WO2006035176A1 - Dispositif de pile a combustible autonome en eau - Google Patents

Dispositif de pile a combustible autonome en eau Download PDF

Info

Publication number
WO2006035176A1
WO2006035176A1 PCT/FR2005/050747 FR2005050747W WO2006035176A1 WO 2006035176 A1 WO2006035176 A1 WO 2006035176A1 FR 2005050747 W FR2005050747 W FR 2005050747W WO 2006035176 A1 WO2006035176 A1 WO 2006035176A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
anode
condenser
cathode
storage tank
Prior art date
Application number
PCT/FR2005/050747
Other languages
English (en)
Inventor
Robert Yu
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Publication of WO2006035176A1 publication Critical patent/WO2006035176A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power module for a motor vehicle comprising a fuel cell device and a method for managing the water flowing in such a power module.
  • the fuel cell appears more and more as the cleanest and most efficient energy converter for converting chemical energy into a directly usable energy in electrical and thermal form.
  • a disadvantage of fuel cells is the management of water. Indeed, in a fuel cell system, there are two consumers of pure water: the battery and the reformer, and a single producer of water: the battery.
  • the reformer In the case of a motor vehicle fuel cell traction system architecture, operating for example with gasoline, the reformer is a large consumer of water. It is therefore necessary to recover enough liquid water at the outlet of the battery, so that the vehicle is autonomous in water.
  • the only source of water is therefore the battery which, by its operation, in particular transforms hydrogen and oxygen into pure water. This produced water is in the form of two phases, a liquid phase and a vapor phase.
  • the following solutions have been proposed.
  • Water can be condensed through the use of a cold source, of the order of 30 0 C for example.
  • a vehicle must be able to operate over a wide temperature range, for example between -20 ° C and + 45 ° C. It is therefore difficult to keep axa within a vehicle a cold source of the order of 30 0 C, unless an air conditioning system is used.
  • Another solution is an increase in the system pressure up to 4 bars, for example, to facilitate the recovery of liquid water by reducing the amount of water present in vapor form.
  • the invention proposes a power module for a motor vehicle providing autonomous water management, that is to say the production of water of which is greater than or equal to the consumption of water over a wide range of power and outside temperatures in order to obtain an autonomous motor vehicle in its need for pure water.
  • the invention relates to a power module for a motor vehicle comprising a fuel cell device fed with hydrogen-rich gas by a hydrocarbon fuel reformer device that is autonomous in water, thus limiting yield losses, as well as a method of management of the circulating water within this power module.
  • the motor vehicle power module comprises a fuel cell device provided with an anode and a cathode, comprising a condenser at the anode outlet and a condenser at the cathode outlet, the device being fed with hydrogen-rich gas by a hydrocarbon fuel reformer device.
  • This module comprises a water storage tank supplied with water by at least one of the condensers at the outlet of the anode and at the cathode outlet, and intended to supply water to the reformer device, the water supply of the reformer device being carried out by a pump placed in the reformer device and controlled by a control device receiving control signals coming from a outdoor temperature sensor and means for measuring the requested electrical power.
  • the power module further includes a condenser positioned between the reformer device and the anode inlet of the fuel cell.
  • the water storage tank can also be supplied with water by the condenser positioned between the reformer device and the inlet of the fuel cell anode.
  • the water storage tank is supplied with water by the condenser positioned between the reformer device and the inlet of the fuel cell anode, the anode outlet condenser and the the condenser at the cathode outlet.
  • the air entering the cathode is humidified with water from the water storage tank using a pump, placed between the water storage tank and the water pipe. supply of air to the cathode, and controlled by the control device.
  • the hydrogen entering the anode is wetted with water from the water storage tank using a pump placed between the water storage tank and the pipe. supplying hydrogen to the anode, and controlled by the control device.
  • the method of the invention for managing water circulating in a power module comprising a fuel cell device equipped with an anode and a cathode, comprising a condenser at the anode outlet and a condenser at the cathode outlet, the device being supplied with hydrogen-rich gas by a hydrocarbon fuel reformer device, consists in storing the water from at least one of the condensers at the anode outlet and at the cathode outlet in a water storage tank, then to convey the water stored in the tank to the reformer device, the water supply of the device reformer being performed according to the outside temperature and the electrical power required by the vehicle, so as to maintain a positive or zero water consumption in the power module.
  • control system when the external temperature and / or the electrical power required by the vehicle is greater than a threshold value, the control system is able to control the pump of the reformer device, in order to supply water to the reformer device.
  • FIG. 1 schematically illustrates a power module
  • FIG. 2 diagrammatically illustrates a power module according to a second embodiment of the invention
  • FIG. 3 schematically illustrates a power module according to a third embodiment of the invention.
  • FIG. 1 shows a compressor 1 fed with air through an air inlet 14 and connected to an air cooler 2 via a line 15.
  • the air coming from the compressor 1 is also conveyed to a reformer device 6 via a pipe 17, while the air coming from the air cooler 2 is conveyed via a pipe 16 to the cathode 4 of a fuel cell 3 provided with the cathode 4 and an anode 5.
  • the reformer device 6 is supplied with fuel by a fuel supply 22, and produced at its outlet a gaseous mixture rich in hydrogen which is conveyed to the anode 5 via a pipe 18.
  • a condenser 7 positioned between the reformer device 6 and the anode 5 converts into water a part of the gases coming from the reformer device 6.
