EP1846660B1 - Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant - Google Patents

Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant Download PDF

Info

Publication number
EP1846660B1
EP1846660B1 EP06707973A EP06707973A EP1846660B1 EP 1846660 B1 EP1846660 B1 EP 1846660B1 EP 06707973 A EP06707973 A EP 06707973A EP 06707973 A EP06707973 A EP 06707973A EP 1846660 B1 EP1846660 B1 EP 1846660B1
Authority
EP
European Patent Office
Prior art keywords
compressor
units
plant
compressor units
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06707973A
Other languages
German (de)
English (en)
Other versions
EP1846660A1 (fr
EP1846660B8 (fr
Inventor
Michael Metzger
Helmut Liepold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL06707973T priority Critical patent/PL1846660T3/pl
Publication of EP1846660A1 publication Critical patent/EP1846660A1/fr
Application granted granted Critical
Publication of EP1846660B1 publication Critical patent/EP1846660B1/fr
Publication of EP1846660B8 publication Critical patent/EP1846660B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0269Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors

Definitions

  • the invention relates to a method for controlling a compression system with at least two separately zu- and / or turn-off compressor units, with a plurality of devices for changing the performance of the compressor units and with a control device.
  • the invention relates to a control device for controlling a compression system with at least two separately zu- and / or turn off compressor units and with a plurality of devices for changing the performance of the compressor units.
  • Compaction plants for example natural gas compression plants, for gas transport and / or gas storage are essential facilities in the sense of national and international energy supply.
  • a system for gas transport consists of a plurality of compression systems, which can each consist of several compressor units.
  • the task of the compressor units is to add a sufficient amount of mechanical energy to a pumped medium in order to compensate for friction losses and to ensure the required operating pressures or flows.
  • Compressor units often have very different drives and wheels, as they are designed for example for a base load or a peak load operation.
  • a compressor unit includes e.g. at least one drive and at least one compressor.
  • Plant automation is especially important for cost-effective driving.
  • the ability of plant automation to guide the process, and the Optimizing the compaction plant within production constraints provides decisive economic benefits.
  • compressors of a compression plant are driven by turbines that cover their fuel needs directly from a pipeline.
  • compressors are driven by electric motors. Cost-effective driving means to minimize the energy consumption of the turbines and the electric drives for a given compression capacity, flow rate, delivery capacity and / or given volume flow.
  • a useful operating range of compressors is limited by adverse effects of internal flow processes. This results in operating limits, such as a temperature limit, exceeding the local speed of sound (compression shock, sip limit), the circumferential tearing off of the flow at the impeller or the surge line.
  • the automation of a compression system has primarily the task of a dispatching center predetermined setpoints, such as either a flow through the station or a final pressure on the output side to realize as actual values. Specified limits for the suction pressures at the inlet side, the final pressures at the outlet side and the final temperature at the system outlet must not be exceeded.
  • WO 03/036096 A1 a method for optimizing the operation of multiple compressor units of a natural gas compression station is known.
  • the speeds of the running compressor units are run in a fixed speed ratio with respect to stored for each compressor unit map data.
  • the speeds of all are in operation after starting an additional compressor units are changed by an equal percentage flow adjustment until, if possible, all pump preventive valves of the system are closed. Only after all the pump preventive valves are closed, operating points of the compressor unit are pushed in their maps as close as possible to a line of maximum efficiency.
  • EP 0 769 624 B1 For example, a method is known for balancing the load between multiple compressors and manipulating the performance of the compressors to maintain a predetermined relationship between all the compressors when the operating points of all the compressors are farther than a specified value from the surge line.
  • EP 0 576 238 B1 For example, a method and apparatus for load sharing is known. With a designated as a guide compressor compressor, a control signal is generated, which is used as a reference for the non-leading compressor.
  • the invention has for its object to provide a method and apparatus for further optimization of energy consumption for operation of multiple compressor units of a compaction system.
  • This object is inventively achieved in that, for presetting of new setpoints or change of the current state of the compressor plant by means of an optimization calculation from a current switching configuration of the compressor units with regard to an optimized total energy demand of the compressor plant, a new switching configuration is calculated, and that the new switching configuration is set automatically via the control device.
  • An advantage of the invention is that, in the optimization of all compressor units available or operable on the respective compacting system, it can be assumed that they are independent of their respective operating or switching state.
  • the invention allows - in contrast to known controls for compression systems - as a result of the optimization of an automatic connection of a previously out of service compressor unit or a complete shutdown of a compressor unit.
  • automatically means “online” in particular, meaning that it can automatically mean, for example, that the switching configuration is used by the operating staff of the compacting system without manual intervention, preferably in real time.
  • Real time means that the result of a calculation is guaranteed within a certain period of time, that is, before a certain time limit has been reached.
  • the optimization calculation can take place on a separate data processing system, which automatically forwards its calculation data to the control device.
  • the invention is based on the known sequential concept, ie after the start of an externally specified additional unit, first to close the pump-preventive valves and then to optimize the operating points of the compressor units with regard to their efficiency.
