EP1846660B1 - Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant - Google Patents
Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant Download PDFInfo
- Publication number
- EP1846660B1 EP1846660B1 EP06707973A EP06707973A EP1846660B1 EP 1846660 B1 EP1846660 B1 EP 1846660B1 EP 06707973 A EP06707973 A EP 06707973A EP 06707973 A EP06707973 A EP 06707973A EP 1846660 B1 EP1846660 B1 EP 1846660B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compressor
- units
- plant
- compressor units
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000005457 optimization Methods 0.000 claims description 76
- 238000004364 calculation method Methods 0.000 claims description 45
- 238000005265 energy consumption Methods 0.000 claims description 22
- 238000009826 distribution Methods 0.000 claims description 7
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 2
- 238000007906 compression Methods 0.000 abstract description 51
- 230000006835 compression Effects 0.000 abstract description 51
- 238000009434 installation Methods 0.000 abstract 4
- 238000005056 compaction Methods 0.000 description 11
- 238000009472 formulation Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003449 preventive effect Effects 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
- F04D27/0269—Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors
Definitions
- the invention relates to a method for controlling a compression system with at least two separately zu- and / or turn-off compressor units, with a plurality of devices for changing the performance of the compressor units and with a control device.
- the invention relates to a control device for controlling a compression system with at least two separately zu- and / or turn off compressor units and with a plurality of devices for changing the performance of the compressor units.
- Compaction plants for example natural gas compression plants, for gas transport and / or gas storage are essential facilities in the sense of national and international energy supply.
- a system for gas transport consists of a plurality of compression systems, which can each consist of several compressor units.
- the task of the compressor units is to add a sufficient amount of mechanical energy to a pumped medium in order to compensate for friction losses and to ensure the required operating pressures or flows.
- Compressor units often have very different drives and wheels, as they are designed for example for a base load or a peak load operation.
- a compressor unit includes e.g. at least one drive and at least one compressor.
- Plant automation is especially important for cost-effective driving.
- the ability of plant automation to guide the process, and the Optimizing the compaction plant within production constraints provides decisive economic benefits.
- compressors of a compression plant are driven by turbines that cover their fuel needs directly from a pipeline.
- compressors are driven by electric motors. Cost-effective driving means to minimize the energy consumption of the turbines and the electric drives for a given compression capacity, flow rate, delivery capacity and / or given volume flow.
- a useful operating range of compressors is limited by adverse effects of internal flow processes. This results in operating limits, such as a temperature limit, exceeding the local speed of sound (compression shock, sip limit), the circumferential tearing off of the flow at the impeller or the surge line.
- the automation of a compression system has primarily the task of a dispatching center predetermined setpoints, such as either a flow through the station or a final pressure on the output side to realize as actual values. Specified limits for the suction pressures at the inlet side, the final pressures at the outlet side and the final temperature at the system outlet must not be exceeded.
- WO 03/036096 A1 a method for optimizing the operation of multiple compressor units of a natural gas compression station is known.
- the speeds of the running compressor units are run in a fixed speed ratio with respect to stored for each compressor unit map data.
- the speeds of all are in operation after starting an additional compressor units are changed by an equal percentage flow adjustment until, if possible, all pump preventive valves of the system are closed. Only after all the pump preventive valves are closed, operating points of the compressor unit are pushed in their maps as close as possible to a line of maximum efficiency.
- EP 0 769 624 B1 For example, a method is known for balancing the load between multiple compressors and manipulating the performance of the compressors to maintain a predetermined relationship between all the compressors when the operating points of all the compressors are farther than a specified value from the surge line.
- EP 0 576 238 B1 For example, a method and apparatus for load sharing is known. With a designated as a guide compressor compressor, a control signal is generated, which is used as a reference for the non-leading compressor.
- the invention has for its object to provide a method and apparatus for further optimization of energy consumption for operation of multiple compressor units of a compaction system.
- This object is inventively achieved in that, for presetting of new setpoints or change of the current state of the compressor plant by means of an optimization calculation from a current switching configuration of the compressor units with regard to an optimized total energy demand of the compressor plant, a new switching configuration is calculated, and that the new switching configuration is set automatically via the control device.
- An advantage of the invention is that, in the optimization of all compressor units available or operable on the respective compacting system, it can be assumed that they are independent of their respective operating or switching state.
- the invention allows - in contrast to known controls for compression systems - as a result of the optimization of an automatic connection of a previously out of service compressor unit or a complete shutdown of a compressor unit.
- automatically means “online” in particular, meaning that it can automatically mean, for example, that the switching configuration is used by the operating staff of the compacting system without manual intervention, preferably in real time.
- Real time means that the result of a calculation is guaranteed within a certain period of time, that is, before a certain time limit has been reached.
- the optimization calculation can take place on a separate data processing system, which automatically forwards its calculation data to the control device.
- the invention is based on the known sequential concept, ie after the start of an externally specified additional unit, first to close the pump-preventive valves and then to optimize the operating points of the compressor units with regard to their efficiency.
- the entire compaction plant is preferably considered during each optimization calculation and the switching configuration of the compaction plant, ie the specification of a switching state of the individual compressor units, calculated.
- the closing of the or all of the pump preventive valves can be ensured by a minimum flow through the compressor units in the optimization. Even a first start of the compression system can already with a favorable with regard to an optimized total energy demand switching configuration done.
- the switching configuration is represented by the switching states "0" for Off or "1" for On, which is stored bit by bit, for example, in an integer variable.
- switching operation is meant the change from one, in particular electrical, switching state to another.
- a prognosis is determined by means of the optimization calculation for at least one, preferably several, future time (s). Since the method allows for predictions up to a given time, it is possible to know about a normal driving style of the station, i. e.g. a conventional load curve to use to minimize the switching frequency of compressor units.