  • a condenser 8 located at the cathode outlet 4 and a condenser 9 situated at the anode outlet 5 ensure the condensation of the cathode and anode gases.
  • Water from the condensers 7, 8, and 9 is stored in a water storage tank 10 via respective lines 21, 19 and 20.
  • Condensers 7, 8, and 9 are preferably condensers / separators, that is, they also separate the liquid phase from the gas phase. In this case, only liquid water is conveyed to the water storage tank 10, which avoids having to purge hydrogen in the water storage tank 10, and makes the device safer. It can also be envisaged that a separator is positioned at the outlet of the condensers 7,8,9.
  • the water supply of the reformer device 6 is carried out via a pipe 23 by means of a pump (not shown) placed in the reformer device 6 and controlled by a control device 11 receiving control signals coming from a temperature sensor.
  • the pump may also be positioned between the water storage tank 10 and the reformer device 6.
  • the water storage tank 10 used according to the invention water is naturally stored in this tank 10 when the outside temperature is low, and / or when the electric power required by the vehicle is low, for example when cold start or at low speeds when driving in the city. Under these conditions, the unconsumed water from the condensers 7, 8 and 9 is stored in the water storage tank 10.
  • the control device 11 acts on the pump placed in the reformer device 6, which causes the water supply of the reformer device 5.
  • the water storage tank 10 may have a volume of between 5 and 20 liters, preferably between 2 and 5 liters. . It is known to increase the system pressure up to 4 bars, for example, in order to facilitate the recovery of liquid water by decreasing the amount of water present in vapor form.
  • this solution has the disadvantage that the air compression system consumes a lot of energy, which can represent up to about 20% of the energy of the battery, and therefore greatly reduces the efficiency of the system.
  • the device according to the invention makes it possible to work at lower pressures, especially when the power of the vehicle and the ambient temperature are above certain threshold values, for example between 3 and 4 bars, or even between 2 and 3.5 bars, and still preferably between 2 and 3 bars. It is therefore possible to use only one air compressor 1, unlike devices requiring a pressure increase which generally include two air compressors.
  • Figure 2 in which the identical elements bear the same references, shows a power module according to a second embodiment of the invention.
  • the air cooler 2 is no longer present and the water storage tank 10 is connected to the air supply line 16 of the fuel cell 3 via a pipe 24.
  • the air coming from the air compressor 1 can thus be cooled and humidified directly by the water coming from the water storage tank 10, before entering the cathode 4.
  • the water supply of the pipe 16 is realized by means of a pump 25 controlled by the control device 1 1. It is also possible to add a valve between the reservoir 10 and the pipe 16, the valve being controllable by the control device 11.
  • This embodiment is useful in particular when the battery is operating at too high a temperature or for certain cells that require a moist air supply, such as membrane cells operating at high temperature, for example PEM (Proton Exchange Membrane or Polymer) type cells. Electrolyte Membrane in English language).
  • PEM Protein Exchange Membrane or Polymer
  • FIG. 3 in which the identical elements bear the same references, shows a power module according to a third embodiment of the invention.
  • the reformer device 6 is connected directly to the anode 5 via line 18.
  • the water storage tank 10 is also connected to driving 18 supplying hydrogen to the fuel cell 3, via a pipe 27. It is thus possible to inject water into the hydrogen supplying the fuel cell, which allows the temperature of the hydrogen to be lowered. and to increase the efficiency of the fuel cell 3.
  • the supply of water to the pipe 18 is carried out using a pump 26 controlled by the control device 1 1. It is also possible to add a valve between the reservoir 10 and the pipe 18, the valve being controllable by the control device 1 1.
  • the power module does not include a condenser 7 between the reformer device 6 and the anode 5, which makes the device more compact and saves space.
  • the addition in the fuel cell system comprising the battery 3 and the reformer 6 of a water storage tank 10 on board the vehicle, ensures the vehicle autonomy in water, especially in conditions critical when vehicle power and ambient temperature are above certain thresholds.
  • this addition makes it possible to use neither an increase in the operating pressure nor a cold source with a temperature below the outside temperature.
  • the efficiency of the fuel cell system is maximized and is not degraded to meet the pure water requirement of the power module.
  • the use of the water storage tank 10 thus allows for all couples: requested power / outdoor temperature, obtaining a positive pure water balance, to ensure the water autonomy of the motor vehicle.
  • the fuel cell thus has a maximized yield.
  • This device therefore operates over a wide range of outdoor temperatures while using a fuel reformer.
  • the need for an air conditioning type cold source to cool the gas flows to condense the pure water is no longer necessary to obtain a positive pure water balance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention porte sur un module de puissance pour véhicule automobile comprenant un dispositif de pile à combustible (3) munie d'une anode (5) et d'une cathode (4), comprenant un condenseur (9) en sortie d'anode (5) et un condenseur (8) en sortie de cathode (4), le dispositif étant alimenté en gaz riche en hydrogène par un dispositif reformeur (6) de carburant hydrocarboné, caractérisé en ce qu'il comprend un réservoir de stockage d'eau (10) alimenté en eau par l’un au moins des condenseurs (8, 9) en sortie d'anode (5) et en sortie de cathode (4), et destiné à alimenter en eau le dispositif reformeur (6), l'alimentation en eau du dispositif reformeur (6) étant réalisée par une pompe placée dans le dispositif reformeur (6) et pilotée par un dispositif de commande (11) recevant des signaux de commande en provenance d'un capteur de la température extérieure (12) et d'un moyen de mesure de la puissance électrique demandée (13).