  • the entire compaction plant is preferably considered during each optimization calculation and the switching configuration of the compaction plant, ie the specification of a switching state of the individual compressor units, calculated.
  • the closing of the or all of the pump preventive valves can be ensured by a minimum flow through the compressor units in the optimization. Even a first start of the compression system can already with a favorable with regard to an optimized total energy demand switching configuration done.
  • the switching configuration is represented by the switching states "0" for Off or "1" for On, which is stored bit by bit, for example, in an integer variable.
  • switching operation is meant the change from one, in particular electrical, switching state to another.
  • a prognosis is determined by means of the optimization calculation for at least one, preferably several, future time (s). Since the method allows for predictions up to a given time, it is possible to know about a normal driving style of the station, i. e.g. a conventional load curve to use to minimize the switching frequency of compressor units.
  • compressor unit-specific data records and / or compressor unit-specific maps evaluated and determined for the individual compressor units operating points which depend on predetermined or changed values of mass flow and a specific production work, the operating points are set such that the total energy demand the compaction plant is optimized.
  • the data sets and / or maps are specified as a function of a mass flow and a specific production work of the individual compression units.
  • a load distribution ie a speed ratio, calculated between the compressor units and changed if necessary.
  • Another significant advantage is that constraints on the optimization, e.g. The pumping limit can not be violated, even with an optimal efficiency calculation of the speed setpoints for the individual compressor stations can be considered.
  • optimization calculation is carried out with a control cycle, in particular self-triggering.
  • speed setpoint values and / or the new switching configuration for the control device are provided as output variables of the optimization calculation with each control cycle.
  • the speed setpoints and / or the switching configuration are kept constant.
  • the speed setpoints are scaled with a common factor and used as a setpoint for a compressor unit controller.
  • control device with the new switching configuration triggers a warm-up phase of the compressor units for the subsequent connection of a previously out of service compressor unit already before the end of the control cycle.
  • a load readiness for the next control cycle is communicated with the end of the warm-up phase of the control device. If, for example, the speed of an approaching compressor unit is sufficient is high and the warm-up phase of the turbine is completed, a signal "load ready" is set. This means that the compressor unit participates in the load sharing procedure and is included in the optimization calculation for the best load distribution between those in service.
  • the optimization calculation according to the principle of model-predictive control by means of forecast calculations minimizes the total energy demand expected up to a later point in time.
  • an energy consumption of a switching operation is taken into account in the optimization calculation.
  • the energy consumption of the switching process from the data sets and / or the maps of the compressor units is calculated.
  • the knowledge of a proportionate energy consumption for the switching process allows an even more accurate determination of the minimum total energy consumption of the compression plant.
  • An advantageous variant of the invention is that the specific conveying work of the compressor system for the control cycle is assumed to be constant, in particular in a parallel connection of the compressor units.
  • An alternative advantageous variant of the invention is that the mass flow of the compressor system for the control cycle is assumed to be constant, in particular in a series circuit of the compressor units.
  • an active compressor unit is operated at least with a predetermined or predetermined minimum flow.
  • the optimization calculation is carried out by means of a branch-and-bound algorithm.
  • a limit to the branch-and-bound algorithm is determined by solving a relaxed problem using sequential quadratic programming.
  • a further increase in the efficiency of the calculation method is achieved in that the optimization calculation solves partial problems by means of dynamic programming, in particular in a series connection.
  • the device-related task is based on the above-mentioned control device solved by an optimization module with the new setpoints or change the current state of the compression system by means of an optimization calculation of a current switching configuration of the compressor units with respect to an optimized total energy demand of the compression plant a new switching configuration is calculated, and by a control module, with which the new switching configuration is automatically adjustable.
  • the optimization module for optimizing the energy consumption is in particular designed to distribute in combination with the control device and / or the dispatching center the predetermined total load on the individual compressor units so that the station setpoints with the lowest possible energy consumption, i. with maximum overall efficiency, be realized.
  • This includes, for example, both the decision which compressor units are active and which are switched inactive, as well as the specification of how much each of the active units should contribute to the overall performance, so the specification of the load distribution.
  • the optimization module is arranged at a spatial distance, in particular several km, to the control device.
  • the optimization module is prepared for the consideration of an energy consumption of a switching operation.
  • Another embodiment is that the optimization module for optimization calculation for a plurality of control devices of several compression systems is prepared.
  • the invention also includes a computer program product containing software for carrying out a method according to one of claims 1 to 21.
  • a machine-readable program code on a data carrier, it is possible to prepare DV systems for an optimization module.