- compressor unit-specific data records and / or compressor unit-specific maps evaluated and determined for the individual compressor units operating points which depend on predetermined or changed values of mass flow and a specific production work, the operating points are set such that the total energy demand the compaction plant is optimized.
- the data sets and / or maps are specified as a function of a mass flow and a specific production work of the individual compression units.
- a load distribution ie a speed ratio, calculated between the compressor units and changed if necessary.
- Another significant advantage is that constraints on the optimization, e.g. The pumping limit can not be violated, even with an optimal efficiency calculation of the speed setpoints for the individual compressor stations can be considered.
- optimization calculation is carried out with a control cycle, in particular self-triggering.
- speed setpoint values and / or the new switching configuration for the control device are provided as output variables of the optimization calculation with each control cycle.
- the speed setpoints and / or the switching configuration are kept constant.
- the speed setpoints are scaled with a common factor and used as a setpoint for a compressor unit controller.
- control device with the new switching configuration triggers a warm-up phase of the compressor units for the subsequent connection of a previously out of service compressor unit already before the end of the control cycle.
- a load readiness for the next control cycle is communicated with the end of the warm-up phase of the control device. If, for example, the speed of an approaching compressor unit is sufficient is high and the warm-up phase of the turbine is completed, a signal "load ready" is set. This means that the compressor unit participates in the load sharing procedure and is included in the optimization calculation for the best load distribution between those in service.
- the optimization calculation according to the principle of model-predictive control by means of forecast calculations minimizes the total energy demand expected up to a later point in time.
- an energy consumption of a switching operation is taken into account in the optimization calculation.
- the energy consumption of the switching process from the data sets and / or the maps of the compressor units is calculated.
- the knowledge of a proportionate energy consumption for the switching process allows an even more accurate determination of the minimum total energy consumption of the compression plant.
- An advantageous variant of the invention is that the specific conveying work of the compressor system for the control cycle is assumed to be constant, in particular in a parallel connection of the compressor units.
- An alternative advantageous variant of the invention is that the mass flow of the compressor system for the control cycle is assumed to be constant, in particular in a series circuit of the compressor units.
- an active compressor unit is operated at least with a predetermined or predetermined minimum flow.
- the optimization calculation is carried out by means of a branch-and-bound algorithm.
- a limit to the branch-and-bound algorithm is determined by solving a relaxed problem using sequential quadratic programming.
- a further increase in the efficiency of the calculation method is achieved in that the optimization calculation solves partial problems by means of dynamic programming, in particular in a series connection.
- the device-related task is based on the above-mentioned control device solved by an optimization module with the new setpoints or change the current state of the compression system by means of an optimization calculation of a current switching configuration of the compressor units with respect to an optimized total energy demand of the compression plant a new switching configuration is calculated, and by a control module, with which the new switching configuration is automatically adjustable.
- the optimization module for optimizing the energy consumption is in particular designed to distribute in combination with the control device and / or the dispatching center the predetermined total load on the individual compressor units so that the station setpoints with the lowest possible energy consumption, i. with maximum overall efficiency, be realized.
- This includes, for example, both the decision which compressor units are active and which are switched inactive, as well as the specification of how much each of the active units should contribute to the overall performance, so the specification of the load distribution.
- the optimization module is arranged at a spatial distance, in particular several km, to the control device.
- the optimization module is prepared for the consideration of an energy consumption of a switching operation.
- Another embodiment is that the optimization module for optimization calculation for a plurality of control devices of several compression systems is prepared.
- the invention also includes a computer program product containing software for carrying out a method according to one of claims 1 to 21.
- a machine-readable program code on a data carrier, it is possible to prepare DV systems for an optimization module.
- the maps 20 are not provided by a closed formula. From a measurement, a delivery characteristic 21 and an efficiency curve 23 are determined. At a constant speed, the dependence on the conveying work and an efficiency ⁇ i on the volume flow V ⁇ i or mass flow ⁇ at support points is determined.
- the operating limits such as a surge line 36, which are caused by the occurrence of certain flow phenomena in the compressor, must be recorded as a function of the speed. From these interpolation points and the associated values for different speeds, the maps 20 can be constructed as a function of mass flow ⁇ i and specific conveying work y i and their domain of definition by means of suitable approaches, such as piecewise polynomial interpolation or B-splines.
- Equation 2 When connected in series compressor units 3, 4, 5, the entire conveying work on the individual compressor units 3, 4, 5 distributed energy optimal, the mass flow is assumed to be the same by the compressors.
- FIG. 1 shows a block diagram of a method for optimizing the operation of a compression plant.
- the compression plant is equipped with three compressor units 3, 4 and 5 shown in a very schematic way. For an interconnection of the compressor units 3, 4 and 5, a parallel connection is assumed.
- the compressor units 3, 4 and 5 are controlled and regulated by a control device 10.
- the control device 10 comprises a controller of the control device 12, a first compressor unit controller 13, a second compressor unit controller 14 and a third compressor unit controller 15.
- An optimization module 11 is in bidirectional communication with the controller 10. By means of the optimization module 11, a nonlinear mixed-integer optimization problem is solved , A mathematical formulation of the optimization problem is implemented in the optimization module 11.
- the input variables 33 are composed of a model library 26, with a model 24a, 24b, 24c for each compressor unit 3, 4, 5 and process variables of the compactor.
- the setpoint values or limit values 31 for the control of the control device 12 are made up of a maximum temperature T g, A, max of a pressure P g, A (Should) and a volume flow V ⁇ g (Should) on the output side of the compression system and a maximum suction pressure P g , E (max) and P g, A (max) on the input side and the output side of the compression system together.