Description

Dispositif de pile à combustible autonome en eau
La présente invention concerne un module de puissance pour véhicule automobile comprenant un dispositif de pile à combustible et un procédé de gestion de l'eau circulant dans un tel module de puissance. La pile à combustible apparaît de plus en plus comme le convertisseur d'énergie le plus propre et le plus efficace pour convertir l' énergie chimique en une énergie directement utilisable sous forme électrique et thermique.
Son principe de fonctionnement est simple : il s' agit d'une combustion électrochimique et contrôlée d'hydrogène et d' oxygène, avec production simultanée d' électricité, d' eau et de chaleur, selon la réaction chimique : H2 + 1 /2 02 → H2O. Cette réaction s'opère au sein d'une structure essentiellement composée de deux électrodes, l' anode et la cathode, séparées par un électrolyte : c' est la réaction inverse de l' électrolyse de l'eau.
Cependant, un inconvénient des piles à combustible réside dans la gestion de l'eau. En effet, dans un système de pile à combustible, il existe deux consommateurs d'eau pure : la pile et le reformeur, et un seul producteur d'eau : la pile. Dans le cas d'une architecture de système de traction de véhicule automobile à pile à combustible, fonctionnant par exemple avec de l'essence, le reformeur est un grand consommateur d'eau. Il convient donc de récupérer suffisamment d'eau liquide à la sortie de la pile, afin que le véhicule soit autonome en eau. La seule source d'eau est donc constituée par la pile qui, de par son fonctionnement, transforme en particulier l'hydrogène et l'oxygène en eau pure. Cette eau produite se trouve sous forme de deux phases, une phase liquide et une phase vapeur. Afin de pouvoir récupérer suffisamment d'eau pour les besoins de la pile, comme par exemple pour l'humidification des gaz en entrée de la pile, et, pour le fonctionnement du reformeur, les solutions suivante s ont été proposées.
L'eau peut être condensée grâce à l'utilisation d'une source froide, de l'ordre de 300C par exemple. Toutefois, un véhicule doit pouvoir fonctionner sur une plage de température large, par exemple entre -20°C à +45°C. Il est donc difficile de conserver axa sein d'un véhicule une source froide de l'ordre de 300C, sauf si un système de climatisation est utilisé. Une autre solution consiste en une augmentation de la pression du système jusqu'à 4 bars par exemple, afin de faciliter la récupération d'eau liquide en diminuant la quantité d'eau présente sous forme vapeur.
Une autre solution est décrite dans la demande de brevet WO 00 42671 , et consiste en un contrôle de la température de l' empilement des cellules de la pile à combustible par la boucle de refroidissement du moteur. Cela nécessite un circuit du type climatisation permettant une chute de température importante pour la condensation des gaz de la pile et la récupération de l'eau nécessaire au fonctionnement du système.
Ces solutions connues sont toutefois très consommatrices d'énergies, à cause de la source froide de type circuit de climatisation, nécessitant de l'énergie ou à cause de l'augmentation de la pression des réactifs de la pile et donc de la pression de fonctionnement du système, ce qui nécessite également de l'énergie pour le groupe de compression.
Dans tous les cas, le rendement du système diminue à cause de la consommation d'énergie nécessaire pour obtenir une pile à combustible autonome en eau pure.
Il est donc intéressant de disposer de moyens permettant d' obtenir un module de puissance constitué d' un reformeur, d' une pile à combustible et de différents auxiliaires, permettant de récupérer l'eau produite par la pile pour alimenter le reformeur et cette même pile.
L ' invention propose un module de puissance pour véhicule automobile assurant une gestion de l'eau autonome, c'est-à-dire dont la production d'eau est supérieure ou égale à la consommation d'eau sur une large gamme de puissance et de températures extérieures afin d'obtenir un véhicule automobile autonome dans son besoin en eau pure.
