dihydrogène, par un reformeur R , et la cathode C est alimentée en air, donc en oxygène, par un groupe de compression d'air GCA. Les fluides de sortie de l'anode A passent par un conduit de sortie SA, et les fluides de sortie de la cathode C passent par un conduit de sortie SC.
Le système comprend également une boucle de circulation BC d'un fluide caloporteur pour la régulation thermique de la pile à combustible PAC. Une portion de cette boucle de circulation BC traversant la pile à combustible PAC est représentée sur la figure 1. Cette boucle de circulation BC comprend également, de manière classique, des échangeurs et des condenseurs . Le fluide caloporteur traversant la pile peut servir à refroidir la pile quand sa température devient trop élevée, et que des dégradations sont à craindre, ou à réchauffer la pile lors d'une phase de démarrage.
Le système de régulation thermique comprend également une unité de commande électronique UCE qui comprend un estimateur EST capable d'estimer précisément la température des éléments solides de la pile P AC.
La figure 2 représente un premier mode de réalisation d'un estimateur EST. L'estimateur EST reçoit en entrée la pression Pk , avec k=A s'il s'agit de la pression anodique, ou k=C s' il s' agit de la pression cathodique, l'intensité I et la tension U délivrées par la pile, le débit Q de fluide caloporteur, et les températures du fluide caloporteur de la boucle de circulation BC en amont TR^ et en aval T°^de la pile PAC.
Dans ce mode de réalisation, l'estimateur EST utilise les relations suivantes concernant la température des éléments solides de la pile PAC : dτs _ dt MPAC -CP
dans lesquelles :
TRËF > T^£p sont respectivement les températures du fluide caloporteur en amont et en aval de la pile, en K ;
Ts est la température moyenne des éléments solides de la pile à combustible, en K ;
Lref est la longueur de la boucle de circulation BC ou circuit de refroidissement, en m ; pref est la masse volumique du fluide caloporteur, en kg/m3 ;
Cp ref est la capacité calorifique du fluide caloporteur, en J/kg/K ; href est le coefficient de convection de la boucle de circulation
BC, en W.m"2.K-' ;
Sref est la surface d'échange thermique entre la boucle de circulation et la pile, en m2 ;
Vref est le volume de fluide caloporteur de la boucle de circulation dans la pile, en m3 ;
Wtherm(I,U) est la puissance thermique dissipée par la pile, en W ; hA est le coefficient de convection en entrée du circuit anodique , en W.m-2K-' ;
SA est la surface d'échange entre le circuit anodique et la pile, en m2 ; hc est le coefficient de convection en entrée du circuit cathodique, en W. πf2K-! ;
Sc est la surface d'échange entre le circuit cathodique et la pile, en m2 ;
T0UJ est la température de sortie de l'anode des éléments fluides ou gaz, en K ;
TOUJ est la température de sortie de la cathode des éléments fluides ou gaz, en K ; MPAC est la masse de la pile, en kg ;
Cp est la chaleur calorifique spécifique de la pile à combustible, en J. kg" 1. K" 1 ;
On utilise la loi des gaz parfaits :
pk
Pk = , r..τikouτ
dans laquelle:
k représente A ou C ;
Pk est la densité du gaz anodique si k=A ou cathodique si k=C
Pk est la pression anodique si k=A ou cathodique si k=C ;
R est la constante des gaz parfaits ; et
Tou{est τom A si k=A, ou τom c si k=C .
et on simplifie les relations en posant :