- the compression system is calculated by means of the optimization calculation in the optimization module 11 from a current switching configuration S i, t-1 of the compressor units 3, 4 and 5 with respect to an optimized total energy demand of the compression system, a new switching configuration S i, t .
- the output variables 32 of the optimization module 11 thus also contain, in addition to the switching states of the compressor units currently to be set, a speed setpoint input ⁇ i for the individual compressor units 3, 4 and 5.
- the speed setpoints ⁇ i From the subordinate station control, which runs higher than the optimization cycle, the speed setpoints ⁇ i , before being applied to the compressor aggregate controllers, scaled by a common factor ⁇ to regulate the setpoints.
- the optimization calculation is executed with a control cycle R in the optimization module 11 itself triggering.
- the load distribution between the compressor units, ie the efficiency of optimum speed setpoint values ⁇ i for the individual compressor units 3, 4 and 5 are cyclically executed in addition to the calculation of a possible switching configuration S i, t .
- the desired speed values ⁇ i and the shift configuration S i, t-1 are kept constant.
- the new switching configuration is now operated by three out of three compressor units. Since the result of the optimization calculation is known before the end of the control cycle, a warm-up phase is started for the third compressor unit 5 to be approached. Upon completion of the control cycle R, the new values of the control device 10 and in particular the compressor unit regulators 13, 14, 15 are provided. The previously prepared with a warm-up compressor unit 5 can now be seamlessly connected to the new control cycle R and the optimal total energy consumption for the required flow rate or the required flow rate V ⁇ g (Should) is given again.
- FIG. 2 shows a compressor-specific map 20 of a compressor unit 3.
- Efficiency optimal operating points 22 are close to the pumping limit 36 on an efficiency curve 23 with a high efficiency ⁇ 3, max .
- the mathematical formulation of the maps 20 as a calculation function is part of the optimization module 11 or the optimization calculation.
- FIG. 3 shows a control device 10 for controlling a compression system 1.
- the determined by the optimization module 11 optimal speed setpoints ⁇ i and the new switching configuration S i, t are, in cooperation with the controller 10, via an adjusting module S to the compressor units 3, 4 and 5 set and / or regulated.
- control device 10 As a controlled variable for a control of the control device 10, in particular that variable of flow, suction pressure, discharge pressure and end temperature, which has the smallest positive control deviation, is used.
- the control of the control device 10 supplies as output together with the optimization module, the setpoint values for a single compressor unit controller 13, 14, 15 see Fig. 2 ,
- FIG. 4 shows a flowchart of the method steps 40, 42, 44 and 46.
- the optimization process is initiated cyclically.
- the current state of the compressor station 1 is determined. The following values are recorded: actual values 30, setpoints 31, limit values and boundary conditions 37 and models 24a, 24b, and 24c from the model library 26.
- the current switching state S i , t-1 of the compression plant 1 is determined.
- a third method step 44 represents a decision point. The decision is made with the third method step 44 perform an optimization calculation 46 in a fourth method step or end the method 48. On the basis of the present actual values 30 and set values 31, it can be decided whether an optimization calculation is necessary.
- the method will continue with the fourth method step 46.
- the fourth method step 46 the mixed-integer optimization problem is solved.
- Input variables for the fourth method step 46 are again actual values 30, setpoint values 31, limit values and boundary conditions 37 and the models from a model library 26.
- speed setpoint values ⁇ i and new switching states S i, t are output.
- the method is ended 48. With the cyclical initiation from the first method step 40, the method is run through again.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Feedback Control In General (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Compressor (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Control Of Multiple Motors (AREA)
Claims (26)
- Procédé pour la commande d'une installation de compression (1) comprenant au moins deux groupes compresseurs (i = 1, ..., N) pouvant être connectés et/ou déconnectés séparément, une pluralité de dispositifs pour la modification du rendement des groupes compresseurs (i = 1, ..., N) et un dispositif de commande (10),
caractérisé en ce que, en cas de spécification de nouvelles valeurs prévues ou de modification de l'état actuel de l'installation de compression (1), une nouvelle configuration de commutation (Si,t) est calculée au moyen d'un calcul d'optimisation à partir d'une configuration de commutation actuelle (Si,t-1) des groupes compresseurs (i =1, ..., N) en ce qui concerne un besoin en énergie total (EG) optimisé de l'installation de compression (1), et en ce que la nouvelle configuration de commutation (Si,t) est réglée automatiquement par le dispositif de commande (10). - Procédé selon la revendication 1,
caractérisé en ce qu'une prévision est déterminée au moyen du calcul d'optimisation pour au moins un, de préférence plusieurs moments (t) futurs. - Procédé selon la revendication 1 ou 2,
caractérisé en ce que des ensembles de données spécifiques au groupe compresseur et/ou des champs caractéristiques (20) spécifiques au groupe compresseur sont analysés et des points de travail (22) sont déterminés pour les différents ensembles compresseurs (i = 1, ..., N), lesquels points dépendent de valeurs prédéfinies respectivement modifiées du flux massique m et d'un travail de transport (y) spécifique, les points de travail (22) étant réglés de telle sorte que le besoin en énergie total (EG) de l'installation de compression (1) est optimisé. - Procédé selon la revendication 3,
caractérisé en ce que les ensembles de données et/ou champs caractéristiques (20) sont donnés en fonction d'un flux massique (ṁi) ou d'un flux volumique (v̇i) correspondant d'un travail de transport (λi) spécifique des différents ensembles de compression (i = 1, ..., N). - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, lors du calcul d'optimisation, une répartition de charge entre les groupes compresseurs (i = 1, ..., N) est calculée en supplément de la configuration de commutation (Si,t) et est modifiée éventuellement.
- Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le calcul d'optimisation est effectué avec un cycle de réglage (R), en particulier de façon autodéclenchante.
- Procédé selon la revendication 6,
dans lequel des valeurs prévues du régime (λi) et/ou la nouvelle configuration de commutation (Si,t) pour le dispositif de commande sont mises à disposition comme valeurs de départ (32) du calcul d'optimisation avec chaque cycle de réglage (R). - Procédé selon la revendication 7,
caractérisé en ce que, pour la durée du cycle de réglage (R), qui est en particulier plusieurs fois égale à un temps de cycle (Z) d'un réglage (12) du dispositif de commande (10), les valeurs prévues du régime (λi) et/ou la configuration de commutation (Si,t) sont maintenues constantes. - Procédé selon l'une quelconque des revendications 7 ou 8, dans lequel les valeurs prévues du régime (λi) sont graduées avec un facteur (α) commun et sont utilisées comme valeur prévue pour un régulateur de groupe compresseur (13, 14, 15).
- Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le dispositif de commande (10) déclenche avec la nouvelle configuration de commutation (Si,t = 1), avant même la fin du cycle de réglage (R), une phase d'échauffement des groupes compresseurs (i = 1, ..., N) pour la commutation ultérieure d'un ensemble compresseur (Si,t-1 = 0) se trouvant auparavant hors service.
- Procédé selon la revendication 10,
caractérisé en ce qu'une disponibilité de charge pour le prochain circuit de réglage (R) est signalée avec la fin de la phase d'échauffement du dispositif de commande (10). - Procédé selon l'une quelconque des revendications 1 à 11, dans lequel, comme entrée (23) pour le calcul d'optimisation,- un modèle (24) des différents groupes de compression (i = 1, ..., N) et/ou- une bibliothèque modèle (26) de l'ensemble de l'installation de compression (1) et/ou- un travail de transport (yi,t-1) spécifique actuel des différents groupes de compression (i = 1, ..., N), et/ou- un travail de transport (yg,t-1) spécifique actuel de l'installation de compression (1) et/ou- un débit massique (ṁi,t-1) actuel traversant le groupe de compression (i = 1, ..., N) individuel, en particulier un compresseur individuel et/ou- un flux massique (ṁg,t-1) actuel traversant l'installation de compression (1) et/ou- la configuration de commutation (Si,t-1) actuelle et/ou- une pression d'aspiration (pg,E) sur le côté entrée (E) de l'installation de compression (1) et/ou- une pression d'aspiration (pi,E) sur le côté entrée de l'ensemble de compression individuel et/ou- une pression finale (pg,A) sur le côté sortie (A) de l'installation de compression (1) et/ou- une pression finale (pi,A) sur le côté sortie du groupe compresseur (i = 1, ..., N) individuel et/ou- une température (Tg,A) sur le côté sortie (A) de l'installation de compression (1) et/ou- une température (Tg,E) sur le côté entrée (E) de l'installation de compression (1) et/ou- une température (Ti,A) sur le côté sortie des groupes de compression (i = 1, ..., N) individuels et/ou- une température (Ti,E) sur le côté entrée des groupes de compression (i = 1, ..., N) individuels et/ou- les régimes actuels des ensembles compresseurs sont analysés.
- Procédé selon l'une quelconque des revendications 1 à 12, dans lequel le calcul d'optimisation minimise le besoin d'énergie total escompté jusqu'à un moment (t) ultérieur selon le principe du réglage à prédiction par modèle au moyen de calculs de prévision.
- Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'une consommation d'énergie (ES) d'une opération de commutation est prise en compte dans le calcul d'optimisation.
- Procédé selon la revendication 14,
caractérisé en ce que la consommation (Es) de l'opération de commutation est calculée à partir des ensembles de données et/ou des champs caractéristiques (20) des groupes compresseurs (i = 1, ..., N). - Procédé selon l'une quelconque des revendications 1 à 15,
caractérisé en ce que le travail de transport (yg) spécifique de l'installation de compresseur (1) est supposé constant pour le cycle de réglage (R), en particulier avec un montage parallèle des groupes compresseurs (i = 1, ..., N). - Procédé selon l'une quelconque des revendications 1 à 15,
caractérisé en ce que le flux massique (ṁg) de l'installation de compresseur (1) est supposé constant pour le cycle de réglage (R), en particulier avec un montage en série de groupes compresseurs (i = 1, ..., N). - Procédé selon l'une quelconque des revendications 1 à 17, dans lequel un groupe compresseur (Si = 1) actif est exploité au moins avec un débit (ṁimin) minimum prédéfinissable ou prédéfini.
- Procédé selon l'une quelconque des revendications 1 à 18, dans lequel le calcul d'optimisation est effectué au moyen d'un algorithme Branch-and-Bound.