  • the maps 20 are not provided by a closed formula. From a measurement, a delivery characteristic 21 and an efficiency curve 23 are determined. At a constant speed, the dependence on the conveying work and an efficiency ⁇ i on the volume flow V ⁇ i or mass flow ⁇ at support points is determined.
  • the operating limits such as a surge line 36, which are caused by the occurrence of certain flow phenomena in the compressor, must be recorded as a function of the speed. From these interpolation points and the associated values for different speeds, the maps 20 can be constructed as a function of mass flow ⁇ i and specific conveying work y i and their domain of definition by means of suitable approaches, such as piecewise polynomial interpolation or B-splines.
  • Equation 2 When connected in series compressor units 3, 4, 5, the entire conveying work on the individual compressor units 3, 4, 5 distributed energy optimal, the mass flow is assumed to be the same by the compressors.
  • FIG. 1 shows a block diagram of a method for optimizing the operation of a compression plant.
  • the compression plant is equipped with three compressor units 3, 4 and 5 shown in a very schematic way. For an interconnection of the compressor units 3, 4 and 5, a parallel connection is assumed.
  • the compressor units 3, 4 and 5 are controlled and regulated by a control device 10.
  • the control device 10 comprises a controller of the control device 12, a first compressor unit controller 13, a second compressor unit controller 14 and a third compressor unit controller 15.
  • An optimization module 11 is in bidirectional communication with the controller 10. By means of the optimization module 11, a nonlinear mixed-integer optimization problem is solved , A mathematical formulation of the optimization problem is implemented in the optimization module 11.
  • the input variables 33 are composed of a model library 26, with a model 24a, 24b, 24c for each compressor unit 3, 4, 5 and process variables of the compactor.
  • the setpoint values or limit values 31 for the control of the control device 12 are made up of a maximum temperature T g, A, max of a pressure P g, A (Should) and a volume flow V ⁇ g (Should) on the output side of the compression system and a maximum suction pressure P g , E (max) and P g, A (max) on the input side and the output side of the compression system together.
  • the compression system is calculated by means of the optimization calculation in the optimization module 11 from a current switching configuration S i, t-1 of the compressor units 3, 4 and 5 with respect to an optimized total energy demand of the compression system, a new switching configuration S i, t .
  • the output variables 32 of the optimization module 11 thus also contain, in addition to the switching states of the compressor units currently to be set, a speed setpoint input ⁇ i for the individual compressor units 3, 4 and 5.
  • the speed setpoints ⁇ i From the subordinate station control, which runs higher than the optimization cycle, the speed setpoints ⁇ i , before being applied to the compressor aggregate controllers, scaled by a common factor ⁇ to regulate the setpoints.
  • the optimization calculation is executed with a control cycle R in the optimization module 11 itself triggering.
  • the load distribution between the compressor units, ie the efficiency of optimum speed setpoint values ⁇ i for the individual compressor units 3, 4 and 5 are cyclically executed in addition to the calculation of a possible switching configuration S i, t .
  • the desired speed values ⁇ i and the shift configuration S i, t-1 are kept constant.
  • the new switching configuration is now operated by three out of three compressor units. Since the result of the optimization calculation is known before the end of the control cycle, a warm-up phase is started for the third compressor unit 5 to be approached. Upon completion of the control cycle R, the new values of the control device 10 and in particular the compressor unit regulators 13, 14, 15 are provided. The previously prepared with a warm-up compressor unit 5 can now be seamlessly connected to the new control cycle R and the optimal total energy consumption for the required flow rate or the required flow rate V ⁇ g (Should) is given again.
  • FIG. 2 shows a compressor-specific map 20 of a compressor unit 3.
  • Efficiency optimal operating points 22 are close to the pumping limit 36 on an efficiency curve 23 with a high efficiency ⁇ 3, max .
  • the mathematical formulation of the maps 20 as a calculation function is part of the optimization module 11 or the optimization calculation.
  • FIG. 3 shows a control device 10 for controlling a compression system 1.
  • the determined by the optimization module 11 optimal speed setpoints ⁇ i and the new switching configuration S i, t are, in cooperation with the controller 10, via an adjusting module S to the compressor units 3, 4 and 5 set and / or regulated.
  • control device 10 As a controlled variable for a control of the control device 10, in particular that variable of flow, suction pressure, discharge pressure and end temperature, which has the smallest positive control deviation, is used.
  • the control of the control device 10 supplies as output together with the optimization module, the setpoint values for a single compressor unit controller 13, 14, 15 see Fig. 2 ,
  • FIG. 4 shows a flowchart of the method steps 40, 42, 44 and 46.
  • the optimization process is initiated cyclically.
  • the current state of the compressor station 1 is determined. The following values are recorded: actual values 30, setpoints 31, limit values and boundary conditions 37 and models 24a, 24b, and 24c from the model library 26.
  • the current switching state S i , t-1 of the compression plant 1 is determined.
  • a third method step 44 represents a decision point. The decision is made with the third method step 44 perform an optimization calculation 46 in a fourth method step or end the method 48. On the basis of the present actual values 30 and set values 31, it can be decided whether an optimization calculation is necessary.
  • the method will continue with the fourth method step 46.
  • the fourth method step 46 the mixed-integer optimization problem is solved.
  • Input variables for the fourth method step 46 are again actual values 30, setpoint values 31, limit values and boundary conditions 37 and the models from a model library 26.
  • speed setpoint values ⁇ i and new switching states S i, t are output.
  • the method is ended 48. With the cyclical initiation from the first method step 40, the method is run through again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Feedback Control In General (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Multiple Motors (AREA)

