EP1846660A1 - Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant - Google Patents

Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant

Info

Publication number
EP1846660A1
EP1846660A1 EP06707973A EP06707973A EP1846660A1 EP 1846660 A1 EP1846660 A1 EP 1846660A1 EP 06707973 A EP06707973 A EP 06707973A EP 06707973 A EP06707973 A EP 06707973A EP 1846660 A1 EP1846660 A1 EP 1846660A1
Authority
EP
European Patent Office
Prior art keywords
compressor
units
compression
control device
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06707973A
Other languages
German (de)
English (en)
Other versions
EP1846660B8 (fr
EP1846660B1 (fr
Inventor
Michael Metzger
Helmut Liepold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL06707973T priority Critical patent/PL1846660T3/pl
Publication of EP1846660A1 publication Critical patent/EP1846660A1/fr
Application granted granted Critical
Publication of EP1846660B1 publication Critical patent/EP1846660B1/fr
Publication of EP1846660B8 publication Critical patent/EP1846660B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0269Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors

Definitions

  • the invention relates to a method for controlling a compression system with at least two separately zu- and / or turn-off compressor units, with a plurality of devices for changing the performance of the compressor units and with a control device.
  • the invention relates to a control device for controlling a compression system with at least two separately zu- and / or disconnectable Ver Whyraggrega- and with a plurality of devices for changing the performance of the compressor units.
  • Compacting systems such as gen Erdgasverdichtungsanla ⁇ , for transporting gas and / or gas storage are essential facilities according to the national and international energy supply.
  • a system for gas transport consists of a plurality of compression systems, which can each consist of several compressor units.
  • the task of the compressor units is to add a sufficient amount of mechanical energy to a pumped medium in order to compensate for friction losses and to achieve the required operating pressures or speeds. ensure flows.
  • Compressor units often have very different drives and running ⁇ wheels, as they are designed for example for a base load or a NEN peak load operation.
  • a compressor unit includes z. B. at least one drive and at least one compressor.
  • Plant automation is particularly important for cost-optimal driving.
  • the ability of plant automation to guide the process, and the Mieren compressor plant within the production constraints to opti ⁇ provides significant economic advantages.
  • compressors of a compression plant are driven by turbines that cover their fuel needs directly from a pipeline.
  • compressors are driven by electric motors.
  • a cost - optimal driving means, the energy consumption of the turbines or. the electric drives for a given compaction performance, delivery capacity, delivery capacity and / or to minimize the given volume flow.
  • a useful operating range of compressors is limited by adverse effects of internal flow processes. This results in operating limits, such. B. a temperature limit, exceeding the local speed of sound (compression shock, sip limit), the umlau ⁇ fende tearing off the flow at the impeller or the surge limit.
  • the automation of a compression system has primarily the task of a dispatching center predetermined setpoints, such as either a flow through the station or a final pressure on the output side to realize as actual values. Specified limits for the suction pressures at the inlet side, the final pressures at the outlet side and the final temperature at the system outlet must not be exceeded.
  • EP 0 576 238 B1 discloses a method and a device for load distribution. With a compressor designed as a guide compressor, a control signal is generated which is used as a reference for the non-leading compressors.
  • the invention is based on the object to provide egg ⁇ ner compressor plant available a method and a device to further optimize the energy consumption for operation of several compressor units.
  • This object is characterized st according to the invention gel ö that, for presetting of new setpoints or change the current supply state of the compressor plant by means of an optimization ⁇ bill from a current switching configuration of the compaction teraggregate regard to an optimized Retroenergybe ⁇ needs for supplies of the compression system, a new switching configuration is calculated, and that the new switching configuration is set automatically via the control device.
  • An advantage of the invention is that, in the optimization of all compressor units available or operable on the respective compacting system, it can be assumed that they are independent of their respective operating or switching state.
  • the invention allows - in contrast to known controls for compression equipment - than results-nis optimizing automatic connection of a previously liges inoperative located compressor unit or a pop u la ⁇ shutdown of a compressor package to be.