- Procédé selon la revendication 19,
dans lequel une limite (G) est calculée pour l'algorithme Branch-and-Bound par la résolution d'un problème relaxé au moyen d'un Sequential-Quadratic-Programming. - Procédé selon l'une quelconque des revendications 1 à 20,
dans lequel le calcul d'optimisation résout des problèmes partiels au moyen d'une programmation dynamique, en particulier avec un montage en série. - Dispositif de commande (10) pour la commande d'une installation de compression (1) comprenant au moins deux groupes compresseurs (i = 1, ..., N) connectables et/ou déconnectables séparément et une pluralité de dispositifs pour la modification du rendement des groupes compresseurs (i = 1, ... , N) ,
caractérisé par- un module d'optimisation (11), avec lequel, en cas de spécification de nouvelles valeurs prévues ou de modifications de l'état actuel de l'installation de compression, une nouvelle configuration de commutation (Si,t) peut être calculée au moyen d'un calcul d'optimisation à partir d'une configuration de commutation (Si,t-1) actuelle des groupes compresseurs (i = 1, ..., N) en ce qui concerne un besoin d'énergie total (EG) optimisé de l'installation de compression (1), et- par un module de réglage (S), avec lequel la nouvelle configuration de commutation (Si,t) peut être réglée automatiquement. - Dispositif de commande (10) selon la revendication 22,
caractérisé en ce que le module d'optimisation (11) est disposé à une distance dans l'espace, en particulier plusieurs km, par rapport au dispositif de commande (10). - Dispositif de commande selon l'une quelconque des revendications 22 à 23,
caractérisé en ce que le module d'optimisation est mise en place pour la prise en compte d'une consommation d'énergie (Es) d'une opération de commutation. - Dispositif de commande selon l'une quelconque des revendications 22 à 24,
caractérisé en ce que le module d'optimisation (11) est mis en place pour le calcul d'optimisation pour une pluralité de dispositifs de commande de plusieurs installations de compression. - Produit de programme informatique contenant un logiciel pour la mise en oeuvre d'un procédé selon l'une quelconque des revendications 1 à 21.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL06707973T PL1846660T3 (pl) | 2005-02-11 | 2006-02-02 | Sposób optymalizacji pracy kilku agregatów sprężarkowych i odpowiednie urządzenie do tego |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005006410A DE102005006410A1 (de) | 2005-02-11 | 2005-02-11 | Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate und Vorrichtung hierzu |
PCT/EP2006/050612 WO2006084817A1 (fr) | 2005-02-11 | 2006-02-02 | Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1846660A1 EP1846660A1 (fr) | 2007-10-24 |
EP1846660B1 true EP1846660B1 (fr) | 2009-04-08 |
EP1846660B8 EP1846660B8 (fr) | 2009-11-11 |
Family
ID=36283270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06707973A Active EP1846660B8 (fr) | 2005-02-11 | 2006-02-02 | Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant |
Country Status (16)
Country | Link |
---|---|
US (1) | US7676283B2 (fr) |
EP (1) | EP1846660B8 (fr) |
CN (1) | CN101155995A (fr) |
AT (1) | ATE428055T1 (fr) |
AU (1) | AU2006212264A1 (fr) |
BR (1) | BRPI0606994A2 (fr) |
CA (1) | CA2597519A1 (fr) |
DE (2) | DE102005006410A1 (fr) |
DK (1) | DK1846660T3 (fr) |
ES (1) | ES2321872T3 (fr) |
MX (1) | MX2007009728A (fr) |
NO (1) | NO20074604L (fr) |
PL (1) | PL1846660T3 (fr) |
RU (1) | RU2381386C2 (fr) |
UA (1) | UA88045C2 (fr) |
WO (1) | WO2006084817A1 (fr) |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE502008002475D1 (de) * | 2008-05-26 | 2011-03-10 | Siemens Ag | Verfahren zum Betreiben einer Gasturbine |
NO329451B1 (no) * | 2008-11-03 | 2010-10-25 | Statoil Asa | Fremgangsmate for a opprettholde trykket i eksportgassen fra en bronn |
DE102008064490A1 (de) * | 2008-12-23 | 2010-06-24 | Kaeser Kompressoren Gmbh | Verfahren zum Steuern einer Kompressoranlage |
DE102008064491A1 (de) | 2008-12-23 | 2010-06-24 | Kaeser Kompressoren Gmbh | Simulationsgestütztes Verfahren zur Steuerung bzw. Regelung von Druckluftstationen |
DE102009017613A1 (de) * | 2009-04-16 | 2010-10-28 | Siemens Aktiengesellschaft | Verfahren zum Betrieb mehrerer Maschinen |
GB0919771D0 (en) | 2009-11-12 | 2009-12-30 | Rolls Royce Plc | Gas compression |
BE1019108A3 (nl) * | 2009-12-02 | 2012-03-06 | Atlas Copco Airpower Nv | Werkwijze voor het aansturen van een samengestelde inrichting en inrichting waarin deze werkwijze kan worden toegepast. |
DE102010040503B4 (de) * | 2010-09-09 | 2012-05-10 | Siemens Aktiengesellschaft | Verfahren zur Steuerung eines Verdichters |
RU2454569C1 (ru) * | 2011-02-14 | 2012-06-27 | Общество с ограниченной ответственностью "Вега-ГАЗ" | Способ управления гидравлическим режимом компрессорного цеха с оптимальным распределением нагрузки между газоперекачивающими агрегатами |
US9527683B2 (en) | 2011-07-25 | 2016-12-27 | Siemens Aktiengesellschaft | Method and device for controlling and/or regulating a fluid conveyor for conveying a fluid within a fluid line |
DE102011079732B4 (de) * | 2011-07-25 | 2018-12-27 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Steuern bzw. Regeln eines Fluidförderers zum Fördern eines Fluides innerhalb einer Fluidleitung |
DE102013001921A1 (de) * | 2013-02-05 | 2014-08-07 | Man Diesel & Turbo Se | Verfahren zum Betreiben eines Fördersystems mit mehreren Kompressoren |
US10418833B2 (en) | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with cascaded frequency response optimization |