αk = hk.Sk.L βk(Pk,Vk)
αref -
^ref -^ref
ou:
Cp k représente la chaleur calorifique spécifique anodique si k=A ou cathodique si k=C , en J.kg^ .K" 1 ;
Vk représente la vitesse des gaz anodique si k=A ou cathodique si k=C, en m/s ; et
L représente la longueur des canaux, en m.
On obtient alors les équations : dans laquelle:
Tk ouτest la température de sortie anodique si k=A ou cathodique si k=C, en K ;
Tk Nest la température d'entrée anodique si k=A ou cathodique si k=C, en K;
Lv est la chaleur latente de fusion de l'eau, en J/mol ; et
N^O(D est le débit d'eau liquide en sotie anodique si k=A ou cathodique si k=C, en mol/s ;
et
Ts = αref.Q(T°f -T™) + T°f à partir de la boucle de circulation
dans laquelle Q est le débit de fluide caloporteur, en mol/s.
L'estimateur EST peut également utiliser une linéarisation du système non linéaire autour d'un point de fonctionnement.
La figure 3 représente un deuxième mode de réalisation d'un estimateur EST.
Ce mode de réalisation utilise l'équation : f -T°UT(P V wi__£k_Λ „ T /τOUTxxτOUT 1S- 1R +Pk<-rk' UM1 ^ouW ϋCk-LvV1k J-iNk,H,O(l)
L'estimateur EST reçoit en entrée la pression Pk , avec k=A s'il s'agit de la pression anodique, ou k=C s'il s'agit de la pression cathodique, servant au recalage des coefficients de convection, l'intensité I et la tension U délivrées par la pile le débit Q de fluide caloporteur, et la température des gaz en sortie T° de la partie anode A de la pile PAC. La température en entrée T^N de la partie anode A est déduite de ces entrées.
L'estimateur EST peut également utiliser une linéarisation du système non linéaire autour d'un point de fonctionnement. La figure 4 représente un troisième mode de réalisation d'un estimateur EST.
Ce mode de réalisation utilise l' équation : f 1S - - n αref - nvr(r J-roefuτ ~ τ 1KINf ï ) - +t- τ lτotf
L'estimateur EST reçoit en entrée la pression Pk , avec k=A s' il s' agit de la pression anodique, ou k=C s' il s' agit de la pression cathodique, servant au recalage des coefficients de convection, l'intensité I et la tension U délivrées par la pile, le débit Q de fluide caloporteur et la température des gaz en sortie T°de la partie cathode C de la pile PAC. La température des gaz en entrée T^N de la partie cathode C est déduite de ces entrées.
L'estimateur EST peut également utiliser une linéarisation du système non linéaire autour d'un point de fonctionnement.
La figure 5 représente un mode de réalisation d'un système de régulation thermique selon l'invention. Le système comprend un estimateur tel que précédemment décrit, par exemple celui de la figure 2. Le système comprend un comparateur COMP qui effectue une comparaison entre la température Ts des éléments solides de la pile à combustible PAC estimée par l'estimateur EST, et une température souhaitée TS DES mémorisée par l'unité de commande électronique UCE. La comparaison est transmise à un module de commande MC . capable de commander le fonctionnement de la boucle de circulation BC de fluide caloporteur et de ses éléments pour commander le débit Q de fluide caloporteur passant dans la pile PAC et la température d'entrée T^F du fluide caloporteur.
L'invention permet de mieux réguler la température d'une pile à combustible, en améliorant la précision d'estimation de la température des éléments solides de la pile à combustible.