  • Real time means that the result of a calculation intra ⁇ half of a certain period of time guaranteed This means that the optimization calculation can take place on a separate data processing system which automatically forwards its calculation data to the control device.
  • the invention is based on the known sequential concept, i. H . to close after the start of an externally set, additional aggregate until the anti-surge valves and then back ⁇ clear to optimize the operating points of the compressor units of their efficiency decreases.
  • the invention is preferably during each optimization calculation ⁇ drying the entire compressor plant considered, and the switching configuration of the compression system d. H . the specification of a switching state of the individual compressor units, be ⁇ calculates.
  • the closing of the or all pump preventive valves can be ensured by a minimum flow through the Verêtrag ⁇ gregate in the optimization. Even a first start of the compression system can already with a favorable with regard to an optimized total energy demand switching configuration done.
  • switching configuration of a compressor plant is meant a Men ⁇ ge of the respective switching states of the individual Ver Whyrag ⁇ aggregates.
  • the switching configuration is represented by the switching states "0" for Off or "1" for On, which is stored bit by bit in ⁇ example in an integer variable.
  • switching operation is meant the change from one, in particular electrical, switching state to another.
  • a prediction by means of the optimization ⁇ is approximate calculation for at least one, preferably a plurality of future to ⁇ (n) time (s) determined. Since the method Progno ⁇ sen up to a given time permits, it is possible knowledge of a normal mode of operation of the station d. H . for example B, a usual load curve to use to minimize the switching frequency ⁇ speed of compressor units.
  • compressor unit-specific sHence ⁇ ze and / or compressor unit-specific characteristic maps evalu- ated and points for the individual compressor units working ⁇ be determined which of predetermined resp.
  • the operating points are set in such a way that the total energy consumption of the compaction plant is optimized.
  • the data sets and / or maps are specified as a function of a mass flow and a specific production work of the individual compression units.
  • a load distribution i. H . a speed Ratio, calculated between the compressor units and changed if necessary.
  • Another significant advantage is that side conditions to the optimization, such. B. not to violate the surge limit, can already be taken into account in an optimal efficiency calculation of the speed setpoints for the individual Ver Togetherrstati ⁇ ons.
  • optimization calculation is carried out with a control cycle, in particular self-triggering.
  • speed setpoint values and / or the new switching configuration for the control device are provided as output variables of the optimization calculation with each control cycle.
  • the speed setpoints and / or the switching configuration are kept constant.
  • the speed setpoints are scaled with a common factor and used as a setpoint for a compressor unit controller.
  • a further increase in the effectiveness of the system operation is achieved by the control device with the new switching configuration already before the end of the control cycle a warm-up phase of the compressor units for the subsequent Zuschal ⁇ th a previously out of service Kompressichteraggre ⁇ gates triggers.
  • a load readiness for the next control cycle is communicated with the end of the warm-up phase of the control device. If, for example, the rotational speed of an approaching compressor unit is sufficient is high and the warm-up phase of the turbine is completed, a signal "load ready" is set. This means that the compressor unit participates in the load sharing procedure and is included in the optimization calculation for the best load distribution between those in service.
  • a current mass flow through the single compression unit in particular by a single compressor and / or - a current mass flow through the compression plant and / or
  • the optimization calculation according to the principle of model-predictive control by means of forecast calculations minimizes the total energy demand expected up to a later point in time.
  • an energy consumption of a switching operation is taken into account in the optimization calculation.
  • the energy consumption of the switching process from the data sets and / or the maps of the compressor units is calculated.
  • Knowledge of a anteili ⁇ gen energy consumption for the switching operation enables an even more accurate determination of the minimum total energy consumption of the compressor plant.
  • An alternative advantageous variant of the invention is that the mass flow of the compressor system for the control cycle is assumed to be constant, in particular in a series circuit of the compressor units.
  • an active compressor unit is at least ⁇ operated with a predetermined or predetermined minimum flow.