US9235657B1 (en) | 2013-03-13 | 2016-01-12 | Johnson Controls Technology Company | System identification and model development |
US9436179B1 (en) | 2013-03-13 | 2016-09-06 | Johnson Controls Technology Company | Systems and methods for energy cost optimization in a building system |
US9852481B1 (en) | 2013-03-13 | 2017-12-26 | Johnson Controls Technology Company | Systems and methods for cascaded model predictive control |
EP2778412B1 (fr) * | 2013-03-15 | 2019-12-25 | Kaeser Kompressoren Se | Développement d'un modèle supérieur pour contrôler et/ou surveiller un système de compresseurs |
EP2778414B1 (fr) * | 2013-03-15 | 2016-03-16 | Kaeser Kompressoren Se | Standardisation de valeur de mesure |
EP2778413B1 (fr) | 2013-03-15 | 2016-03-02 | Kaeser Kompressoren Se | Entrée de schéma R&I pour un procédé de contrôle et/ou de surveillance d'un système de compresseurs |
US11231037B2 (en) | 2013-03-22 | 2022-01-25 | Kaeser Kompressoren Se | Measured value standardization |
DE102013014542A1 (de) * | 2013-09-03 | 2015-03-05 | Stiebel Eltron Gmbh & Co. Kg | Wärmepumpenvorrichtung |
DE102013111218A1 (de) * | 2013-10-10 | 2015-04-16 | Kaeser Kompressoren Se | Elektronische Steuerungseinrichtung für eine Komponente der Drucklufterzeugung, Druckluftaufbereitung, Druckluftspeicherung und/oder Druckluftverteilung |
US9695834B2 (en) | 2013-11-25 | 2017-07-04 | Woodward, Inc. | Load sharing control for compressors in series |
EP2919078A1 (fr) * | 2014-03-10 | 2015-09-16 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Régulation de climat intérieur à base de Navier-Stokes |
US10101731B2 (en) | 2014-05-01 | 2018-10-16 | Johnson Controls Technology Company | Low level central plant optimization |
DE102014006828A1 (de) * | 2014-05-13 | 2015-11-19 | Wilo Se | Verfahren zur energieoptimalen Drehzahlregelung eines Pumpenaggregats |
US20150329289A1 (en) * | 2014-05-15 | 2015-11-19 | Ronald R. Mercer | Subterranean Sealed Bore Fuel System |
US10190789B2 (en) | 2015-09-30 | 2019-01-29 | Johnson Controls Technology Company | Central plant with coordinated HVAC equipment staging across multiple subplants |
US10190793B2 (en) | 2015-10-08 | 2019-01-29 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on statistical estimates of IBDR event probabilities |
US10389136B2 (en) | 2015-10-08 | 2019-08-20 | Con Edison Battery Storage, Llc | Photovoltaic energy system with value function optimization |
US10418832B2 (en) | 2015-10-08 | 2019-09-17 | Con Edison Battery Storage, Llc | Electrical energy storage system with constant state-of charge frequency response optimization |
US10222083B2 (en) | 2015-10-08 | 2019-03-05 | Johnson Controls Technology Company | Building control systems with optimization of equipment life cycle economic value while participating in IBDR and PBDR programs |
US10283968B2 (en) | 2015-10-08 | 2019-05-07 | Con Edison Battery Storage, Llc | Power control system with power setpoint adjustment based on POI power limits |
US10250039B2 (en) | 2015-10-08 | 2019-04-02 | Con Edison Battery Storage, Llc | Energy storage controller with battery life model |
US10554170B2 (en) | 2015-10-08 | 2020-02-04 | Con Edison Battery Storage, Llc | Photovoltaic energy system with solar intensity prediction |
US11210617B2 (en) | 2015-10-08 | 2021-12-28 | Johnson Controls Technology Company | Building management system with electrical energy storage optimization based on benefits and costs of participating in PDBR and IBDR programs |
US10742055B2 (en) | 2015-10-08 | 2020-08-11 | Con Edison Battery Storage, Llc | Renewable energy system with simultaneous ramp rate control and frequency regulation |
US10700541B2 (en) | 2015-10-08 | 2020-06-30 | Con Edison Battery Storage, Llc | Power control system with battery power setpoint optimization using one-step-ahead prediction |
US10222427B2 (en) | 2015-10-08 | 2019-03-05 | Con Edison Battery Storage, Llc | Electrical energy storage system with battery power setpoint optimization based on battery degradation costs and expected frequency response revenue |
US10564610B2 (en) | 2015-10-08 | 2020-02-18 | Con Edison Battery Storage, Llc | Photovoltaic energy system with preemptive ramp rate control |
US10197632B2 (en) | 2015-10-08 | 2019-02-05 | Taurus Des, Llc | Electrical energy storage system with battery power setpoint optimization using predicted values of a frequency regulation signal |
EP3374706B1 (fr) | 2015-11-09 | 2024-01-10 | Carrier Corporation | Unité de refrigeration à double compresseur |
RU2696190C1 (ru) * | 2016-03-14 | 2019-07-31 | Битцер Кюльмашиненбау Гмбх | Система ввода в эксплуатацию компрессорного модуля холодильного агента, а также способ ввода в эксплуатацию компрессорного модуля холодильного агента |
US20170292763A1 (en) * | 2016-04-06 | 2017-10-12 | Heatcraft Refrigeration Products Llc | Control verification for a modular outdoor refrigeration system |
US10337669B2 (en) | 2016-04-29 | 2019-07-02 | Ocean's NG, LLC | Subterranean sealed tank with varying width |
DE102016208507A1 (de) * | 2016-05-18 | 2017-11-23 | Siemens Aktiengesellschaft | Verfahren zur Ermittlung einer optimalen Strategie |
US10778012B2 (en) | 2016-07-29 | 2020-09-15 | Con Edison Battery Storage, Llc | Battery optimization control system with data fusion systems and methods |
US10594153B2 (en) | 2016-07-29 | 2020-03-17 | Con Edison Battery Storage, Llc | Frequency response optimization control system |