Claims (26)

  1. Procédé pour la commande d'une installation de compression (1) comprenant au moins deux groupes compresseurs (i = 1, ..., N) pouvant être connectés et/ou déconnectés séparément, une pluralité de dispositifs pour la modification du rendement des groupes compresseurs (i = 1, ..., N) et un dispositif de commande (10),
    caractérisé en ce que, en cas de spécification de nouvelles valeurs prévues ou de modification de l'état actuel de l'installation de compression (1), une nouvelle configuration de commutation (Si,t) est calculée au moyen d'un calcul d'optimisation à partir d'une configuration de commutation actuelle (Si,t-1) des groupes compresseurs (i =1, ..., N) en ce qui concerne un besoin en énergie total (EG) optimisé de l'installation de compression (1), et en ce que la nouvelle configuration de commutation (Si,t) est réglée automatiquement par le dispositif de commande (10).
  2. Procédé selon la revendication 1,
    caractérisé en ce qu'une prévision est déterminée au moyen du calcul d'optimisation pour au moins un, de préférence plusieurs moments (t) futurs.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que des ensembles de données spécifiques au groupe compresseur et/ou des champs caractéristiques (20) spécifiques au groupe compresseur sont analysés et des points de travail (22) sont déterminés pour les différents ensembles compresseurs (i = 1, ..., N), lesquels points dépendent de valeurs prédéfinies respectivement modifiées du flux massique m et d'un travail de transport (y) spécifique, les points de travail (22) étant réglés de telle sorte que le besoin en énergie total (EG) de l'installation de compression (1) est optimisé.
  4. Procédé selon la revendication 3,
    caractérisé en ce que les ensembles de données et/ou champs caractéristiques (20) sont donnés en fonction d'un flux massique (ṁi) ou d'un flux volumique (v̇i) correspondant d'un travail de transport (λi) spécifique des différents ensembles de compression (i = 1, ..., N).
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, lors du calcul d'optimisation, une répartition de charge entre les groupes compresseurs (i = 1, ..., N) est calculée en supplément de la configuration de commutation (Si,t) et est modifiée éventuellement.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le calcul d'optimisation est effectué avec un cycle de réglage (R), en particulier de façon autodéclenchante.
  7. Procédé selon la revendication 6,
    dans lequel des valeurs prévues du régime (λi) et/ou la nouvelle configuration de commutation (Si,t) pour le dispositif de commande sont mises à disposition comme valeurs de départ (32) du calcul d'optimisation avec chaque cycle de réglage (R).
  8. Procédé selon la revendication 7,
    caractérisé en ce que, pour la durée du cycle de réglage (R), qui est en particulier plusieurs fois égale à un temps de cycle (Z) d'un réglage (12) du dispositif de commande (10), les valeurs prévues du régime (λi) et/ou la configuration de commutation (Si,t) sont maintenues constantes.
  9. Procédé selon l'une quelconque des revendications 7 ou 8, dans lequel les valeurs prévues du régime (λi) sont graduées avec un facteur (α) commun et sont utilisées comme valeur prévue pour un régulateur de groupe compresseur (13, 14, 15).
  10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le dispositif de commande (10) déclenche avec la nouvelle configuration de commutation (Si,t = 1), avant même la fin du cycle de réglage (R), une phase d'échauffement des groupes compresseurs (i = 1, ..., N) pour la commutation ultérieure d'un ensemble compresseur (Si,t-1 = 0) se trouvant auparavant hors service.
  11. Procédé selon la revendication 10,
    caractérisé en ce qu'une disponibilité de charge pour le prochain circuit de réglage (R) est signalée avec la fin de la phase d'échauffement du dispositif de commande (10).
  12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel, comme entrée (23) pour le calcul d'optimisation,
    - un modèle (24) des différents groupes de compression (i = 1, ..., N) et/ou
    - une bibliothèque modèle (26) de l'ensemble de l'installation de compression (1) et/ou
    - un travail de transport (yi,t-1) spécifique actuel des différents groupes de compression (i = 1, ..., N), et/ou
    - un travail de transport (yg,t-1) spécifique actuel de l'installation de compression (1) et/ou
    - un débit massique (ṁi,t-1) actuel traversant le groupe de compression (i = 1, ..., N) individuel, en particulier un compresseur individuel et/ou
    - un flux massique (ṁg,t-1) actuel traversant l'installation de compression (1) et/ou
    - la configuration de commutation (Si,t-1) actuelle et/ou
    - une pression d'aspiration (pg,E) sur le côté entrée (E) de l'installation de compression (1) et/ou
    - une pression d'aspiration (pi,E) sur le côté entrée de l'ensemble de compression individuel et/ou
    - une pression finale (pg,A) sur le côté sortie (A) de l'installation de compression (1) et/ou