Claims

REVENDICATIONS
1. Système de régulation thermique d'un système de pile à combustible embarqué sur un véhicule automobile comprenant une boucle de circulation (BC) d'un fluide caloporteur pour la régulation thermique de la pile à combustible (PAC), des moyens pour alimenter en oxygène (GCA) et en hydrogène (R) la pile à combustible (PAC), et une unité de commande électronique (UCE), caractérisé en ce que l'unité de commande électronique (UCE) comprend un estimateur (EST) de la température (T5) des éléments solides de la pile à combustible (PAC).
2. Système selon la revendication 1, caractérisé en ce que l'unité de commande électronique (UCE) comprend, en outre, un module de commande (MC) du fonctionnement de la boucle de circulation (BC).
3. Système selon la revendication 1 ou 2, caractérisé en ce que ledit estimateur (EST) comprend des paramètres d'entrées comprenant la température ( T^F) du fluide caloporteur en amont de la pile et la température ( T^p7) du fluide caloporteur en aval de la pile à combustible (P AC).
4. Système selon la revendication 1 ou 2, caractérisé en ce que ledit estimateur (EST) comprend des paramètres d'entrées comprenant la température ( T°) des fluides en sortie de la cathode (C) de la pile à combustible (PAC).
5. Système selon la revendication 1 ou 2, caractérisé en ce que ledit estimateur (EST) comprend des paramètres d'entrées comprenant la température ( T°) des fluides en sortie de l'anode (A) de la pile à combustible (PAC).
6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend un comparateur (COMP) adapté pour comparer la température (T5) desdits éléments solides estimée par l'estimateur (EST), et une température souhaitée ( TfES) desdits éléments solides, mémorisée par l'unité de commande électronique (UCE), et pour transmettre ladite comparaison audit module de commande (MC) du fonctionnement de la boucle de circulation (BC).
7. Procédé de régulation thermique d'un système de pile à combustible embarqué sur un véhicule automobile utilisant une circulation de fluide caloporteur, caractérisé en ce que l'on procède à une estimation de la température (Ts) des éléments solides de la pile à combustible et on effectue une régulation thermique de la pile en fonction de ladite estimation.
8. Procédé selon la revendication 7, caractérisé en ce qu'en outre, on agit sur la circulation du fluide caloporteur en fonction de la température estimée (Ts) des éléments solides de la pile à combustible et d'une température désirée (TS DES) des éléments solides de la pile à combustible.
9. Procédé selon la revendication 7 ou 8, caractérisé en ce que ladite estimation est effectuée à partir de paramètres comprenant la température ( T^gF) du fluide caloporteur en amont de la pile et la température ( T^F T) du fluide caloporteur en aval de la pile à combustible, ou à partir de paramètres comprenant la température ( T<?) des fluides en sortie de la cathode de la pile à combustible, ou à partir de paramètres comprenant la température ( des fluides en sortie de l'anode de la pile à combustible.
EP05810772A 2004-10-14 2005-10-13 Systeme et procede de regulation thermique d'un systeme de pile a combustible embarque sur un vehicule automobile Withdrawn EP1803183A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0410869A FR2876810B1 (fr) 2004-10-14 2004-10-14 Systeme et procede de regulation thermique d'un systeme de pile a combustible embarque sur un vehicule automobile
PCT/FR2005/050847 WO2006040502A1 (fr) 2004-10-14 2005-10-13 Systeme et procede de regulation thermique d'un systeme de pile a combustible embarque sur un vehicule automobile

Publications (1)

Publication Number Publication Date
EP1803183A1 true EP1803183A1 (fr) 2007-07-04

Family

ID=34951163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05810772A Withdrawn EP1803183A1 (fr) 2004-10-14 2005-10-13 Systeme et procede de regulation thermique d'un systeme de pile a combustible embarque sur un vehicule automobile

Country Status (5)