L ' invention a pour objet un module de puissance pour véhicule automobile comprenant un dispositif de pile à combustible alimenté en gaz riche en hydrogène par un dispositif reformeur de carburant hydrocarboné autonome en eau, limitant ainsi les pertes de rendement, ainsi qu'un procédé de gestion de l'eau circulant au sein de ce module de puissance.
Le module de puissance pour véhicule automobile selon l' invention comprend un dispositif de pile à combustible munie d'une anode et d'une cathode, comprenant un condenseur en sortie d' anode et un condenseur en sortie de cathode, le dispositif étant alimenté en gaz riche en hydrogène par un dispositif reformeur de carburant hydrocarboné. Ce module comprend un réservoir de stockage d'eau alimenté en eau par l' un au moins des condenseurs en sortie d' anode et en sortie de cathode, et destiné à alimenter en eau le dispositif reformeur, l'alimentation en eau du dispositif reformeur étant réalisée par une pompe placée dans le dispositif reformeur et pilotée par un dispositif de commande recevant des signaux de commande en provenance d'un capteur de la température extérieure et d'un moyen de mesure de la puissance électrique demandée.
Dans un mode de réalisation, le module de puissance comporte en outre un condenseur positionné entre le dispositif reformeur et l'entrée de l'anode de la pile à combustible. Ainsi, le réservoir de stockage d' eau peut également être alimenté en eau par le condenseur positionné entre le dispositif reformeur et l' entrée de l' anode de la pile à combustible.
Dans un mode de réalisation préféré, le réservoir de stockage d' eau est alimenté en eau par le condenseur positionné entre le dispositif reformeur et l'entrée de l'anode de la pile à combustible, par le condenseur en sortie d' anode et par le condenseur en sortie de cathode.
Dans un autre mode de réalisation, l' air entrant à la cathode est humidifié par l ' eau provenant du réservoir de stockage d' eau à l'aide d' une pompe, placée entre le réservoir de stockage d' eau et la conduite d' alimentation en air de la cathode, et pilotée par le dispositif de commande.
Dans un autre mode de réalisation, l'hydrogène entrant à l' anode est humidifié par l' eau provenant du réservoir de stockage d' eau à l'aide d'une pompe, placée entre le réservoir de stockage d'eau et la conduite d'alimentation en hydrogène de l' anode, et pilotée par le dispositif de commande.
Le procédé de l' invention de gestion de l' eau circulant dans un module de puissance comprenant un dispositif de pile à combustible munie d'une anode et d'une cathode, comprenant un condenseur en sortie d' anode et un condenseur en sortie de cathode, le dispositif étant alimenté en gaz riche en hydrogène par un dispositif reformeur de carburant hydrocarboné, consiste à stocker l' eau issue de l' un au moins des condenseurs en sortie d' anode et en sortie de cathode dans un réservoir de stockage d' eau, puis à acheminer l' eau stockée dans le réservoir vers le dispositif reformeur, l' alimentation en eau du dispositif reformeur étant réalisée en fonction de la température extérieure et de la puissance électrique requise par le véhicule, de façon à maintenir un bilan de consommation d' eau positif ou nul dans le module de puissance.
Avantageusement, lorsque la température extérieure et/ou la puissance électrique requise par le véhicule est supérieure à une valeur seuil, le système de commande est apte à commander la pompe du dispositif reformeur, afin d'alimenter en eau le dispositif reformeur.
D'autres avantages et caractéristiques de l' invention apparaîtront à l'examen de la description détaillée de troi s modes de mise en œuvre nullement limitatifs et illustrés par les figures 1 à 3 sur lesquelles : - la figure 1 illustre schématiquement un module de puissance selon un premier mode de réalisation de l' invention,
- la figure 2 illustre schématiquement un module de puissance selon un deuxième mode de réalisation de l'invention,