  • the optimization calculation is carried out by ei ⁇ nes branch-and-bound algorithm.
  • a further increase in the efficiency of the calculation method is achieved by the optimization calculation solves by ei ⁇ ner dynamic programming sub-problems, insbesonde ⁇ re in a series circuit.
  • the device-related problem is based on the a ⁇ gangs said controlling means achieved by an optimization module, with the new at preset setpoints or ⁇ nde ⁇ tion of the current state of the compressor plant by means of an optimization calculation from a current switching configuration of the compressor units with regard to an optimized total energy demand of the compressor plant a new switching ⁇ configuration is calculable, and by a control module, with which the new switching configuration is automatically adjustable.
  • the optimization module for optimizing energy consumption is in particular designed to distribute the predetermined total load to the individual compressor units in combination with the control device and / or the dispatching center in such a way that the station setpoint values are minimized using as little energy as possible. H . with maximum overall efficiency, be realized. This includes, for example, both the decision which compressor units are active and which are switched inactive, as well as the specification of how much ⁇ each of the active units to contribute to overall performance, so the specification of the load distribution.
  • the Op is tim istsmodul in physical distance, in particular several ⁇ re Km, arranged for controlling means.
  • the optimization module is prepared for the consideration of an energy consumption of a switching operation.
  • Another embodiment is that the optimization module for optimization calculation for a plurality of control devices of several compression systems is prepared.
  • the invention also includes a computer program product is one contained tend software for performing a method according to ei ⁇ nem of claims 1 to 21 with a machine readable program code on a data carrier can be advantageously DV systems herhouse to an optimization module.
  • FIG 1 is a block diagram of a method for optimizing the operation of a compacting installation
  • Figure 2 shows a compressor map of a specific compaction ⁇ teraggregats
  • FIG. 3 shows a control device for controlling a compression plant
  • the behavior of a single compression unit 3, 4, 5 is modeled by a map 20, the map 20 describes its efficiency and its speed as a function of its operating point 22.
  • the operating point 22 by means of a state variable m, which describes a mass flow through the compression unit , and a determinable with Equation 1 specific funding work
  • R is a specific gas constant
  • Z is a real gas factor
  • c E c A is a speed at the entrance resp.
  • T E is an input temperature
  • the maps 20 are not provided by a closed formula. From a measurement, a delivery characteristic 21 and an efficiency curve 23 are determined. At constant speed, the dependence on the conveying work and an efficiency ⁇ . determined by the volumetric flow V or mass flow m at interpolation points.
  • a pumping limit 36 which are caused by the occurrence of certain flow phenomena in the compressor, are absorbed as a function of the speed. From these nodes and the associated values for different speeds can be determined by appropriate approaches, such. B. piecewise polynomial interpolation or B-splines, the maps 20 as a function of mass flow m. and specific promotional work yl. and build their domain of definition.
  • Equation 3 For the application of a mathematical programming, Equation 3 is considered as an equation constraint:
  • N y Y ys . y min (m) ⁇ y. ⁇ s . y max (m)
  • Equation 5 is considered as an equation constraint:
  • An active compression unit must, in order not to violate the surge limit, a minimum flow, in particular ⁇ a special minimum mass flow w TM n comply. This minimum flow rate depends on the current production work of the compaction plant. Similarly, the mass flow must remain below a maximum allowable value m max . i, t
  • FIG. 1 shows a block diagram of a method for optimizing the operation of a compression plant.
  • the compaction is ⁇ treatment plant with three compressor units 3, 4 and 5 shown in a very schematic way. For an interconnection of the compressor units 3, 4 and 5, a parallel connection is assumed.
  • the compressor units 3, 4 and 5 are controlled and regulated by a control device 10.
  • the control device 10 includes a controller of the control device 12, a first compressor unit controller 13, a second compressor unit controller 14 and a third compressor unit controller 15.
  • An optimization module 11 is in bidirectional connection with the control device 10. By means of the optimization module 11 is a non-linear mixed-integer Optimization problem solved.
  • a mathematical formulation of the optimization problem is implemented in the optimization module 11.
  • the optimization ⁇ extension module will provide 11 with regard to an optimized total energy ⁇ consumption optimized outputs 32 of the control of the control means 12th