Country Link
US (1) US7785724B2 (fr)
EP (1) EP1803183A1 (fr)
JP (1) JP2008517423A (fr)
FR (1) FR2876810B1 (fr)
WO (1) WO2006040502A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7526346B2 (en) * 2004-12-10 2009-04-28 General Motors Corporation Nonlinear thermal control of a PEM fuel cell stack
US10714773B2 (en) 2017-11-28 2020-07-14 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling system dT/dt based control
US10777831B2 (en) 2017-11-28 2020-09-15 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based cooling system control strategy/method
US10720655B2 (en) 2017-11-28 2020-07-21 Toyota Motor Engineering & Manufacturing North America, Inc. Partial derivative based feedback controls for pid
US11094950B2 (en) 2017-11-28 2021-08-17 Toyota Motor Engineering & Manufacturing North America, Inc. Equation based state estimator for cooling system controller
US10916788B2 (en) 2019-01-31 2021-02-09 Toyota Jidosha Kabushiki Kaisha Hydrogen supply system low pressure state estimator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452386A (en) * 1987-08-24 1989-02-28 Hitachi Ltd Fuel cell power generating system
DE19930876C2 (de) * 1999-07-05 2003-04-17 Siemens Ag Brennstoffzellenanlage und Verfahren zur dynamischen Regelung der Temperatur und/oder der Zusammensetzung des Prozessgases der Brenstoffzellenanlage
JP2001339808A (ja) * 2000-05-26 2001-12-07 Honda Motor Co Ltd 燃料電池自動車の冷却装置
DE10035756A1 (de) * 2000-07-22 2002-01-31 Daimler Chrysler Ag Brennstoffzellensystem und Verfahren zum Betreiben eines solchen
JP4259041B2 (ja) * 2001-06-14 2009-04-30 トヨタ自動車株式会社 燃料電池
JP4114459B2 (ja) * 2002-10-31 2008-07-09 日産自動車株式会社 燃料電池システム
JP2004241201A (ja) * 2003-02-04 2004-08-26 Toyota Motor Corp 燃料電池の状態推定装置及びその方法
JP4686957B2 (ja) * 2003-02-28 2011-05-25 日産自動車株式会社 燃料電池発電制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006040502A1 *

Also Published As

Publication number Publication date
WO2006040502A1 (fr) 2006-04-20
FR2876810B1 (fr) 2007-03-09
US7785724B2 (en) 2010-08-31
US20080038606A1 (en) 2008-02-14
FR2876810A1 (fr) 2006-04-21
JP2008517423A (ja) 2008-05-22

Similar Documents

Publication Publication Date Title
US6673482B2 (en) Cooling system for fuel cell
JP4986991B2 (ja) 低温起動時のmeaの過熱を防止するために冷却液循環を開始する方法
US7588845B2 (en) Advanced control for an electrical heatable wax thermostat in the thermal coolant loop of fuel cell systems
EP1803183A1 (fr) Systeme et procede de regulation thermique d&#39;un systeme de pile a combustible embarque sur un vehicule automobile
US8855945B2 (en) Feedforward control of the volume flow in a hydraulic system
US6663993B2 (en) Cooling device for a fuel cell
EP1271681A2 (fr) Système de piles à combustible et méthode pour contrôler
EP1291949A2 (fr) Système de pile à combustible, son méthode de commande et véhicule monté avec celui-ci
US8815461B2 (en) Solid electrolyte fuel cell system
JP2007522623A (ja) 燃料電池システムのための細分割冷却回路
US20090148727A1 (en) Output limiting device for fuel cell
US20070065695A1 (en) Coolant flow estimation for the thermal loop of a fuel cell system using stack loss power
US20070065690A1 (en) Coolant flow estimation by an electrical driven pump
US7261960B2 (en) Apparatus and method for internal stack temperature control
JP5092335B2 (ja) 燃料電池システム及び燃料電池システム制御方法
WO2022090173A1 (fr) Système et procédé de refroidissement d&#39;un ensemble de piles à combustible
US11145879B2 (en) Method and system for estimating and controlling water content of fuel cell
JP4261679B2 (ja) 燃料電池システムにおける燃料ガスの温調装置
JP2010272462A (ja) 燃料電池システム
US8007946B2 (en) Fuel cell system warm-up strategy with reduced efficiency losses
JP2004152666A (ja) 燃料電池システム
FR2881577A1 (fr) Systeme pile a combustible et procede de commande associe
JP2002175823A (ja) 燃料電池用冷却装置
JP2008147121A (ja) 燃料電池評価装置
EP1733447B1 (fr) Dispositif et procede de refroidissement d&#39;un ensemble de generation d&#39;electricite comprenant une pile a combustible.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20121214