EP3242033B1 (fr) | 2016-12-30 | 2024-05-01 | Grundfos Holding A/S | Procédé de fonctionnement d'un groupe motopompe à commande électrique |
US10838440B2 (en) | 2017-11-28 | 2020-11-17 | Johnson Controls Technology Company | Multistage HVAC system with discrete device selection prioritization |
US10838441B2 (en) | 2017-11-28 | 2020-11-17 | Johnson Controls Technology Company | Multistage HVAC system with modulating device demand control |
CN110307138B (zh) * | 2018-03-20 | 2021-05-04 | 恩尔赛思有限公司 | 一种关于能量效率的多压缩机系统的设计、测量和优化方法 |
CN110307144B (zh) * | 2018-03-20 | 2021-05-11 | 恩尔赛思有限公司 | 用于分析、监测、优化和/或比较多压缩机系统中能量效率的方法 |
EP3768979B1 (fr) | 2018-03-20 | 2024-03-27 | Enersize Oy | Procédé d'analyse, de surveillance, d'optimisation et/ou de comparaison de l'efficacité énergétique dans un système à compresseurs multiples |
US11913445B2 (en) | 2018-03-20 | 2024-02-27 | Enersize Oy | Method for designing, gauging and optimizing a multiple compressor system with respect to energy efficiency |
US11163271B2 (en) | 2018-08-28 | 2021-11-02 | Johnson Controls Technology Company | Cloud based building energy optimization system with a dynamically trained load prediction model |
US11159022B2 (en) | 2018-08-28 | 2021-10-26 | Johnson Controls Tyco IP Holdings LLP | Building energy optimization system with a dynamically trained load prediction model |
US10837601B2 (en) | 2018-10-29 | 2020-11-17 | Ronald R. Mercer | Subterranean gas storage assembly |
TWI699478B (zh) * | 2019-05-01 | 2020-07-21 | 復盛股份有限公司 | 壓縮機系統排程方法 |
US11408418B2 (en) * | 2019-08-13 | 2022-08-09 | Rockwell Automation Technologies, Inc. | Industrial control system for distributed compressors |
US11680684B2 (en) | 2021-04-16 | 2023-06-20 | Bedrock Gas Solutions, LLC | Small molecule gas storage adapter |
US12025277B2 (en) | 2021-04-16 | 2024-07-02 | Michael D. Mercer | Subsurface gas storage system |
CN114656052A (zh) * | 2022-04-29 | 2022-06-24 | 重庆江增船舶重工有限公司 | 一种用于污水处理的多级并联曝气鼓风机运行方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3665399A (en) * | 1969-09-24 | 1972-05-23 | Worthington Corp | Monitoring and display system for multi-stage compressor |
US4640665A (en) * | 1982-09-15 | 1987-02-03 | Compressor Controls Corp. | Method for controlling a multicompressor station |
JPS62243995A (ja) | 1986-04-14 | 1987-10-24 | Hitachi Ltd | 圧縮機の並列運転制御装置 |
DE3937152A1 (de) * | 1989-11-08 | 1991-05-16 | Gutehoffnungshuette Man | Verfahren zum optimierten betreiben zweier oder mehrerer kompressoren im parallel- oder reihenbetrieb |
US5347467A (en) | 1992-06-22 | 1994-09-13 | Compressor Controls Corporation | Load sharing method and apparatus for controlling a main gas parameter of a compressor station with multiple dynamic compressors |
DE4430468C2 (de) * | 1994-08-27 | 1998-05-28 | Danfoss As | Regeleinrichtung einer Kühlvorrichtung |
US5743715A (en) | 1995-10-20 | 1998-04-28 | Compressor Controls Corporation | Method and apparatus for load balancing among multiple compressors |
US5743714A (en) * | 1996-04-03 | 1998-04-28 | Dmitry Drob | Method and apparatus for minimum work control optimization of multicompressor stations |
US20040095237A1 (en) * | 1999-01-09 | 2004-05-20 | Chen Kimball C. | Electronic message delivery system utilizable in the monitoring and control of remote equipment and method of same |
US6535795B1 (en) * | 1999-08-09 | 2003-03-18 | Baker Hughes Incorporated | Method for chemical addition utilizing adaptive optimization |
MY126873A (en) * | 2000-01-07 | 2006-10-31 | Vasu Tech Ltd | Configurable electronic controller for appliances |
US20010045101A1 (en) * | 2000-02-11 | 2001-11-29 | Graham Donald E. | Locomotive air conditioner control system and related methods |
DE10151032A1 (de) | 2001-10-16 | 2003-04-30 | Siemens Ag | Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate einer Erdgasverdichtungsstation |
DE10208676A1 (de) | 2002-02-28 | 2003-09-04 | Man Turbomasch Ag Ghh Borsig | Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel- oder Reihenbetrieb |
-
2005
- 2005-02-11 DE DE102005006410A patent/DE102005006410A1/de not_active Withdrawn
-
2006
- 2006-02-02 RU RU2007133792/06A patent/RU2381386C2/ru active
- 2006-02-02 CN CNA2006800115189A patent/CN101155995A/zh active Pending
- 2006-02-02 EP EP06707973A patent/EP1846660B8/fr active Active
- 2006-02-02 PL PL06707973T patent/PL1846660T3/pl unknown
- 2006-02-02 DK DK06707973T patent/DK1846660T3/da active
- 2006-02-02 MX MX2007009728A patent/MX2007009728A/es unknown
- 2006-02-02 AT AT06707973T patent/ATE428055T1/de active
- 2006-02-02 UA UAA200709153A patent/UA88045C2/ru unknown
- 2006-02-02 WO PCT/EP2006/050612 patent/WO2006084817A1/fr active Application Filing
- 2006-02-02 CA CA002597519A patent/CA2597519A1/fr not_active Abandoned
- 2006-02-02 US US11/815,956 patent/US7676283B2/en active Active
- 2006-02-02 DE DE502006003377T patent/DE502006003377D1/de active Active
- 2006-02-02 AU AU2006212264A patent/AU2006212264A1/en not_active Abandoned
- 2006-02-02 ES ES06707973T patent/ES2321872T3/es active Active
- 2006-02-02 BR BRPI0606994-0A patent/BRPI0606994A2/pt not_active IP Right Cessation
-
2007
- 2007-09-11 NO NO20074604A patent/NO20074604L/no not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2006084817A1 (fr) | 2006-08-17 |
US7676283B2 (en) | 2010-03-09 |
UA88045C2 (ru) | 2009-09-10 |
MX2007009728A (es) | 2007-09-26 |
RU2381386C2 (ru) | 2010-02-10 |
NO20074604L (no) | 2007-09-11 |
PL1846660T3 (pl) | 2010-01-29 |
ATE428055T1 (de) | 2009-04-15 |
CN101155995A (zh) | 2008-04-02 |
DE502006003377D1 (de) | 2009-05-20 |
DK1846660T3 (da) | 2009-07-27 |
CA2597519A1 (fr) | 2006-08-17 |
RU2007133792A (ru) | 2009-03-20 |
ES2321872T3 (es) | 2009-06-12 |
AU2006212264A1 (en) | 2006-08-17 |
EP1846660A1 (fr) | 2007-10-24 |
EP1846660B8 (fr) | 2009-11-11 |
DE102005006410A1 (de) | 2006-08-17 |
BRPI0606994A2 (pt) | 2009-07-28 |
US20080131258A1 (en) | 2008-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1846660B1 (fr) | Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant | |
EP2573400B1 (fr) | Procédé de commande d'une installation de compresseurs | |
EP0431287B1 (fr) | Procédé d'opération optimal de deux ou plusieurs compresseurs travaillant en parallèle ou en série | |
DE69008414T2 (de) | Verdichterregelsystem zur Verbesserung der Mindestfördermenge und zur Verminderung des Pumpens. | |
DE10013098C2 (de) | Anlage zur Erzeugung von Druckluft | |
EP2394041B1 (fr) | Moteur à combustion interne | |
DE602005002723T2 (de) | Verfahren zur Prüfung von energetischen Leistungen einer industriellen Einheit | |
EP2060788B1 (fr) | Procédé de commande d'un agencement de pompe et agencement de pompe | |
DE69306301T2 (de) | Regeleinrichtung und -verfahren für einen Kompressor treibenden Motor | |
DE2947618A1 (de) | Regelverfahren fuer eine mehrstufen- kreiselverdichteranlage | |
DE102013014413A1 (de) | Verfahren zur Druckregelung | |
EP1716327A1 (fr) | Dispositif de refoulement | |
EP3655663A1 (fr) | Procédé de réglage d'au moins deux ventilateurs | |
EP1436510B1 (fr) | Procede d'optimisation du fonctionnement de plusieurs compresseurs dans une station de compression de gaz naturel | |
DE102020118251A1 (de) | Verfahren und Ventilatorsystem zur Ermittlung des Zustands eines Filters in einer Ventilatoreinheit | |
DE3424024A1 (de) | Verfahren und vorrichtung zur steuerung der foerdermenge eines mehrstufigen kompressors | |
EP3330644A1 (fr) | Installation frigorifique et procédé de réglage d'une installation frigorifique | |
DE102014210304B4 (de) | Verfahren zum Betreiben eines Systems mit wenigstens zwei Leistungskomponenten, Steuergerät, Computerprogrammprodukt und System | |
EP2213874A2 (fr) | Procédé destiné au fonctionnement d'un parc éolien | |
DE102014210026A1 (de) | Verfahren und Steuerung zum Steuern eines Aufladungssystems für eine Verbrennungskraftmaschine | |
DE102021212305A1 (de) | Elektronische Steuereinheit für einen hydraulischen Antrieb, hydraulischer Antrieb und Verfahren mit einem hydraulischen Antrieb | |
DE19938623A1 (de) | System zur Minimierung der Verlustleistungsäquivalente eines Antriebssystems | |
EP1672203B1 (fr) | Procédé et dispositif de commande d'un moteur à combustion interne dans un véhicule | |
EP3320216A1 (fr) | Dispositif de simulation et procédé de simulation | |
EP3109965A1 (fr) | Procede de commande d'un consommateur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070726 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: METZGER, MICHAEL Inventor name: LIEPOLD, HELMUT |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: METZGER, MICHAEL Inventor name: LIEPOLD, HELMUT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502006003377 Country of ref document: DE Date of ref document: 20090520 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2321872 Country of ref document: ES Kind code of ref document: T3 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20090506 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090408 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090908 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090408 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090808 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090408 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090408 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090408 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090408 |
|
26N | No opposition filed |
Effective date: 20100111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090708 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20100209 Year of fee payment: 5 Ref country code: IE Payment date: 20100219 Year of fee payment: 5 Ref country code: RO Payment date: 20100126 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20100125 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20100217 Year of fee payment: 5 Ref country code: TR Payment date: 20100127 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090709 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100209 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100202 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 20110228 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110202 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091009 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100202 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: LAPE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 428055 Country of ref document: AT Kind code of ref document: T Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110202 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502006003377 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220811 AND 20220817 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG Effective date: 20230620 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240308 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240228 Year of fee payment: 19 Ref country code: GB Payment date: 20240220 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240222 Year of fee payment: 19 Ref country code: FR Payment date: 20240226 Year of fee payment: 19 |