- la figure 3 illustre schématiquement un module de puissance selon un troisième mode de réalisation de l' invention.
Sur la figure 1 , est représenté un compresseur 1 alimenté en air par une arrivée d'air 14, et relié à un refroidisseur d' air 2 via une conduite 15. L' air issu du compresseur 1 est également acheminé vers un dispositif reformeur 6 via une conduite 17, tandis que l'air issu du refroidisseur d' air 2 est acheminé via une conduite 16 vers la cathode 4 d'une pile à combustible 3 munie de la cathode 4 et d'une anode 5. Le dispositif reformeur 6 est alimenté en carburant par une arrivée de carburant 22, et produit à sa sortie un mélange gazeux riche en hydrogène qui est acheminé vers l' anode 5 via une conduite 18. Un condenseur 7 positionné entre le dispositif reformeur 6 et l' anode 5 transforme en eau une partie des gaz issus du dispositif reformeur 6. Un condenseur 8 situé en sortie de cathode 4 et un condenseur 9 situé en sortie d'anode 5 assurent la condensation des gaz cathodiques et anodiques. L' eau issue des condenseurs 7, 8, et 9 est stockée dans un réservoir de stockage d'eau 10 via des conduites respectives 21 , 19 et 20.
Les condenseurs 7, 8, et 9 sont de préférence des condenseurs/séparateurs, c' est-à-dire qu' ils assurent également la séparation de la phase liquide et de la phase gazeuse. Dans ce cas, il n'y a que de l' eau liquide qui est acheminée vers le réservoir de stockage d'eau 10, ce qui évite de devoir purger de l'hydrogène dans le réservoir de stockage d' eau 10, et rend le dispositif plus sûr. On peut également envisager qu'un séparateur soit positionné à la sortie des condenseurs 7,8,9.
L ' alimentation en eau du dispositif reformeur 6 est réalisée via une conduite 23 grâce à une pompe non représentée placée dans le dispositif reformeur 6 et pilotée par un dispositif de commande 1 1 recevant des signaux de commande en provenance d'un capteur de la température extérieure 12 et d'un moyen de mesure de la puissance électrique demandée 13. La pompe peut également être positionnée entre le réservoir de stockage d' eau 10 et le dispositif reformeur 6.
Dans certaines conditions de roulage, par exemple lorsque la température extérieure et/ou la puissance électrique requise par le véhicule sont supérieures à une valeur seuil, il y a d' avantage d' eau consommée que récupérée, car il est plus difficile de condenser de l' eau à partir des gaz d' échappement. Il est donc nécessaire de pouvoir disposer d'eau supplémentaire dans ces conditions. Grâce au réservoir de stockage d' eau 10 utilisé selon l' invention, de l' eau est naturellement stockée dans ce réservoir 10 lorsque la température extérieure est basse, et/ou que la puissance électrique requise par le véhicule est faible, par exemple lors de démarrage à froid ou lors de vitesses peu élevées lors de la circulation en ville. Dans ces conditions, l'eau non consommée issue des condenseurs 7, 8 et 9 est stockée dans le réservoir de stockage d' eau 10.
Lorsque les valeurs de température extérieure et/ou de puissance électrique requises sont supérieures à une valeur seuil, les valeurs étant mesurées par le capteur de la température extérieure 12 et le moyen de mesure de la puissance électrique demandée 13, le dispositif de commande 1 1 agit sur la pompe placée dans le dispositif reformeur 6, ce qui entraîne l' approvisionnement en eau du dispositif reformeur 5. Le réservoir de stockage d' eau 10 peut avoir un volume compris entre 5 et 20 litres, de préférence entre 2 et 5 litres. II est connu d' augmenter la pression du système jusqu'à 4 bars par exemple, afin de faciliter la récupération d'eau liquide en diminuant la quantité d'eau présente sous forme vapeur. Toutefois, cette solution a pour inconvénient que le système de compression d' air consomme beaucoup d' énergie, ce qui peut représenter jusqu'à 20% environ de l' énergie de la pile, et diminue donc fortement le rendement du système. Le dispositif selon l' invention permet de travailler à des pressions plus faibles, notamment lorsque la puissance du véhicule et la température ambiante sont supérieures à certaines valeurs seuil, par exemple entre 3 et 4 bars, voire entre 2 et 3,5 bars et encore de préférence entre 2 et 3 bars. Il est donc possible de n'utiliser qu'un seul compresseur d' air 1 , contrairement aux dispositifs nécessitant une augmentation de pression qui comprennent généralement deux compresseurs d' air. La figure 2, sur laquelle les éléments identiques portent les mêmes références, montre un module de puissance selon un deuxième mode de réalisation de l' invention.