  • the input variables 33 consist of a model library 26, with a model 24a, 24b, 24c for each compressor unit 3, 4, 5 and Pro ⁇ variables are processed together of the compressor plant.
  • Verdichtungsanläge - a current discharge pressure p g A on the output side of
  • the setpoints resp. Limits 31 for the control of the control device 12 are based on a maximum temperature 7; , A, max a pressure P g, A (set) and a volume flow V ⁇ ;;) at the
  • Sequence which specifies the following new switching configuration:
  • Continuous operation means that the compressor units in operation are operated with an optimized load distribution and with an optimized setting of their operating points 22 in the maps 20.
  • the output variables 32 of the optimization module 11 thus contain not only the switching states of the compressor units currently to be set, but also a speed setpoint input ⁇ . for the individual compressor units 3, 4 and 5.
  • the speed setpoints ⁇ ⁇ From the subordinate station control, which is cyclically higher than the optimization, the speed setpoints ⁇ ⁇ , before being applied to the compressor aggregate controllers, scaled by a common factor ⁇ to regulate the setpoints.
  • the optimization calculation is carried out automatically with a control cycle R in the optimization module 11. In the optimization calculation, therefore, in addition to the calculation of a possible switching configuration, the
  • the new switching configuration is now operate three dense aggregates of three Ver ⁇ . Since the result of the optimization calculation is known before the end of the control cycle, a warm-up phase is started for the third compressor unit 5 to be approached. At the end of the control cycle R ⁇ the new values of the control device 10 and in particular the compressor unit controllers 13, 14, 15 provided. The previously prepared with a warm-up Ver ⁇ dense aggregate 5 can now be seamlessly switched for the new control ⁇ cycle R and the optimal total energy ⁇ consumption for the required flow rate or the required volume flow Vö "(setpoint) is given again.
  • a surge limit 36 is entered.
  • Efficiency optimal operating points 22 are close to the pumping limit 36 on an efficiency curve 23 with a high efficiency n.
  • the characteristic fields 20 as a mathematical function of a mass flow (or the flow rate) and a specific För ⁇ are derarbeit of the individual compressor units added to the described method with Figure 1.
  • the mathematical formulation of the maps 20 as a calculation function is part of the optimization module 11 or. the optimization calculation.
  • FIG. 3 shows a control device 10 for controlling a compression system 1.
  • Control device 10 via an adjusting module S to the compressor units 3, 4 and 5 set and / or regulated.
  • control variable for a control of the control device 10 in particular that variable of flow, suction pressure, discharge pressure and end temperature, which has the smallest positive Re ⁇ gelabweichung used.
  • the regulation of the Steue ⁇ inference means 10 provides as output together with the optimization module, the target values for a single encryption compressor unit controllers 13, 14, 15, see Fig. Second
  • FIG. 4 shows a flow chart of the method steps 40, 42, 44 and 46.
  • the optimization method is triggered cyclically.
  • the current state of the compressor station 1 is determined. The following values are detected to: actual values 30, setpoints 31, limits and Randbedin ⁇ conditions 37, and models 24a, 24b, and 24c 26 from the ModellBiblio ⁇ theque
  • the current switching state Sj_, t -i the compression system 1 determines
  • a third method step 44 represents a decision point. With the third method step 44, the decision is made an optimization calculation 46 is performed in a fourth method step or the method is ended 48.
  • the method will continue with the fourth method step 46.
  • the mixed integer optimization ⁇ problem is solved.
  • Input variables for the fourth process step 46 are actual values 30, setpoints 31, Grenzwer ⁇ te and boundary conditions 37 and the models from a model ⁇ library 26.
  • As a result of the fourth process step 46 are speed setpoints .lambda..sub.i and new switching states Si, t outputted.
  • the method is ended 48. With the cyclical initiation from the first method step 40, the method is run through again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Feedback Control In General (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Multiple Motors (AREA)
EP06707973A 2005-02-11 2006-02-02 Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant Active EP1846660B8 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06707973T PL1846660T3 (pl) 2005-02-11 2006-02-02 Sposób optymalizacji pracy kilku agregatów sprężarkowych i odpowiednie urządzenie do tego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005006410A DE102005006410A1 (de) 2005-02-11 2005-02-11 Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate und Vorrichtung hierzu
PCT/EP2006/050612 WO2006084817A1 (fr) 2005-02-11 2006-02-02 Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant

Publications (3)

Publication Number Publication Date
EP1846660A1 true EP1846660A1 (fr) 2007-10-24
EP1846660B1 EP1846660B1 (fr) 2009-04-08
EP1846660B8 EP1846660B8 (fr) 2009-11-11

Family

ID=36283270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06707973A Active EP1846660B8 (fr) 2005-02-11 2006-02-02 Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant

Country Status (16)

Country Link
US (1) US7676283B2 (fr)
EP (1) EP1846660B8 (fr)
CN (1) CN101155995A (fr)
AT (1) ATE428055T1 (fr)
AU (1) AU2006212264A1 (fr)
BR (1) BRPI0606994A2 (fr)
CA (1) CA2597519A1 (fr)
DE (2) DE102005006410A1 (fr)
DK (1) DK1846660T3 (fr)
ES (1) ES2321872T3 (fr)
MX (1) MX2007009728A (fr)
NO (1) NO20074604L (fr)
PL (1) PL1846660T3 (fr)
RU (1) RU2381386C2 (fr)
UA (1) UA88045C2 (fr)
WO (1) WO2006084817A1 (fr)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502008002475D1 (de) * 2008-05-26 2011-03-10 Siemens Ag Verfahren zum Betreiben einer Gasturbine
NO329451B1 (no) * 2008-11-03 2010-10-25 Statoil Asa Fremgangsmate for a opprettholde trykket i eksportgassen fra en bronn
DE102008064490A1 (de) * 2008-12-23 2010-06-24 Kaeser Kompressoren Gmbh Verfahren zum Steuern einer Kompressoranlage
DE102008064491A1 (de) 2008-12-23 2010-06-24 Kaeser Kompressoren Gmbh Simulationsgestütztes Verfahren zur Steuerung bzw. Regelung von Druckluftstationen
DE102009017613A1 (de) * 2009-04-16 2010-10-28 Siemens Aktiengesellschaft Verfahren zum Betrieb mehrerer Maschinen
GB0919771D0 (en) * 2009-11-12 2009-12-30 Rolls Royce Plc Gas compression
BE1019108A3 (nl) * 2009-12-02 2012-03-06 Atlas Copco Airpower Nv Werkwijze voor het aansturen van een samengestelde inrichting en inrichting waarin deze werkwijze kan worden toegepast.
DE102010040503B4 (de) * 2010-09-09 2012-05-10 Siemens Aktiengesellschaft Verfahren zur Steuerung eines Verdichters
RU2454569C1 (ru) * 2011-02-14 2012-06-27 Общество с ограниченной ответственностью "Вега-ГАЗ" Способ управления гидравлическим режимом компрессорного цеха с оптимальным распределением нагрузки между газоперекачивающими агрегатами
DE102011079732B4 (de) * 2011-07-25 2018-12-27 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Steuern bzw. Regeln eines Fluidförderers zum Fördern eines Fluides innerhalb einer Fluidleitung
US9527683B2 (en) 2011-07-25 2016-12-27 Siemens Aktiengesellschaft Method and device for controlling and/or regulating a fluid conveyor for conveying a fluid within a fluid line
DE102013001921A1 (de) * 2013-02-05 2014-08-07 Man Diesel & Turbo Se Verfahren zum Betreiben eines Fördersystems mit mehreren Kompressoren
US9436179B1 (en) 2013-03-13 2016-09-06 Johnson Controls Technology Company Systems and methods for energy cost optimization in a building system
US9235657B1 (en) 2013-03-13 2016-01-12 Johnson Controls Technology Company System identification and model development
US10418833B2 (en) 2015-10-08 2019-09-17 Con Edison Battery Storage, Llc Electrical energy storage system with cascaded frequency response optimization
US9852481B1 (en) 2013-03-13 2017-12-26 Johnson Controls Technology Company Systems and methods for cascaded model predictive control
ES2776004T3 (es) * 2013-03-15 2020-07-28 Kaeser Kompressoren Se Desarrollo de un modelo superior para el control y/o monitorización de una instalación de compresor
EP4177466A1 (fr) * 2013-03-15 2023-05-10 Kaeser Kompressoren SE Normalisation de valeurs mesurees
US11231037B2 (en) 2013-03-22 2022-01-25 Kaeser Kompressoren Se Measured value standardization
DE102013014542A1 (de) * 2013-09-03 2015-03-05 Stiebel Eltron Gmbh & Co. Kg Wärmepumpenvorrichtung
DE102013111218A1 (de) * 2013-10-10 2015-04-16 Kaeser Kompressoren Se Elektronische Steuerungseinrichtung für eine Komponente der Drucklufterzeugung, Druckluftaufbereitung, Druckluftspeicherung und/oder Druckluftverteilung