    - une pression finale (pi,A) sur le côté sortie du groupe compresseur (i = 1, ..., N) individuel et/ou
    - une température (Tg,A) sur le côté sortie (A) de l'installation de compression (1) et/ou
    - une température (Tg,E) sur le côté entrée (E) de l'installation de compression (1) et/ou
    - une température (Ti,A) sur le côté sortie des groupes de compression (i = 1, ..., N) individuels et/ou
    - une température (Ti,E) sur le côté entrée des groupes de compression (i = 1, ..., N) individuels et/ou
    - les régimes actuels des ensembles compresseurs sont analysés.
  13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le calcul d'optimisation minimise le besoin d'énergie total escompté jusqu'à un moment (t) ultérieur selon le principe du réglage à prédiction par modèle au moyen de calculs de prévision.
  14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'une consommation d'énergie (ES) d'une opération de commutation est prise en compte dans le calcul d'optimisation.
  15. Procédé selon la revendication 14,
    caractérisé en ce que la consommation (Es) de l'opération de commutation est calculée à partir des ensembles de données et/ou des champs caractéristiques (20) des groupes compresseurs (i = 1, ..., N).
  16. Procédé selon l'une quelconque des revendications 1 à 15,
    caractérisé en ce que le travail de transport (yg) spécifique de l'installation de compresseur (1) est supposé constant pour le cycle de réglage (R), en particulier avec un montage parallèle des groupes compresseurs (i = 1, ..., N).
  17. Procédé selon l'une quelconque des revendications 1 à 15,
    caractérisé en ce que le flux massique (ṁg) de l'installation de compresseur (1) est supposé constant pour le cycle de réglage (R), en particulier avec un montage en série de groupes compresseurs (i = 1, ..., N).
  18. Procédé selon l'une quelconque des revendications 1 à 17, dans lequel un groupe compresseur (Si = 1) actif est exploité au moins avec un débit (ṁimin) minimum prédéfinissable ou prédéfini.
  19. Procédé selon l'une quelconque des revendications 1 à 18, dans lequel le calcul d'optimisation est effectué au moyen d'un algorithme Branch-and-Bound.
  20. Procédé selon la revendication 19,
    dans lequel une limite (G) est calculée pour l'algorithme Branch-and-Bound par la résolution d'un problème relaxé au moyen d'un Sequential-Quadratic-Programming.
  21. Procédé selon l'une quelconque des revendications 1 à 20,
    dans lequel le calcul d'optimisation résout des problèmes partiels au moyen d'une programmation dynamique, en particulier avec un montage en série.
  22. Dispositif de commande (10) pour la commande d'une installation de compression (1) comprenant au moins deux groupes compresseurs (i = 1, ..., N) connectables et/ou déconnectables séparément et une pluralité de dispositifs pour la modification du rendement des groupes compresseurs (i = 1, ... , N) ,
    caractérisé par
    - un module d'optimisation (11), avec lequel, en cas de spécification de nouvelles valeurs prévues ou de modifications de l'état actuel de l'installation de compression, une nouvelle configuration de commutation (Si,t) peut être calculée au moyen d'un calcul d'optimisation à partir d'une configuration de commutation (Si,t-1) actuelle des groupes compresseurs (i = 1, ..., N) en ce qui concerne un besoin d'énergie total (EG) optimisé de l'installation de compression (1), et
    - par un module de réglage (S), avec lequel la nouvelle configuration de commutation (Si,t) peut être réglée automatiquement.
  23. Dispositif de commande (10) selon la revendication 22,
    caractérisé en ce que le module d'optimisation (11) est disposé à une distance dans l'espace, en particulier plusieurs km, par rapport au dispositif de commande (10).
  24. Dispositif de commande selon l'une quelconque des revendications 22 à 23,
    caractérisé en ce que le module d'optimisation est mise en place pour la prise en compte d'une consommation d'énergie (Es) d'une opération de commutation.
  25. Dispositif de commande selon l'une quelconque des revendications 22 à 24,
    caractérisé en ce que le module d'optimisation (11) est mis en place pour le calcul d'optimisation pour une pluralité de dispositifs de commande de plusieurs installations de compression.
  26. Produit de programme informatique contenant un logiciel pour la mise en oeuvre d'un procédé selon l'une quelconque des revendications 1 à 21.
EP06707973A 2005-02-11 2006-02-02 Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant Active EP1846660B8 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06707973T PL1846660T3 (pl) 2005-02-11 2006-02-02 Sposób optymalizacji pracy kilku agregatów sprężarkowych i odpowiednie urządzenie do tego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005006410A DE102005006410A1 (de) 2005-02-11 2005-02-11 Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate und Vorrichtung hierzu
PCT/EP2006/050612 WO2006084817A1 (fr) 2005-02-11 2006-02-02 Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant

Publications (3)

Publication Number Publication Date
EP1846660A1 EP1846660A1 (fr) 2007-10-24
EP1846660B1 true EP1846660B1 (fr) 2009-04-08
EP1846660B8 EP1846660B8 (fr) 2009-11-11

Family

ID=36283270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06707973A Active EP1846660B8 (fr) 2005-02-11 2006-02-02 Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant

Country Status (16)

Country Link
US (1) US7676283B2 (fr)
EP (1) EP1846660B8 (fr)
CN (1) CN101155995A (fr)
AT (1) ATE428055T1 (fr)
AU (1) AU2006212264A1 (fr)
BR (1) BRPI0606994A2 (fr)
CA (1) CA2597519A1 (fr)
DE (2) DE102005006410A1 (fr)
DK (1) DK1846660T3 (fr)
ES (1) ES2321872T3 (fr)
MX (1) MX2007009728A (fr)
NO (1) NO20074604L (fr)
PL (1) PL1846660T3 (fr)
RU (1) RU2381386C2 (fr)
UA (1) UA88045C2 (fr)
WO (1) WO2006084817A1 (fr)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502008002475D1 (de) * 2008-05-26 2011-03-10 Siemens Ag Verfahren zum Betreiben einer Gasturbine
NO329451B1 (no) * 2008-11-03 2010-10-25 Statoil Asa Fremgangsmate for a opprettholde trykket i eksportgassen fra en bronn
DE102008064490A1 (de) * 2008-12-23 2010-06-24 Kaeser Kompressoren Gmbh Verfahren zum Steuern einer Kompressoranlage
DE102008064491A1 (de) 2008-12-23 2010-06-24 Kaeser Kompressoren Gmbh Simulationsgestütztes Verfahren zur Steuerung bzw. Regelung von Druckluftstationen
DE102009017613A1 (de) * 2009-04-16 2010-10-28 Siemens Aktiengesellschaft Verfahren zum Betrieb mehrerer Maschinen
GB0919771D0 (en) 2009-11-12 2009-12-30 Rolls Royce Plc Gas compression
BE1019108A3 (nl) * 2009-12-02 2012-03-06 Atlas Copco Airpower Nv Werkwijze voor het aansturen van een samengestelde inrichting en inrichting waarin deze werkwijze kan worden toegepast.
DE102010040503B4 (de) * 2010-09-09 2012-05-10 Siemens Aktiengesellschaft Verfahren zur Steuerung eines Verdichters
RU2454569C1 (ru) * 2011-02-14 2012-06-27 Общество с ограниченной ответственностью "Вега-ГАЗ" Способ управления гидравлическим режимом компрессорного цеха с оптимальным распределением нагрузки между газоперекачивающими агрегатами
US9527683B2 (en) 2011-07-25 2016-12-27 Siemens Aktiengesellschaft Method and device for controlling and/or regulating a fluid conveyor for conveying a fluid within a fluid line
DE102011079732B4 (de) * 2011-07-25 2018-12-27 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Steuern bzw. Regeln eines Fluidförderers zum Fördern eines Fluides innerhalb einer Fluidleitung
DE102013001921A1 (de) * 2013-02-05 2014-08-07 Man Diesel & Turbo Se Verfahren zum Betreiben eines Fördersystems mit mehreren Kompressoren
US10418833B2 (en) 2015-10-08 2019-09-17 Con Edison Battery Storage, Llc Electrical energy storage system with cascaded frequency response optimization
US9235657B1 (en) 2013-03-13 2016-01-12 Johnson Controls Technology Company System identification and model development
US9436179B1 (en) 2013-03-13 2016-09-06 Johnson Controls Technology Company Systems and methods for energy cost optimization in a building system
US9852481B1 (en) 2013-03-13 2017-12-26 Johnson Controls Technology Company Systems and methods for cascaded model predictive control
EP2778412B1 (fr) * 2013-03-15 2019-12-25 Kaeser Kompressoren Se Développement d'un modèle supérieur pour contrôler et/ou surveiller un système de compresseurs
EP2778414B1 (fr) * 2013-03-15 2016-03-16 Kaeser Kompressoren Se Standardisation de valeur de mesure
EP2778413B1 (fr) 2013-03-15 2016-03-02 Kaeser Kompressoren Se Entrée de schéma R&I pour un procédé de contrôle et/ou de surveillance d'un système de compresseurs
US11231037B2 (en) 2013-03-22 2022-01-25 Kaeser Kompressoren Se Measured value standardization
DE102013014542A1 (de) * 2013-09-03 2015-03-05 Stiebel Eltron Gmbh & Co. Kg Wärmepumpenvorrichtung
DE102013111218A1 (de) * 2013-10-10 2015-04-16 Kaeser Kompressoren Se Elektronische Steuerungseinrichtung für eine Komponente der Drucklufterzeugung, Druckluftaufbereitung, Druckluftspeicherung und/oder Druckluftverteilung
US9695834B2 (en) 2013-11-25 2017-07-04 Woodward, Inc. Load sharing control for compressors in series
EP2919078A1 (fr) * 2014-03-10 2015-09-16 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Régulation de climat intérieur à base de Navier-Stokes
US10101731B2 (en) 2014-05-01 2018-10-16 Johnson Controls Technology Company Low level central plant optimization
DE102014006828A1 (de) * 2014-05-13 2015-11-19 Wilo Se Verfahren zur energieoptimalen Drehzahlregelung eines Pumpenaggregats
US20150329289A1 (en) * 2014-05-15 2015-11-19 Ronald R. Mercer Subterranean Sealed Bore Fuel System
US10190789B2 (en) 2015-09-30 2019-01-29 Johnson Controls Technology Company Central plant with coordinated HVAC equipment staging across multiple subplants
US10190793B2 (en) 2015-10-08 2019-01-29 Johnson Controls Technology Company Building management system with electrical energy storage optimization based on statistical estimates of IBDR event probabilities
US10389136B2 (en) 2015-10-08 2019-08-20 Con Edison Battery Storage, Llc Photovoltaic energy system with value function optimization
US10418832B2 (en) 2015-10-08 2019-09-17 Con Edison Battery Storage, Llc Electrical energy storage system with constant state-of charge frequency response optimization
US10222083B2 (en) 2015-10-08 2019-03-05 Johnson Controls Technology Company Building control systems with optimization of equipment life cycle economic value while participating in IBDR and PBDR programs
US10283968B2 (en) 2015-10-08 2019-05-07 Con Edison Battery Storage, Llc Power control system with power setpoint adjustment based on POI power limits
US10250039B2 (en) 2015-10-08 2019-04-02 Con Edison Battery Storage, Llc Energy storage controller with battery life model
US10554170B2 (en) 2015-10-08 2020-02-04 Con Edison Battery Storage, Llc Photovoltaic energy system with solar intensity prediction