Dans ce mode de réalisation, le refroidisseur d' air 2 n'est plus présent et le réservoir de stockage d' eau 10 est relié à la conduite 16 d' alimentation en air de la pile à combustible 3 , via une conduite 24.
L ' air issu du compresseur d' air 1 peut ainsi être refroidi et humidifié directement par l'eau issue du réservoir de stockage d'eau 10, avant d' entrer dans la cathode 4. L ' alimentation en eau de la conduite 16 est réalisée à l' aide d'une pompe 25 pilotée par le dispositif de commande 1 1. On peut également ajouter une vanne entre le réservoir 10 et la conduite 16, la vanne étant pilotable par le dispositif de commande 1 1.
Ce mode de réalisation est utile notamment lorsque la pile fonctionne à une température trop élevée ou pour certaines piles qui nécessitent une alimentation en air humide comme les piles à membrane fonctionnant à haute température, par exemple les piles de type PEM (Proton Exchange Membrane ou Polymer Electrolyte Membrane en langue anglaise).
La figure 3, sur laquelle les éléments identiques portent les mêmes références, montre un module de puissance selon un troisième mode de réalisation de l' invention.
Dans ce mode de réalisation, utile lorsque l'hydrogène nécessite d' être humidifié avant l' entrée de la pile 3, le dispositif reformeur 6 est relié directement à l'anode 5 via la conduite 18. Le réservoir de stockage d' eau 10 est également relié à la conduite 18 d' alimentation en hydrogène de la pile à combustible 3, via une conduite 27. Il est ainsi possible d' injecter de l' eau dans l 'hydrogène alimentant la pile à combustible, ce qui permet d'abaisser la température de l'hydrogène et d' augmenter le rendement de la pile à combustible 3. L' alimentation en eau de la conduite 18 est réalisée à l'aide d'une pompe 26 pilotée par le dispositif de commande 1 1. On peut également ajouter une vanne entre le réservoir 10 et la conduite 18, la vanne étant pilotable par le dispositif de commande 1 1.
Dans ce mode de réalisation, le module de puissance ne comprend pas de condenseur 7 entre le dispositif reformeur 6 et l' anode 5, ce qui rend le dispositif plus compact et permet de gagner de la place.
L'ajout dans le système de pile à combustible, comprenant la pile 3 et le reformeur 6 d'un réservoir de stockage d'eau 10 embarqué à bord du véhicule, permet d' assurer au véhicule une autonomie en eau, notamment dans des conditions critiques lorsque la puissance du véhicule et la température ambiante sont supérieures à certaines valeurs seuil. De plus, cet ajout permet de ne recourir ni à une augmentation de la pression de fonctionnement, ni à une source froide d'une température inférieure à la température extérieure. Le rendement du système pile à combustible est donc maximisé et n'est pas dégradé pour satisfaire le besoin d'eau pure du module de puissance.
L'utilisation du réservoir de stockage d' eau 10 permet ainsi pour tous les couples : puissance demandée / température extérieure, l' obtention d'un bilan d'eau pure positif, afin d' assurer l'autonomie en eau du véhicule automobile. La pile à combustible présente donc un rendement maximisé.
Ce dispositif fonctionne donc sur une large plage de température extérieure tout en utilisant un reformeur de carburant. De même, le besoin d'une source froide de type climatisation afin de refroidir les flux gazeux pour condenser l'eau pure n'est plus nécessaire pour obtenir un bilan d' eau pure positif.