US9695834B2 (en) 2013-11-25 2017-07-04 Woodward, Inc. Load sharing control for compressors in series
EP2919078A1 (fr) * 2014-03-10 2015-09-16 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Régulation de climat intérieur à base de Navier-Stokes
US10101731B2 (en) 2014-05-01 2018-10-16 Johnson Controls Technology Company Low level central plant optimization
DE102014006828A1 (de) * 2014-05-13 2015-11-19 Wilo Se Verfahren zur energieoptimalen Drehzahlregelung eines Pumpenaggregats
US20150329289A1 (en) * 2014-05-15 2015-11-19 Ronald R. Mercer Subterranean Sealed Bore Fuel System
US10190789B2 (en) 2015-09-30 2019-01-29 Johnson Controls Technology Company Central plant with coordinated HVAC equipment staging across multiple subplants
US10250039B2 (en) 2015-10-08 2019-04-02 Con Edison Battery Storage, Llc Energy storage controller with battery life model
US10197632B2 (en) 2015-10-08 2019-02-05 Taurus Des, Llc Electrical energy storage system with battery power setpoint optimization using predicted values of a frequency regulation signal
US10222427B2 (en) 2015-10-08 2019-03-05 Con Edison Battery Storage, Llc Electrical energy storage system with battery power setpoint optimization based on battery degradation costs and expected frequency response revenue
US10222083B2 (en) 2015-10-08 2019-03-05 Johnson Controls Technology Company Building control systems with optimization of equipment life cycle economic value while participating in IBDR and PBDR programs
US10418832B2 (en) 2015-10-08 2019-09-17 Con Edison Battery Storage, Llc Electrical energy storage system with constant state-of charge frequency response optimization
US10700541B2 (en) 2015-10-08 2020-06-30 Con Edison Battery Storage, Llc Power control system with battery power setpoint optimization using one-step-ahead prediction
US10190793B2 (en) 2015-10-08 2019-01-29 Johnson Controls Technology Company Building management system with electrical energy storage optimization based on statistical estimates of IBDR event probabilities
US10389136B2 (en) 2015-10-08 2019-08-20 Con Edison Battery Storage, Llc Photovoltaic energy system with value function optimization
US10554170B2 (en) 2015-10-08 2020-02-04 Con Edison Battery Storage, Llc Photovoltaic energy system with solar intensity prediction
US10564610B2 (en) 2015-10-08 2020-02-18 Con Edison Battery Storage, Llc Photovoltaic energy system with preemptive ramp rate control
US11210617B2 (en) 2015-10-08 2021-12-28 Johnson Controls Technology Company Building management system with electrical energy storage optimization based on benefits and costs of participating in PDBR and IBDR programs
US10742055B2 (en) 2015-10-08 2020-08-11 Con Edison Battery Storage, Llc Renewable energy system with simultaneous ramp rate control and frequency regulation
US10283968B2 (en) 2015-10-08 2019-05-07 Con Edison Battery Storage, Llc Power control system with power setpoint adjustment based on POI power limits
WO2017083095A1 (fr) 2015-11-09 2017-05-18 Carrier Corporation Unité frigorifique à deux compresseurs
WO2017157415A1 (fr) * 2016-03-14 2017-09-21 Bitzer Kühlmaschinenbau Gmbh Système de mise en service d'une unité de compression de réfrigérant et procédé de mise en service d'une unité de compression de réfrigérant
US20170292727A1 (en) * 2016-04-06 2017-10-12 Heatcraft Refrigeration Products Llc Optimizing compressor staging in a modular outdoor refrigeration system
US10337669B2 (en) 2016-04-29 2019-07-02 Ocean's NG, LLC Subterranean sealed tank with varying width
DE102016208507A1 (de) * 2016-05-18 2017-11-23 Siemens Aktiengesellschaft Verfahren zur Ermittlung einer optimalen Strategie
US10594153B2 (en) 2016-07-29 2020-03-17 Con Edison Battery Storage, Llc Frequency response optimization control system
US10778012B2 (en) 2016-07-29 2020-09-15 Con Edison Battery Storage, Llc Battery optimization control system with data fusion systems and methods
EP4365453A2 (fr) * 2016-12-30 2024-05-08 Grundfos Holding A/S Procédé de fonctionnement d'un groupe motopompe à commande électronique
US10838441B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with modulating device demand control
US10838440B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with discrete device selection prioritization
CN110307144B (zh) * 2018-03-20 2021-05-11 恩尔赛思有限公司 用于分析、监测、优化和/或比较多压缩机系统中能量效率的方法
CN110307138B (zh) * 2018-03-20 2021-05-04 恩尔赛思有限公司 一种关于能量效率的多压缩机系统的设计、测量和优化方法
WO2019180003A1 (fr) 2018-03-20 2019-09-26 Enersize Oy Procédé d'analyse, de surveillance, d'optimisation et/ou de comparaison d'efficacité énergétique dans un système à compresseurs multiples
WO2019179997A1 (fr) 2018-03-20 2019-09-26 Enersize Oy Procédé de conception, de jaugeage et d'optimisation d'un système à compresseurs multiples par rapport à l'efficacité énergétique
US11159022B2 (en) 2018-08-28 2021-10-26 Johnson Controls Tyco IP Holdings LLP Building energy optimization system with a dynamically trained load prediction model
US11163271B2 (en) 2018-08-28 2021-11-02 Johnson Controls Technology Company Cloud based building energy optimization system with a dynamically trained load prediction model
US10837601B2 (en) 2018-10-29 2020-11-17 Ronald R. Mercer Subterranean gas storage assembly
TWI699478B (zh) * 2019-05-01 2020-07-21 復盛股份有限公司 壓縮機系統排程方法
US11408418B2 (en) * 2019-08-13 2022-08-09 Rockwell Automation Technologies, Inc. Industrial control system for distributed compressors
US11680684B2 (en) 2021-04-16 2023-06-20 Bedrock Gas Solutions, LLC Small molecule gas storage adapter
CN114656052A (zh) * 2022-04-29 2022-06-24 重庆江增船舶重工有限公司 一种用于污水处理的多级并联曝气鼓风机运行方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665399A (en) * 1969-09-24 1972-05-23 Worthington Corp Monitoring and display system for multi-stage compressor
US4640665A (en) 1982-09-15 1987-02-03 Compressor Controls Corp. Method for controlling a multicompressor station
JPS62243995A (ja) 1986-04-14 1987-10-24 Hitachi Ltd 圧縮機の並列運転制御装置
DE3937152A1 (de) * 1989-11-08 1991-05-16 Gutehoffnungshuette Man Verfahren zum optimierten betreiben zweier oder mehrerer kompressoren im parallel- oder reihenbetrieb
US5347467A (en) 1992-06-22 1994-09-13 Compressor Controls Corporation Load sharing method and apparatus for controlling a main gas parameter of a compressor station with multiple dynamic compressors
DE4430468C2 (de) * 1994-08-27 1998-05-28 Danfoss As Regeleinrichtung einer Kühlvorrichtung
US5743715A (en) 1995-10-20 1998-04-28 Compressor Controls Corporation Method and apparatus for load balancing among multiple compressors
US5743714A (en) * 1996-04-03 1998-04-28 Dmitry Drob Method and apparatus for minimum work control optimization of multicompressor stations
US20040095237A1 (en) * 1999-01-09 2004-05-20 Chen Kimball C. Electronic message delivery system utilizable in the monitoring and control of remote equipment and method of same
US6535795B1 (en) * 1999-08-09 2003-03-18 Baker Hughes Incorporated Method for chemical addition utilizing adaptive optimization
MY126873A (en) * 2000-01-07 2006-10-31 Vasu Tech Ltd Configurable electronic controller for appliances
US20010045101A1 (en) * 2000-02-11 2001-11-29 Graham Donald E. Locomotive air conditioner control system and related methods
DE10151032A1 (de) 2001-10-16 2003-04-30 Siemens Ag Verfahren zur Optimierung des Betriebs mehrerer Verdichteraggregate einer Erdgasverdichtungsstation
DE10208676A1 (de) * 2002-02-28 2003-09-04 Man Turbomasch Ag Ghh Borsig Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel- oder Reihenbetrieb