US11210617B2 (en) 2015-10-08 2021-12-28 Johnson Controls Technology Company Building management system with electrical energy storage optimization based on benefits and costs of participating in PDBR and IBDR programs
US10742055B2 (en) 2015-10-08 2020-08-11 Con Edison Battery Storage, Llc Renewable energy system with simultaneous ramp rate control and frequency regulation
US10700541B2 (en) 2015-10-08 2020-06-30 Con Edison Battery Storage, Llc Power control system with battery power setpoint optimization using one-step-ahead prediction
US10222427B2 (en) 2015-10-08 2019-03-05 Con Edison Battery Storage, Llc Electrical energy storage system with battery power setpoint optimization based on battery degradation costs and expected frequency response revenue
US10564610B2 (en) 2015-10-08 2020-02-18 Con Edison Battery Storage, Llc Photovoltaic energy system with preemptive ramp rate control
US10197632B2 (en) 2015-10-08 2019-02-05 Taurus Des, Llc Electrical energy storage system with battery power setpoint optimization using predicted values of a frequency regulation signal
EP3374706B1 (fr) 2015-11-09 2024-01-10 Carrier Corporation Unité de refrigeration à double compresseur
RU2696190C1 (ru) * 2016-03-14 2019-07-31 Битцер Кюльмашиненбау Гмбх Система ввода в эксплуатацию компрессорного модуля холодильного агента, а также способ ввода в эксплуатацию компрессорного модуля холодильного агента
US20170292763A1 (en) * 2016-04-06 2017-10-12 Heatcraft Refrigeration Products Llc Control verification for a modular outdoor refrigeration system
US10337669B2 (en) 2016-04-29 2019-07-02 Ocean's NG, LLC Subterranean sealed tank with varying width
DE102016208507A1 (de) * 2016-05-18 2017-11-23 Siemens Aktiengesellschaft Verfahren zur Ermittlung einer optimalen Strategie
US10778012B2 (en) 2016-07-29 2020-09-15 Con Edison Battery Storage, Llc Battery optimization control system with data fusion systems and methods
US10594153B2 (en) 2016-07-29 2020-03-17 Con Edison Battery Storage, Llc Frequency response optimization control system
EP3242033B1 (fr) 2016-12-30 2024-05-01 Grundfos Holding A/S Procédé de fonctionnement d'un groupe motopompe à commande électrique
US10838440B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with discrete device selection prioritization
US10838441B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with modulating device demand control
CN110307138B (zh) * 2018-03-20 2021-05-04 恩尔赛思有限公司 一种关于能量效率的多压缩机系统的设计、测量和优化方法
CN110307144B (zh) * 2018-03-20 2021-05-11 恩尔赛思有限公司 用于分析、监测、优化和/或比较多压缩机系统中能量效率的方法
EP3768979B1 (fr) 2018-03-20 2024-03-27 Enersize Oy Procédé d'analyse, de surveillance, d'optimisation et/ou de comparaison de l'efficacité énergétique dans un système à compresseurs multiples
US11913445B2 (en) 2018-03-20 2024-02-27 Enersize Oy Method for designing, gauging and optimizing a multiple compressor system with respect to energy efficiency
US11163271B2 (en) 2018-08-28 2021-11-02 Johnson Controls Technology Company Cloud based building energy optimization system with a dynamically trained load prediction model
US11159022B2 (en) 2018-08-28 2021-10-26 Johnson Controls Tyco IP Holdings LLP Building energy optimization system with a dynamically trained load prediction model
US10837601B2 (en) 2018-10-29 2020-11-17 Ronald R. Mercer Subterranean gas storage assembly
TWI699478B (zh) * 2019-05-01 2020-07-21 復盛股份有限公司 壓縮機系統排程方法
US11408418B2 (en) * 2019-08-13 2022-08-09 Rockwell Automation Technologies, Inc. Industrial control system for distributed compressors
US11680684B2 (en) 2021-04-16 2023-06-20 Bedrock Gas Solutions, LLC Small molecule gas storage adapter
US12025277B2 (en) 2021-04-16 2024-07-02 Michael D. Mercer Subsurface gas storage system
CN114656052A (zh) * 2022-04-29 2022-06-24 重庆江增船舶重工有限公司 一种用于污水处理的多级并联曝气鼓风机运行方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665399A (en) * 1969-09-24 1972-05-23 Worthington Corp Monitoring and display system for multi-stage compressor
US4640665A (en) * 1982-09-15 1987-02-03 Compressor Controls Corp. Method for controlling a multicompressor station
JPS62243995A (ja) 1986-04-14 1987-10-24 Hitachi Ltd 圧縮機の並列運転制御装置
DE3937152A1 (de) * 1989-11-08 1991-05-16 Gutehoffnungshuette Man Verfahren zum optimierten betreiben zweier oder mehrerer kompressoren im parallel- oder reihenbetrieb
US5347467A (en) 1992-06-22 1994-09-13 Compressor Controls Corporation Load sharing method and apparatus for controlling a main gas parameter of a compressor station with multiple dynamic compressors
DE4430468C2 (de) * 1994-08-27 1998-05-28 Danfoss As Regeleinrichtung einer Kühlvorrichtung
US5743715A (en) 1995-10-20 1998-04-28 Compressor Controls Corporation Method and apparatus for load balancing among multiple compressors
US5743714A (en) * 1996-04-03 1998-04-28 Dmitry Drob Method and apparatus for minimum work control optimization of multicompressor stations
US20040095237A1 (en) * 1999-01-09 2004-05-20 Chen Kimball C. Electronic message delivery system utilizable in the monitoring and control of remote equipment and method of same
US6535795B1 (en) * 1999-08-09 2003-03-18 Baker Hughes Incorporated Method for chemical addition utilizing adaptive optimization
MY126873A (en) * 2000-01-07 2006-10-31 Vasu Tech Ltd Configurable electronic controller for appliances
US20010045101A1 (en) * 2000-02-11 2001-11-29 Graham Donald E. Locomotive air conditioner control system and related methods
DE10151032A1 (de) 2001-10-16 2003-04-30 Siemens Ag Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate einer Erdgasverdichtungsstation
DE10208676A1 (de) 2002-02-28 2003-09-04 Man Turbomasch Ag Ghh Borsig Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel- oder Reihenbetrieb