Claims

REVENDICATIONS
1. Module de puissance pour véhicule automobile comprenant un dispositif de pile à combustible (3) munie d'une anode (5) et d'une cathode (4), comprenant un condenseur (9) en sortie d' anode (5) et un condenseur (8) en sortie de cathode (4), le dispositif étant alimenté en gaz riche en hydrogène par un dispositif reformeur (6) de carburant hydrocarboné, caractérisé en ce qu' il comprend un réservoir de stockage d' eau ( 10) alimenté en eau par l' un au moins des condenseurs (8,9) en sortie d'anode (5) et en sortie de cathode (4), et destiné à alimenter en eau le dispositif reformeur (6), l' alimentation en eau du dispositif reformeur (6) étant réalisée par une pompe placée dans le dispositif reformeur (6) et pilotée par un dispositif de commande ( 1 1 ) recevant des signaux de commande en provenance d'un capteur de la température extérieure ( 12) et d' un moyen de mesure de la puissance électrique demandée ( 13).
2. Module de puissance selon la revendication 1 , caractérisé en ce qu' il comporte un condenseur (7) positionné entre le dispositif reformeur (6) et l'entrée de l' anode (5) de la pile à combustible (4) .
3. Module de puissance selon la revendication 2, caractérisé en ce que le réservoir de stockage d'eau ( 10) est alimenté en eau par le condenseur (7) positionné entre le dispositif reformeur (6) et l' entrée de l' anode (5) de la pile à combustible (3).
4. Module de puissance selon la revendication 2, caractérisé en ce que le réservoir de stockage d' eau ( 10) est alimenté en eau par le condenseur (7) positionné entre le dispositif reformeur (6) et l' entrée de l' anode (5) de la pile à combustible (3), par le condenseur (9) en sortie d' anode (5) et par le condenseur (8) en sortie de cathode (4).
5. Module de puissance selon l' une quelconque des revendications précédentes, caractérisé en ce que l'air entrant à la cathode (4) est humidifié par l'eau provenant du réservoir de stockage d' eau ( 10), à l'aide d'une pompe (25) placée entre le réservoir de stockage d' eau ( 10) et la conduite d'alimentation en air ( 16) de la cathode (4), et pilotée par le dispositif de commande (1 1 ).
6. Module de puissance selon la revendication 1 , caractérisé en ce que l' hydrogène entrant à l' anode (5 ) est humidifié par l ' eau provenant du réservoir de stockage d'eau ( 10), à l' aide d'une pompe (26), placée entre le réservoir de stockage d'eau ( 10) et la conduite d'alimentation en hydrogène ( 18) de l' anode (5), et pilotée par le dispositif de commande ( 1 1 ).
7. Procédé de gestion de l' eau circulant dans un module de puissance comprenant un dispositif de pile à combustible (3) munie d'une anode (5) et d' une cathode (4), comprenant un condenseur (9) en sortie d' anode (5) et un condenseur (8) en sortie de cathode (4), le dispositif étant alimenté en gaz riche en hydrogène par un dispositif reformeur (6) de carburant hydrocarboné, caractérisé en ce que l'eau issue de l' un au moins des condenseurs (8,9) en sortie d' anode (5) et en sortie de cathode (4) est stockée dans un réservoir de stockage d' eau ( 10), l' eau stockée dans le réservoir ( 10) étant ensuite acheminée vers le dispositif reformeur (6), l ' alimentation en eau dispositif reformeur (6) étant réalisée en fonction de la température extérieure et de la puissance électrique requise par le véhicule, de façon à maintenir un bilan de consommation d' eau positif ou nul dans le module de puissance.
8. Procédé selon la revendication 7, caractérisé en ce que l' alimentation du dispositif reformeur (6) est réalisée lorsque la température extérieure et/ou la puissance électrique requise par le véhicule est supérieure à une valeur seuil.
PCT/FR2005/050747 2004-09-27 2005-09-15 Dispositif de pile a combustible autonome en eau WO2006035176A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0410202 2004-09-27
FR0410202A FR2875951B1 (fr) 2004-09-27 2004-09-27 Dispositif de pile a combustible autonome en eau

Publications (1)

Publication Number Publication Date
WO2006035176A1 true WO2006035176A1 (fr) 2006-04-06

Family

ID=34950716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/050747 WO2006035176A1 (fr) 2004-09-27 2005-09-15 Dispositif de pile a combustible autonome en eau

Country Status (2)

Country Link
FR (1) FR2875951B1 (fr)
WO (1) WO2006035176A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827426A1 (fr) * 2012-03-12 2015-01-21 Aisin Seiki Kabushiki Kaisha Système de pile à combustible
US11577189B2 (en) * 2017-09-29 2023-02-14 Denso Corporation Liquid recovery device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268017B2 (ja) 2007-09-14 2013-08-21 日産自動車株式会社 燃料電池システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798798A2 (fr) * 1996-03-26 1997-10-01 Toyota Jidosha Kabushiki Kaisha Méthode et appareil pour le reformage de combustible et système de pile à combustible avec appareil de reformage incorporé dedans
WO2000042671A1 (fr) * 1999-01-12 2000-07-20 Energy Partners, L.C. Procede et appareil permettant de maintenir un bilan hydrique neutre dans un systeme d'elements a carburant
US20010016274A1 (en) * 2000-01-25 2001-08-23 Emi Kawasumi Fuel cell system and method
WO2003032424A2 (fr) * 2001-10-02 2003-04-17 Nissan Motor Co.,Ltd. Procede et dispositif de pile a combustible
US6641625B1 (en) * 1999-05-03 2003-11-04 Nuvera Fuel Cells, Inc. Integrated hydrocarbon reforming system and controls