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006084817A1 *

Also Published As

Publication number Publication date
ES2321872T3 (es) 2009-06-12
ATE428055T1 (de) 2009-04-15
WO2006084817A1 (fr) 2006-08-17
UA88045C2 (ru) 2009-09-10
BRPI0606994A2 (pt) 2009-07-28
EP1846660B8 (fr) 2009-11-11
US7676283B2 (en) 2010-03-09
NO20074604L (no) 2007-09-11
PL1846660T3 (pl) 2010-01-29
CA2597519A1 (fr) 2006-08-17
MX2007009728A (es) 2007-09-26
DE502006003377D1 (de) 2009-05-20
RU2381386C2 (ru) 2010-02-10
RU2007133792A (ru) 2009-03-20
DE102005006410A1 (de) 2006-08-17
CN101155995A (zh) 2008-04-02
DK1846660T3 (da) 2009-07-27
AU2006212264A1 (en) 2006-08-17
US20080131258A1 (en) 2008-06-05
EP1846660B1 (fr) 2009-04-08

Similar Documents

Publication Publication Date Title
EP1846660A1 (fr) Procede d'optimisation du fonctionnement de plusieurs groupes de compresseurs et dispositif correspondant
EP0431287B1 (fr) Procédé d'opération optimal de deux ou plusieurs compresseurs travaillant en parallèle ou en série
EP2573400B1 (fr) Procédé de commande d'une installation de compresseurs
EP2918795B1 (fr) Régulation pour systèmes de pile ORC
EP3839256A1 (fr) Procédé de fonctionnement d'une pompe à débit variable à vitesse variable
DE10208676A1 (de) Verfahren zum Regeln von mehreren Strömungsmaschinen im Parallel- oder Reihenbetrieb
EP3722573A1 (fr) Procédé de fonctionnement d'un moteur à combustion interne doté d'un turbocompresseur à gaz d'échappement et d'un compresseur alimenté électriquement et ses dispositifs
DE102018112835A1 (de) Hydrauliksystem, Hydraulikeinheit, Fahrzeug, Verfahren und Verwendung
EP1436510B1 (fr) Procede d'optimisation du fonctionnement de plusieurs compresseurs dans une station de compression de gaz naturel
DE102010024246A1 (de) Verfahren und Vorrichtung zum Betrieb einer angetriebenen Achse bei einer Werkzeugmaschine
EP3619066B1 (fr) Système de régulation de la pression comprenant un ensemble d'étranglement
DE102014210304B4 (de) Verfahren zum Betreiben eines Systems mit wenigstens zwei Leistungskomponenten, Steuergerät, Computerprogrammprodukt und System
DE102004005945A1 (de) Verfahren und Vorrichtung zur Ladedruckregelung bei zweistufiger Abgasturboaufladung
WO2019016056A1 (fr) Procédé de réglage d'au moins deux ventilateurs
DE202017104349U1 (de) Vorrichtung zum Regeln von wenigstens zwei Ventilatoren
EP1672203B1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne dans un véhicule
DE102020213293A1 (de) Verfahren zum Betreiben eines hydraulischen Antriebs
DE102009011053A1 (de) Windparkregler
DE102015121905A1 (de) Kompressoranlage mit stufenloser Regelung
DE102017211690A1 (de) System zum Reduzieren von Lastspitzen in einer elektrischen Anlage
WO2009047072A1 (fr) Procédé et dispositif de commande d'un groupe hydraulique
DE102015116148A1 (de) Modular untergliederte Kompressoranlage
WO2008116586A2 (fr) Système de cellule électrochimique et procédé de régulation d'un système de cellule électrochimique
WO2023156279A1 (fr) Procédé de fonctionnement d'un ensemble hydraulique d'une machine de travail et machine de travail
DE19812157A1 (de) Verfahren zum Regeln des Gasflusses in einer Verdichterstation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070726

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: METZGER, MICHAEL

Inventor name: LIEPOLD, HELMUT

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: METZGER, MICHAEL

Inventor name: LIEPOLD, HELMUT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006003377

Country of ref document: DE

Date of ref document: 20090520

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2321872

Country of ref document: ES

Kind code of ref document: T3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20090506

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

26N No opposition filed

Effective date: 20100111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100209

Year of fee payment: 5

Ref country code: IE

Payment date: 20100219

Year of fee payment: 5

Ref country code: RO

Payment date: 20100126

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20100125

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100217

Year of fee payment: 5

Ref country code: TR

Payment date: 20100127

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090709

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100209

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110228

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091009

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 428055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006003377

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220811 AND 20220817

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20230620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240308

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 19

Ref country code: GB

Payment date: 20240220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240222

Year of fee payment: 19

Ref country code: FR

Payment date: 20240226

Year of fee payment: 19