Also Published As

Publication number Publication date
WO2006084817A1 (fr) 2006-08-17
US7676283B2 (en) 2010-03-09
UA88045C2 (ru) 2009-09-10
MX2007009728A (es) 2007-09-26
RU2381386C2 (ru) 2010-02-10
NO20074604L (no) 2007-09-11
PL1846660T3 (pl) 2010-01-29
ATE428055T1 (de) 2009-04-15
CN101155995A (zh) 2008-04-02
DE502006003377D1 (de) 2009-05-20
DK1846660T3 (da) 2009-07-27
CA2597519A1 (fr) 2006-08-17
RU2007133792A (ru) 2009-03-20
ES2321872T3 (es) 2009-06-12
AU2006212264A1 (en) 2006-08-17
EP1846660A1 (fr) 2007-10-24
EP1846660B8 (fr) 2009-11-11
DE102005006410A1 (de) 2006-08-17
BRPI0606994A2 (pt) 2009-07-28
US20080131258A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
EP1846660B1 (fr) Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant
EP2573400B1 (fr) Procédé de commande d'une installation de compresseurs
EP0431287B1 (fr) Procédé d'opération optimal de deux ou plusieurs compresseurs travaillant en parallèle ou en série
DE69008414T2 (de) Verdichterregelsystem zur Verbesserung der Mindestfördermenge und zur Verminderung des Pumpens.
DE10013098C2 (de) Anlage zur Erzeugung von Druckluft
EP2394041B1 (fr) Moteur à combustion interne
DE602005002723T2 (de) Verfahren zur Prüfung von energetischen Leistungen einer industriellen Einheit
EP2060788B1 (fr) Procédé de commande d'un agencement de pompe et agencement de pompe
DE69306301T2 (de) Regeleinrichtung und -verfahren für einen Kompressor treibenden Motor
DE2947618A1 (de) Regelverfahren fuer eine mehrstufen- kreiselverdichteranlage
DE102013014413A1 (de) Verfahren zur Druckregelung
EP1716327A1 (fr) Dispositif de refoulement
EP3655663A1 (fr) Procédé de réglage d'au moins deux ventilateurs
EP1436510B1 (fr) Procede d'optimisation du fonctionnement de plusieurs compresseurs dans une station de compression de gaz naturel
DE102020118251A1 (de) Verfahren und Ventilatorsystem zur Ermittlung des Zustands eines Filters in einer Ventilatoreinheit
DE3424024A1 (de) Verfahren und vorrichtung zur steuerung der foerdermenge eines mehrstufigen kompressors
EP3330644A1 (fr) Installation frigorifique et procédé de réglage d'une installation frigorifique
DE102014210304B4 (de) Verfahren zum Betreiben eines Systems mit wenigstens zwei Leistungskomponenten, Steuergerät, Computerprogrammprodukt und System
EP2213874A2 (fr) Procédé destiné au fonctionnement d'un parc éolien
DE102014210026A1 (de) Verfahren und Steuerung zum Steuern eines Aufladungssystems für eine Verbrennungskraftmaschine
DE102021212305A1 (de) Elektronische Steuereinheit für einen hydraulischen Antrieb, hydraulischer Antrieb und Verfahren mit einem hydraulischen Antrieb
DE19938623A1 (de) System zur Minimierung der Verlustleistungsäquivalente eines Antriebssystems
EP1672203B1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne dans un véhicule
EP3320216A1 (fr) Dispositif de simulation et procédé de simulation
EP3109965A1 (fr) Procede de commande d'un consommateur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070726

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: METZGER, MICHAEL

Inventor name: LIEPOLD, HELMUT

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: METZGER, MICHAEL

Inventor name: LIEPOLD, HELMUT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006003377

Country of ref document: DE

Date of ref document: 20090520

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2321872

Country of ref document: ES

Kind code of ref document: T3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20090506

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

26N No opposition filed

Effective date: 20100111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100209

Year of fee payment: 5

Ref country code: IE

Payment date: 20100219

Year of fee payment: 5

Ref country code: RO

Payment date: 20100126

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20100125

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100217

Year of fee payment: 5

Ref country code: TR

Payment date: 20100127

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090709

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100209

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110228

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091009

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 428055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006003377

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220811 AND 20220817

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20230620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240308

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 19

Ref country code: GB

Payment date: 20240220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240222

Year of fee payment: 19

Ref country code: FR

Payment date: 20240226

Year of fee payment: 19