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798798A2 (fr) * 1996-03-26 1997-10-01 Toyota Jidosha Kabushiki Kaisha Méthode et appareil pour le reformage de combustible et système de pile à combustible avec appareil de reformage incorporé dedans
WO2000042671A1 (fr) * 1999-01-12 2000-07-20 Energy Partners, L.C. Procede et appareil permettant de maintenir un bilan hydrique neutre dans un systeme d'elements a carburant
US20030031902A1 (en) * 1999-01-12 2003-02-13 Bhaskar Balasubramanian Method and apparatus for maintaining neutral water balance in a fuel cell system
US6641625B1 (en) * 1999-05-03 2003-11-04 Nuvera Fuel Cells, Inc. Integrated hydrocarbon reforming system and controls
US20010016274A1 (en) * 2000-01-25 2001-08-23 Emi Kawasumi Fuel cell system and method
WO2003032424A2 (fr) * 2001-10-02 2003-04-17 Nissan Motor Co.,Ltd. Procede et dispositif de pile a combustible

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827426A1 (fr) * 2012-03-12 2015-01-21 Aisin Seiki Kabushiki Kaisha Système de pile à combustible
EP2827426A4 (fr) * 2012-03-12 2015-04-01 Aisin Seiki Système de pile à combustible
US9559371B2 (en) 2012-03-12 2017-01-31 Aisin Sieki Kabushiki Kaisha Fuel cell system
US11577189B2 (en) * 2017-09-29 2023-02-14 Denso Corporation Liquid recovery device

Also Published As

Publication number Publication date
FR2875951A1 (fr) 2006-03-31
FR2875951B1 (fr) 2007-03-30

Similar Documents

Publication Publication Date Title
EP1776730B1 (fr) Controle de l'humidification de la membrane polymere d'une pile a combustible
EP3499626A1 (fr) Systeme reversible de stockage et destockage d'electricite comprenant un convertisseur electrochimique (sofc/soec) couple a un systeme de stockage/destockage d'air comprime (caes)
FR2968462A1 (fr) Dispositif de production d'electricite par pile a combustible.
WO2006035176A1 (fr) Dispositif de pile a combustible autonome en eau
EP1733447B1 (fr) Dispositif et procede de refroidissement d'un ensemble de generation d'electricite comprenant une pile a combustible.
FR2845825A1 (fr) Dispositif de recuperation d'eau dans une installation de production d'electricite comprenant une pile a combustible
WO2021250213A1 (fr) Système de refroidissement d'une pile à combustible et pile à combustible équipée d'un tel système
EP1525635B1 (fr) Systeme de tractiion electrique pour vehicule automobile et procede de mise en oeuvre d'une pile a combustible
FR2886765A1 (fr) Systeme de pile a combustible, et procede associe
FR2881577A1 (fr) Systeme pile a combustible et procede de commande associe
FR2883667A1 (fr) Installation de production d'electricite a bord d'un vehicule automobile comprenant une pile a combustible
FR2860924A1 (fr) Dispositif de pile a combustible autonome en eau
FR2904476A1 (fr) Systeme de pile a combustible avec reformeur
WO2005107001A2 (fr) Agencement de piles a combustible
EP1799614A1 (fr) Generateur d'electricite pour vehicule automobile
EP1730806B1 (fr) Procede de regulation de la pression d'un gaz d'echappement d'une pile a combustible de maniere a reguler l'aptitude a la condensation de ce gaz
FR2879026A1 (fr) Systeme de generation d'energie electrique embarque sur un vehicule automobile equipe d'une pile a combustible et procede associe
FR3113338A1 (fr) Dispositif d’alimentation de cathode d’une pile à combustible en air sous pression, à refroidissement optimisé
FR2862811A1 (fr) Dispositif et procede de refroidissement d'une pile a combustible
FR2866474A1 (fr) Systeme a pile a combustible a ligne d'alimentation en oxygene optimise, applications d'un tel systeme et procede d'alimentation en oxygene de la cathode de ce systeme.
FR2862435A1 (fr) Dispositif d'humidification cathodique et de gestion thermique d'un systeme pile a combustible
FR2868212A1 (fr) Dispositif de gestion de l'eau d'un systeme pile a combustible
FR2863105A1 (fr) Dispositif de degel d'un reservoir d'eau unite auxiliaire de puissance apu
FR2833761A1 (fr) Dispositif de generation d'electricite du type pile a combustible et vehicule comportant un tel dispositif
FR2887077A1 (fr) Installation de production d'energie comportant une pile a combustible et comportant un echangeur de chaleur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase